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Abstract

The results of recent large-scale clinical trials have led us
to review our understanding of the metabolic response
to stress and the most appropriate means of managing
nutrition in critically ill patients. This review presents an
update in this field, identifying and discussing a number
of areas for which consensus has been reached and
others where controversy remains and presenting areas
for future research. We discuss optimal calorie and
protein intake, the incidence and management of
re-feeding syndrome, the role of gastric residual volume
monitoring, the place of supplemental parenteral
nutrition when enteral feeding is deemed insufficient,
the role of indirect calorimetry, and potential indications
for several pharmaconutrients.
The role of inflammation in the metabolic response to
Introduction
Nutritional support in the acutely ill is a complex subject.
Several recent studies have led to considerable changes in
our understanding of the metabolic response to critical
illness and of various aspects of nutritional management,
including monitoring of the metabolic response and
the determination of caloric, protein, and micronutrient
requirements. The aims of this review are to summarize
recent findings, to highlight areas of consensus and con-
troversy, and to define priorities for further research.
Metabolic response, inflammation, and anabolic
resistance
The metabolic response to stress is part of the adaptive
response to survive acute illness. During stress, several
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mechanisms that have been well preserved through evolu-
tion are triggered to increase the provision of energy
substrates to vital tissues, including stimulation of the
sympathetic nervous system, release of pituitary hormones
[1], and peripheral resistance to the effects of anabolic fac-
tors [2]. Recent findings suggest that hormones released
from the gut and adipose tissue may be involved as add-
itional triggers of the response to stress and critical illness
[3]. As a result of this complex metabolic response, the
control of energy substrate utilization is only partially regu-
lated by substrate availability. Instead, pathways of energy
production are altered and alternative substrates can be
used. Clinically, one can identify a variety of changes, in-
cluding increased energy expenditure (EE), stress hypergly-
cemia, loss of muscle mass, and eventually psychological
and behavioral problems [4,5].

stress has been recognized for a long time and is cur-
rently under increased scrutiny after the results of the
trials from Leuven University [6,7], in which the magni-
tude of the inflammatory response was attenuated in pa-
tients who received intensive insulin therapy (IIT) [6]
and increased in patients who received no parenteral nu-
trition during the first week of critical illness [7]. Experi-
mental findings [8,9] have consistently indicated that
high glucose concentrations increase the production or
expression (or both) of pro-inflammatory mediators, ad-
herence of leukocytes, and alterations in endothelial in-
tegrity and decrease chemotaxis and phagocytic activity
and release of reactive oxygen species (ROS) by neutro-
phils, whereas insulin exerts the opposite effects [10].
High doses of insulin were found to reduce levels of
C-reactive protein in critically ill patients [11,12], and
interleukin-6, interleukin-8, and tumor necrosis factor
levels in patients on extracorporeal circulation [13] or
with burns [14]. The expression of adhesion molecules on
the endothelium was reduced as was the transcription of
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inducible nitric oxide (NO) synthase gene in the liver and
muscle of patients randomly assigned to IIT [15]. These
effects in patients treated with IIT could be related to the
anti-inflammatory effects of insulin or to an attenuation of
the pro-inflammatory effects of hyperglycemia or both
[16]. The available clinical data suggest that prevention of
severe hyperglycemia may reduce cell damage; however,
preventing hyperglycemia by using high doses of insulin,
as required in cases of high intake of carbohydrates, can
blunt the early inflammatory response.
Resistance to the anabolic signals leading to loss of

muscle protein and function is a major long-term conse-
quence of stress metabolism [17]. An infusion of amino
acids in healthy volunteers rapidly increases the rate of
muscle protein synthesis [18], whereas in critically ill pa-
tients the rate of protein degradation increases more
than the rate of protein synthesis, resulting in a negative
muscle protein balance [19]. Kinetic studies have dem-
onstrated an impairment in the amino acid transport
systems and increased shunting of blood away from the
muscles [20]. The underlying mechanisms have been
partially unraveled and include a relative resistance to
insulin [21], which is further amplified by physical in-
activity [22,23]. In theory, omega-3 fatty acids, pentoxi-
fylline, growth hormone, testosterone, and beta blockade
could also preserve muscle strength and dampen protein
catabolism [2] and thereby help to prevent the long-
term muscular consequences of the metabolic response
to stress.
Monitoring the metabolic response is a major clinical

challenge because it relies on non-specific clinical and bio-
chemical markers: secondary infections, muscle atrophy
and weakness, respiratory insufficiency, delayed wound
healing, and a high incidence of secondary complications
indicate prolonged catabolism; in contrast, severe hyper-
glycemia, liver steatosis, respiratory insufficiency with se-
vere hypercapnia, and immune depression, again leading
to increased infectious complications [24], can be re-
lated to overfeeding [25]. Recently, metabolomic profil-
ing of body fluid was reported as a promising approach
to better characterize the metabolic derangements of
critical illness [26,27].

Nutritional requirements
It is difficult to predict EE in the critically ill as predict-
ive equations fail to match measured EE in about 80% of
patients [28], and protein losses cannot be estimated
without specific measurement. Most studies have re-
ported a high incidence of unintentional underfeeding
(that is, a lower actual caloric and protein intake than
the amount prescribed). An association between the
amount of calories prescribed and several outcome vari-
ables has been reported by several groups of investiga-
tors [29-32]. Similarly, positive associations between
protein intake and survival have been reported in obser-
vational data collections [33,34]. A major weakness of
these observational studies relates to the heterogeneity
in the severity of illness, a key potential confounder; less
sick patients tolerate enteral nutrition better, are more
adequately fed, and have better outcomes. Moreover,
these findings may be related to informative censoring
[33], and unequivocal confirmation by other recent ro-
bust trials is still awaited [35,36]. Nevertheless, the opti-
mal intake of macronutrients is largely undefined, and
results of the prospective trials discussed below have
given controversial results. This uncertainty is partly re-
lated to the lack of accurate monitoring tools. Comput-
erized information systems may help prevent under- and
overfeeding [37].
Although the effects of energy and proteins are inter-

twined, we discuss caloric and protein requirements sep-
arately. Ideally, future clinical trials should assess the
effects of changes in the intakes of only calories or only
proteins. Likewise, the effects of energy source (carbohy-
drates or fat) should be studied in adequately powered
prospective trials.

Energy requirements
What represents optimal energy intake in critically ill pa-
tients and whether caloric intake should match resting EE
are hot topics of debate [38,39]. However, the assessment
of EE in the critically ill is a major challenge [28,40], even
when using predictive equations, and can lead to over- or
underfeeding especially as EE may be elevated and can
vary over time. Moreover, predictive equations are not suf-
ficiently accurate for reliable use in critically ill patients
[28]. Nevertheless, measurement of EE is feasible using in-
direct calorimetry, and guidelines from both the European
Society for Clinical Nutrition and Metabolism [41] and
the American Society for Parenteral and Enteral Nutrition
[42] recommend use of this technique, although the accur-
acy of different indirect calorimeters has recently been
challenged [43,44]. An association between the amount of
calories prescribed and several outcome variables (for
example, 2-month mortality, length of stay, and rate of
complications) has been reported by several groups of
investigators [29-32]. A large multicenter observational
study in mechanically ventilated patients defined the opti-
mal amount of intake as 80% of that which was prescribed
[32]. Likewise, the Tight Calorie Control Study pilot study
[24] reported improved hospital survival in a per-protocol
analysis of the group of patients in whom caloric intake
matched the measured EE; intention-to-treat analysis,
however, revealed no survival benefit and moreover
showed increased ICU length of stay and duration of
mechanical ventilation together with a higher incidence of
infections in this group. EE should probably be matched
by caloric intake after the early phase of critical illness, but
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the proportion of the measured EE that should be admin-
istered likely varies over time.
The rationale for adequately matching caloric intake

with caloric expenditure lies in the accelerated muscle
catabolism that occurs when caloric supply is restricted,
especially in patients confined to bed rest [45] and on
the associations between caloric debt and poor outcome
[29-31]. Arguments against the matching of calorie
intake to EE during the early phase of critical illness in-
clude physiological evidence (that is, continuous en-
dogenous production of glucose matching 50% to 75% of
EE for the first few days after injury) and the suppression
of autophagy by exogenous macronutrients. However,
macronutrients can exert different effects on autophagy
[46]. In particular, the inhibitory role of protein on au-
tophagy has been reported [47] and could have contrib-
uted to the findings of worse outcome in the early
parenteral nutrition group of the Impact of Early Paren-
teral Nutrition Completing Enteral Nutrition in Adult
Critically Ill Patients (EPaNIC) study [48]. Moreover, the
results of other prospective interventional trials have
consistently shown either increased morbidity when cal-
oric supply was increased [7,24] or no immediate benefit
associated with supplemental parenteral nutrition in pa-
tients intolerant to early enteral nutrition (EEN) during
the first 3 days of ICU admission [49]. Other recent
interventional studies [50-53] were unable to show an
improvement in outcome following an increase in cal-
oric and protein intake. Of note, these trials were not
designed or powered as equivalence studies and do not
provide definitive data to inform clinicians about how
much nutritional support is enough [54]. However, a
post hoc analysis of the EPaNIC trial suggested that the
smallest amount of nutrients was associated with the
fastest recovery, and any higher dose was associated with
a delay in recovery [55]. Moreover, this observational
study tackled the issue of duration of ICU stay being as-
sociated with a higher likelihood of additional complica-
tions and higher amounts of nutritional intake by
analyzing nutrition given over identical time spans of 3,
5, 7, 10, and 14 days. The findings related to early sup-
plemental parenteral nutrition should not discourage at-
tempts to optimize energy delivery by the enteral route
[56], even though it was not associated with clinical
benefit, or the need to identify patients at high mortality
risk due to pre-ICU malnutrition [57].

Protein requirements
The issue of optimal protein intake is no simpler than
that of caloric intake. Essentially, the pool of free amino
acids is fueled by the degradation products of tissue pro-
teins, de novo synthesized amino acids, and nutritional
intake. These amino acids are incorporated into pro-
teins, involved in the regulation of specific pathways, or
oxidized and removed as urea. The minimal protein re-
quirement can be defined as the amount required to
maintain a neutral tissue protein balance, at least in
physiological conditions [58]. During critical illness,
however, the breakdown of proteins is markedly in-
creased and the types of protein synthesized differ con-
siderably from healthy conditions. Recently, Rooyackers
and colleagues [59] demonstrated that protein synthesis
was markedly increased in patients with multiple organ
failure. In addition, several pathways potentially regu-
lated by amino acids are activated, and the mechanisms
of clearance, including renal function, are often im-
paired. Therefore, the optimal amount of protein in crit-
ically ill patients cannot be deduced from data recorded
in healthy subjects.
In critical illness, the loss of lean body mass, together

with physical inactivity, is associated with increased pro-
teolysis via the proteasome/ubiquitin pathway [60].
These findings generated the hypothesis that increased
protein requirements are related to (a) the need for a
greater amount of amino acid to achieve the same mus-
cular synthesis rate, as a result of the anabolic resistance;
(b) the need for amino acids for the synthesis of acute-
phase response proteins; (c) the need for cysteine, the
rate-limiting step of glutathione synthesis, in order to
limit oxidative stress [61]; and (d) the prevention of glu-
tamine depletion in muscle and plasma [62,63], and in-
creased utilization [64].
Recent observational data suggested that a large intake

of protein (1.2 to 1.5 g/kg per day) was associated with
better outcomes in one study and contradictory effects
in another [33,34]. In a landmark study, Ishibashi and
colleagues [65] showed that 1.5 g/kg per day was associ-
ated with the least negative total body protein balance.
A protein dosing trial has recently been completed, but
until the results are available and in the absence of high-
quality prospective trials designed to specifically address
the issue of optimal protein intake [66], data from the
large interventional trials using supplemental parenteral
nutrition can be used to try and provide some answers.
Post hoc analyses of the results of three recent trials
[7,17,24] suggested better outcomes in patients who re-
ceived less protein.
The discrepancies between the results of clinical stud-

ies suggest that there is no fixed energy-to-nitrogen ratio
that could be applied in all physiological and patho-
logical conditions. Ambulatory or exercising patients re-
quire a higher energy intake in contrast to bedridden or
critically ill subjects. Furthermore, inactivity and sys-
temic inflammation can induce or exacerbate anabolic
resistance, itself leading to muscle atrophy, increased fat
mass, and decreased metabolic rate.
Biomarkers of optimal protein and amino acid intake

include whole body or tissue protein balance, circulating
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protein or amino acid levels, physiological functions
(muscle strength, immune competence, insulin sensitiv-
ity, glutathione, and oxidative stress), and ultimately
clinical outcome. The use of techniques to assess lean
tissue by ultrasound [67] or computed tomography scan
[68] could help to more accurately tailor the amount of
protein, but this needs to be studied further.

Micronutrient requirements
The European critical care population is characterized by
suboptimal preadmission micronutrient status: the trace
elements particularly affected are selenium, iron, and zinc
[69,70]. Micronutrients are often overlooked during nutri-
tional assessment and this may result in provision of
suboptimal nutrition in ICU patients. Micronutrients,
such as zinc, selenium, copper, and vitamins C, E, and B,
are involved in various metabolic processes, either acting
as catalysts or facilitating various enzymatic functions.
Micronutrient deficiency can result from pre-existing mal-
nutrition, severity of current illness, and adverse effects of
therapeutic regimens or procedures. Several critical care
conditions and therapies worsen this precarious status
with micronutrient-containing biological losses, such as
major burns, major trauma, pathological intestinal losses,
and during continuous renal replacement therapy. The in-
flammatory response further causes a redistribution of
micronutrients from the circulating compartment to or-
gans involved in acute phase-related synthetic mecha-
nisms [71]. Confronted by an elevated oxidative stress,
patients are not able to develop normal antioxidant and
immune defenses.

Consequences of inappropriate feeding
Underfeeding
Observational studies have shown the association be-
tween negative energy balance and poor outcome
[29-32]. Heyland and colleagues [32] showed that the
best survival was observed when calorie intake was
around 80% of the prescribed target. Recent prospective
randomized controlled trials (RCTs) have been criticized
for comparing underfed with very underfed patients
[72,73] or for overfeeding patients [7,24]. The controver-
sial issues related to energy requirements were discussed
earlier in the dedicated section.

Re-feeding
The re-feeding syndrome is the result of re-initiation of
enteral or parenteral feeding in a previously malnour-
ished patient. Complications of this syndrome include
electrolyte abnormalities (hypophosphatemia, hypokal-
emia, and hypomagnesemia) along with sodium and fluid
retention potentially leading to heart failure, respiratory
failure, and death. Severe hypophosphatemia, in particular,
is an early warning sign, and serum phosphate levels
should be closely monitored in patients at risk of the
re-feeding syndrome.
Starvation for a period as short as 48 hours and poor

nutritional status can already predispose to the re-
feeding syndrome. Patients at risk should be fed slowly,
and electrolyte and other micronutrient levels should be
closely monitored and supplemented as required [74]. In
contrast to general recommendations to slowly increase
calorie intake in malnourished patients to prevent a re-
feeding syndrome, several RCTs have demonstrated re-
duced mortality with early initiation of enteral nutrition
[75]. It is likely that many patients are malnourished as a
result of prolonged starvation before ICU admission.
Therefore, it is unclear whether ICU patients with risk
factors for re-feeding syndrome can tolerate more ag-
gressive nutritional support while controlling for the
possible re-feeding syndrome by providing optimal elec-
trolyte supplementation, controlled fluid balance, and
monitoring of organ function. This issue is currently be-
ing investigated in a phase II randomized clinical trial
(Australian and New Zealand Clinical Trials Registry
number 12609001043224).

Overfeeding
Provision of macronutrients in excess of metabolic demand
is deleterious. In critically ill patients, enteral nutrition is
frequently associated with underfeeding and intolerance,
whereas parenteral nutrition has been associated with a
greater risk of infectious complications and overfeeding
[7,24,25,76]. Overfeeding may be associated with hypercap-
nia and re-feeding syndrome [77,78] and may occur in up
to 19% of mechanical ventilation days [79]. High doses of
protein intake may lead to azotemia, hypertonic dehydra-
tion, and metabolic acidosis [25]. High doses of glucose in-
fusion may result in hyperglycemia, hypertriglyceridemia,
and hepatic steatosis [80], although these metabolic abnor-
malities can be prevented to a large extent by insulin treat-
ment targeting normoglycemia [81].
To avoid overfeeding, some advocate measurement of

EE using indirect calorimetry [28]. However, as discussed
earlier, the optimal amount of energy that should be ad-
ministered to ICU patients is not yet determined. In
addition, caloric needs may change during the ICU stay,
increasing the difficulties of determining the exact
amount of calories to prescribe [28]. If such monitoring
is unavailable, a feeding protocol may limit the risk of
overfeeding [82].

Autophagy
Insufficient autophagy in prolonged critical illness may
cause inadequate removal of damaged proteins and
mitochondria [83]. Incomplete clearance of cellular
damage, inflicted by illness and aggravated by hypergly-
cemia, possibly explains the lack of recovery from organ
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failure in patients with prolonged critical illness and pro-
vides potential perspectives for therapies that activate
autophagy [83]. In animal experiments, impaired core
autophagy machinery may, in concert with downregu-
lated chaperone expression and protein synthesis, col-
lectively affect the proteostasis in skeletal muscle and
exacerbate disease progression in critical illness myop-
athy [84]. Administration of parenteral nutrients, in par-
ticular protein- and lipid-enriched parenteral feeding
rather than glucose, in the early phase of critical illness
has been shown to suppress autophagy in vital organs
and muscle and to increase the accumulation of dam-
aged mitochondria and toxic protein aggregates [47]. In
humans, such suppression of autophagy with early par-
enteral nutrition was also shown to increase muscle
weakness and to impair recovery thereof [48]. Whether
activation of autophagy, using synthetic pharmacological
agents or glutamine, as shown in an animal model of
critical illness [85], will have therapeutic potential in pa-
tients remains to be investigated.

Pharmaconutrition and immunonutrition
The concept of ‘immune-enhancing formulas’ or ‘immuno-
nutrition’ has been used to characterize solutions enriched
with several different nutrients thought to boost the im-
mune response, whereas ‘pharmaconutrition’ was more re-
cently introduced to define the addition of any specific
nutrient to a standard formula, at any dose. Although these
concepts have exciting implications, their importance re-
mains controversial. Studies have shown that various nutri-
ents have effects on the immune system, metabolism, and
gastrointestinal structure and function. Such nutrients
may be macronutrients that exert specific effects, such as
the amino acids glutamine and arginine or lipids like
omega-3 fatty acids; they may also be micronutrients, such
as antioxidant vitamins A, C, and E and the minerals selen-
ium and zinc. These pharmaconutrients have been added
to commercially available products to produce so-called
‘immunonutrition’ and ‘immune-modulating’ or ‘immune-
enhanced’ diets. These solutions have been tested in a num-
ber of RCTs to evaluate their impact in critically ill patients.
The largest study, which included 597 patients with differ-
ent underlying diseases, showed that a high-protein formula
enriched with arginine, glutamine, antioxidants, and
omega-3 fatty acids had no significant effect on outcome
[86]. Hence, current evidence does not support the use of
pharmaconutrients [53]. However, the need for each phar-
maconutrient should be assessed separately, as the risk-to-
benefit ratio will be different according to the clinical
circumstances, doses, timing, and type of compound.

Arginine
Arginine stimulates hormonal release and can be me-
tabolized through a family of NO synthase enzymes to
nitrogenous compounds like NO. There is a delicate
balance of NO levels in critically ill patients. In disease
states in which inducible NO synthase is upregulated,
NO production can become excessive and can cause
harm in terms of hemodynamic instability, immuno-
logic dysfunction, and non-specific cytotoxicity. Argin-
ine administration may therefore be deleterious in
critically ill patients [87]. On the other hand, arginine de-
pletion may occur after surgery, even in well-nourished
patients. In an RCT in non-critically ill patients with
gastrointestinal cancer, preoperative oral supplementation
with a specialized diet, including extra L-arginine, was as-
sociated with a significantly lower incidence of postopera-
tive infections and reduced length of hospital stay
compared with the conventional group [88]. A recent
meta-analysis of 32 RCTs showed that 5 days of preopera-
tive arginine and fish oil supplementation reduced the in-
cidence of postoperative infections in non-critically ill
patient populations [89].

Glutamine
Critically ill patients often have decreased glutamine levels
on ICU admission, and low plasma glutamine levels are as-
sociated with increased mortality [62]. Glutamine adminis-
tration may improve gut barrier function as well as
lymphocyte function, and this could potentially reduce in-
fectious complications. Administration of glutamine as a
nitrogen donor for glutathione synthesis may also help to
preserve lean body mass and it is an important antioxidant.
Several small early studies suggested that enteral glutamine
supplementation could reduce infectious complications in
critically ill patients [90,91]. However, more recent studies,
using parenteral administration, have given conflicting
results. These various studies compared very different ap-
proaches in both dosing and timing, had different ratio-
nales and physiological backgrounds, and asked different
questions; they do not, therefore, necessarily represent dif-
ferent sides of a controversy.
In the Scottish Intensive Care Glutamine or Selenium

Evaluative Trial study [92], parenteral administration of
glutamine was not associated with any measurable im-
provement in new infection rates or survival. In contrast,
the Scandinavian glutamine trial [93] indicated a signifi-
cant reduction in mortality in the per-protocol analysis
of patients who received glutamine for more than 3 days.
Recently, Rodas and colleagues [63] suggested that not
only low admission plasma glutamine levels but also
high levels of more than 930 μmol/L were associated
with poor outcome. A recent meta-regression analysis of
temporal trends in mortality in patients given parenteral
glutamine supplementation or controls not receiving this
supplementation showed that the beneficial effects of
glutamine on mortality have decreased over the last
20 years [94]. Another meta-analysis of RCTs concluded
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that publication bias may have explained the reduced
rate of infections reported in some of the studies [95].
The most recent meta-analysis of RCTs of parenterally
administered glutamine supplementation, that did not
include the (Reducing Deaths due to Oxidative Stress
(REDOXS) trial [96], reported that parenteral glutamine
supplementation combined with nutrition support was
associated with reduced hospital mortality and length of
stay [95].
The recent REDOXS trial [96] showed a dramatic in-

crease in mortality rates with high doses of enteral and
parenteral glutamine (0.6 g/kg per day). Even though there
were more patients with three or more organ systems (in-
cluding renal failure) failing in the glutamine group than
in the control group [97], a strong trend toward increased
mortality with glutamine remained after adjustment for
this imbalance [98,99]. In another study, high-protein
enteral nutrition enriched with glutamine and ‘immune-
modulating nutrients’ did not reduce infectious complica-
tions or improve other clinical endpoints versus standard
high-protein enteral nutrition and may have been harm-
ful as suggested by an increased adjusted mortality at
6 months [100]. Therefore, the use of glutamine in ICU
patients should be considered with caution until the
mechanisms behind the harmful effects reported in the
REDOXS study are better understood [101-103].

Omega-3 fatty acids
The ratio of omega-6 to -3 was 0.8:1.0 in the paleolithic
human diet but is 15 to 16.7:1.0 in the present US diet.
The anti-inflammatory effects of immune-modulating en-
teral diets with fish oils have been tested in patients with
acute lung injury and acute respiratory distress syndrome.
A meta-analysis indicated a 60% mortality reduction when
omega-3 fatty acids were administered continuously with
full enteral nutrition [104]. However, recent meta-analyses
including the latest studies do not confirm such benefit
[105,106]. The mode of administration of fish oil, the com-
position of the control solution, and the differing inci-
dences of diarrhea, suggesting differences in absorption,
have been proposed to explain some of the discrepancies
in the results of clinical studies. Alternatively, the diver-
gent results may suggest that pharmaconutrients should
be given as part of complete nutrition or not at all.
Older retrospective studies reported dose-dependent

improvements in outcome of patients receiving intraven-
ous omega-3 fatty acids [107]. Unfortunately, the paucity
of data and the poor methodological quality of the avail-
able trials do not allow a recommendation regarding the
use of parenteral fish oil-based solutions [108,109]. A re-
cent large double-blind randomized clinical trial com-
paring soybean oil-based versus olive oil-based lipid
emulsions failed to demonstrate any difference in out-
come between the two solutions [110].
Micronutrients
Micronutrient deficiency can impair immunity, wound
healing, and organ function and is associated with in-
creased oxidative stress with increased concentrations of
ROS, which can be overcome by the administration of
high doses of trace elements [111]. Two concepts prevail
in the literature: (1) replacement of losses (from an acute
deficiency condition) with doses remaining within 10
to 15 times the recommended nutritional intake; these
losses have been associated with improved immune re-
sponse, reduction of infectious complications, improved
wound healing, and reduction of hospital stay [112-114];
and (2) supplementation with doses 20 to 50 times
above nutritional doses in patients with sepsis or respira-
tory failure or both [115].
Despite controversy regarding optimal doses, meta-

analyses have repeatedly shown benefits on mortality
and infections of these studies [116-118], most trials
having been conducted in European populations. The
largest prospective trial did not demonstrate any effect
of antioxidant supplementation instituted early in pa-
tients with at least two organ failures (including renal
failure) [96], a finding that is probably explained by the
absence of selenium deficit in the North American
population related to the high soil selenium content.
Hence, data from recent large-scale studies [96,100] do
not support the use of supplemental selenium or vita-
mins in heterogeneous populations of critically ill pa-
tients, as no improvement in outcome was associated
with these interventions, in contrast with previous data
in specific patient groups (see [119] for a detailed discus-
sion of this issue).

Pre-, pro- and synbiotics
The World Health Organization defines probiotics as
‘live microorganisms, which, when administered in ad-
equate amounts, confer a health benefit on the host’
[120]. Prebiotics are basically food for probiotics and are
non-digestible by humans and stimulate the growth of
so-called beneficial bacteria. Common prebiotics are
inulin and carbohydrate fibers (oligosaccharides). A syn-
biotic is a supplement that contains both probiotics and
prebiotics.
Critical illness results in changes to the microbiology of

the gastrointestinal tract, leading to a loss of commensal
flora and an overgrowth of potentially pathogenic bacteria.
Administering certain strains of probiotics to critically
ill patients may restore a balanced microbiota and have
positive effects on immune function and gastrointestinal
structure and function. Theoretical risks of transfer of
antibiotic-resistance genes from Lactobacillus strains re-
sistant to vancomycin to more pathogenic organisms,
particularly Enterococci and Staphylococcus aureus, are
possible but have not been established. Translocation
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resulting in iatrogenic infection has been reported only in
case reports and has uniformly occurred in individuals
with particular risk factors, such as uncontrolled diabetes
and endovascular prostheses. Safety concerns emerged
after publication of the Probiotics in Pancreatitis Trial
[121], which showed increased mortality from gut ische-
mia in the probiotic-treated group. However, significant
protocol violations, ethical concerns, and the use of a
post-pyloric route for a fiber-containing formula limit the
external validity of this trial.
The US Food and Drug Administration has clarified

that their limited review of probiotics as a dietary sup-
plement applies only to consumption by healthy people
and that any use of probiotics to prevent, treat, or miti-
gate disease would define probiotics as a ‘drug’.
Although all trials performed to assess the effects of pro-

biotics during acute illness were included, no risk of
adverse event was found. A recent meta-analysis of 13
RCTs including 1,439 patients demonstrated that probiotic
administration did not significantly reduce duration of
mechanical ventilation or ICU or hospital mortality rates
but did reduce the incidence of ICU-acquired pneumonia
and length of ICU stay [122]. A meta-analysis comprising
Table 1 Areas of uncertainty – opposing views

Topic/area One viewpoint

Optimal caloric intake Early match of EE.

Supplemental PN When EN provision is less than
of ICU stay not contraindicate

Optimal protein intake Equal to nitrogen losses, up to

Re-feeding syndrome Slowly increase nutritional sup
re-feeding syndrome consequ
results in increased energy de

Role of indirect calorimetry Yes (patients staying more tha

Autophagy Provision of nutrients should b
not to reduce autophagy capa
provoke a phenotype of supp
human and animal experimen
consequences that impair reco

Antioxidants Supplement in case of low lev

Glutamine In all patients on PN.

Omega-3 lipid formulations Use continuous enteral admin
bolus administration.

High-dose selenium 800 to 4,000 μg/day High-dose trials (1,000 μg) sho
than low-dose trials.

Probiotics Safe. Avoid use in pancreatitis
organ dysfunction syndrome.

Monitoring GRV Accept GRV of 250 up to 500

EE, energy expenditure; EN, enteral nutrition; GRV, gastric residual volume; PN, pare
data from more than 11,000 patients showed that probio-
tics significantly reduced antibiotic-associated diarrhea in
all types of patients [123]. Despite these results, concerns
remain related to the identification of which critically ill
patients could benefit from this approach.

Early enteral nutrition
The concept of EEN, defined as enteral nutrition initiated
within 24 hours after admission, has been adopted by many
ICUs on the basis of its positive influence on gut barrier
function, increasing secretion of mucus, bile, and immuno-
globulin and favorable effects on gut-associated/mucosa-as-
sociated lymphoid tissue, release of incretins and other
entero-hormones that have a major effect on intermediary
metabolism, gut function, and hepatic functions, and its sig-
nificant effects on morbidity and mortality in RCTs includ-
ing a total of less than 300 patients [124]. In stable patients
on vasopressors, EEN commenced after initial resuscitation
appears to be safe and confers a survival benefit [75,125].
Several independent meta-analyses have confirmed a better
outcome in patients receiving EEN compared with patients
not receiving EEN, even though methodological deficien-
cies were found for some studies [126].
Opposing view

Less than EE during the early phase.

60% in early course
d.

Not before day 8 in patients with a
body mass index of at least 17.

1.5 g/kg per day. Less than nitrogen losses.

port to prevent
ences even if this
ficit.

Early nutritional support improves
outcome also in malnourished patients;
re-feeding syndrome consequences should
be monitored and immediately treated
if necessary.

n 4 days). No.

e reduced so as
city as early nutrients
ressed autophagy in
ts, with functional
very.

Although experimentally autophagy may
be reduced in early critical illness,
pharmacological autophagy activation
remains to be tested clinically.

els of antioxidants. Use pharmacological dosages.

High-dose glutamine increases mortality
in critically ill patients, regardless of route
of administration.

istration and avoid Not beneficial in acute respiratory distress
syndrome.

w greater improvement Potential for toxicity.

In selenium-replete populations, 800 to
1,000 μg may be ineffective.

patients with multiple May be harmful in ICU patients when
given post-pyloric with fiber.

mL per 6 hours. Abandon GRV monitoring in medical
patients and consider in surgical patients.

nteral nutrition.



Table 2 Areas of consensus (ICU patients with a more
than 4-day length of stay)

Consensus

Early enteral feeding Consider in each patient without
absolute contraindication; prevents
mucosal atrophy

Risks of overfeeding Early phase

Estimation of energy expenditure Requires indirect calorimetry –
cannot be predicted by equations

Arginine Not recommended in sepsis;
beneficial in perioperative patients
outside the ICU

Vitamins, trace elements Mandatory, in nutritional doses;
particularly true in parenteral
nutrition
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Some ICU patients receiving enteral nutrition may
present clinical signs of intolerance such as increased
gastric residual volume (GRV). This problem may be cir-
cumvented by the introduction of post-pyloric feeding
tubes. Another approach is to accept higher amounts
of GRV. The optimal approach is still controversial. A
recent systematic review identified six RCTs and six pro-
spective observational studies analyzing different thresh-
olds of GRV to guide enteral nutrition and to prevent
complications (for example, vomiting, aspiration, and
nosocomial pneumonia) in mechanically ventilated pa-
tients [127]. Because of the heterogeneity in outcome
measures, patient populations, types and diameters of
feeding tubes, and randomization procedures, a formal
meta-analysis was not appropriate. Analysis of high-
quality RCTs in medical patients could not demonstrate
an association between complication rate and the magni-
tude of GRV. The authors concluded that monitoring
of GRV appears unnecessary to guide nutrition in mech-
anically ventilated patients with a medical diagnosis.
Because one observational study [128] suggested an
increased frequency of aspiration if a GRV of more than
200 mL was registered more than once, surgical patients
may benefit from a lower GRV threshold (200 mL). An-
other recent study [129] reported that not measuring
GRV in medical ICU patients was associated with an
increase in nutritional intake without additional risk of
aspiration pneumonia.

Conclusions
Well-established beliefs in the metabolic and nutritional
fields of critical illness have been challenged by recent
findings from large-scale, prospective RCTs. The numer-
ous uncertainties and unresolved issues unraveled by
these recent studies and outlined in Table 1 highlight
the urgent need for more basic and clinical research on
this important topic. For daily clinical practice, aware-
ness of the controversial issues as well as of the areas of
consensus (Table 2) is needed. We hope that this article
can help clinicians understand that take-home messages
are difficult to draw when based on conflicting evidence.
We wrote this article to underline priorities for research
in order to be able to provide more robust evidence to
support recommendations for clinical practice. Mean-
while, updated recommendations, even weak ones, repre-
sent the best tool to guide intensivists through the growing
number of uncertainties.
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