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Abstract
The present review focuses on the flow and interaction of somatosensory-motor signals in the central
and peripheral nervous system. Specifically, where incoming sensory signals from the periphery are
processed and interpreted to initiate behaviors, and how ongoing behaviors produce sensory con-
sequences encoded and used to fine-tune subsequent actions. We describe the structure–function
relations of this loop, how these relations can be modeled and aspects of somatosensory-motor
rehabilitation. The work reviewed here shows that it is imperative to understand the fundamental
mechanisms of the somatosensory-motor system to restore accurate motor abilities and appropriate
somatosensory feedback. Knowledge of the salient neural mechanisms of sensory-motor integration
has begun to generate innovative approaches to improve rehabilitation training following neurologi-
cal impairments such as stroke. The present work supports the integration of basic science principles
of sensory-motor integration into rehabilitation procedures to create new solutions for sensory-motor
disorders.
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1. Introduction

Presently, we aim to unravel the nature and mechanisms responsible for the
ability to organize sensory perceptions and motor routines, in order to open a
window onto the organization of the somatosensory-motor loop. We will focus
on somatosensory input and how this is processed and integrated centrally, to
determine motor behavior. The fine balance between sensory input and mo-
tor output is essential for efficient interactions within the environment, and
also includes the integration of incoming multisensory signals (e.g., vision,
hearing, touch). Somatosensory feedback is pertinent for the fine tuning of
dexterous movements. If this is impaired due to trauma or injury, due to, e.g.,
stroke or spinal cord injury, the incoming somatosensory signals are degraded
and the effects can be very detrimental. In these cases, the absence of precise
somatosensory feedback can render patients unable to perform movements
despite the fact that basic motor function is relatively preserved (Ionta et al.,
2016). In recent years, there have been important updates on the basic mecha-
nisms, anatomo-functional neural basis, and rehabilitation procedures of such
sensory-motor integration. Furthering the understanding of healthy and patho-
logical somatosensory-motor integration mechanisms is essential and supports
a theoretical model as general reference framework, with direct clinical out-
comes.

In the next section we will provide a broad overview of state-of-the-art
functional neuroimaging evidence on the interaction between somatosensory
afferent information and efferent movement control, with a particular focus
on touch. The third section will summarize the relationship between struc-
tural neuroimaging data and clinical phenotypes of sensory-motor disorders.
In the fourth section we will discuss behavioral data within the framework
of theoretical generalizations and modeling of the sensory-motor loop. The
last section will discuss mechatronic tactile stimulation platforms developed
in order to enable human touch studies with psychophysical and electrophysi-
ological methods.

2. Functional Bases of Somatosensory-Motor Processing

The physiological investigation of the somatosensory system has its roots in
pioneering studies of experimentalists such as Adrian, who investigated the af-
ferent impulses from peripheral nerves (Adrian, 1926) and Penfield, who used
electrical stimulation to map the sensorimotor cortex (Penfield and Boldrey,
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1937). Somatosensory-motor interactions are engrained in the fast conducting
information that is sent to (afference) and from (efference) the central nervous
system (Fourkas et al., 2006). The inherent accuracy and precision in this sys-
tem allows us to engage in complex tasks, such as picking up a slippery object.
It also provides a wealth of information for exploratory and manipulative tac-
tile interactions with objects, allowing us to distinguish between multitudes of
surfaces. Thus, for accurate motor control and exploration of the world, fast
sensorimotor integration is essential. This is achieved through the comparison
of motor behavior and its somatosensory consequences, with the inclusion of
other factors, such as multisensory information (especially visual and audi-
tory signals) and cognitive mechanisms, including experience, memory and
learning.

Functional human brain imaging has provided us with a wealth of informa-
tion about sensory and motor processes, and how these interact at a systems
level. Nevertheless, we have much to learn about the normal functioning of
these processes. One of the most immediate consequences of interacting physi-
cally with the environment is tactile perception. Concerning touch input, most
studies have focused on afferent input to the primary somatosensory cortex
(S1) to investigate how tactile information is processed; however, there are
many other areas that contribute to decoding touch. The first stage in this pro-
cess is the mechanoreception of interactions between the skin and external
objects. Many different types of mechanoreceptive (touch) afferent contribute
to somatosensation and the information transmitted depends on where the
touch is received. The skin can be categorized by whether it is glabrous (non-
hairy, e.g., the palms of the hands, soles of the feet) or hairy (the majority
of the skin on the body). Different mechanoreceptive afferents are found at
varying densities in the skin, which contribute to somatosensation by encod-
ing various aspects of touch. The glabrous skin contains only fast conducting,
myelinated mechanoreceptive afferents (see Fig. 1). These are densely packed
in the glabrous skin and capable of encoding detailed aspects of touch, for
example, pressure, force, vibration, edges, features and textures (Johnson,
2001). Additional types of fast conducting, myelinated afferents are found in
hairy skin as well as slowly conducting, unmyelinated C-tactile (CT) afferents
(Vallbo et al., 1993, 1995) (Fig. 1). Myelinated afferents are more sparsely
found in the hairy skin, which contributes to its decreased tactile discrimina-
tion capabilities, as compared to the glabrous skin (Ackerley et al., 2014a;
Weinstein, 1968). Thus the type of touch and where it is applied to the skin
may result in different behaviors, depending on the afferents activated.

Once a tactile stimulus has been registered by these afferents, the informa-
tion is sent to the spinal cord, before being relayed to S1, where tactile in-
formation is processed and integrated cortically (Mountcastle, 1957) (Fig. 1).
This is the classical pathway for touch to reach the brain; however there are
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Figure 1. Overview of touch pathways from the periphery to brain. Once a tactile stimulus
has been registered by mechanoreceptors in the skin, the information is sent to the primary
somatosensory cortex (S1) or the insula, which are both somatosensory regions with different
multisensory influences.

other ways that tactile information enters the brain (e.g., from CT afferents
that project to the insula) and the processing of touch occurs over many dif-
ferent levels (Ackerley and Kavounoudias, 2015). The central target of touch
information will in turn determine how the signals are processed, where the
insula target is likely to be combined with much more emotional related in-
formation (e.g., with homeostatic mechanisms) and S1 with discriminative
information (e.g., with vision) (Ackerley and Kavounoudias, 2015). The ma-
jority of mechanoreceptive research has focused on the touch from glabrous
skin of the hands, due to its essential function in everyday life, which is ex-
emplified in the amount of cortex dedicated to it, as seen by the proportionally
greater representations in both the sensory and motor homunculi (Fig. 1). With
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advances in functional imaging technology, especially ultrahigh field (e.g.,
7 Tesla, 7T) functional magnetic resonance imaging (fMRI), it is now pos-
sible to explore S1 in exquisite detail. Studies have shown precise intra- and
interdigital representations in the subsections of S1 (i.e., Brodmann areas 3b,
1 and 2) (Martuzzi et al., 2014; Sanchez-Panchuelo et al., 2010, 2012; Stringer
et al., 2011).

S1 is central to somatosensory-motor processing, as it receives the bulk
of myelinated tactile information from the periphery, which is sent from the
thalamus in a somatotopic fashion (homunculus), as found through the his-
toric electrical mapping experiments of Penfield (Penfield and Boldrey, 1937;
Rasmussen and Penfield, 1947). These pioneering experiments demonstrated
that the human primary sensory and motor (M1) cortices show a distinct body
map, where body parts with higher discriminative abilities are represented by
larger cortical space and that the sensory and motor cortices are inexplica-
bly linked in function. The precentral (motor) and postcentral (sensory) gyri
both have these body map representations and they function together to aid in
somatosensory integration. This was shown through electrical cortical stim-
ulation, where S1 can produce movements and M1, sensation; hence these
areas are not exclusively sensory and motor, respectively (Penfield and Bol-
drey, 1937). This is especially evident for the stimulation of the hand cortical
areas, likely due to the large receptive fields dedicated to them and their im-
portance in sensory-motor control. More recent studies have found further
evidence for the close relationship between somatosensory and motor inter-
actions, such as direct S1–M1 projections (Huerta and Pons, 1990), that S1
can drive exploratory protraction of the whiskers in mice (Matyas et al., 2010)
and that the excitability of M1 is continuously modulated by somatosensory
afference, especially during precise, fine motor control in humans (Tamburin
et al., 2001).

The interplay between somatosensory and motor integration is highlighted
in differences in the processing of active (self generated) and passive (other)
touch. The similarity between active and passive touch is that near identical
tactile afference may be generated provided that tactile stimulation platforms
are properly tailored to the experimental framework (as discussed in Sec-
tion 5); however, during active touch, motor commands (efference copy) are
issued that can shape the meaning of the tactile feedback, as well as there be-
ing predictive mechanisms, such as through internal models (Wolpert et al.,
1995). M1 plays a critical role in the execution of motor behavior and it has
been postulated that tactile signals integrated into M1 may contribute to per-
ception in active touch (Ferezou et al., 2007), for example, where the activity
in M1 is modified by both the weight and texture of a grasped object (Picard
and Smith, 1992). S1 is also modulated by active and passive touch (Ionta et
al., 2014). A network of cortical areas, including the contralateral S1, bilat-
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eral secondary somatosensory cortex (S2) and posterior parietal cortex (PPC),
is activated during all types of touch (Ackerley et al., 2012; Disbrow et al.,
2000; Francis et al., 2000; Ruben et al., 2001). The contralateral M1 can also
be activated during passive touch to the glabrous skin of the hands (Ackerley
et al., 2012; Francis et al., 2000).

Active touch typically produces sensations that are less intense, as com-
pared to passive touch (Ackerley et al., 2014b); however, this is not always
the case, especially when the person seeks tactile information such as during
the exploration of a surface for specific features. The classical idea of why
you cannot tickle yourself (active self touch, compared to being tickled by
another) captures the dynamic relationship between the processing of affer-
ence from self generated and other generated tactile signals (Blakemore et al.,
1998, 2000; Weiskrantz et al., 1971). An efference copy signal from the motor
intention cancels or countermands the incoming sensory consequence. Using
fMRI, increased activity was found in S1 when the tickle was externally pro-
duced, thus there was a decreased signal during self tickle (Blakemore et al.,
1998). The prediction of the sensory consequences of the self tickle meant
that the incoming afference produced from self touch was gated out, thus less
activity was seen in S1. On the other hand, increases in the signal in S1 dur-
ing active touch, as compared to passive (other ‘generated’) touch, have been
found in other tactile interactions, where attention is focused on the action
and incoming afference (Ackerley et al., 2012; Simões-Franklin et al., 2011).
Hence, it seems that there is a complex interaction between somatosensory
and motor signals, with other cognitive factors such as attention and intention,
which shape the way information is processed in S1.

Other cortical areas play key roles in processing and integrating somatosen-
sory and motor information. S2 contributes to discriminative somatosensory
processing, but does not contain the precise somatotopic body representations
found in S1, rather the cortical receptive fields are large and overlapping for
body areas, as found in monkey work (Fitzgerald et al., 2006; Sinclair and
Burton, 1993; Thakur et al., 2006). Neurons in S2 have been found to code for
more cognitive aspects of touch, including the stages of motor hand grasping,
representations of past and present sensory information, modulations with at-
tention, comparisons between stimuli, correlations with behavioral decisions,
and discriminative learning (Hsiao et al., 2002; Ishida et al., 2013; Murray
and Mishkin, 1984; Romo et al., 2002a, b). The cerebellum also has a ma-
jor role in the integration of multisensory and motor signals, where there are
dense projections from all over the cortex, including from somatosensory, mo-
tor, visual and emotional areas, to the cerebellum (Brodal, 1978; Leergaard
and Bjaalie, 2007). Although it is particularly involved in integrating and fine-
tuning somatosensory and motor information, it has the capacity for diverse
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information processing (Cerminara et al., 2015), where an internal model is
constructed about the sensory-motor action (Wolpert et al., 1995).

The PPC and premotor cortex (PMC) are activated during haptic sensing,
object recognition and sensorimotor transformations during visually guided
motor activities, often providing a prehension signal to aid in processing sen-
sory afference (Colby and Duhamel, 1996; Gardner et al., 2007), akin to the
integrative role of the cerebellum. This suggests that these areas are key in the
predictive and planning components of active touch, whereas S1 and M1 deal
with the more immediate components of performance. The PMC in particular
has been found to subserve motor and cognitive functions such as coordinat-
ing motor intentions and with the understanding of actions (Bonini et al., 2011;
Rizzolatti et al., 2002). These two cortical areas have clear multimodal prop-
erties including motor, somatosensory and visual functions and contribute to
transforming somatosensory information into motor behavior (Candidi et al.,
2008). The influence of visual signals can also be found in somatosensory-
motor processing. For example, coincident visual and tactile stimuli on human
hands activates both the PMC and intraparietal sulcus for visuotactile integra-
tion (Gentile et al., 2011). Vision can modulate responses in S1, especially
when the viewed stimulus implies tactile interactions or touch is observed
(Meyer et al., 2011; Pihko et al., 2010). For instance, recent studies demon-
strated the influence of vision over somatosensory processing in human–object
and human–human interactions based on visuotactile integration (Ebisch et
al., 2011; Ionta et al., 2013; Rossetti et al., 2012; Schaefer et al., 2009). These
findings imply a more cognitive or emotional aspect to the modulation of so-
matosensory areas by visual signals.

Visuotactile interactions are pertinent in our everyday lives and the combi-
nation of incoming tactile and visual signals together with cognitive mecha-
nisms such as memory, learning, attention, expectation and prediction, shape
our behavior. The integration of human touch information is more dependent
upon these higher level processes; however, it is postulated that positive affec-
tive tactile information is signaled directly by unmyelinated CT afferents that
are only found in hairy skin and respond preferentially to gentle stroking touch
(Ackerley et al., 2014c; Löken et al., 2009). These afferents encode pleasant
social interactions at a basic level and send information to the insular cortex,
known for its multisensory role in emotion and bodily regulation, as compared
to the discriminative information sent to S1 (McGlone et al., 2014; Olausson
et al., 2002). The multisensory experience of human touch, and its behav-
ioral consequence, is therefore not just limited to tactile discrimination, but
also includes visual, affective and emotional variables, such as pleasantness
and arousal (Ackerley et al., 2014b), which affect the seeking or avoidance of
somatosensory-motor interactions. For example, pleasant encounters will be
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interpreted as positive and be reinforced, whereas unpleasant situations will
be dissuaded, aiding in the production of appropriate behavior.

3. Structural Approaches to Study the Pathology of the
Somatosensory-Motor Loop

New advances in neuroimaging and neurostimulation approaches have begun
to unravel the salient neural substrates underlying persisting motor dysfunc-
tion in a number of neurologic conditions (Borich et al., 2013b). A renewed
interest has been placed on understanding and mapping the anatomical cir-
cuits that support neural function in the human brain. In this vein, recent
work has evaluated the structural properties underlying multisensory mech-
anisms of somatosensory interactions (Brang et al., 2013; Van den Brink
et al., 2014) demonstrating the importance of characterizing the anatomical
substrates underlying multisensory function. For instance, a recent empha-
sis has been placed on studying the human brain connectome (Sporns et al.,
2004) in an attempt to identify the underlying neuroanatomical connections
in the brain that are necessary to understand the complex organization of lo-
cal and distributed information processing. Currently, white matter imaging
techniques (diffusion imaging, relaxometry, etc.) are the gold standard for non-
invasively characterizing structural properties of brain networks. These new
approaches can probe the brain architecture, providing insights on the effec-
tive integration of information across different sensory modalities to better
shape motor outputs. From a rehabilitation and motor learning perspective, it
has been shown that differences in brain structure after injury or in the context
of neurologic disorders are associated with alterations in behavior (Avanzino
et al., 2015). When combined with noninvasive brain stimulation (NIBS) ap-
proaches, structural imaging also offers exciting novel avenues to study brain
structure–function relationships contributing to normal and abnormal sensory-
motor function. The most common cause of adult disability is stroke and
disability is largely due to disruption of the somatosensory motor loop re-
sulting in motor dysfunction and decreased quality of life. Stroke provides a
testable model to characterize the anatomical substrates of both normal and
abnormal sensory-motor function and the potential for these substrates to be
modified by experience. Additionally, in the rehabilitation literature, there has
been a long term focus on stroke thus generating a large amount of knowledge
regarding the underlying structural and functional correlates of disability and
recovery. While there are clear differences in pathophysiology between stroke
and other clinical populations, stroke provides a good model to study restora-
tive and compensatory brain reorganization in response to relatively localized
damage. Additionally, a large number of studies have demonstrated that the
principles of experience-dependent neuroplastic change (which underlies mo-
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tor skill learning in healthy individuals) apply to the relearning of previously
acquired motor skills or the acquisition of new motor skills in patients af-
ter stroke. Thus, focusing on stroke provides a reasonably well characterized
model to study adaptive brain reorganization that supports restitution of func-
tion that is translatable into other clinical populations.

Using structural magnetic resonance imaging (sMRI) and diffusion weight-
ed imaging (DWI), differences in gray and white matter structure have been
demonstrated after stroke. These differences have the capacity to predict lev-
els of sensory-motor dysfunction and response to rehabilitation in patients
with stroke. In the context of neurologic disorders (e.g., Parkinson’s disease)
or after neurologic insult (e.g., stroke), the capacity for performing skilled
movements is diminished. In the majority of cases, individuals do not regain
previous levels of skill leading to persistent motor dysfunction and decreased
quality of life (Edwards et al., 2010; Go et al., 2013). However, the capacity
for learning new motor skills or relearning previous skills is rarely abolished.
In both the context of heath and disease, motor skill learning is represented
by structural and functional neuroplastic change in the brain. Neuroplastic
change is constantly occurring and is influenced by a number of factors in-
cluding characteristics of training (for review: Kleim and Jones, 2008) and
processes associated with memory formation (Brashers-Krug et al., 1996;
Ionta et al., 2010; Tononi and Cirelli, 2014). Brain imaging can provide a win-
dow into structural reorganization following neurologic insult but also into the
mechanisms of adaptive plasticity associated with motor skill learning during
rehabilitation. Using stroke as a model, the following sections will briefly sum-
marize the current understanding of the influence of brain structure on long
term prognosis, current motor performance and residual capacity for motor
skill learning. Additionally, evidence for experience-dependent white matter
plasticity will be discussed.

The human central nervous system consists of two fundamental types of
tissue: gray matter and white matter. Most of the synapses and neurons in the
brain are located in gray matter while the axons of neurons and supporting
glial cells are primarily found in the white matter. The axons and glial cells
are densely packed in white matter tracts that are responsible for information
transmission within regions of the brain and between these regions and the
rest of the body. One critical feature of white matter is myelin, an extension
of glial cell membranes that wraps around axonal fibers to improve conduc-
tion velocity and reduce the energy requirements of axons (Van der Knaap
and Valk, 2005). Due to the integral role of white matter and its structural or-
ganization, injuries in even small volumes of this tissue can have profoundly
negative effects on multisensory integration underlying normal behavior.

A broad spectrum of neurologic disorders are associated with white matter
pathology; specific examples include multiple sclerosis (MS), stroke, vascular
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dementia, schizophrenia and traumatic brain injury. In rodent models of both
acute (Tanaka et al., 2003) and chronic (Chida et al., 2011) ischemic stroke,
white matter degeneration is present. After stroke these changes lead to cog-
nitive learning impairment and their reversal by remyelination is positively
associated with cognitive recovery (Chida et al., 2011). In conjunction, recent
work suggests that white matter may be an important therapeutic target to re-
duce the burden of disease associated with certain neurologic disorders (for
review: Dobkin, 2007; Stys and Lipton, 2008).

Unique and detailed information about white matter anatomy and brain
recovery following stroke can be generated using diffusion weighted imag-
ing (DWI). DWI capitalizes on the diffusive properties of water to determine
microstructural integrity of white matter. Fractional anisotropy (FA) is a quan-
titative, unitless measure of diffusion behavior of water in the brain. It is
influenced by microstructural properties of white matter and is the most com-
monly reported measure of white matter integrity after stroke (Jang, 2010).
After stroke, white matter tract integrity can be affected both locally and dis-
tally to the primary lesion location (Werring et al., 2000). Abnormal white
matter tissue microstructural properties in ipsi- or contralesional descending
motor output pathways have been associated with greater levels of physical
impairment and motor dysfunction (Borich et al., 2012; Qiu et al., 2011; Stin-
ear et al., 2007), reduced motor learning (Borich et al., 2013a; Stinear et al.,
2007), and hand sensory-motor dysfunction (Borich et al., 2012; Borstad et
al., 2012; Schaechter et al., 2009). Mean FA values in descending motor out-
put pathways measured acutely after stroke have also been used as part of
an algorithm used to predict potential for functional recovery (Stinear et al.,
2012).

There is substantial evidence demonstrating positive neuroplastic change
after stroke (Boyd and Winstein, 2003; Taub et al., 1993). It has been clearly
shown that capacity for neuroplastic change is preserved, even in individuals
with chronic stroke (as demonstrated by fMRI and improvements in motor
function — Boyd and Winstein, 2003, 2004a, b, 2006; Boyd et al., 2009; Pohl
and Winstein, 1999; Velicki et al., 2000; Vidoni and Boyd, 2009; Winstein et
al., 1999) (Boyd et al., 2007; Meehan et al., 2011). Although increasing the
amount of skilled use of the paretic side induces neuroplastic change in gray
matter (Calautti and Baron, 2003; Calautti et al., 2001a, b, 2004; Sawaki, et
al., 2008), the dose of movement required is exceedingly high (Lang et al.,
2009). Currently, definitive numbers of repetitions needed for optimal learn-
ing (Kleim and Jones, 2008) to stimulate neuroplastic change in gray (Luke et
al., 2004) or white matter (Scholz et al., 2009) are unknown. What is known is
that low doses of task-specific movement practice occur during stroke rehabil-
itation (Lang et al., 2007, 2009) that are likely suboptimal for inducing lasting
structural and functional neuroplastic change to improve sensory-motor net-
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work activity underlying behavior. Thus, alternative approaches have been
pursued to augment experience-dependent neuroplasticity after stroke.

Following stroke, NIBS may be used to re-establish the altered balance of
cortical excitability between the hemispheres (Murase et al., 2004; Shimizu et
al., 2004) and/or pre-excite a cortical region that will be engaged in subsequent
behavioral practice (Boyd and Linsdell, 2009). Yet, on average, the reported
effects of NIBS in individuals with stroke are small (Bell et al., 2008) and
varied (Brodie et al., 2014; Carey et al., 2014). Since the first clinical trial of
repetitive transcranial magnetic stimulation (rTMS), a common form of NIBS
in 2001, a substantial number of investigations have been conducted to evalu-
ate the therapeutic potential of rTMS to modulate cortical activity and improve
function after stroke (Lefaucheur et al., 2014). However, due to a number of
factors including small sample sizes, heterogeneity of participant character-
istics, undefined optimal stimulation parameters and lack of synergistic skill
training applications, the positive effects of rTMS on sensory-motor function
in stroke have been modest (Hao et al., 2013; Le et al., 2014; Lefaucheur et
al., 2014).

Combining structural imaging approaches with NIBS offers opportuni-
ties to probe the structure–function relationships contributing to abnormal
sensory-motor function and response to NIBS-based interventions. For exam-
ple, it was shown recently that response to an intervention pairing rTMS over
the ipsilesional S1 prior to motor skill training using the paretic arm was pre-
dicted by the volume of white matter within ipsilesional S1 as measured by
sMRI prior to beginning the intervention (Brodie et al., 2014). This example
highlights potential applications of structural imaging approaches to identify
potential biomarkers of response to NIBS paradigms to better tailor novel ther-
apeutic interventions to the characteristics of a given individual. Longitudinal
imaging assessments of brain structure can capture aspects of anatomical reor-
ganization during stroke recovery but can also be used to monitor neuroplastic
change associated with rehabilitation to determine if sufficient experience-
dependent plasticity in brain regions involved in multisensory integration is
being driven by a given intervention.

For stroke rehabilitation approaches to be maximally effective on a patient-
by-patient basis, it is critical to address all sensory systems involved in each
functional task of interest. Although incorporating multiple sensory systems
during rehabilitation is commonly understood in contemporary treatment ap-
proaches, limited research has directly focused on multisensory approaches
in a stroke rehabilitation context. Recently a review of multisensory stimu-
lation was published showing positive benefits of concomitantly stimulating
multiple sensory areas to improve sensory function after stroke (Tinga et al.,
2016). However, a quantitative quality assessment suggested that definitive
conclusions could not be reached due to methodological issues of the studies
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included in the review. Additionally, the multisensory stimulation interven-
tions were focused on sensory function rather than the way a given interven-
tion directly impacts the restoration of motor function. Recently, a pilot study
demonstrated the feasibility of a virtual reality-based approach utilizing mul-
tisensory feedback during movement to improve motor function (Kato et al.,
2015). Although encouraging, the pilot nature of this investigation precludes
definitive conclusions regarding the benefits of multisensory approaches in
stroke rehabilitation. Although historically not a specific focus of rehabili-
tation research, it is commonly understood that a multisensory approach is
beneficial to stroke rehabilitation but future research to evaluate the degree of
benefit of these approaches compared to unisensory approaches would further
substantiate current clinical practice.

In the context of motor learning, there are clear advantages of taking a
multisensory approach to improve recovery after stroke. During stroke re-
habilitation, the recovery of function requires the same memory formation
processes underlying motor learning in healthy individuals. Under typical con-
ditions, these motor skill memories are formed using multisensory information
from the external and internal environments. For example, recovery of func-
tional paretic arm reach to grasp activities requires processing of multisensory
information from the somatosensory system, proprioceptive system and visual
system. The advantage of taking a multisensory approach to understand stroke
and stroke recovery is that this approach accounts for the role of each sen-
sory system in performing and (re) learning functional movements. Without
accounting for one or all of the sensory systems involved in a skilled task dur-
ing stroke rehabilitation will result in a suboptimal approach to motor skill
learning underlying the recovery of function.

4. Modeling Sensory-Motor Integration

Conceiving theoretical models to explain the causal link between dysfunc-
tional brain networks and clinical phenotypes is a major challenge in cog-
nitive neuroscience. In the current models of sensory-motor integration the
reciprocal role of somatosensory and motor mechanisms is still unclear. Here
we will enclose the reviewed evidence on typical and pathological sensory-
motor organization in a general theoretical model of modes and operations of
sensory-motor processing.

Classic models of sensory-motor integration postulate that the process as a
whole can be broken down into different subaspects (nodes) and that the activ-
ity of specific spatiotemporally specialized neural substrates can be attributed
to each individual aspect, or node (Sanger and Merzenich, 2000; Shadmehr
and Krakauer, 2008; Wolpert et al., 1995). Recent theorizations of sensory-
motor integration propose that the first activated nodes encode the movement
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preparation phase, preloading the sequence of single movements required to
perform an action (Borich et al., 2015). Converging evidence supports that
after the intention to move, this movement planning phase is encoded by ac-
tivity in premotor and supplementary motor regions (e.g., Ionta et al., 2010).
Then the signal is translated into a motor command and a replication of the
command itself (efference copy) is used to predict the expected motor out-
come (forward model) (Von Holst and Mittelstaedt, 1950). Simultaneously,
the efference copy is combined with the information about the current body
state and entered in a feedforward prediction model (Adams et al., 2013;
Wolpert et al., 1998). First, the feedforward model anticipates the somatosen-
sory consequences of the motor command (Blakemore et al., 2000), improving
monitoring and error detection. Second, the outcome of the comparison be-
tween the expected and the actual somatosensory inflow is volleyed back to
the structures encoding the translation of motor planning into motor command,
closing the sensory-motor loop (Perruchoud et al., 2014).

At the neural level, the premotor (Desmurget et al., 2009) and supplemen-
tary motor regions (Ionta et al., 2010) encode the movement preparation phase.
Then the signal is transferred to the motor command node (M1) to trigger the
movement (Tanji et al., 1996). Not only does M1 send the signal to the cor-
ticospinal tract, but it also generates a copy of the signal (the efference copy)
to be entered into the forward model in the parietal cortex (Wolpert et al.,
1998). At the same time, the forward model enters information about the es-
timated movement outcome into the feedforward model, primarily involving
the cerebellum (Blakemore et al., 2000). The real somatosensory inflow is first
encoded and then compared with the anticipated somatosensory prediction by
the activity of basal ganglia, thalamus, and cerebellum (Schlerf et al., 2012).
Then the result of this comparison is sent to S1, and premotor and supplemen-
tary motor regions (Busan et al., 2009). Based on the acquired information on
the current and the estimated body state, S1 (Borich et al., 2015), premotor
(Sun et al., 2015) and supplementary motor (Carlsen et al., 2015) regions then
project back to M1, in order to calibrate the resulting movement and close the
sensory-motor loop (Perruchoud et al., 2014).

Clinically, it can be hypothesized that when afferent somatosensory infor-
mation is not available (as after complete spinal cord injury), the somatosen-
sory encoding nodes of the sensory-motor loop cannot receive information on
the current state and therefore have to rely uniquely on the forward predic-
tion model, causing a general and unsolvable instability of the whole system.
This unreliability can trigger a change in the relative weight of kinesthetic and
visuospatial body representations. In other words, in pathological conditions
affecting the acquirement of the information required to correctly represent the
body, we are able to switch strategy in order to use a different reference frame
(e.g., visuospatial) and accommodate ecologically appropriate adaptations,
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e.g., visually guided movements (Rothwell et al., 1982). This interpretation is
in line with the evidence suggesting that movement representations are largely
multimodal (Halje et al., 2015) and that the interplay between these different
representations can change in the case of missing (Curtze et al., 2010), dis-
connected (Fiori et al., 2014) or misrepresented limbs (Daprati et al., 2010).

5. How to Deliver the Stimulus? Neuro-Robotic Tools to Investigate the
Somatosensory System and to Evaluate Artificial Tactile Sensors for
Neuroprostheses

The loop between neuroscientific research and biomedical engineering is of
major importance for rehabilitation (Pisotta et al., 2015). Neurophysiological
studies on the somatosensory system require the precise, repeatable, and un-
obtrusive delivery of tactile stimuli in controlled situations. This is typically
achieved by means of passive touch experimental methods (see Section 2 for
illustration of active versus passive touch frameworks). In passive touch ex-
periments, the planning and execution of the task underlying the stimulation
is external to the subject and hence no voluntary action is required and no
efference copy is generated, which has consequences on the brain areas and
processes involved (see Section 4 for discussion). The exploration of these
sensorimotor relationships is enabled by the development of tools such as
mechatronic tactile stimulators suitable for electrophysiological recordings
and behavioral studies with psychophysical methods. Several of such plat-
forms have been presented in the literature, with different constructive choices
depending on the investigated somatosensory modality (e.g., mechanical, ther-
mal), on the possible combination with the activation of other senses (e.g.,
vision, audition), on the targeted experimental protocol (e.g., adaptive stair-
case methods) and experimental environment (e.g., suitable for being applied
in combination with microneurography, EEG or MRI studies). In this vein,
touch may be a channel for multisensory substitution. This is the case of
stimulators with pinned elements, that allow applying both local forces and
generalized textures via traveling spatiotemporal mechanical waves, and that
are used as touch-based assistive devices for visually impaired as well as in
neuroscientific investigations (Bliss et al., 1970; Gardner and Palmer, 1989;
Hayward et al., 2014; Killebrew et al., 2007; Kyung et al., 2006; Summers
and Chanter, 2002; Vidal-Verdú and Hafez, 2007). Tactile stimulation is also
used in combination with audio (Ghali et al., 2012) or visual (Lunghi and
Morrone, 2013) stimulation to study multisensory integration or to promote
an immersive virtual reality experience that was investigated in some cases
under magnetic resonance imaging (Duenas et al., 2011; Ku et al., 2003).

Even within one sensory modality, it is crucial to consider all the different
aspects that are processed and combined by similar neural mechanisms. For
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instance, considering somatosensations, some tactile stimulators can deliver
to the skin either simple pressure and displacement (Birznieks et al., 2001;
Byrne, 1975; Looft and Williams, 1979; Nakazawa et al., 2000; Pawluk and
Howe, 1999; Romo et al., 1993; Wheat et al., 2004) or complex texture sur-
faces (Darian-Smith and Oke, 1980; Goodwin et al., 1985; Johnson and Lamb,
1981; Johnson and Phillips, 1988; LaMotte et al., 1983; Oddo et al., 2011a;
Tomassini et al., 2011; Weber et al., 2013; Wiertlewski et al., 2011). However
somatosensation is not limited to these features. Indeed, some novel systems
also integrate temperature regulation (Bruce, 1982) and, in combination with
mechanical stimulation, can be used to investigate multimodal sensory inte-
gration, e.g., between temperature and force (Ackerley et al., 2014c; Davis et
al., 1998; Klöcker et al., 2014). Such multimodal studies address the investiga-
tion of how both mechanical and thermal features of tactile stimuli contribute
to the perception of their pleasantness level, hence linking the discriminative
and affective components of touch experience. In some devices particular en-
gineering solutions (e.g., shielding techniques, pneumatic actuation and cable
driven transmission among several approaches) were introduced in order to
allow the delivery of thermal (Davis et al., 1998) or mechanical (Dykes et
al., 2007; Golaszewski et al., 2006) stimuli to be compatible with MRI stud-
ies, whereas the tactile stimulus delivery was not under automatic control and
manual application of calibrated filaments was used (Schaechter et al., 2006)
in MRI studies not requiring the dynamic change of stimulation parameters
(see Section 3 for discussion with a particular focus on stroke).

In conclusion, the tight integration between robotics and neuroscience en-
ables progression both in the understanding of the somatosensory system
(Johansson and Flanagan, 2009; Jörntell et al., 2014) and towards transla-
tional neuroprosthetic applications (Saal and Bensmaia, 2015). As a matter
of fact, robotics allows closing the loop between sensory and motor domains,
especially in cases where physical elements of the body are missing or dis-
connected, e.g., amputation or spinal cord injury (Pisotta et al., 2015). Also,
thanks to these synergies between disciplines, the same experimental plat-
forms and methods applied in neuroscientific research can also be used for
the characterization of artificial tactile sensors (Edwards et al., 2008; Fishel
and Loeb, 2012; Fishel et al., 2008; Kim et al., 2013; Oddo et al., 2011b;
Rongala et al., 2015; Scheibert et al., 2009). According to such synergistic
approaches, the same physical stimuli used in human touch studies can be
applied for the evaluation of robotic tactile sensors, with similar stimulation
conditions such as contact force (typical ranges between tens of mN up to sev-
eral N) and motion dynamics at stimulus–sensor interface (from few mm/s up
to hundreds of mm/s of tangential velocity). In robotic experiments inspired
by neuroscientific protocols, the human perceptual thresholds estimated via
psychophysical methods are used as a benchmarking reference for the results
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achieved via machine learning on sensor data. This approach allows establish-
ing fertile understanding–generation loops prior to porting the artificial touch
technology to the afferent pathways of amputees by means of bionic limb pros-
theses (Dhillon and Horch, 2005; Oddo et al., 2016; Ortiz-Catalan et al., 2014;
Raspopovic et al., 2014; Tan et al., 2014).
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