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ABSTRACT

A genotype network is a graph in which vertices
represent genotypes that have the same phenotype.
Edges connect vertices if their corresponding geno-
types differ in a single small mutation. Genotype net-
works are used to study the organization of geno-
type spaces. They have shed light on the relation-
ship between robustness and evolvability in biolog-
ical systems as different as RNA macromolecules
and transcriptional regulatory circuits. Despite the
importance of genotype networks, no tool exists for
their automatic construction, analysis and visualiza-
tion. Here we fill this gap by presenting the Genonets
Server, a tool that provides the following features:
(i) the construction of genotype networks for cate-
gorical and univariate phenotypes from DNA, RNA,
amino acid or binary sequences; (ii) analyses of
genotype network topology and how it relates to
robustness and evolvability, as well as analyses of
genotype network topography and how it relates to
the navigability of a genotype network via mutation
and natural selection; (iii) multiple interactive visual-
izations that facilitate exploratory research and ed-
ucation. The Genonets Server is freely available at
http://ieu-genonets.uzh.ch.

INTRODUCTION

The genotype–phenotype map is a fundamental object of
study in developmental and evolutionary biology (1). Its
structure has implications for the evolution of mutational
robustness (2) and cryptic genetic diversity (3), and largely
determines the rate with which beneficial mutations arise
in evolving populations (4). Degeneracy––the mapping of
multiple genotypes onto the same phenotype––is a com-
mon feature of genotype–phenotype maps, and has been
observed at levels of biological organization that include
the secondary structure phenotypes of RNA (5), the gene

expression phenotypes of transcriptional regulatory circuits
(6) and morphological phenotypes that arise through devel-
opment (7).

Genotype networks––one of several network-based ap-
proaches for studying the relationship between genotype
and phenotype (8)––are ideally suited to represent degener-
acy. They are graphs in which vertices represent genotypes
that have the same phenotype (5,9–10). For example, geno-
types may be RNA sequences that fold into the same sec-
ondary structure phenotype, or amino acid sequences that
fold into proteins with the same tertiary structure pheno-
type. Edges connect vertices if their corresponding geno-
types differ in a single small mutation, such as an amino
acid substitution. (Here, we use the term genotype to refer
to a string of letters from an RNA, DNA, protein or binary
alphabet; we use the term phenotype to refer to a categori-
cal label assigned to a genotype.)

For many years, most knowledge about genotype net-
works came from computational models of genotype–
phenotype maps, such as those that relate RNA sequence
genotypes to folded secondary structure phenotypes (5),
or the genotypes of model proteins comprising hydropho-
bic and hydrophilic amino acids to their phenotypes
folded on a lattice (10). However, recent advances in high-
throughput sequencing and microarray-based technologies
have brought the study of empirically-derived genotype–
phenotype maps to the fore. Examples include the map-
ping of HIV-1 protease and reverse transcriptase sequence
genotypes to the phenotypes of viral replicative capacity
(11), as well as the mapping of dihydrofolate reductase se-
quence genotypes to antibiotic resistance phenotypes (12).
As high-throughput technologies continue to advance, such
empirical genotype–phenotype maps will become increas-
ingly available.

The study of genotype networks has provided funda-
mental insights into the evolution of viral antigens (13), ri-
bozyme functions (14) and protein–protein interfaces (15).
Genotype networks––in both computational models and
empirical data––have also led to important advances in
evolutionary and developmental biology. These include a
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reconciliation of the neutralist and selectionist schools of
thought in evolution (16), our understanding of how devel-
opmental programs impact adaptation (7) and how muta-
tional robustness facilitates evolvability––the ability of mu-
tations to generate novel phenotypes (4,17–18). Moreover,
genotype networks have become an important object of
study in non-biological systems (19,20).

Despite the significance and breadth of applications
of genotype networks, no tool currently exists for their
automatic construction, analysis and visualization. To
our knowledge, the only related works are MAGEL-
LAN (http://biorxiv.org/content/early/2015/11/13/031583)
and VCF2Networks (21). The former is a visualization tool
for very small genotype networks, whereas the latter is a
command-line tool that is specifically designed to handle
single nucleotide polymorphism data, and that only pro-
vides structural analyses of genotype networks. Given the
diversity of systems for which genotype–phenotype maps
have been described (5–6,10,19–20) and the diversity of
measures that have been developed to quantify their topol-
ogy and topography (17,22–25), the development of an ex-
tended and general tool will be of considerable use to the
scientific community. To this end, we present the Genonets
Server, a tool that provides the following features: (i) the
construction of genotype networks for categorical and uni-
variate phenotypes from DNA, RNA, amino acid or bi-
nary sequences; (ii) analyses of genotype network topology
and how it relates to robustness and evolvability, as well as
analyses of genotype network topography and how it re-
lates to the navigability of a genotype network via mutation
and natural selection; (iii) multiple interactive visualizations
that facilitate exploratory research and education.

MATERIALS AND METHODS

Here we describe the Genonets Server. More detailed de-
scriptions of the input data, analyses and interactive visu-
alizations are provided in the online Supplementary Data,
tutorials and documentation.

Terminology

We begin by introducing some terminology. A categorical
phenotype is a discrete classification that is assigned to each
genotype. For example, the categorical phenotype of an
RNA sequence may be its secondary structure, whereas the
categorical phenotype associated with a person’s genome
may be ‘healthy’ or ‘obese’. In some cases, a genotype may
have more than one categorical phenotype, such as an RNA
sequence genotype that folds into multiple secondary struc-
ture phenotypes (26). A quantitative phenotype provides
complementary information about the categorical pheno-
type. For example, the quantitative phenotype of an RNA
sequence may be its folding energy, whereas the quantita-
tive phenotype of a person’s genome may be body mass in-
dex. For brevity, we use the term ‘phenotype’ to mean ‘cate-
gorical phenotype,’ unless we specifically indicate otherwise
with the term ‘quantitative phenotype.’

A genotype set is a set of genotypes that all have the same
phenotype. A genotype set may comprise one or more geno-
type networks––subsets of a genotype set within which it is

possible to connect any pair of genotypes through a series
of small mutations that do not change the phenotype. Here
we refer to such mutations as neutral, whereas we call muta-
tions that yield a change in phenotype non-neutral. (We em-
phasize that neutral mutations may not be neutral with re-
spect to the quantitative phenotype.) Since individual geno-
types may belong to multiple genotype sets, genotype net-
works may overlap.

When a genotype set comprises multiple genotype net-
works, it is typically the case that one network is much larger
than all of the others (e.g. (18,22,27)). We refer to this net-
work as the dominant genotype network, which is a common
object of study in genotype–phenotype maps. The reason
is that a population evolving under stabilizing selection for
a particular phenotype is more likely to occupy that phe-
notype’s dominant genotype network than its other, often
considerably smaller genotype networks.

The dominant genotype networks of different pheno-
types may be connected to one another via non-neutral mu-
tations, resulting in the formation of a phenotype network. In
such a network, vertices represent dominant genotype net-
works and edges connect vertices if at least one non-neutral
mutation changes a genotype from one network into a geno-
type from the other. If two vertices are connected by an
edge, their dominant genotype networks are referred to as
adjacent. These terms are illustrated in Figure 1.

Workflow

User interaction with the Genonets Server starts at the in-
put form, which is used to upload a file describing the
genotype–phenotype map (see below), set the required pa-
rameters and select a set of topological and topographical
analyses to be performed. Once the user submits the input
form, the server reads the genotype–phenotype map, deter-
mines the genotype set corresponding to each phenotype
and constructs the genotype networks for each. All selected
analyses are performed on the dominant genotype network
of each genotype set. Once all the requested analyses have
been performed, the visualization page is presented to the
user, with the option to download the results in text format.
The process is depicted in Figure 2A.

The input form

The input form allows the user to upload their genotype–
phenotype map and set a small number of parameters. The
format for the genotype–phenotype map is simple, and in-
cludes just the following four columns: (i) genotype, (ii)
categorical phenotype, (iii) quantitative phenotype and (iv)
noise associated with the quantitative phenotype. Each row
in the file corresponds to a single genotype. An example is
shown in Figure 2B.

The parameters to be set on the input form include: (i)
the genotype alphabet. DNA, RNA, amino acid and bi-
nary sequences (e.g. wild-type versus mutant allele (28)) are
supported; (ii) a lower bound τ on the quantitative pheno-
type, which is used to filter genotypes from genotype sets.
For example, when studying RNA sequence to secondary
structure maps, one may wish to ignore those sequences
that have high folding energies. Alternatively, when study-
ing transcription factor binding affinity maps (18), one may
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Figure 1. Schematic illustration of genotype network construction and of the terminology used in this paper. (A) Example of an input file with two
categorical phenotypes, P1 and P2. The format of this file is described in Figure 2B. (B) Visualization of the corresponding genotype sets. Each vertex
corresponds to a genotype. Vertex color corresponds to the categorical phenotype (‘Genotypeset’ in A) and vertex size corresponds to the quantitative
phenotype (‘Score’ in A). (C) Genotype networks constructed from the genotype sets. Edges connect vertices if their corresponding genotypes differ in
a single neutral mutation. Note that the genotype set corresponding to P1 is fragmented into two genotype networks, one with just a single vertex and
another with three vertices. The latter is referred to as the dominant genotype network. (We emphasize that while the two genotype networks shown in
this schematic are of similar size, in practice the dominant genotype network tends to be much larger than the other genotype networks.) (D) Relationship
between dominant genotype networks. These networks overlap, because they share the genotype ACGT. They are also connected by a non-neutral mutation,
which converts ACAT to ACGT, and vice versa. (E) Phenotype network. A bi-directional edge from P1 to P2 exists because there is at least one genotype in
P1 that can be converted into a genotype in P2 via a single non-neutral mutation, and vice versa.

wish to ignore those DNA sequences that bind a transcrip-
tion factor with very low affinity; e.g. τ = 0.35 was used in
(18). 3) Allowed mutation types, where point mutations and
small indels are supported. The indels we consider shift an
entire contiguous sequence by a single letter (see the Sup-
plementary Data for details). (iv) The final parameter to set
is the selection of topological and topographical analyses to
be performed.

Construction of genotype and phenotype networks

Genotype networks are constructed as follows. For each
genotype set, the number of mutations that separate each
pair of genotypes is computed. Genotypes are then repre-
sented as vertices, and pairs of vertices are connected by an
edge if their corresponding genotypes are separated by a sin-
gle mutation (Figure 1C).

We use the dominant genotype network of each pheno-
type to construct a phenotype network. In this network,
dominant genotype networks are represented as vertices
and pairs of vertices are connected by an edge if at least one
non-neutral mutation changes a genotype from one domi-
nant genotype network into a genotype from the other dom-
inant genotype network (Figure 1E).

Topological analyses

Topological analyses rely upon just two columns of the in-
put file: ‘Genotype’ and ‘GenotypeSet.’ The analyses in-
cluded in the Genonets Server are based on (17,22,29).

Robustness. This quantifies the invariance of a phenotype
in the face of genetic perturbation (17). Robustness is mea-
sured for individual genotypes and for phenotypes. The ro-
bustness of an individual genotype is simply the proportion
of all possible single mutations that are neutral. The robust-
ness of a phenotype is the average robustness of all geno-
types in the corresponding dominant genotype network.

Evolvability. This quantifies the ability of mutations to
generate novel phenotypes (17). Like robustness, evolvabil-
ity is measured for individual genotypes and for pheno-
types. The evolvability of an individual genotype is the pro-
portion of all phenotypes that can be realized by single non-
neutral mutations to the genotype. The evolvability of a
phenotype is the proportion of all phenotypes that can be
realized by single non-neutral mutations to any genotype in
the corresponding dominant genotype network.

Accessibility. This quantifies the proportion of non-
neutral mutations that yield a given phenotype i from
phenotype j, summed across all phenotypes j �= i in the
genotype–phenotype map (22). This measure reflects how
easy it is to ‘find’ a phenotype via non-neutral mutations to
genotypes that have other phenotypes.

Neighbor abundance. This quantifies the average number
of genotypes in the dominant genotype networks that are
adjacent to a phenotype i, scaled by the probability that
non-neutral mutations yield these phenotypes (22). Neigh-
bor abundance is high when a phenotype is mutationally bi-
ased toward phenotypes with large dominant genotype net-
works, and low otherwise.

Diversity index. This quantifies the probability that two
randomly chosen non-neutral mutations to genotypes in the
same dominant genotype network will yield genotypes with
different phenotypes (22). This measure captures the diver-
sity of phenotypes that can be accessed via non-neutral mu-
tations from a given phenotype.

Overlap. This quantifies the number of genotypes com-
mon to a pair of dominant genotype networks. This is mea-
sured for all pairs of phenotypes in the genotype–phenotype
map.

Structure. This quantifies several canonical topological
properties of the dominant genotype networks, including
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Genotype  GenotypeSet  Score  Delta
ACCAGGTG  Ascl2        0.425  0.028
CCCACCCC  Ascl2        0.381  0.028
GCATATGC  Ascl2        0.396  0.028
CCCACCCA  Bcl6b        0.375  0.025
CCCACCCC  Bcl6b        0.440  0.025
TCCAGGAA  Bcl6b        0.406  0.025
TACACAAA  Foxa2        0.454  0.031
GACAAACA  Foxa2        0.408  0.031
TATACATA  Foxa2        0.356  0.031
ATTTATTA  Foxa2        0.391  0.031
AATCTGCA  Mafb         0.357  0.028
ATATTTGC  Mafb         0.360  0.028
TGAATGAA  Bbx          0.457  0.023
AATGAACT  Bbx          0.402  0.023
TAATTAAA  Bbx          0.360  0.023

A

B

Figure 2. Workflow and input file. (A) Workflow, shown in terms of in-
teraction between the browser and the Genonets Server. (B) Sample input
file for empirical transcription factor binding affinity data (34). Genotypes
are DNA sequences (‘Genotype’), phenotypes are the transcription fac-
tors that bind these sequences (‘GenotypeSet’), quantitative phenotypes
are in vitro measures of binding affinity (‘Score’) and the noise associated
with each quantitative phenotype is based on the correlation between two
biological replicates of the assay (‘Delta’). ‘Genotype’ and ‘GenotypeSet’
provide the Genonets Server with necessary and sufficient information for
topological analyses, whereas ‘Score’ and ‘Delta’ are additionally required
for topographical analyses. If ‘Score’ and ‘Delta’ are not specified, a col-
umn of zeros must be written under these headers in the input file.

diameter, clustering coefficient, assortativity and edge den-
sity (please see online documentation for further details).

Topographical analyses

Topographical analyses rely upon all four columns of the in-
put file. They facilitate the exploration of a dominant geno-
type network as an adaptive landscape (30). Since the quan-
titative phenotype may be a direct measurement of organ-
ismal fitness (31), or an indirect measurement such as the
minimum inhibitory concentration of an antibiotic (28), it
can be used to define the ‘elevation’ of each genotype in the
landscape; the noise associated with each genotype is used
to determine whether two quantitative phenotypes truly dif-

fer from one another. The analyses included in the Genonets
Server are based on (23–25).

Peaks. This quantifies both the number of peaks in the
landscape and the number of genotypes per peak (23). This
is a simple measure of landscape ruggedness.

Paths. This quantifies the number of accessible muta-
tional paths from each genotype in a dominant genotype
network to the genotype with the highest quantitative phe-
notype (i.e. the summit) (24). A mutational path is accessible
if the quantitative phenotype increases monotonically along
the path.

Epistasis. This quantifies non-additive interactions be-
tween pairs of mutations in their contribution to the quan-
titative phenotype. Three classes of epistasis are reported:
magnitude, simple sign, and reciprocal sign epistasis, which
vary in their contributions to the ruggedness of an adaptive
landscape (25).

Visualization

The Genonets Server provides multiple interactive visual-
izations spread across different views, covering the entire
spectrum of topological and topographical analyses de-
scribed in the previous sections. The main view consists of
the phenotype network. Clicking on one of its vertices trig-
gers a visualization of the corresponding dominant geno-
type network (Figure 3, left panel), which can also be viewed
as an adaptive landscape (Figure 3, right panel).

The phenotype and genotype network views are com-
plemented with interactive tabular data views, where each
row corresponds to a single vertex, and each column cor-
responds to one attribute associated with the vertices. It
is possible to search for vertices based on any of these at-
tributes. The tabular view also provides on-click creation
of histograms and bar charts for plotting attributes, and
scatter plots for viewing correlations between attributes. All
plots are interactive. Interactivity is further supported in the
form of vertex hover, selection and drag; right-clicking on a
vertex enables a context menu with various analysis and vi-
sualization options. For example, right-clicking on a vertex
in the phenotype network permits one to visually compare
its dominant genotype network to that of another pheno-
type.

Output files

All attributes calculated for the topological and topograph-
ical analyses are available in easy-to-parse text files in the
Tab Separated Value (TSV) format. One file provides the at-
tributes for all phenotypes in the genotype–phenotype map,
in which each row corresponds to a phenotype and each col-
umn to an attribute. Another file contains an N × N ma-
trix that describes the overlap observed among all pairs of
phenotypes. An additional file is generated for each pheno-
type, in which each row corresponds to a genotype with that
phenotype and each column to an attribute. Moreover, the
phenotype network and all dominant genotype networks
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Figure 3. Interactive visualization of a genotype-phenotype map. Data correspond to in vitro measurements of transcription factor binding affinity (34), in
which genotypes are DNA sequences and phenotypes are the transcription factors that bind these sequences; a subset of these data is shown in Figure 2B.
(Left panel) Topology: the phenotype network of 104 mouse transcription factors is shown on the left, in which the high mobility group protein Sox21 has
been selected. The dominant genotype network for Sox21 is shown on the right, with its diameter highlighted. (Right panel) Topography: the dominant
genotype network for Sox21 is shown in the landscape view. The center vertex is the summit, and each concentric ring contains genotypes of the same
mutational distance from the summit, with distances increasing as the rings are read from the center outward. Vertex color represents the quantitative
phenotype and vertex size represents the number of accessible mutational paths that travel through the vertex.

are provided in the Graph Modeling Language (GML) for-
mat. This makes it possible to load the networks into ex-
ternal graph modeling tools, such as Gephi (32). A com-
pressed archive of all the above-mentioned files is available
for download from the visualization page.

Implementation

The server side is implemented in the Python program-
ming language. The python-igraph package (33) is used for
generic graph data structures and algorithms. The interac-
tive visualizations are implemented in Javascript, and run
entirely in the browser. This also means that the perfor-
mance of the visualization is limited by the amount of pro-
cessing power and available memory on the user’s machine,
rather than on the server.

In order to facilitate users for whom the compute capac-
ity of the server is not enough, the code for construction
and analysis of genotype networks is available as a Python
package called genonets. The genonets package can be used
either as a command line tool, or as an API. Please see the
Supplementary Data for more details.

RESULTS

In addition to rigorous basic testing with computer-
generated data, we have also tested and validated the
Genonets Server on empirical genotype–phenotype maps
for DNA, RNA and amino acid sequences. For binary
sequences, testing and validation was performed on a
genotype–phenotype map derived from a computational
model. These datasets are included in the Supplementary
Data. In all cases, the Genonets Server produced identical
results to those previously reported.

DNA

A total of 48 290 DNA sequences (each 8 nt long) that
bind 104 different transcription factors (34) were processed.
The results were validated by comparing the robustness and
evolvability measures against those reported in (18) and the
topography measures against those reported in (Aguilar-
Rodrı́guez, J., Payne, J. L. and Wagner, A., submitted).

RNA

A total of 15 174 RNA sequences (each 7 nt long) that bind
116 different RNA binding proteins (35) were processed.
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The results were validated via comparison to those from a
separate codebase in our lab.

Protein

A total of 742 protein sequences (each 329 amino acids
long), representing mutations in the viral hemagglutinin
protein (36) were processed. The results were validated by
comparing to those reported in (37).

Binary

A total of 31 870 binary sequences representing 114 dif-
ferent expression patterns in model gene regulatory circuits
were processed. The results were validated by comparing to
those presented in (38).

DISCUSSION

We have presented the Genonets Server, a tool for the con-
struction, analysis and visualization of genotype networks.
The release of our tool coincides with a dramatic increase
in the availability of empirical genotype–phenotype maps
(12,39–40) and with the development of ever-more sophis-
ticated computational models used to generate genotype–
phenotype maps (41). It is our hope that the Genonets
Server will lower the barrier of entry to studying genotype
networks in such maps, and thus aid the scientific commu-
nity in basic research.

We also hope that the visualization capabilities of the
Genonets Server will facilitate exploratory research. For ex-
ample, one aim of synthetic biology is to develop transcrip-
tional regulatory circuits that reliably yield a particular gene
expression pattern. To achieve this goal, it is important that
each transcription factor in a circuit binds only its target
sites and not the target sites of other factors. The overlap
feature of our tool may be used to minimize such ‘cross-
talk’ (43), by determining which transcription factor bind-
ing sites are orthogonal to one another within a genotype–
phenotype map of binding affinity (e.g. (18)).

Finally, we believe that the Genonets Server will be a use-
ful pedagogical tool. It allows students to study genotype–
phenotype maps and genotype networks with no develop-
ment effort. Fundamental concepts, such as adaptive land-
scape ruggedness (42) and the relationship between robust-
ness and evolvability (16) can be discovered with just a few
mouse-clicks. What is more, our easy-to-use input form fa-
cilitates these discoveries in datasets derived from the most
cutting-edge high-throughput technologies available today.

AVAILABILITY

The Genonets Server is available at http://ieu-genonets.uzh.
ch. This website is free and open to all users and there is no
login requirement.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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