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Analysis of Space-Time Environmental Data in Complex Regions

Carmen Delia Vega Orozco

Institute of Earth Surface Dynamics

Summary

This thesis develops a comprehensive and a flexible statistical framework for the
analysis and detection of space, time and space-time clusters of environmental point
data. The developed clustering methods were applied in both simulated datasets and
real-world environmental phenomena; however, only the cases of forest fires in Canton
of Ticino (Switzerland) and in Portugal are expounded in this document.

Normally, environmental phenomena can be modelled as stochastic point processes
where each event, e.g. the forest fire ignition point, is characterised by its spatial lo-
cation and occurrence in time. Additionally, information such as burned area, ignition
causes, landuse, topographic, climatic and meteorological features, etc., can also be used
to characterise the studied phenomenon. Thereby, the space-time pattern characterisa-
tion represents a powerful tool to understand the distribution and behaviour of the
events and their correlation with underlying processes, for instance, socio-economic, en-
vironmental and meteorological factors. Consequently, we propose a methodology based
on the adaptation and application of statistical and fractal point process measures for
both global (e.g. the Morisita Index, the Box-counting fractal method, the multifractal
formalism and the Ripley’s K-function) and local (e.g. Scan Statistics) analysis.

Many measures describing the space-time distribution of environmental phenomena
have been proposed in a wide variety of disciplines; nevertheless, most of these measures
are of global character and do not consider complex spatial constraints, high variability
and multivariate nature of the events. Therefore, we proposed an statistical framework
that takes into account the complexities of the geographical space, where phenomena
take place, by introducing the Validity Domain concept and carrying out clustering
analyses in data with different constrained geographical spaces, hence, assessing the
relative degree of clustering of the real distribution.

Moreover, exclusively to the forest fire case, this research proposes two new method-
ologies to defining and mapping both the Wildland-Urban Interface (WUI) described
as the interaction zone between burnable vegetation and anthropogenic infrastructures,
and the prediction of fire ignition susceptibility.

In this regard, the main objective of this Thesis was to carry out a basic statistical/-
geospatial research with a strong application part to analyse and to describe complex
phenomena as well as to overcome unsolved methodological problems in the characteri-
sation of space-time patterns, in particular, the forest fire occurrences. Thus, this Thesis
provides a response to the increasing demand for both environmental monitoring and
management tools for the assessment of natural and anthropogenic hazards and risks,
sustainable development, retrospective success analysis, etc. The major contributions of
this work were presented at national and international conferences and published in 5
scientific journals. National and international collaborations were also established and
successfully accomplished.

http://www.unil.ch/idyst/page99651.html
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Résumé

Cette thèse développe une méthodologie statistique complète et flexible pour l’analyse
et la détection des structures spatiales, temporelles et spatio-temporelles de données en-
vironnementales représentées comme de semis de points. Les méthodes ici développées
ont été appliquées aux jeux de données simulées autant qu’à des phénomènes environ-
nementaux réels; nonobstant, seulement le cas des feux forestiers dans le Canton du
Tessin (la Suisse) et celui de Portugal sont expliqués dans ce document.

Normalement, les phénomènes environnementaux peuvent être modélisés comme de
processus ponctuels stochastiques où chaque événement, par ex. les point d’ignition
des feux forestiers, est déterminé par son emplacement spatial et son occurrence dans
le temps. De plus, des informations tels que la surface brûlée, les causes d’ignition,
l’utilisation du sol, les caractéristiques topographiques, climatiques et météorologiques,
etc., peuvent aussi être utilisées pour caractériser le phénomène étudié. Par conséquent,
la définition de la structure spatio-temporelle représente un outil puissant pour compren-
dre la distribution du phénomène et sa corrélation avec des processus sous-jacents tels
que les facteurs socio-économiques, environnementaux et météorologiques. De ce fait,
nous proposons une méthodologie basée sur l’adaptation et l’application de mesures
statistiques et fractales des processus ponctuels d’analyse global (par ex. l’indice de
Morisita, la dimension fractale par comptage de bôıtes, le formalisme multifractal et la
fonction K de Ripley) et local (par ex. la statistique de scan).

Des nombreuses mesures décrivant les structures spatio-temporelles de phénomènes
environnementaux peuvent être trouvées dans la littérature. Néanmoins, la plupart de
ces mesures sont de caractère global et ne considèrent pas de contraintes spatiales com-
plexes, ainsi que la haute variabilité et la nature multivariée des événements. A cet effet,
la méthodologie ici proposée prend en compte les complexités de l’espace géographique
où le phénomène a lieu, à travers de l’introduction du concept de Domaine de Validité et
l’application des mesures d’analyse spatiale dans des données en présentant différentes
contraintes géographiques. Cela permet l’évaluation du degré relatif d’agrégation spa-
tiale/temporelle des structures du phénomène observé.

En plus, exclusif au cas de feux forestiers, cette recherche propose aussi deux nou-
velles méthodologies pour la définition et la cartographie des zones périurbaines, décrites
comme des espaces anthropogéniques à proximité de la végétation sauvage ou de la forêt,
et de la prédiction de la susceptibilité à l’ignition de feu.

À cet égard, l’objectif principal de cette Thèse a été d’effectuer une recherche statis-
tique/géospatiale avec une forte application dans des cas réels, pour analyser et décrire
des phénomènes environnementaux complexes aussi bien que surmonter des problèmes
méthodologiques non résolus relatifs à la caractérisation des structures spatio-temporelles,
particulièrement, celles des occurrences de feux forestières. Ainsi, cette Thèse fournit
une réponse à la demande croissante de la gestion et du monitoring environnemental
pour le déploiement d’outils d’évaluation des risques et des dangers naturels et anthro-
pogéniques. Les majeures contributions de ce travail ont été présentées aux conférences
nationales et internationales, et ont été aussi publiées dans 5 revues internationales avec
comité de lecture. Des collaborations nationales et internationales ont été aussi établies
et accomplies avec succès.

http://www.unil.ch/idyst/page99651.html




“The ability to take data -to be able to understand it, to process it, to extract value
from it, to visualize it, to communicate it- that’s going to be a hugely important skill in
the next decades, ... because now we really do have essentially free and ubiquitous data.
So the complimentary scarce factor is the ability to understand that data and extract
value from it.”

Hal Varian, Google’s Chief Economist
The McKinsey Quarterly, Jan 2009
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Glossary

Clustering
When points tend to be closer to-
gether. Here, the concept of “cluster-
ing” does not imply that the points
are organised into identifiable “clus-
ters”; instead, it refers to points that
are closer together than expected for
a Poisson process (CSR) [12].

Complexity
High spatial heterogeneity, high vari-
ability of spatial/temporal clustering,
and multivariate nature of a studied
phenomenon.

CSR
Complete spatial randomness. The
probability that an event can occur
at any point is equally likely to occur
anywhere within a bounded region A
and that its position is independent
of each any other event.

Event
outcomes of a stochastic process. In
spatial point process, events are rep-
resented by points and marks; where
the points describe the locations of
the events, and the marks provide
additional information characterising
the event further [143].

GIS
Geographic information system.

Homogeneity
Equal distribution across a particular
space, with constant intensity.

Inhomogeneity
Also known as “non-uniform”. The
intensity λ of an inhomogeneous pro-
cess varies from location to location.
Thus, λ is a function of the location
x [12, 143].

Interaction
It is the stochastic dependence be-
tween the points in a point pat-
tern. Usually we expect dependence
to be strongest between points that
are close to one another [12].

m.a.s.l.
Metres above sea level.

Marked point processes
When additional information charac-
terising the events further (marks)
are attached to the points.

Point processes
It is a stochastic process that gen-
erates a countable set of points xi
in a topological space D (a Haus-
dorff space) [74, 90, 91, 143, 145,
193]. Each point represents the time
and/or the spatial location of an
event.

Poisson process
A homogeneous Poisson process is a
process where, conditional on N(A),
the events in a bounded region A ⊂
Rd are independently and uniformly
distributed over A.

RF
Random forests algorithm.

xv



Glossary xvi

Space-time permutation scan
statistics (STPSS)
It is a scan statistics method for the
detection and identification of local
clusters.

Susceptibility mapping
A map of the probability that an
event occurs in a specific area with-
out considering an absolute temporal
scale.

WSL
Swiss Federal Institute for Forest,
Snow and Landscape Research.

Wildland-urban interface (WUI)
This term is broadly used for indi-
cating the interaction zones where
human infrastructures meet or inter-
mingle with natural vegetation such
as grassland, shrub vegetation and
forests [59, 130, 231, 232, 281].

Validity domain (VD)
It represents the geographical space
of interest which constrains the stud-
ied space and reduces the dimension-
ality of the analysed process [150].



Symbols

Variables

czd number of observed cases
within a zone z in a day d

cA number of observed cases in a
cylinder A

C total number of observed
cases

ni number of events in the ith
box

N total number of events

δ box size (length of the diago-
nal)

t length of a time-interval
(timescale)

N(δ) number of boxes of size δ N(t) number of time-intervals of
length t

Nα(δ) number of boxes of size δ hav-
ing singularity strength α

N(r) number of points in a distance
r

pi(δ) the probability distribution in
the ith box of size δ

pi(t) the probability distribution in
the ith time-interval of length
t

Q number of boxes of size δ Qt number of time-intervals of
length t

q order moment x vector of the location of the
observed points in 1, 2 or 3-
dimensional space

λ(xi) intensity: mean number of
events occurring at location xi

λ(xj) intensity: mean number of
events at location xj

λ spatial intensity λt temporal intensity
‖xi−xj‖ distance between points xi

and xj

w(xi, xj) proportion of the circumfer-
ence of a circle centred at xi
passing through xj falling in-
side the study region

xvii
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Functions

αi the singularity strength in the i
box of size δ

α(q) Hölder exponent of moment q

dfbox the Box-counting fractal dimen-
sion

Dq the Rényi generalised dimensions tDq the temporal Rényi generalised
dimensions

f(α) the singularity fractal dimension f(αq) the multifractal singularity spec-
trum

GLR Generalized Likelihood Ratio
Iδ the Morisita index It the temporal Morisita index
Iq(δ) the Rényi information of qth or-

der
K(r) Ripley’s K -function L(r) L-function
K(t) the temporal K -function L(t) the temporal L-function
Kinhom the inhomogeneous K -function Linhom the inhomogeneous L-function
λ(x) Intensity function µA Expected number of cases for a

space-time cylinder A
µA Expected number of cases in a

cylinder A
µzd Expected number of cases per

zone z and day d
µi(q, δ) the normalised probability in the

boxes of size δ of the qth order
τ(q) Mass exponent function of mo-

ment q



Chapter 1

Introduction

1.1 Motivation

In environmental science, the continue proliferation of the amount of high dimensional

and high resolution data makes the spatio-temporal modelling a challenging and de-

manding task. These data portray objects that are often the results of heterogeneous

sources creating space-time structures at multiple scales and with complex patterns. In

this sense, the development of methodologies with a strong theoretical foundation and

real world applications are necessary to deal with the complexities encountered in these

data. Their correct use and treatment allow assessing, enhancing and providing neces-

sary tools to support and to assist environmental monitoring and management, policy

and decision-making, risk assessment and sustainable development.

Many of these data can be modelled as sets of points distributed in the space and/or

in time, and thus, from a statistical context, they can be treated as realisations of

stochastic point processes where the geographical and/or time components are taken

into account. Nowadays, modern spatial statistical analysis [112, 192, 257, 311] offers

powerful techniques to both characterise and understand the behaviour of the observed

patterns as well as to infer about their underlying processes, e.g., the processes that

may have given rise to the observed distribution. The application of these statistical

methods gained more interest and development in a wide range of disciplines, notably by

the blooming of geographical information systems (GIS) [110] because of its capability to

manage large spatial databases and its flexibility at integrating analytical functionality

providing suitable and valuable tools for the visualisation, exploration and analysis of

spatial data [111, 123].

In this manner, we were motivated on developing an investigation that would tackle

two major interests: on one hand, attending a scientific interest of developing a compre-

hensive spatial analysis by applying and adapting general methods of point processes to

meet the needs of, i.e. environmental phenomena analysis, and to overcome unsolved

methodological problems confronted when working with complex phenomena. And, on

the other hand, the practical interest for applying this methodology in a real-world en-

vironmental events, in particular, forest fires. Several factors make this task difficult,

1
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i.e. the high spatial heterogeneity, high variability of the spatial/temporal clustering,

and the multivariate nature of the phenomenon; from which arises the definition of

complexity. Therefore, the success in the analysis not only depends on the availability

of high quality data, but also on a qualified expert knowledge in both theoretical and

application contexts.

This purpose impulsed us to creating the project named “Analysis and Modelling of

Space-Time Patterns in Complex Regions”1, from which the most important results are

reported in the present thesis. Under this framework, this work portrays both the investi-

gation of the spatial analysis for space-time pattern characterisation, and the description

of how they can be implemented and adapted to the case of forest fire occurrences in

the Swiss Alpine region. Although a broad range of methods for spatial analysis exist,

we only focus on those we have found most useful to the studied events using different

global and local measures with the use of statistical, fractal and second-order moments

techniques. GIS tools are also applied for data preparation and visualisation. All these

methods allow addressing fundamental questions about the space-time structures of the

studied events and the factors triggering these pattern behaviours, such as: are the

studied events clustered? and if so, what is their degree of clustering? where and when

this clustering tends to occur? what are the processes that may have given rise to

the observed event distribution (e.g. correlation with meteorological, environmental or

socio-economic factors)?, etc. The application on forest fires illustrates many important

features of interest for point process analysis, e.g. “clustering” caused by the spatial dis-

tribution of fire predisposing factors, “inhomogeneity” given by the various covariates,

and “interaction” between the events (or occurrences).

On the other hand, with the knowledge gained by the statistical analysis in the

first part of this investigation, a second study carried out in this project, exclusively

related to the forest fire case and in collaboration with the Research Unit Community

Ecology from the Swiss Federal Institute for Forest, Snow and Landscape Research

(WSL) in Bellizona (see also Subsection 1.3.6 Collaborations), addresses the interest

to defining and mapping critical and susceptible zones for fire ignition occurrences, for

which fire managers currently focus their attention for fire management, monitoring,

prevention and allocation measures. This area of interest is well known as the Wildland-

Urban Interface (WUI) broadly used for indicating the interaction zones where human

infrastructures meet or intermingle with natural vegetation such as grassland, shrub

vegetation and forests [59, 130, 231, 232, 281].

In this regard, we propose a new GIS-based modelling approach for defining and

mapping these subtle zones in the Swiss Alpine region. This also led us through the

generation of a susceptibility map for fire occurrences, that is, a map of the probability

of fire-ignition occurrence in specific areas without considering an absolute temporal

scale. These two products are the first attempts for forest fires and WUI definition in a

mountainous region as complex as the Swiss Alps.

1Supported by the Swiss National Science Foundation. Project No. 200021-140658/1.
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Consequently, the spatio-temporal statistical analysis of forest fires and the WUI

characterisation provide both an useful inside and information for understanding pre-

dominant fire regimes, underlying processes and for identifying fire vulnerable regions.

This comprehensive assessment is fundamental to conduct fire management goals and

strategies, and to support policy and decision-making for fire problem mitigation and

risk monitoring.

1.2 Objectives

This thesis aims at developing, validating and adapting statistical tools for the detection

and the characterisation of spatio-temporal point patterns of environmental data, i.e.

forest fire occurrences, and at defining a new wildland-urban interface (WUI) concept,

with a particular interest in the Alpine region. We believe that the proposed methodol-

ogy benefits from a robust contemporaneous statistical and GIS frameworks adaptable

to a broad range of environmental/natural/socio-economic point events. A solid theo-

retical background of traditional/modern statistical methods is developed here based on

spatial and spatio-temporal statistics, fractal-based, point processes, machine learning

approaches as well as GIS tools.

More general, we aim at proposing a response to the increasing demand for environ-

mental monitoring and management tools for natural and anthropogenic hazard and risk

assessment. In this sense, this Thesis intends to fulfil three general goals: 1) contribut-

ing to the theoretical adaptation and application of statistical techniques for space-time

pattern analysis; 2) providing real-world solutions, particularly, for the case of forest fire

occurrences, to both understand their spatio-temporal patterns and to detect clustered

areas with a high rate of fire occurrences; and 3) defining, characterising and mapping

the WUI and the fire-ignition susceptibility in the Alpine region.

The first objective of this thesis is intended for the monitoring, assessment and

modelling of environmental point data. One critical step in environmental management

is to conduct both comprehensive analyses and assessment of observed patterns. For

instance, understanding and describing the interaction among points that could explain

their location in space and/or in time, as well as learning about the underlying processes

that may have caused the patterns. To this purpose, we provide a solid background on

point processes, fractal, statistical and scan statistics methods and tools for detecting

and characterising clusters in spatial, time and space-time data. Thus, this theoretical

section comprises the development of global and local clustering measures for point

process analysis.

The second objective addresses fundamental questions related to general problems

arising when working with real-world applications, particularly, the forest fire phe-

nomenon. In many cases, the application of these theoretical methods is not a straight

forward task due to the complexity of both the studied phenomenon and the geograph-

ical space where the events take place, e.g. high spatial heterogeneity, high variability
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of spatial and temporal clustering, complex spatial/temporal constrains, and/or multi-

variate nature of the phenomenon. To overcome these issues, we develop the concept of

validity domain (VD) where we estimated relative clustering measures in data confined

in different constrained geographical and time spaces, and perform relevant statistical

tests. Furthermore, we show how to apply these clustering measures in the case of forest

fire occurrences.

The third and last objective tackles a topical issue that is particularly related to

forest fire management which is the definition and characterisation of the WUI. This

concept is presented as sensitive areas for human-environment conflicts where many vex-

ing environmental problems take place. One of these issues is the forest fire occurrence

from which the majority of recent scientific research and discussion have concentrated.

Today’s fires are mainly caused by the permanent conflicts of anthropogenic activities

for landscape exploitation; hence, the protection of both forests and human infrastruc-

tures inside the WUI becomes a challenging task. In this context, we aim at proposing

a robust, systematic, statistical and flexible approach for assessing and mapping the

WUI in the Alpine conditions providing a scientific framework for land-use and ecolog-

ical conservation planning and natural hazard monitoring. Accordingly, we develop a

new statistical/GIS-based methodology to automatically mapping the WUI. This Thesis

portrays the contribution part of the author in the collaboration project with the WSL

Research Unit Community Ecology under the frame of the research project ”Wildland-

Urban Interface (WUI) and forest fire ignition in Alpine conditions - (WUI-CH)” (See

Subsection 1.3.6 Collaborations).

1.3 Contributions

This Thesis makes several major contributions to the spatio-temporal pattern analysis

for environmental data and to the application to the forest fire phenomenon for moni-

toring and risk assessment. The results have been presented and published in different

national and international conferences and in 5 indexed journal articles. The following

briefly reports the main contributions presented in Chapters 3, 4 and 5, software devel-

opment (in Appendix B) and the lists of the publications and conference proceedings

regarding each topic.

For a detailed presentation of these publications see Appendix A. Publications &

Proceedings.

1.3.1 Chapter 3

This chapter proposes the theoretical development of a contemporary, comprehensive

and robust methodology for the analysis, characterisation and detection of clusters in

spatio-temporal point data by adapting and applying statistical point process methods

for purely spatial, purely temporal and spatio-temporal analysis. In this framework, we
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present statistical approaches going from global measures for spatial clustering character-

isation (i.e. defining whether the events are clustered or randomly distributed regardless

of their location in space or in time [70, 214]) to local measures for cluster detection and

identification (i.e. space-time location of statistical significant clusters).

Furthermore, this chapter also introduces the concept of validity domain (VD) which

allows taking into account the complexity of the geographical space where real-world

phenomena take place. The development of VDs allowed reducing the dimensionality of

the mapping space of the studied events and, together with simulated data generated

in these domains, enabled quantifying the relative degree of clustering of the observed

patterns without making use of statistical tests to assert for statistical significance. This

was possible by comparing deviation of the results of each statistical measure applied

to the observed events with the results from the random patterns simulated in different

constrained geographical spaces (or VDs). For more details see Section 3.5 in Chapter

3). In the same manner, these concepts were adapted to temporal analysis where two

temporal constrained observed windows were defined (see Subsection 3.5.1 in Chapter 3).

The introduction of the VD concept demonstrated that we can deal with the phenomena

complexities without involving a priori knowledge of their underlying processes.

The contributions of this chapter can be divided into three main cluster analysis as

follows:

1. Space clustering analysis

This contribution consisted on the adaptation and application of point process

methods for purely spatial analysis. In this framework, we presented statistical,

fractal and second-order measures for the global characterisation of the spatial clus-

tering of a point pattern. More precisely, we applied the Morisita index (subsection

3.4.1), the Box-counting fractal dimension (subsection 3.4.2), the multifractal for-

malism (subsection 3.4.3), and the Ripley’s K -function (subsection 3.4.4).

2. Time clustering analysis

The proposed methodology was likewise adapted and extended to temporal anal-

ysis. For the time case, we not only applied statistical measures exclusively de-

veloped for purely temporal analysis such as the temporal K -function (subsection

3.4.4.2) but we also adapted tools that were developed for purely spatial analysis

such as the Morisita index (subsection 3.4.1.1), the Box-counting fractal dimen-

sion (subsection 3.4.2.1) and the Rényi generalised dimensions for the multifractal

analysis (subsection 3.4.3.2).

3. Space-time

For the spatio-temporal case, we applied a local measure such as the space-

time permutation scan statistics (STPSS, subsection 3.4.5). This scan statistical

methodology uses a scanning window, which moves across the space and the time,

detecting local excess of events in specific areas over a certain period of time. The
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resulted potential clusters are evaluated through the Monte Carlo hypothesis test-

ing to infer for their statistical significance. It allowed identifying and mapping

hot spots of point event data.

1.3.2 Chapter 4

This chapter entirely comprises the application of the methodology, developed in Chapter

3, on a real-world complex environmental phenomena as it is the case of the forest fire

occurrences in Canton of Ticino. In addition, one application of the STPSS method is

also developed and showed for the case of the forest fires in Portugal.

The main contributions of this chapter are: the quantification and the characterisa-

tion of the space and time structures of the forest fires in Canton of Ticino through the

application of global clustering measures for point processes; the detection and identi-

fication of spatio-temporal clusters by means of the local clustering measure STPSS in

the case of the forest fires in Canton of Ticino; and the evaluation of the capability of

this STPSS model to detect real clusters in aggregated data as it is the case of the forest

fire database of Portugal.

The resulted work was presented and published as follows:

1. Space clustering analysis

• M. Kanevski, C. Vega Orozco, M. Tonini, V. Timonin and M. Conedera.

Spatial Analysis of Forest Fires Clustering. Case Study: Canton Ticino,

Switzerland. In Proceedings of Spatial Statistics: Mapping Global Change,

Enschede (The Netherlands), page P2.31, 2011.

• C. Vega Orozco, M. Tonini, M. Kanevski and M. Conedera. Point Pat-

tern Analysis of Forest Fire Occurrences in Canton Ticino (Switzerland). In

ICFBR 2011 International Conference on Fire Behaviour and Risk Focus on

Wildland Urban Interface, pages 126–127, Sassari (Italy), 2011.

• C. Vega Orozco, M. Kanevski, M. Tonini, J. Golay and M. Conedera. Multi-

fractal Analysis of Forest Fires in Complex Regions. In European Geosciences

Union General Assembly, Copernicus Publications, Vienna (Austria), volume

14, page 1162, 2012.

• J. Golay, C. Vega Orozco, M. Tonini and M. Kanevski. Spatial Point

Pattern Analysis of Environmental Data Using R. In Symposium Proceed-

ings, Open Source Geospatial Research & Education Symposium, Yverdon-

les-Bains (Switzerland), pages 245–252, 2012.

• M. Tonini, C. Vega Orozco, M. Kanevski and M. Conedera. Spatio-Temporal

Patterns of Forest Fires: a Comprehensive Application of the K-Function.

In European Geosciences Union General Assembly, Geophysical Research Ab-

stractsCopernicus Publications, Vienna (Austria), volume 15, page 5461, 2013.

2. Time clustering analysis
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• C. Vega Orozco, M. Kanevski, M. Tonini, J. Golay and M.J. Pereira. Time

Fluctuation Analysis of Forest Fire Sequences. In European Geosciences

Union General Assembly, Copernicus Publications, Vienna (Austria), vol-

ume 15, page 5518, 2013.

• M. Tonini, C. Vega Orozco and M. Kanevski. Spatio-Temporal Aggregation

of Wildfires: from Global Cluster to Local Mapping. In 11th Swiss Geoscience

Meeting, Symposium 17: Computation GIScience, Lausanne (Switzerland),

2013.

3. Space-time cluster detection

• C. Vega Orozco, M. Kanevski, M. Tonini and M. Conedera. Patterns

Mining in Spatial-Temporal Sequences: the Case of Forest Fires in Ticino

(Switzerland). In Proceedings of the International Symposium on Spatial-

Temporal Analysis and Data Mining STDM, London (UK), 2011.

• [305] C. Vega Orozco, M. Tonini, M. Conedera and M. Kanevski. Clus-

ter Recognition in Spatial-Temporal Sequences: The Case of Forest Fires.

Geoinformatica, vol. 16(4): 653-673, 2012. doi:10.1007/s10707-012-0161-z.

• M.G. Pereira, L. Caramelo, C. Vega Orozco, R. Costa and M. Tonini.

Space-time clustering analysis performance of an aggregate dataset: The

case of wildfires in Portugal. Environmental Modelling & Software, vol. 72:

239–249, 2015. doi:10.1016/j.envsoft.2015.05.016.

1.3.3 Chapter 5

This chapter proposes two systematic, statistical and flexible geospatial approaches for

assessing and mapping the WUI and the prediction of fire ignition susceptibility in

Canton of Ticino. The main contributions of this work are the development of the first

methodological and decisional statistical/GIS framework for WUI characterisation in

the Alpine context, and the generation of the first fire-ignition susceptibility map of this

region by means of the random forests (RF) algorithm. This work was presented and

published as follows:

• M. Conedera, M. Tonini, L. Oleggini, B. Pezzatti and C. Vega Orozco. Wildland-

Urban Interface and Forest Fire Ignition in Alpine Conditions. In ICFBR 2011

International Conference on Fire Behaviour and Risk Focus on Wildland Urban

Interface, Sassari (Italy), pages 47–48, 2011.

• M. Leuenberger, M. Kanevski and C. Vega Orozco. Forest Fires in a Random

Forest. In European Geosciences Union General Assembly, Copernicus Publica-

tions, Vienna (Austria), volume 15, page 3238, 2013.

• M. Tonini, C. Vega Orozco and M. Conedera. A Robust GIS Approach to Map

WUI in the Alpine Regions. In ICFFRMM - International Conference on Forest



Chapter 1. Introduction 8

Fire Risk Modelling and Mapping: Vulnerability to Forest Fire at Wildland Urban

Interface, Aix-en-Provence (France), 2013.

• C. Vega Orozco, M. Leuenberger, M. Tonini and M. Kanevski. Anthropogenic

Forest Fires Susceptibility Mapping using Random Forest Algorithm. In ICF-

FRMM - International Conference on Forest Fire Risk Modelling and Mapping:

Vulnerability to Forest Fire at Wildland Urban Interface, Aix-en-Provence (France),

2013.

• M. Leuenberger, C. Vega Orozco, M. Tonini and M. Kanevski. Random Forest

for Susceptibility Mapping of Natural Hazards. In 11th Swiss Geoscience Meeting,

Symposium 17: Computation GIScience, Lausanne (Switzerland), 2013.

• C. Vega Orozco, M. Tonini and M. Kanevski. Analysis of the Dynamic of Urban

Areas and of their Interaction with Forest Fires. In 11th Swiss Geoscience Meeting,

Symposium 17: Computation GIScience, Lausanne (Switzerland), 2013.

• [68] M. Conedera, M. Tonini, L. Oleggini, C. Vega Orozco, M. Leuenberger and

G.B. Pezzatti. Geospatial Approach for Defining the Wildland-Urban Interface in

the Alpine Environment. Computers, Environment and Urban Systems, vol. 52:

10–20, 2015. doi:10.1016/j.compenvurbsys.2015.02.003.

1.3.4 Scripts development in open source software

As a by-product of this Thesis, we developed some functions in the R statistical soft-

ware, an open source software environment for statistical computing and graphics [230].

This free environment allows data manipulation, calculation and graphical display. The

R base can be extended via packages available through the Comprehensive R Archive

Network (CRAN) which covers a wide range of modern statistics, or through the im-

plementation of customised functions as we have done along this work. The following

functions were developed and customised by the author of this Thesis for the application

and the adaptation of four clustering measures for both space and time analysis:

• The Morisita index.

• The Box-counting fractal dimension method.

• The Rényi generalised dimensions (multifractality).

• The multifractal singularity spectrum (multifractality).

• The multiquadrats counting.

• The envelope function.

The main motivation and purpose of this software development is the usefulness that

these customised functions can provide for the scientific and academic community. The
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fact that these functions are developed in a open source software allows easily sharing

them with the people that could be interested in teaching or in carrying out clustering

analysis of point data. The developed R functions are presented in detail in the Appendix

B. Software.

1.3.5 Other contribution studies

Other contribution work of this Thesis is the application of the described methodology,

adapted and tested for forest fire occurrences, in other phenomena. These studies were

carried out in collaboration with other researches, and they are presented as follows:

1. The Morisita index

This work resulted in the proposition of two simple methodologies based on the

multipoint version of Morisita index (m-Morisita index, developed by our col-

league Jean Golay). The first methodology aimed at characterising the degree of

clustering of an environmental monitoring network through the m-Morisita index.

And the second methodology is proposed for the detection of structures in moni-

tored phenomena by means of the extension of the m-Morisita index to functional

clustering measures. The application cases were the Indoor Radon Monitoring

Network in Switzerland and the Swiss population distribution. These studies were

presented and published in:

• J. Golay, M. Kanevski, C. Vega Orozco. Multipoint-Morisita Index for

the Analysis of Spatial Patterns. In Proceedings of geoENV2012, IX Con-

ference on Geostatistics for Environmental Applications, Valencia (Spain),

pages 129–130, 2012.

• J. Golay, M. Kanevski and C. Vega Orozco. The Multipoint Morisita Index

for the Analysis of Geodemographic Data. In 11th Swiss Geoscience Meeting,

Symposium 17: Computation GIScience, Lausanne (Switzerland), 2013.

• [120] J. Golay, M. Kanevski, C. Vega Orozco and M. Leuenberger. The

Multipoint Morisita Index for the Analysis of Spatial Patterns. Physica

A: Statistical Mechanics and its Applications, vol. 406: 191–202, 2014.

doi:10.1016/j.physa.2014.03.063.

2. Fractal and multifractal analysis

This work portrays a fractal and multifractal analysis of the Swiss population

distribution. This investigation enabled characterising the spatial patterns and

degree of clustering of the population distribution in the three Swiss geographical

regions (Alps, Plateau and Jura) and the entire country. Additionally, it also

allowed quantifying the dissimilarities between the four patterns. This work is

the first Swiss geodemographic study applying multifractal methods using high

resolution data. This study was presented and published in:
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• C. Vega Orozco, J. Golay and M. Kanevski. Multifractal Portrayal of the

Distribution of the Swiss Population. In Proceedings of Spatial Analysis and

GEOmatics, Liège (Belgium), pages 392–407, 2012.

• [306] C. Vega Orozco, J. Golay and M. Kanevski. Multifractal Portrayal

of the Swiss Population. Cybergeo: European Journal of Geography [Online],

Section: Systems, Modelling, Geostatistics, vol. 714, 2015.

doi:10.4000/cybergeo.26829, url:http://cybergeo.revues.org/26829.

3. Ripley’s K-function

This work was accomplished for the spatial pattern analysis of rock avalanche oc-

currences in Argentina. The analysis was carried out using the Ripley’s K -function

to estimate the degree and the extend of the spatial clustering of the mentioned

events. Additionally, an application of the cross K -function was also carried out

for detecting spatial correlation with other geological events, e.g. earthquakes.

This study was presented and published in:

• I. Penna, M. Tonini, C. Vega Orozco, C. Longchamp, M.H. Derron and

M. Jaboyedoff. Rock Avalanche Occurrence in the San Juan Province (Ar-

gentina): an Analysis of Their Spatial Distribution and Main Forcing Factors.

In European Geosciences Union General Assembly, Copernicus Publications,

Vienna (Austria), volume 15, page 10515, 2013.

1.3.6 Collaborations

Two collaborations with two institutions were founded during this Thesis:

One collaboration was established with the Research Unit Community Ecology from

the WSL under the frame of the research project “Wildland-Urban Interface (WUI) and

forest fire ignition in Alpine conditions - (WUI-CH)”, co-financed by the Swiss Federal

Office for the Environment and the WSL research program Forest and climate change

- Phase I. This project intended establishing a methodology for defining and mapping

the WUI in the Swiss Alpine region, as well as on the reconstruction of the dynamic

of the WUI in Canton of Ticino in the last 30 years by means of remote sensing image

classification. The work resulted from this collaboration was presented and published

in:

• The work presented in subsection 1.3.3 for WUI characterisation.

• R. Ceré, M. Conedera, G. Matasci, M. Kanevski, M. Tonini, C. Vega Orozco and

M. Volpi. Wildland-Urban Interface Evolution Mapping Using Multi-Temporal

Landsat Imagery. The Case of Forest Fires in Southern Swiss Alps. In European

Geosciences Union General Assembly, Copernicus Publications, Vienna (Austria),

volume 14, page , 2012.
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• M. Kanevski, A. Champendal, C. Vega Orozco, M. Tonini and M. Conedera.

A New Concept of Wildland-Urban Interface Based on the City Clustering Al-

gorithm. In European Geosciences Union General Assembly, Copernicus Publica-

tions, Vienna (Austria), volume 14, page 2092, 2012.

• A. Champendal, C. Vega Orozco, R. Ceré, M. Kanevski and M. Tonini. A

Geomatic Approach to Wildland-Urban Interface Detection. In Proceedings of

Spatial Analysis and GEOmatics, Liège (Belgium), pages 73–76, 2012.

The second collaboration was carried out with the Centre for Research and Technol-

ogy of Agro-Environment and Biological Sciences (CITAB) of the University of Trás-

os-Montes and Alto Douro in Portugal. The work resulted from this collaboration was

presented and published in:

1. The article [214] (mentioned in subsection 1.3.2 space-time analysis in forest fires

in Portugal).

2. R. Costa, M.J. Pereira, L. Caramelo, C. Vega Orozco and M. Kanevski. Spatio-

Temporal Clustering of Wildfires in Portugal. In European Geosciences Union

General Assembly, Copernicus Publications, Vienna (Austria), volume 14, page

12208, 2012.

3. R. Costa, M.G. Pereira, L. Caramelo, C. Vega Orozco and M. Kanevski. As-

sessing SaTScan Ability to Detect Space-Time Clusters in Wildfires. In European

Geosciences Union General Assembly, Copernicus Publications, Vienna (Austria),

volume 15, page 14055, 2013.

4. M. Pereira, R. Costa, M. Tonini, C. Vega Orozco and J. Parente. Influence of

the input database in detecting fire space-time clusters. In European Geosciences

Union General Assembly, Copernicus Publications, Vienna (Austria), 2015.

5. M. Tonini, M. Pereira, C. Vega Orozco and J. Parente. Multivariate cluster

analysis of forest fire events in Portugal. In European Geosciences Union General

Assembly, Copernicus Publications, Vienna (Austria), 2015.

1.4 State of art

When working with spatio-temporal events, fundamental questions concerning the anal-

ysis and modelling of their patterns arise such as whether there exist clusters; what is

the overall pattern; how is the relationship between the events; what is the trend; where

are the clusters located, etc. However, most of these issues can not be addressed by just

looking at a simple graphical representation of the objects. The application of meth-

ods of spatial statistics are thereby indispensable in many physical and socio-economic

disciplines to provide better information of the structures and the underlying factors of

processes that are not perceptible to the bare eye.
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Spatial statistics concerns a variety of statistical techniques to quantitatively analyse

space-time data. Coupled with GIS tools, these techniques can be used for mapping,

data quality assessment, sampling design optimisation and modelling of space and spatio-

temporal data structures. These methodologies concern the location, area, distance

and interaction between the study objects, and are based on the first law of geography

(Tobler [285]): “everything is related to everything else, but near things are more related

than distant things”. However, the definition of “near” and “distant” may depend on

the particular context of the phenomenon of interest for which the observed events

need to be referenced in space and/or in time. The literature of spatial statistics is

well established and extensive, going from theoretical to applied texts. The theoretical

development provides techniques for point process analysis [14, 16, 55, 56, 72, 74, 74, 79–

81, 89, 93, 108, 112, 143, 153, 192, 239–241, 267], and spatial interpolation, known as

Geostatistics [23, 73, 74, 124, 144, 150, 151, 183–185]. Recently, several good books

have been published giving an important overview and state-of-the-art description of

spatial analysis in different domains of application, including Cello et al. [43], Diggle

[89, 91], Finkenstädt et al. [100], Gelfand et al. [112], Glaz et al. [119], Illian et al. [143],

Kanevski [150], Kanevski and Maignan [151], Ripley [243], Seuront [257] and Wiegand

and Moloney [316].

In general terms, spatial cluster analysis, as a part of the spatial statistics, can be

defined as a family of algorithms aiming at grouping objects showing a local over-density

in space and/or in time. Here, the term clustering concerns only the spatial repartition

of the events (points) and it is defined as the spatial non-homogeneity of the point

distribution in the geographical space in which they are embedded in [290]. Thus, a

spatial cluster is a region where the density of events is higher than expected in the

surrounding area. The probability that a cluster is a real cluster or that it has occurred

by chance is carried out through a comparison with random distributions (e.g. Poisson

model) which allows rejecting the hypothesis of independence between the events via

statistical tests (e.g. Monte Carlo test).

These algorithms can be classified into two main groups: global and local method-

ological approaches. The first group seeks to detect clustering by measuring the in-

tensity of the point pattern and defining whether the events are clustered or randomly

distributed, regardless of their specific locations in space or in time [70, 256, 305]. Its

characterisation can be assessed by an ample number of measures [74, 91, 143, 151] and

they can be classified as [120]:

• Topological measures, which evaluate the level of clustering based on the geometry

of the object. Among these indices we find the Voronoi polygons and the Delaunay

triangulation [151, 310].

• Statistical measures, discovering the presence of clustering by evaluating the dis-

tribution of the events: the Morisita index [78, 120, 142, 198], Ripley’s K-function

[241], the Moran’s Index [194] and the variance-to-mean ratio [142], among others.
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• Fractal measures, which evaluate how a pattern fills the space where it is embedded

in and how this filling varies at different scales detecting the presence of clustering.

Some of these methods are the Box-counting method [171, 258, 290], the Sandbox-

counting method [99, 127, 273, 290], the Lacunarity index [5, 46, 178, 223], the

Information dimension [137, 257] and the Rényi generalised dimensions [29, 109,

126, 137, 209, 257].

The second group of algorithms of spatial cluster analysis, the so called local methods,

intends to identify the space/time location and extent of the detected clusters. Some

examples are the geographical analysis machine (GAM) [207], the Turnbull’s cluster

evaluation permutation procedure (CEPP) [297], the Besag-Newell clustering test [26],

the Scan Statistic [156] and the density-based algorithms such as DBSCAN [97, 251]

and further developments of polygon-based clustering [147, 312]. Nevertheless, analysis

from global methods should precede the use of local approaches.

Spatial clustering analyses of environmental events comprises a broad and growing

literature in different application fields, for instance, landslides [37, 174, 201, 295, 317]

ecology [89, 91, 107, 166, 245, 257, 316], geography [28, 125], forestry [266], forest fires

[6, 22, 27, 36, 189, 211, 215, 274–277, 279, 295, 296], pollution [150, 151, 167, 168],

crop yield [322], natural hazards [43], landscape [39], urban geography [1, 10, 11, 19–

21, 45, 85, 103, 104, 148, 208, 250, 271] among others.

1.4.1 Space-time pattern characterisation of forest fire occurrences

From a statistical point of view, forest fires can be treated as a stochastic marked point

process where events are characterised by points and marks, with points describing the

locations of the events in space and/or time [291] and the marks providing additional

information such as burnt area, ignition-cause, duration, altitude and slope, etc. As

many natural phenomena, forest fires are found to be clustered in space and/or in time

rather than being randomly distributed. This has been confirmed in several studies. For

instance, Moreno et al. [195], Podur et al. [224], Rorig and Ferguson [247], Telesca et al.

[278], Tuia et al. [291], Vázquez and Moreno [301, 302] and Yang et al. [319] carried out

spatial clustering analysis by applying statistical, topological and fractal techniques to

study the spatial distribution of the events without specifying the exact spatial location

of clusters. The spatial variability of forest fire long-history has been studied by Ali et al.

[4] and Carcaillet et al. [41] using Ripley’s K -function which also allowed determining

the extent of the role of large- (e.g. climate) and local-scale processes (e.g. relief, slope

aspect, human history, etc.) on fire pattern. In the case of temporal clustering analysis,

one can find the work of Corral et al. [69], Ghermandi et al. [115], Lasaponara et al.

[164], Telesca and Lasaponara [274], Telesca and Pereira [275], Telesca et al. [276, 279].

Most of this work concerns the application of time-fractal approaches to characterise

the temporal distribution of forest fire sequences estimating the degree of their temporal

clustering behaviour.
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For spatio-temporal analysis, while some studies investigate the clustering behaviour

such as Genton et al. [114], Hering et al. [139], Telesca et al. [277] and Tuia et al. [292],

just few work concerns the detection and identification of statistically significant clusters

e.g. Pereira et al. [214], Tonini et al. [286], Tuia et al. [293] and Vega Orozco et al. [305],

which applied the space-time permutation scan statistic model [160] for the detection of

high rate occurrences areas.

Much attention has also been concentrated in the analysis of power-law behaviour be-

tween frequency and size of fire distribution [173, 235, 238]. This behaviour is consistent

with self-organised criticality (SOC) systems which is used to understand the dynamic

of fires [52, 138, 295] by considering the phenomena as an extended dynamical system

operating at states of critical equilibrium [17]. This has led to practical implications to

forecast the risk of large fires based on the occurrence frequency of small and medium

fires [259].

Works concerning the implication of environmental and socio-economic factors in the

distribution of forest fires are found in the paper of Dı́az-Avalos et al. [88] and Latham

and Williams [165] which revealed the role of topography and fuel characteristics in

defining the spatial patterns of lightning-induced fires. Likewise, the works of Cardille

et al. [42], Guyette et al. [131], Hessburg et al. [140], Prestemon and Butry [226], Preste-

mon et al. [227] and Veblen et al. [303] assessed the influence of human factors on modern

human-caused fire regimes.

Other researches on forest fires deal with several important and difficult tasks, in-

cluding the modelling of this phenomenon taking into account physical, meteorological

and other processes [212, 225], statistical modelling using cellular automata [152, 320],

fire occurrence mapping by means of kernel density approaches [7, 8], fire ignition prob-

ability modelling using logistic regression [42, 181, 190, 304], fire hazard probability

based on fire frequency [175], and fire risk assessment and mapping through generalised

linear mixed models [88, 122], classification tree analysis [7] and GIS-based approaches

[38, 51, 121]. In addition, one can find the application of data mining and advanced ma-

chine learning algorithms to characterise forest fire regions and patterns [9, 49, 206, 321].

And more recently, stochastic models integrating meteorological dynamic and historical

data for forest fires risk mapping and prediction [95].

1.4.2 Characterisation of the wildland-urban interface

Different definitions exist for Wildland-Urban Interface (WUI), but the most widely used

is the definition of the US Departments of Agriculture and of the Interior [204] where

WUI refers to the geographical areas where human development meet or intermingle with

natural vegetation such as grassland, shrub vegetation and forests [59, 130, 231, 232, 281].

Probably the earliest contribution to this topic is the work of Vaux [300] and the book of

Bradley [32]. Many environmental-ecological issues are encountered within these areas

[3, 32, 221, 300]; however, since the 1990s with the work of Davis [83], the term WUI

is almost exclusively used in the context of wildland fires [263]. Problems related to



Chapter 1. Introduction 15

fire hazard and fire management are by far the most WUI-relevant issues [162, 263] as

a result of the influence of human settlement in the regimes of anthropogenic-induced

fires. In this sense, fire planning and management became of primary actions in these

WUI areas [128, 222].

In the scientific domain, investigations mainly involve the development of suitable

WUI definitions [221, 232], mapping methods [130, 161, 162], implementation of mea-

sures into specific fire management plans [2, 116, 134, 186], validation of the proposed

approaches [188], and assessment of fire risk and intervention priority [132]. Most of

these works concern the WUI in different fire-prone areas in the world, i.e. United

States [18, 54, 188], Autralia [116], Mediterranean Europe [15, 161–163], and South

America [86]. Nevertheless, no attempt has been made to investigate and elaborate a

definition of the WUI in mountainous environments such as the Alps [68], where gen-

eral socio-economic/environmental conditions, fuel types and wildfire regimes display

different characteristics.

There is no a single standard definition of WUI commonly accepted around the world.

As pointed out by Mell et al. [188], Platt [221] and Stewart et al. [263], the assessment

of WUI and its related fire risk is mainly an issue of definitions and parametrisations

adapted to the local conditions of the study area, the availability of data, the scale of

reference, and the management purposes. Nevertheless, all of the existing definitions

of WUI agree with the association of three basic elements: 1) the “anthropogenic com-

ponent” given by human infrastructures (i.e. houses, roads, etc.) which can act as

both the ignition sources [15, 42, 162] and the loss during the fire [57]; 2) the “wildland

component” given by the vegetation (e.g. forest) different from cultivation (urban green

areas, orchards or agricultural activities) [263]; and 3) the “interface area” between the

two first components, representing the potential interactions and feedback effects in case

of wildfire [68, 221].

Conforming to Davis [83], Haight et al. [132], Platt [221], Radeloff et al. [232], Stew-

art et al. [263] and Theobald and Romme [281], WUI may be defined according to the

spatial organisation of the three mentioned components as: 1) “interface-WUI” when

infrastructures are directly adjacent to wildland fuel; 2) “intermix-WUI” when infras-

tructures are scattered throughout a wildland or forest area; and 3) “occluded-WUI”

when infrastructures are completely surrounded by wildland areas [68].

Few methods exist for mapping WUI, and although they are conceived using the same

WUI components (human, vegetation and buffer distances), they mostly differ from their

operational approaches and implementations [221, 264]. For instance, the definition of

the human component may differ mostly due to the availability and resolution of data,

e.g. estimates of housing density. The resulting settlement distributions may vary

from isolated or scattered housing to dense or very dense agglomerations [161]. For

the second WUI component, the vegetation could simply be classified into wildland and

non-wildland fuel [68], or it can be divided into different categories, e.g. types, influence

on fire ignition and intensity, etc. [221, 281]. The third WUI component is mostly
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defined by a buffer delineating area which criteria usually varies as a function of the fire

characteristics and management purposes, e.g. intended to reduce fire ignition frequency

for anthropogenic structure protection or to mitigate fire intensity in order to save fire-

fighting conditions [57, 68]. No standard buffer distances exist in literature or in practice

to define all WUIs. Currently, buffer distances may be defined using different empirical

or theoretical approaches; for instance, by considering, empirically, an area that roughly

corresponds to the range of different fire-fighting methods; or by estimating the distance

at which radiant heat ignites homes or at which fire brands can fly [58, 68, 263]; or by

applying variable buffer-width techniques to adapt WUI to the fire intensity produced

by each vegetation type [68, 280].

1.5 Outline

The methodology of this Thesis can be divided into three parts as presented in Figure

1.1:
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Figure 1.1: Mindmap of the implemented methodology.

The first part (in orange), corresponds to Chapter 2 and consists on the pre-processing

and the exploration of the real study data. In this chapter, we present the state-of-art
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of the scientific work on the forest fires in Switzerland and we make a briefly history and

description of the current situation of this phenomenon in Canton of Ticino.

The second part (in green), concerns Chapters 3 and 4. In Chapter 3 we intro-

duce some basic properties of spatial point processes and the theoretical description of

the statistical methods implemented in the methodology. This chapter comprises the

development of clustering indicators (global and local methods). The group of global

measures estimates the intensity of the point pattern defining whether the events are

clustered or randomly distributed regardless of their location in space or in time [26, 70].

For that, we develop: the Morista index [198], the Box-counting method for fractal anal-

ysis, the multifractal characterisation by means of the Rényi generalised dimensions and

the multifractal singularity spectrums [133, 137, 172, 177], and finally, the Ripley’s K -

function [239]. Simultaneously, simulated data with known patterns were generated as

a benchmark for indicating how to estimate the clustering functions, how they behave

in a theoretical context, and how they answer to the initial hypotheses. We introduce

the VD concepts and simulate random patterns inside the defined spatial and temporal

domains. In what concerns the group of local measures, which intends to detect and

locate space-time clusters, we apply the space-time permutation scan statistics (STPSS)

method [156, 160].

In Chapter 4, we deal with the adaptation and application of the previous statistical

methods for purely spatial, purely temporal and spatio-temporal analysis to the case of

forest fire occurrences in Canton of Ticino (Switzerland). One application to the case of

the forest fires in Portugal is also presented using the STPSS model.

The third part of this Thesis (in purple) corresponds to Chapter 5 and it is related

to the use of GIS and machine learning techniques for mapping WUI and predicting the

fire ignition susceptibility in the Swiss Alpine context. In this framework, we implement

the Random Forests method [34] (a machine learning algorithm) and GIS tools such as

the ModelBuilder2 of ArcGIS for the WUI definition.

Finally, in chapter 6 we present the most significant conclusions of this research and

we state possible future research directions in the field of applied statistical analysis.

2ArcGIS Desktop - Graphical interface for creating, editing and managing models (workflows).
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Case study: the forest fire

occurrences

2.1 Introduction

Forests cover about 30% of the total planet land area and have a major role in the life

on earth. For instance, they are essential for atmospheric regulation of CO2 and O2,

soil conservation, regulation of the hydrological cycle, while simultaneously providing

habitat for many species and useful products (biomass, wood, food) [40]. One natural

process defining the spatio/temporal dynamics of both forest distribution/composition

and forest ecosystems is fires. These events are important ecological factors for forest

ecosystems because they regulate species composition and influence plant growth and re-

production. Nevertheless, uncontrolled fires can have remarkable detrimental effects on

non-fire-adapted forest ecosystems, landscape (desertification or flooding), environmen-

tal pollution and global climate change. Moreover, on humans they can have negative im-

pacts on regional economies, human health and safety. [53, 129, 136, 199, 229, 288, 309].

Fires take place on Earth through the interaction of climate and biological factors

(e.g. burnable biomass) [210]; however, since humans use fire, the evolution of such

events also depends on the intensity and extent of the anthropogenic intervention on

the landscape [31, 71, 228, 299]. In this context, the formation, frequency, intensity and

distribution of forest fires are defined and controlled by the coincidence of four basic

components (see Figure 2.1) such as: the presence of fuel (e.g. vegetative resources),

the fire-conductive environmental conditions (e.g. meteorology), the ignition energy (e.g.

lightning or humans) [130, 154, 220, 305] and the topography (slope, aspect) which plays

an important role on fire distribution.

When these events are recurrent and consistent in a particular area over a certain

period of time, they usually result in a specific fire regime [155, 305]. In this sense, fire

regime is a concept that comprises the structure of fires [315] such as fire occurrence

(i.e. number of fire outbreaks), burnt area (which crucially depend on landscape and

topographic characteristics and the extent of the fire spread), and fire effects [313]. The

18
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Figure 2.1: Components of wildfire ignition and distribution. Source: image modified
from hphanson1.

processes and components of fire regimes present consistently high variability in both

space and time [42, 98, 197, 220], and are the source of the complexity and the irregularity

of the forest fire patterns exhibited over a continuum of scales. Such complexity and

scale-dependency of the fire structures are critical issues for both fire modelling and

behaviour prediction [76, 260].

Some studies have proved, as the work from Pereira et al. [212], that meteorologi-

cal conditions are crucial factors for fire development. Based on these factors, several

modelling approaches have been developed and used for both forest fire ignitions and

patterns predictions (e.g. Cardille et al. [42], Mandallaz and Ye [176]). For instance,

a standard method is the calculation of a fire danger index such as the Canadian Fire

Weather Index [265]. However, as showed by Viegas et al. [308], a common issue en-

countered when applying those models over broader temporal and spatial extents is that

they are strongly dependent on the specific environmental conditions from where they

were initially developed.

Likewise, other variables, such as anthropogenic and ground factors, are also highly

relevant for fire ignition and fire distribution. The impacts of human activities (land

use and fire management) on fire regimes had been also detected and studied around

the world. Bowman et al. [30], Guyette et al. [131], Hessburg et al. [140] and Veblen

et al. [303] have revealed that changes in the anthropogenic environment prompt sub-

stantial shifts on fire regimes as well; that is, changes on fire frequency, size, intensity

and seasonality [155]. Reineking et al. [236] clearly demonstrated that differences in

climate, weather, forest composition, and human activities resulted in different patterns

of forest fire ignition, suggesting the need of using different model structures for specific

situations, which is a non-trivial task.

1http://www.hphanson.com/fiction/environment/SERE/wildfire.shtml (consulted on 02.2015).
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Moreover, due to the ongoing global changes (i.e. in land use, climate and society)

[299], shifts on fire regimes are expected particularly with trends towards an increase of

the frequency and severity of forest fires [101, 117, 254, 314]. This obliterated the gen-

eral perception of the Alpine fires as minor and negligible [299], bringing new issues and

challenges for fire management and fire-fighting purposes. Thus, the identification and

understanding of both the spatio-temporal patterns of fires and their relationship with

the human/environmental components became indispensable. On account of this, the

aim of scientists is to provide responses and knowledge of the natural and cultural dy-

namics of forest fires and their underlying processes for the monitoring and management

of forest fire hazard to better integrate fire prevention and mitigation strategies.

2.1.1 Forest fires in Switzerland

Switzerland is generally not subjected to neither frequent nor big forest fires (Figure 2.2);

nevertheless, approximately 200 fires are registered every year in its territory, destroying

up to 300 ha of forest areas valuable for the socio-economic sectors and for the protection

against other natural hazards. Most forest fires in Switzerland occur in the southern

part corresponding to the Alpine region. It comprises the Cantons of Valais (VS), Uri

(UR), Grisons (GR) and Ticino (TI) [324] (Figure 2.3), and accounts for about 90% of

the surface burnt at the national level [196].

Figure 2.2: Worldwide counts of observed wildfire occurrence readings from combined
MODIS and ATSR remote sensing products from 1996 to 2007. This figure modified

from Moritz et al. [200].

Investigations on forest fires prediction in southern Switzerland started in the be-

ginning of the 90’s within the framework of the project Climate change and Natural

Disasters, financed by the Swiss National Foundation [64, 180]. This project has led

to the production of several scientific work studying fire regimes [63, 217, 313, 324],

fire-driving factors [62, 325, 326], fire danger [84] and fire impact on forest ecosystems

[196, 218, 282]. Nevertheless, a comprehensive analysis of the overall fire regime in the

Swiss Alps is still to be fulfil.
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Figure 2.3: Forest fire distribution in Switzerland for the period 1969 to 2008.

Some studies have demonstrated that the history of wildfires in the Alpine region

goes as far back as the Lateglacial-Holocene period (around 15,000 cal.yrs BC) [149] with

fire regimes characterised by long fire return intervals, e.g. 300–1000 years [299]. At this

period, as volcanoes in this region were already inactive, natural fires were only ignited

by lightning [284]. However, for centuries, the long-lasting intensive human practices

for land exploitation have prevented wildfires to develop in a natural way, and thus

confining the knowledge of the natural course of fire regimes [41].

Tinner et al. [282] evidenced the role of fire in changing the composition of woodlands

in the southern Switzerland for more than 7000 years. Conedera et al. [66] and Tinner

et al. [283] also showed that lightning-ignited fires (also named as natural fires) exert a

control on the subalpine coniferous forest ecosystems. Furthermore, Pezzatti et al. [218]

analysed the selectivity of fires to forest vegetation classes both in terms of fire frequency

and fire size in Canton of Ticino. Their findings suggested that natural fires are more

frequently in spruce stands, and tend to be small in size in the beech and mixed forests;

while, anthropogenic fires occur mostly at low elevations in chestnut stands, broadleaved

forests and in the first 50 m from the forest edge.

On the other hand, the influence of human activities in shaping fire occurrences

in the last century is not an exception in the Alpine region. For instance, Zumbrun-

nen et al. [326] proofed that land use practices contributing to removing biomass (i.e.

livestock pasturing and wood harvest) were associated to fire occurrences in Canton of

Valais. Furthermore, as suggested by Pezzatti et al. [220], recent short-termed shifts in

fire regimes in the Alpine region are also influenced by the implementation of fire leg-

islative and fire-fighting measures which have contributed to reduce fire frequency and

size correspondingly.

Some alteration processes encountered in many parts of the world such as fuel build-

up, stand density and connectivity of forest areas are also experienced across the entire



Chapter 2. Case study 22

Alpine region due to ongoing changes on land use traditional practices, forest man-

agement strategies and the abandonment of former agricultural areas in the rural and

marginal regions [113, 299, 326]. As a consequence, this situation might lead to fire

management and social issues due to the lack of accessibility to fuels build-up areas,

the unevenness of human population distribution in the Alpine region diversifying the

structures of the wildland-urban interface [299], and the interaction with other natural

disturbances, e.g. avalanches, rock-falls, relevant for the protection of forest areas and

human settlements [33, 141].

The canton most affected by forest fires is Ticino with fire events occurring principally

during winter season (December to April) when dry conditions are more permanent due

to both low precipitation and strong foehn winds. This situation is more intensify by

the accumulation of dry litter (tree’s leaves) on the forest floor characteristic of the

previous fall season. As the majority of modern wildfires on Earth, the main source of

fire ignition in the canton is the anthropogenic intervention being responsible of more

than 90% of the fire outbreaks [63]. Several work revealed an increase in the temperature

and summer drought periods in this region in the last three decades (detected at the

MeteoSwiss meteorological stations in Lugano and Locarno) [113, 234, 237, 252, 254,

323] and combined with landuse and socio-economic changes would make of fires a

major hazard and disturbance factor in parts of the Swiss Alps where they were not so

important in the past [325]. This is also predicted by Schumacher [253] in a prospective

study on the dynamics of forested landscapes in the European Alps.

Despite all this work, a comprehensive knowledge of the relationship between fire

regime and their anthropogenic and ground variables is still missing. This is of suitable

interest due to substantial socio-economic and land uses changes undergone in this region

and which are likely to continue in the future [113, 254, 326]. Thereby, in this thesis we

focused the analysis on the characterisation of the forest fire regime structures in Canton

of Ticino as number of fires, burnt area, fire seasonality, ignition sources (natural and

anthropogenic) in the last 4 decades, and the influence of human and ground conditions.

2.2 Study area: Canton of Ticino

The Canton of Ticino (hereafter Ticino) is located on the southern slopes of the Swiss

Alps bordering with Italy (Figure 2.4), with a total area of 2,812 km2 [205] and a

population of 346,539 inhabitants2. Topographically, Ticino is characterised by altitudes

varying from 197 m.a.s.l around Lake Maggiore (Locarno) to 3,402 m.a.s.l. on the Adula

Peak (northern Ticino, see Figure 2.4) and a rather heterogeneous geology, dominated

by siliceous rocks originated in connection with the tectonics of the Alps [220, 305]. The

northern and central regions consist of steep mountain slopes and coarsely populated

valleys, while the south is a hilly region where most of the population is settled (see

Figure 2.5).

2Ufficio di statistica del cantone Ticino - Popolazione. Consulted on 31.03.2015
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(red dots) distributions in Canton of Ticino.
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Ticino counts with a generally warm-temperate and rainy climate. It presents

dry and mild winters with few days (40 days per year on average) distinguished by

strong gusts of a katabatic (descending) dry wind from the north (foehn), which con-

sequently drops the relative humidity to values lower as 20% [218]. In the summer

season (June–September), precipitation ranges from 800 to 1,200 mm and it is often

concentrated in short and heavy spells alternated with long periods without rain or even

drought [261]. Although, sunshine duration is high (1,800–2,150 hours/year), some val-

leys are shaded for several weeks during winter [218]. Depending on the elevation and

the geographical location, the mean annual temperature ranges from 3 to 12 ◦C and the

mean annual precipitation ranges from 1,600 to 2,600 mm (Figure 2.6).
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Figure 2.6: Monthly mean values of air temperature (left) and rainfall (right) for the
meteorological station of Lugano from 1979 to 2008 [220].

The forest cover is proportionally high with about 46.4% of the total territory (Figure

2.5). At low elevations (up to 900–1,100 m.s.a.l.), forest vegetation is dominated by

anthropogenic monocultures of chestnut tree (Castanea Sativa) occasionally interrupted

by the presence of other broadleaved species. At medium elevations (up to 1,400 m.a.s.l.)

the forests mostly consist of pure stands of Fagus Sylvatica followed by coniferous forests

(Picea Abies). And at higher elevations forest vegetation consists of Larix Decidua [44].

This wild-vegetation cover, as well as fire regimes, have been highly impacted by human

activities for several centuries, as showed by Conedera and Tinner [62] who pointed out

the effects of the interaction between human activities and forest fires since the Neolithic

period in southern Switzerland.

During the 19th century and at the beginning of the 20th century, Ticino was a rural

canton with an economy predominantly based on traditional agricultural activities. This

condition brought substantial deforestation extended through out the entire territory.

This situation drastically changed in the second half of the 20th century, particularly

after the World War II, when the canton experienced a marked socio-economic shift

towards a more industrial and service-oriented economy system [65, 118, 268]. These

changes, certainly, led to a high urban concentration in the low-lands of the main valleys

(see Figure 2.7); meanwhile causing the abandonment of many traditional agricultural

and forest practices which have favoured natural reforestation, connectivity of forest
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areas and fuel build up (biomass accumulation) and contributed to the generation of a

more fire-prone landscape, in particular for those human infrastructures located in the

wildland urban interfaces [161]. As a result, the risk of fire ignition has considerably

increased specially in the marginal areas where wild vegetation intermixes with human

activities.
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Figure 2.7: Evolution of the population in Canton of Ticino in the period 1910–2015.
Source:di Statistica del Cantone Ticino and delle finanze e dell’economia [87].

2.3 Data

2.3.1 Forest fire database

The forest fire database used in this Thesis consists on 2,401 forest fire events from Can-

ton of Ticino (Switzerland) for a period of 39 years from January 3rd 1969 to August 8th

2008 (see Figure 2.5). This database holds information about the X and Y coordinates

of the ignition point, date and time of the fire outbreak (day-month-year), fire duration,

cause of ignition, burnt area, fire type, forest type and topography of the ignition point

(altitude and slope).

This data has been systematically collected by the local forest service since 1900.

But it was only after 1969 when the dataset was enlarged to include drawings of the

burned area on maps with a high accuracy of the location of the ignition point. The

existing data has been organised in a relational database including the location of the

ignition points and the fire perimeters in a GIS platform by the Swiss Federal Institute

for Forest, Snow and Landscape Research WSL [217, 219].

2.3.2 Fire regime in Canton of Ticino

The distribution of the annual number of fires during the whole study period (1969–2008)

is rather irregular (Figure 2.8, gray bars), with a general drift towards lower fire fre-

quencies (< 60 events per year) after 1990.

The annual burnt areas (red line in Figure 2.8) are generally of small sizes (∼ 590 ha

per year) with a tendency toward lower values after 1976. Although, fires in Ticino can
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Figure 2.8: Annual number of fires and burnt area in Canton of Ticino from the
period 1969–2008.

be considered small in size, when fire-prone conditions are present through the year, fires

can get out of control resulting in extremely large burnt areas as observed, for instance,

in 1970, 1973, 1981, 1990 and 1997. Indeed, the year of 1973 was exceptionally important

with 176 fire events that burned 7273.88 ha, despite an average of 1500 ha for the years

mentioned above. According to Pezzatti et al. [220], this reduction in anthropogenic

forest fire, both frequency and sizes, is mainly the result of the legislative preventing

measures and other fire fighting facilities that the canton has been implemented [220],

e.g. the prohibition of burning garden debris in the open (Cantonal decree 1987) and

the prohibition against fireworks and celebration fires on the Swiss National Day of

August 1st in case of high fire ignition danger (Cantonal decrees 1990) [84]. Yet, despite

of this shift, fire activity greatly varies from year to year due to the dependence on

weather conditions which also endure yearly fluctuations. Some extreme years as the

ones mentioned above present burned areas greater than 1000 ha.

The current fire regime is characterised mainly by 3 patterns (Figure 2.9).

One pattern consists of fires caused by anthropogenic sources (hereafter anthro-

pogenic fires) occurring during the fire winter season (December to April, hereafter

called winter) with a major peak in March–April characterised by slope-driven surface

fires of rapid spreading at low elevations (< 1,000 m.a.s.l.) [218]. The second and the

third patterns occur during the vegetation season (May–November, hereafter called sum-

mer) and consist of slow spreading anthropogenic and natural fires (ignited by lightning),

respectively [66, 84, 236]; both with a peak in the months of July–August.

The monthly distribution of the burnt areas (Figure 2.9 b) presents a major peak

in the winter season in the months of March–April due to the dryness generated by

the foehn wind and solar radiation, which benefit quick advancing wildfires in this time

of the year. In general, burnt areas are larger during the winter season than during

summer time, probably because winter fires are principally of rapid spreading while
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Figure 2.9: Monthly forest fire distribution in Canton of Ticino: (a) anthropogenic
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lightning-induced fires are mainly of slow propagation.

Regarding the sources of fire ignition in Ticino, human activities are responsible for

the majority of the fire events (92.71%), while only 7.29% corresponded to fire caused by

lightning (Figure 2.10). Arson fires (or crime fires) and negligence fires are the origins

of the majority of anthropogenic fires as shown in Figure 2.10 (14.20% and 41.69%

respectively among human-caused fires). The implementation of preventive measures

mitigating the risk of fire-ignition can explain the small presence of other anthropogenic-

caused fires such as railways (Rail, 5.04%), army activities (Army, 1.42%) and electrical

lines (1.92%) [60].
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Anthropogenic and natural fires also present different geographic distributions (see

Figure 2.11). According to Conedera et al. [66], natural fires tend to cluster in the

coniferous forests at high elevations in the northern part of Ticino, at steeper slopes

and lasting longer than those fires of human sources [84], while anthropogenic fires are

distributed at lower altitudes across the entire territory. Because natural fires only oc-

cur during the summer season, those fires of unknown causes breaking-out during the

winter season can be considered as anthropogenic fires (557 fires, that is, about 77% of

the unknown fires - dark green points in Figure 2.11).
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Figure 2.11: Geographical distribution of the natural, anthropogenic and unknown-
caused forest fires in Canton of Ticino in the period 1969–2008.



Chapter 3

Measures for space-time pattern

characterisation

3.1 Introduction

This chapter concerns a short description of the basic notations and fundamental the-

oretical concepts of the statistical methods relevant in the practice of this Thesis. We

explain and illustrate several existing methods for the analysis of spatio-temporal data

presented in a point set format such as (xi, ti) : i = 1, ..., n, where xi denotes the spatial

location of an event i and ti the corresponding time of occurrence [90, 91]. The analysis

of the patterns formed by those events can be described by a point process, a stochastic

process which generates a countable set of points xi in a topological space D (a Haus-

dorff space) [74, 90, 91, 143, 145, 193]. Thus, this approach aims at both analysing

and describing the geometrical structure and the correlation of the patterns formed by

events [143]. Initially, point pattern analysis only provided an assessment of whether an

event distribution was completely spatially random, with implications on the underlying

processes that may have caused the pattern. However, more recently developments allow

considering bivariate, multivariate and marked patterns, and studying their structure

across a range of scales [316].

Section 3.2 provides a short overview of the point process statistics. Section 3.3

describes 3 simulated point patterns, each of them presenting a different spatial struc-

ture, used as illustrative demonstration for the theoretical development of the spatial

clustering methods implemented in this Thesis. Section 3.4 gives a brief theoretical de-

scription of the adaptation and implementation of the methods used in this Thesis (the

Morisita index, the Box-counting method, the multifractal formalism and the Ripley’s

K -function) for purely spatial analysis illustrated with the 3 simulated point patterns

of section 3.3; the adaptation and implementation of each of these spatial methods for

purely temporal analysis; and lastly, the theoretical development of the space-time per-

mutation scan statistics model for the spatio-temporal analysis. Finally, Section 3.5

introduces the concept of validity domain (VD), defines three spatial and two temporal

29
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validity domains for the case of forest fires in Canton of Ticino and describes the complete

spatial random (CSR) distributions simulated within each specific validity domains.

3.2 Point process

A point process is a stochastic process that generates a countable set of points xi in a

topological space D (a Hausdorff space) [74, 90, 91, 143, 145, 193]. Each point repre-

sents the time and/or the spatial location of an event. The term “event” is used here

to distinguish the location of an observation from any other arbitrary location within

the study area [89, 110, 111]. These events are then described by points and also by

additional information characterising the events further which are called marks. When

marks are attached to the points, the process is called a marked point process. If only

two types of points (events) are considered, the process is said to be bivariate, otherwise

it is multivariate [143].

Mathematically, we can express a point process in terms of the number of events

N(D), characterising a particular phenomenon, occurring in a region D [74, 91, 193]:

N(D) = #(xi ∈ D) (3.1)

Thus a dataset of this type (in statistics considered as a realisation) in a 2-dimensional

space is called spatial point pattern while the underlying stochastic model for this data

is called spatial point process. Likewise, these terms are also extendible for both purely

time and spatio-temporal data being called time point pattern and spatio-temporal point

pattern respectively.

In the temporal case, a point process is formed by a time-ordered sequence of events

ti : i = 1, ..., n, where ti corresponds to the time occurrence of event i and n is the number

of events that fall within the time-interval [0, T ]. Similarly, in the spatio-temporal case,

the most basic form of a point process data consists of a time-ordered sequence of

events (xi, ti) : i = 1, ..., n where xi denotes the spatial location of event i, ti denotes

the corresponding time of occurrence of event i and n is the number of events that fall

within a spatial region D and a time-interval [0, T ] [92]. An important assumption is

that all events in the dataset are a complete record of the studied phenomenon occurring

within the specific region D and the time-interval [0, T ] [90].

The aim of point process statistics is to describe and to analyse the geometrical struc-

ture of patterns formed by events distributed randomly in one-, two- or three-dimensional

space [143]. With the point process is then possible to understand the interaction among

the points while also providing information on the underlying processes that can explain

the position of the events. This implies the analysis of the degree of clustering (at-

traction) or repulsion (inhibition) among the points, the space-time scales at which this

behaviour occurs and explaining the position of the events in the study area [143].

The characterisation of the entire process may be an impossible tasks, however, we

can characterise some properties representing important aspects of the behaviour of the
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process such as the so-called first-order and second-order properties. The first-order

property describes the way in which the expected value (mean or average) of the process

varies across the space (trends), and it is formulated in terms of the intensity function,

λ(x), of the process, which is the mean number of events per unit area at the point x

[91]:

λ(x) = lim
|dx|→0

E[N(dx)]

| dx |
(3.2)

For a stationary process, λ(x) is summarised by a single value λ, which is assumed to

be a constant value representing the mean number of events per unit area [91, 143].

The second-order property, or the spatial dependence, describes the covariance (or

correlation) between values of the process at different regions in space (relationship

between events in pairs of sub-regions) [111]. This is formally defined in terms of a

limit, the second-order intensity of the process [91, 111]

λ2(x, y) = lim
|dx|,|dy|→0

E[N(dx)N(dy)]

| dx || dy |
(3.3)

For a stationary point process, λ2(x, y) ≡ λ2(x − y) = λ2(r). This implies that the

second-order intensity depends only on the vector difference, r =‖ x − y ‖ and not on

their absolute locations (the process is invariant under translations in R2). The process

is further said to be isotropic if such dependence is a function only of the distance of

this vector r and not of its orientation (the process is invariant under rotations about

the origin in R2) [91, 111, 143, 193].

Here, we just provide the most fundamental part of the theory of point process

relevant for this Thesis. For more detailed theory refer to Cox and Isham [72], Cressie

[74], Daley and Vere-Jones [79, 80], Illian et al. [143], Møller and Waagepetersen [192,

193], Stoyan et al. [267] and Diggle [91].

3.3 Simulated data for theoretical demonstration

In spatial point process, the dependence between points (interaction) generally suggests

three fundamental patterns in which distributions may be classified: randomness (inde-

pendence), regularity (inhibition) and clustering (attraction).

A random realisation, also known as complete spatial randomness (henceforth CSR),

implies no interactions among points, i.e., the probability that an event can occur at any

point is equally likely to occur anywhere within a bounded region D and that its position

is independent of each any other event. This property provides the standard baseline

against which spatial point patterns are often compared and it is used as a dividing

hypothesis to distinguish between “regular” and “clustered” patterns [74, 91, 112, 145].

In a regular distribution, events are more evenly spaced than would be expected under

CSR. On the contrary, in a clustered distribution, points tend to be closer than would

be expected under CSR.
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The simplest theoretical model for a spatial point pattern is that of CSR. One im-

portant question is whether the observed events display any systematic spatial pattern:

clustering, randomness or regularity. Other interesting questions also arise, for instance,

is the observed clustering due mainly to natural background variation in the population

from which events arise? Over what spatial scale any clustering occurs? are clusters

merely a result of some obvious a priori heterogeneity in the region studied? are they

associated with proximity to other specific features of interest? are events clustered in

space also clustered in time?, etc. [111].

The most common, simple and useful CSR process is the Poisson distribution. The

simulation of this process is necessary, in particular, for the calculation of intervals of

confidence which helps testing the null hypothesis of randomness. Although, in prac-

tice, this idealise standard process is rarely attainable, most analyses in point patterns

consider testing for departures from CSR process. This is mainly due to the fact that

phenomena presenting a CSR distribution do not merit further analysis because the

independence between the location of points makes their predictability impossible [91].

Thus, a Poisson process is characterised by two properties: (i) the number of events

in any region D with area | D | follows a Poisson distribution with mean λ | D |; (ii)

given n events xi in a region D, the xi are an independent random sample from the

uniform distribution on D. For a deeper theoretical development of this process, refer

to Illian et al. [143].

For illustrative purposes, in order to facilitate the understanding of the theoretical

development of the methods implemented in this Thesis, three distributions were gener-

ated as presented in Figure 3.1, based on the mentioned fundamental point structures.

Each realisation was conditioned to have 100 points distributed in a square window of

100 x 100 dimension. The definition of a “window” where the events are observed is

fundamental in point pattern analysis because it represents a source of complementary

information on where points could potentially occur [193].
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Figure 3.1: Three simulated point patterns with known spatial structures: (a) regular,
(b) random and (c) clustered. Each pattern is a realisation of 100 points embedded in a
bounding box of 100 x 100 dimension. They were generated within the R environment.
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Figure 3.1 a shows a regular process over the square box where points tend to avoid

each other. For the random distribution in Figure 3.1 b, we consider a homogeneous

Poisson process where points are independently and uniformly distributed. And finally,

Figure 3.1 c, shows a cluster realisation where points tend to be close together.

We note that for each pattern, we simulated one realisation process where events

occur singly, i.e. we did not consider marked point processes. Other important clar-

ification is that along this work, the concept of “clustering” refers to the dependence

between points to be aggregated closer than expected for a Poisson process (i.e. spa-

tial clustering); differing from classification concepts where “clustering” implies that the

points are organised into identifiable groups (clusters) [12].

3.4 Methods

3.4.1 The Morisita index

The Morisita index of dispersion is a statistical measure used to characterise quantita-

tively the clustering (non-homogeneity) of a point set [151]. This classical index, Iδ, is

obtained by dividing the study region into Q identical boxes of size δ (i.e. length of the

diagonal, see Figure 3.2); first starting with a relatively small box size which in turn is

increased until a chosen maximum value is reached. The number of events ni within

each box i of size δ is counted and related to the box size. The Morisita index is then

computed as [290]:

Iδ = Q

∑Q
i=1 ni(ni − 1)

N(N − 1)
(3.4)

where N is the total number of points. It is then possible to draw a plot relating

every Iδ to its corresponding δ (see Figure 3.2).
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Figure 3.2: Graphical computation of the Morisita index.
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Properly speaking, the Morisita index measures how many times more likely it is to

randomly select two points belonging to the same box than it would be if the points

were randomly distributed (i.e. Poisson process) [120]. In other words, this index can

be viewed as a measure of the variability between patches assuming that a point process

is a mosaic of patches of differing intensities with random spacing within patches [74].

Thus, the behaviour of the Morisita diagram reflects clustering of the event pattern at

each scale. Notice that, in Figure 3.2, the boxes partly overlap from one scale to the

next (i.e. the number of boxes used for the computation of the index throughout the

scales does not follow a geometric series). In real case studies, this is done to give more

importance to small scales where a change in box sizes is more likely to capture the

characteristics of the point patterns than great changes at large scales (i.e. it is a kind

of regularisation) [120].

Figure 3.3 displays the Morisita index estimation for the three simulated patterns.
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Figure 3.3: The Morisita index analysis for the three simulated patterns: (a) regular,
(b) CSR and (c) clustered.

The diagram shows that for the random point distribution every Iδ value fluctuates

around 1 (Figure 3.3 b). Keep in mind, that the Morisita index is a ratio between two

probabilities: that from the analysed pattern and that from a Poisson distribution. If the

analysed pattern (in this case the simulated random distribution) is a CSR distribution,

then the probabilities to select two points in the same box is equal for both distributions,

thus, the index equals 1 at every scale δ. The index also equals 1 when the box size is

sufficiently large to cover the entire analysed pattern. This condition is independently

to the type of the analysed pattern, due to the fact that the Morisita index does not
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take into account the location of the points inside the box, instead, it only considers the

probabilities of encountering points, which in the case of large boxes is the same as it

will be in a CSR distribution.

For the dispersed distribution (Figure 3.3 a), Iδ < 1 and approaches 0 at small

scales [120, 151]. In this context, the values of the index indicate that the probability of

selecting two points in the boxes is less than expected in a CSR distribution. For small

size boxes, the index approaches 0 because only 1 or 0 points fall into the box.

Finally, opposed to the dispersed condition, the clustered distribution shows values

of Iδ greater than 1 (Figure 3.3 c). This is given by the boxes with greater probabilities

of selecting two points than expected in a CSR distribution. Thus, the great number of

empty boxes at small scales increases the value of the index.

3.4.1.1 Adaptation of the Morisita index for temporal analysis

The adaptation of the Morisita index for a temporal analysis of clustering is performed

based on the same principle as for the spatial Morisita index (see subsection 3.4.1). The

time Morisita index is obtained by dividing the entire study period T into Qt adjacent

time-intervals of equal length t (timescale); first starting with a relatively small timescale,

and then, increased until a chosen maximum value. The number of events ni within each

time-intervals i of length t is counted and related to the timescale. The time Morisita

index is then computed as:

It = Qt

∑Qt

i=1 ni(ni − 1)

N(N − 1)
(3.5)

where N is the total number of points. It is possible to draw a plot relating every It

to its corresponding t.

As for the spatial case, the Morisita index reflects the clustering of a temporal pattern

with dependence on the timescale. For a randomly distributed pattern, values of the

Morisita index fluctuate around 1, while higher values indicate clustering.

3.4.2 The Box-counting fractal dimension

Fractal geometry is a fundamental approach for describing the complex irregularities of

the spatial structure of point patterns. Introduced by Mandelbrot [177], the word fractal

was first coined to describe objects (or sets of points) with abrupt and tortuous edges.

An object called fractal means that it has some sort of self-similarity structure, i.e. a

set of points whose any scale portion is statistically identical to the original object. In

this manner, fractal measures describe the changes of an object over a variety of scales

[94]. This can be characterised by a fractal dimension which refers to the invariance

of the probability distributions of the object under geometric changes of scale [246].

Frequently, point processes exhibit a scaling behaviour indicating a high degree of point

clustering over all scales [172] and thereby fractal tools can be used to characterise the

intensity of their spatial clustering at a wide range of scales [48, 172].
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According to Lovejoy et al. [171], Salvadori et al. [249] and Tuia and Kanevski [290],

a fractal dimension can be used to analyse the clustering properties (non-homogeneity)

across scales of point process realisations. If the studied distribution is embedded within

a 2-D space (e.g. geographical space), its fractal dimension can range from 0 (being the

topological dimension of a point) to 2 (the topological dimension of a geographical

space), with 1 corresponding to the topological dimension of a line. It is called fractal

because the space-filling capacity of the pattern (dimension) is characterised by a frac-

tional number, instead of an integer value as the topological dimension. If the points

are dispersed or randomly distributed within the 2-D space, the corresponding fractal

dimension equals 2. However, this dimension decreases as the level of clustering of the

pattern increases, reaching 0 if all the points are superimposed at one single location.

Thus, fractal dimensions allow detecting the appearance of clustering as a departure

from a dispersed or random situation while indicating the type of space they are filling,

that is, if the patterns are near to fill a 0-, 1- or 2-D space.

A variety of fractal measures have been proposed such as the sandbox-counting

method [77, 99, 127, 151, 273, 290, 307] and the information dimension [137, 257]. The

fractal dimension method used in this Thesis is the Box-counting method [151, 171, 248,

290]. The computation of this method consists on breaking the fractal pattern (point

set) into pieces by superimposing a regular grid of boxes of size δ1 on the region under

study (see Figure 3.4). Then, the number of boxes, N(δ1), necessary to cover the pattern

is counted; that is, one counts all occupied boxes despite the number of points in each

box. Next, the linear size of the boxes is reduced, δ2(< δ1) and the number of boxes,

N(δ2), is counted again. The algorithm goes on until a minimum size δmin is reached.

For a fractal pattern, the scales (δ) and the number of boxes (N(δ)) follow a power law:

N(δ) ∝ δ−dfbox (3.6)

where dfbox is the fractal dimension measured with the Box–counting method [290]

and it is obtained by calculating the slope of the linear regression fitting the data of the

plot which relates log(N(δ)) to log(δ) (see Figure 3.4). Thus, this method quantifies the

dimensionality of a pattern by estimating the degree of the pattern spatial coverage of

the space [290].

Figure 3.5 shows the Box-counting fractal dimension analysis for the three simulated

patterns.

For the random point distribution the Box-counting fractal dimension dfbox is 1.87

(Figure 3.5 b). Keep in mind that the Box-counting measures the spatial filling capacity

of the pattern. Thus, theoretically, for an infinite point pattern, this value is exactly

2. However, the fractal dimension of this CSR distribution is not exactly 2 because the

point set consists of a finite number of points which does not perfectly fill up the 2-D

space in the marginal areas (edge effects).

For the regular distribution (Figure 3.5 a), the dfbox is exactly 2 [151], and this is

probably due to the fact that, although its finite number of points, the points closer to
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Figure 3.4: Graphical computation of the Box-counting method.
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Figure 3.5: The Box-counting fractal dimension analysis for the three simulated pat-
terns: (a) regular, (b) CSR and (c) clustered.
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the margin areas better follow the bounding box shape reducing the effects of the edges.

For the clustered distribution, dfbox is 1.29 (Figure 3.5 c) indicating a departure

from a homogeneous condition with high concentration of points in few areas of the

study region. This value means that the events are highly clustered where points are

superimposed filling up a geometrical space of a linear object rather than a 2-D space.

3.4.2.1 Adaptation of the Box-counting method for temporal analysis

The adaptation of the Box-counting fractal dimension method for temporal point se-

quences is based on the same principle exposed in Subsection 3.4.2 but applied to a

1-D process. For that, we proceed by partitioning the entire studied period T into

adjacent time-intervals of equal length t (timescale), and counting only the number of

time-intervals (N(t)) with at least one event in it. For a temporal fractal pattern, the

timescales (t) and the number of intervals (N(t)) follow a power law:

N(t) ∝ t−dfbox (3.7)

where dfbox is the fractal dimension measured with the Box-counting method and it

is obtained by calculating the slope of the linear regression fitting the data of the plot

which relates log(N(t)) to log(t).

In this temporal analysis, the studied point distribution is embedded within 1-D

space, that is, a linear space. Thereby, the associated fractal dimension of the temporal

pattern must lie between a lower limit of zero (the topological dimension of a point)

and an upper limit of unity (the topological dimension of a line) [178]. Thus, the

fractal dimension value of a randomly distributed temporal pattern equals 1. This value

decreases as the level of clustering increases, reaching 0 if all the points are superimposed

at one single time-interval.

3.4.3 Multifractality

The application of multifractal statistics to study a natural phenomenon provides an

important window to explore subtle differences in a pattern and to infer about the

mechanisms generating the process [47, 179, 294].

As stated by Mandelbrot [179], the notion of self-similarity can be extended to mea-

sures (spreading mass or probability) distributed on a Euclidean support (e.g. a point

set). In this context, fractal sets might be described by not just one fractal dimension

(as exposed in the previous section 3.4.2), but rather by a function [262] or a spectrum

of interlinked fractal dimensions. Such fractal sets are said to be multifractal.

Two different approaches are used here to conduct a multifractal analysis: (1) the

Rényi generalised dimensions [29, 126, 137, 209, 216, 257, 273] which can be viewed as a

global parameter [45] examining how different densities are distributed in the space; and

(2) the multifractal singularity spectrum [50, 133, 187, 262], viewed as a local parameter

[45] which examines the regularity of the distribution of regions with similar scaling
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indices. Although, each of these two methods present a different approach, they both

describe the same information. They are both based on the Box-counting method, where

a regular grid of boxes of size δ is superimposed on the point set and, for both methods,

a probability distribution is computed in each box [170]. Figure 3.6 shows the principle

of the multifractal analysis based on the Box-counting method.
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Figure 3.6: Graphical principle of the multifractality based the Box-counting method.

In the multifractal analysis, the measure inside each box is taken into account, while

for fractal analysis all boxes are equally weighted (= 1) regardless the number of points

in the box. In order to obtain a spectrum of fractal dimensions, the pattern distribution

is scanned at different order moments q. When analysing q = 0 (Figure 3.6 a), the

variation of the measure inside each box does not matter, being then equivalent to the

Box-counting method. When analysing q > 0, the measure inside each box gains more

importance as q increases, particularly for those boxes with larger number of events

(Figure 3.6 c, where the darker the box the higher the measure). On the contrary, for

q < 0, the boxes that are almost empty gain more importance (Figure 3.6 b, where the

darker the box the lower the measure).

Although, the multifractal approach allows studying the scaling behaviour of sparser

and denser regions by scanning the probability distribution at a large range of order

moments (−∞ < q < +∞), in this Thesis, we apply a multifractal formalism only on

the positive values of q (≥ 0). Our reason is that we are interested in highly clustering
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behaviour, thus, we only focus on the characterisation of the areas with relative high

density values. Moreover, we do not count with information at scales lower than the

resolution of the data. Therefore, the theoretical illustration with the three simulated

patterns is carried out only for q ≥ 0.

3.4.3.1 The Rényi generalised dimensions

The spectrum of generalised dimensions, Dq, is estimated by computing the Rényi in-

formation, Iq(δ), of qth order [244]:

Iq(δ) =
1

(1− q)
log(

N(δ)∑
i=1

pi(δ)
q) (3.8)

where pi(δ) is the probability distribution in the ith box of size δ, q ∈ Z, and the

sum is taken for all non-empty boxes. When q → 1, Iq(δ) is defined as:

Iq(δ) = −
N(δ)∑
i=1

pi(δ) log(pi(δ)) (3.9)

Then, when applied to multifractal sets, Iq(δ) follows a power law as:

exp(Iq(δ)) ∝ δ−Dq (3.10)

And the Rényi generalised dimensions are defined as [126, 137, 209]:

Dq = lim
δ→0

Iq(δ)

log(1/δ)
(3.11)

Dq is obtained by the slope of the plot relating log(Iq(δ)) to log(1/δ); then the

spectrum of the Dq is plotted against q (Figure 3.7):
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Figure 3.7: Graphical computation of the Rényi generalised dimensions.

For monofractal sets, Dq is equal for all q order moments, whereas, for multifractal

sets, Dq depends on q and decreases as q increases characterising the variability of the

measure (pi(δ)) [120, 137]. For q > 0 (see Figure 3.7 right plot D+∞), the function

captures the scaling behaviour of the regions where the events are more clumped. While

for q < 0 (see Figure 3.7 right plot D−∞), the function describes the empty areas.
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Another important indicator of the spectrum is given by the range of the Dq values

(D−∞−D+∞) [272]. This difference is an indicator of the heterogeneity of the densities in

the distribution. That is, the variability between sparser and denser areas (boxes). Thus,

the wider the spectrum, the more heterogeneous the distributions of the irregularities

of the pattern. Moreover, the slope of the Dq spectrum is another important indicator

of how much clustered are the events, where the steeper the slope, the more unevenly

distributed are the densities and the more clustered are the areas with higher number

of events [82].

It is also necessary to point out that particular cases are given within the multifractal

analysis, for instance:

1. D0, that is when limq→0Dq, corresponds to the Box-counting dimension which

considers how the number of boxes required to cover a pattern scales with the box

size (see Figure 3.7 right plot D0 = dfbox) [151, 171, 248, 257].

2. D1, that is when limq→1Dq, corresponds to the information dimension which con-

siders how the probability scales with the box size [257].

3. D2, that is when limq→2Dq, corresponds to the correlation dimension which con-

siders how the number of distinct pairs of points scales with the box size [127, 257].

Figure 3.8 shows the Rényi generalised dimensions for the three simulated patterns.

For the CSR distribution the spectrum of Dq (Figure 3.8 b) is almost constant (values

of 2). The reason that the Dq is not exactly equal for all q is because the point set

does not perfectly fill up the 2-dimensional space in the marginal areas (edge effects).

Thereby, this slightly affects the value of Dq at higher moments. Similarly is the case

of the regular distribution (Figure 3.8 a), where each Dq is almost 2. For the clustered

distribution, Dq describes a multifractal behaviour (Figure 3.8 c) which designates a

departure from a CSR condition and indicating a high concentration of points in few

areas of the study region.

3.4.3.2 Adaptation of the Rényi generalised dimensions for temporal anal-

ysis

The adaptation of the Rényi generalised dimensions for temporal point processes is based

on the same principle explained in Subsection 3.4.3.1 applied to a 1-D process. Thus,

we can define the Rényi generalised dimensions for temporal sequences by adapting

Equation 3.8 and replacing it in Equation 3.11 as:

Dq(t) =
1

(1− q)
lim
t→0

log(
∑N(t)

i=1 pi(t)
q)

log(1/t)
(3.12)

where N(t) is the number of time-intervals with at least one event, t the timescale,

pi(t) the probability distribution in the ith time-interval of length t and q the order

moment. Thus, multifractal spectrum is obtained by plotting Dq(t) against q.
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Figure 3.8: The Rényi generalised dimensions analysis for the three simulated pat-
terns: (a) regular, (b) CSR and (c) clustered.

The interpretation of the spectrum of the Rényi generalised dimension is the same as

for the spatial case, except that for the temporal case, Dq(t) of a monofractal homoge-

neous distribution will be 1 for all q moments. Thus, for q > 0, the multifractal function

captures the scaling behaviour of time-intervals where events are more aggregated, while

for q < 0, the function describes the empty time-intervals. For multifractal sets, Dq(t)

decreases as q increases characterising the variability of the probability distribution in

the time-intervals at different timescales.

Another important indicator of temporal homogeneity is given by the width of the

spectrum of the Dq(t) values (D−∞–D+∞) [272]. This difference is an indicator of the

heterogeneity of the temporal aggregation of the distribution, that is, great differences

in the number of events in the time intervals. A wider spectrum indicates a more

heterogeneous distribution of the irregularities of the pattern. On the other hand, the

slope of the Dq(t) spectrum indicates how much clustered is the distribution in the time;

where the steeper the slope, the more unevenly and aggregated are the distribution of

intervals with high number of events.

3.4.3.3 The multifractal singularity spectrum

The multifractal singularity spectrum is a local parameter [45] that provides an alter-

native way to describe the scaling behaviour of a pattern through an interlinked set of
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Hausdorff dimensions, f(α), associated to a singularity strength α [50, 133, 187]. This

singularity strength is an index providing information about the local scaling behaviour

of a measure (i.e. the degree of regularity of the measure). Thus, αi is first calculated

for each ith box of size δ as:

pi(δ) ∝ δαi (3.13)

where pi(δ) is the probability distribution inside the ith box of size δ. Then, the

number of boxes, Nα(δ), having a singularity strength in the neighbourhood of α(α+dα)

(that is, boxes with probabilities with the same α), can be related to as:

Nα(δ) ∝ δ−f(α) (3.14)

where f(α) is the singularity fractal dimension of the set of boxes with the same α

[50, 133, 187]. By changing α, one must obtain a spectrum of f(α) , named “singularity

spectrum”. Although, this spectrum can be computed directly from the data as ex-

plained below, it is also related to the Rényi generalised dimensions through a Legendre

transform as:

(q − 1)Dq = qα(q)− f(α(q)) (3.15)

(for more details see [133, 179, 187, 257]). Chhabra and Jensen [50] proposed a

method estimating the multifractal singularity spectrum directly from the data as a

function of the qth order moments without the application of the Legendre transform.

Let µ(q) be the normalised measure of the probabilities in the boxes of size δ, such as:

µi(q, δ) =
[pi(δ)]

q∑
i[pi(δ)]

q
(3.16)

where, again, q provides a tool for exploring denser and rarer regions of the singular

measure [257]. Then, αq and f(αq) can be computed as:

αq = lim
δ→0

∑N(δ)
i µi(q, δ) log pi(δ)

log δ
(3.17)

and

f(αq) = lim
δ→0

∑N(δ)
i µi(q, δ) logµi(q, δ)

log δ
(3.18)

Thus, the singularity strength αq is obtained by calculating the slope of the linear

regression fitting the data of the plot relating αq to q (see Figure 3.9 a). The same

is done for the singularity spectrum, which is obtained by estimating the slope of the

linear regression fitting the data of the plot which relates f(αq) to q (see Figure 3.9 b).

Then, the multifractal singularity spectrum is obtained by relating in a plot f(αq) with

its corresponding αq (see Figure 3.9 right plot).

Thus, the multifractal singularity spectrum provides a description of the singularities

(degree of regularity) of the observed measure µ. The multifractal singularity spectrum

is a powerful tool providing the variability in the local scaling properties of a pattern.
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Figure 3.9: Graphical computation of the Multifractal singularity spectrum: (a)
computation of the singularity strength αq and (b) computation of the singularity
spectrum f(αq). Then, the slopes of αq and f(αq) are related in the same plot (right),

the “Multifractal singularity spectrum”.

The width of the spectrum (αmax − αmin) allows examining the heterogeneity of the

measure (number of events) in an interval [x, x+ ∆x] (Figure 3.9 right plot). The wider

the spectrum, the higher the heterogeneity in the distribution of the measure which also

indicates the presence of highly clustered areas. Likewise, the height of the spectrum

corresponds to the degree of the scaling behaviour. For instance, small values of f(αq)

correspond to rare events (extreme values in the distribution that may be the product

of highly clustering behaviour).

For a multifractal process, the spectrum is a bell shaped curve whose maximum value

corresponds to the fractal dimension of the support (set of points). While for monofractal

patterns, the spectrum is a point with equal values because the pattern presents the same

fractal properties (i.e. the same singularities) at every scale and at every qth moment.

For q > 0, the spectrum provides the behaviour of the strong singularities (clustered

regions), while for q < 0, the spectrum describes the weak singularites (sparser regions).

As for the spectrum of the Rényi generalised dimensions, the multifractal singularity

spectrum presents particular cases as well. For instance, for q = 0, f(α0) takes its

maximum value and equals D0, hence, it is also equivalent to the dfbox; and for q = 1,

f(α1) = α1 and equals D1 which corresponds to the information dimension.

The multifractal singularity spectrums for the three simulated patterns are illus-

trated in Figure 3.10. Differences in the shapes indicate different processes. For the

CSR distribution (Figure 3.10 b), the spectrum of f(αq) shows again the influence of

the edge effects which slightly affects the value of f(αq) at higher moments. Neverthe-

less, the curve exhibits a very low degree of multifractality than that of the clustered

distribution given by the width of the spectrum. Similarly, it is the case of the regular

distribution (Figure 3.10 a) where the ranges of α and f(αq) suggest a behaviour closer
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to a single fractal pattern. For the clustered distribution, f(αq) describes a multifractal

behaviour (Figure 3.10 c) designated by the skewness to the left compared to the other

two distributions. This indicates a significant degree of clustering of the pattern.
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Figure 3.10: The multifractal singularity spectrum analysis for the three simulated
patterns: (a) regular, (b) CSR and (c) clustered.

3.4.4 Ripley’s K -function

Ripley’s K -function or the “reduced second-order moment measure” describes how the

interaction or dependence between events varies through the space (or time) [114]. For

a spatial point process, the classical function is defined as [239, 240]:

K(r) =
1

λ
E[N(X ∩ b(x, r) \ {x} | x ∈ X] (3.19)

where E[.] denotes the expected number of further events within a circle of radius r

of an arbitrary event, r is positive and λ is the intensity of the point process (the mean

number of events per unit area). For a detailed mathematical discussion see Cressie

[74], Daley and Vere-Jones [80] and Illian et al. [143]. In other words, the K -function

describes the expected number of events, relative to λ, in a circle (or sphere for 3D

events) of radius r centred at an arbitrary event [114].

The K -function is a local neighbourhood measure computed by drawing circles of

radius r1 centred on each event of the pattern (see Figure 3.11). Then, the mathematical

expectation is calculated for that radius r1 and divided by the intensity of the process.
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Next, the size of the circle is increased, where r1 < r2 < ... < rn, until a maximum size rn

is reached and the mathematical expectation is calculated again for each r and divided

by the intensity. The K -function values are plotted against the corresponding radius size

r (see Figure 3.11 red line). Finally, the function is compared with a known theoretical

curve, i.e. a CSR process (Figure 3.11 gray dashed line), for which the K(r) = πr2, that

is, the K -function is equal to the area of a circle of radius r [89, 91, 114, 143].
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Figure 3.11: Graphical principle of Ripley’s K -function estimation.

To avoid effects imparted by events falling outside the study area, edge corrections

can be introduced in the computation of the K -function. Essentially, if a circle partially

falls inside the study area, only the overlapping surface is counted [287]. In literature,

some estimators have been proposed in order to correct for edge effects. The most com-

monly applied edge-correction is the one proposed by Ripley [242], where the estimate

of K(r) is expressed as:

K(r) =
1

λ

∑
i

∑
i 6=j,j=1

I(‖ xi − xj ‖≤ r)
N · w(xi, xj)

(3.20)

where N is the total number of events, the weight function w(xi, xj) is the proportion

of the circumference of a circle centred at xi passing through xj falling inside the study

region, and I(.) is the indicator that equals 1 when the distance ‖ xi − xj ‖ is less than

or equal to r [74].

Estimating the K -function for the three simulated patterns, Figure 3.12, we show

that for the random point distribution the K(r) values corresponds exactly to the the-

oretical values = πr2 (Figure 3.12 b). For the clustered distribution, the K-function

is greater than πr2 (Figure 3.12 c) indicating an excess of events at short distances.

And for the dispersed distribution (Figure 3.12 a), the K(r) values are lower than the

expected values under a Poisson process (πr2).
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Figure 3.12: Ripley’s K -function analysis for the three simulated patterns: (a) reg-
ular, (b) CSR and (c) clustered. The gray dashed line corresponds to the theoretical

value.

In order to facilitate the visualisation of the departure from a CSR process, a trans-

formation of the Ripley’s K -function was proposed by Besag [24], the L-function, defined

as:

L(r) =

√
K(r)

π
(3.21)

The square root also has the effect of stabilising the variance of the estimator [287]

and for a CSR process the theoretical value of the L-function equals r. Plotting the

L-function minus r, the theoretical value for a CSR process equals zero, as presented in

Figure ??. The interpretation of the L-function is the same as for the K -function. For a

dispersed distribution, the L(r) values are lower than theoretical curve (Figure 3.13 a)

and for a clustered distribution, the L(r) values are greater than the theoretical values

(Figure 3.13 c).

3.4.4.1 The spatial inhomogeneous K-function

A particular situation encountered in many environmental studies is the non-homogeneity

(heterogeneity) distribution of the intensity in the events given mainly by the spatial

variability, for instance, of the underlying processes. This considers, then, that the in-

tensity of a specific phenomenon varies across the space for which the assumption of a

stationary process is not possible. Therefore, to take into account the local variability
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Figure 3.13: The L-function analysis for the three simulated patterns: (a) regular,
(b) CSR and (c) clustered.

of the intensity characterising the events, one assumes that each point xi is weighted by

its local intensity λ(xi) [287].

A generalisation of the K -function for an inhomogeneous (non-stationary) point pat-

tern was proposed by Baddeley et al. [14]. By using the inhomogeneous K -function, we

remove the assumption of an underlying homogeneous point process while still assuming

isotropy and stationarity [139]. It is defined as [14]:

Kinhom(r) =
1

| A |
E

∑
xi∈X∩A

∑
xj∈X\xi

I(‖ xi − xj ‖≤ r)
λ(xi)λ(xj)w(xi, xj)

(3.22)

where | A | is the area of the circle A of radius r, I(.) denotes the indicator function,

X is the set of all events xi and xj , and w(xi, xj) is the Ripley’s edge correction. The

generalisation consists on considering the intensity as a function evaluated now at both

locations xi and xj , so λ(xi) and λ(xj) represent the mean number of events occurring

at locations xi and xj respectively.

Intuitively, the inhomogeneous K -function has the same interpretation as the homo-

geneous K -function [14]. Thus, for CSR events, the Kinhom(r) is equal to the area of a

circle of radius r (= πr2). Similarly, the same considerations when comparing a pattern

with the theoretical CSR distribution can be contemplated. For instance, as showed in

Figure 3.12 of the K -function for the three simulated patterns, a clustered distribution
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gives Kinhom values greater than πr2, while for the regular distribution, the values of

the function are lower than the CSR process. On the other hand, the Kinhom-function

can also be transformed to the Linhom-function for an easier visual interpretation of the

departure from a CSR process.

3.4.4.2 Temporal K -function

For the purely time analysis, the temporal K -function, K(t), proposed by Diggle et al.

[93] can be taught as an analogous formulation of the spatial version of Ripley’s K -

function. It is used to describe the temporal dependence of events at the timescales

t, detecting whether or not the events are temporally clustered, regularly or randomly

distributed. For its computation, the spatial parameters of the K(r) (see Section 3.4.4)

are replaced by time-based parameters as follows [93] :

K(t) =
1

λt
E[N(X ∩ b(x, t) \ {x}) | x ∈ X] (3.23)

where λt is the temporal intensity of the process, and E[·] is the expected number of

further events within a time-interval of timescale t of an arbitrary event x.

The temporal K -function is a local neighbourhood measure computed by drawing

intervals of equal length t1 centred on each event of the pattern. Then, the mathematical

expectation is calculated for that timescale t1 and divided by the temporal intensity of

the process (total number of events N(T ) divided by the total time period T ). Next,

the size of the timescale is increased, where t1 < t2 < ... < tn, until a maximum size tn

is reached and the mathematical expectation is calculated again for each t and divided

by their corresponding temporal intensity. The temporal K -function values are plotted

against the corresponding timescales t. Finally, the function is compared with a temporal

random process, for which the K(t) = 2t [93].

As for the spatial case, the same interpretations for the patterns are considered,

where for a clustered time process, the K(t) values are greater than 2t. While, for

the dispersed temporal distribution, the K(t) values are lower than 2t. Likewise, for

an easier visual interpretation of the patterns, the temporal K -function K(t) can be

transformed to the L-function L(t).

3.4.5 Scan statistics

Scan statistics represents a collection of methods, used and adapted in many domains, to

search for local excesses of events (clusters) in both space and/or time. The main purpose

is to determine whether or not an observed cluster, assumed to belong to a randomly

distributed pattern, is statistically significant or has rather occurred by chance. The

method was first coined in health science by Naus [202, 203], and more recently, still

in the health domain, Martin Kulldorff developed the spatial [156] and spatio-temporal

extensions [159, 160]. Nowadays, these methods are implemented in a large variety of

fields.
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For the purely spatial scan statistics, the region under study is scanned by a circular

window centred on each event (Figure 3.14). Each window moves across the entire area,

varying its radius continuously from zero (z0) up to a fixed upper limit (zmax). Each

circle takes the nearest neighbour events falling inside (yellow circles) and compares them

with those lying outside (black circles). Under the null hypothesis of CSR, these events

are inferred to be distributed accordingly to a Poisson distribution which parameters

can be estimated. Given this assumption, it is possible to test whether or not these

events are randomly and independently distributed in a specific area.

z0
zmax

Figure 3.14: Principle of the spatial scan statistics: the scanning windows are centred
on single events (green dots), increasing their radius (e.i. circles on the left), and moving

across the study region (e.i. circles on the right).

For each possible scanning window, a likelihood function is computed as follows [157]:

L(z)

L0
=

(
c(z)
µ(z)

)c(z) (
c(A\z)
µ(A\z)

)c(A\z)
(
c(A)
µ(A)

)(c(A)) (3.24)

where c(z) and c(A\z) are the number of observed events within and outside the zone

z respectively, µ(z) and µ(A \ z) the expected number of events within and outside the

zone z respectively, and c(A) and µ(A) the number of events and the expected number of

events in the total study area. Thus, L(z) is the likelihood function for zone z, expressing

how likely the observed data are given a differential rate of events within and outside

the zone, and L0 is the likelihood function under the null hypothesis (Poisson process).

The probability that a specific zone contains a cluster (or the most likely cluster) is

defined by the zone that maximises the likelihood ratio over all possible zones [157]:

Sz = maxz∈A
L(z)

L0
(3.25)

The statistical significance of the retained potential clusters is then evaluated in order

to test whether or not they have occurred by chance. For this purpose, the Monte Carlo

hypothesis testing is performed with a large number of random replications generated

under the null hypothesis [158]. The rank of the maximum likelihood from the real

events is compared with the rank of the maximum likelihood from the CSR replications.

For instance, if the likelihood ratio for the most likely cluster exceed 95% of the values in
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the Monte Carlo simulations, then, the cluster is considered to be significant at the 5%

level (p-value = 0.05) [160]. In this way, a cluster can be rejected when its corresponding

p-value is greater than the fixed threshold. Based on the desired threshold, the number

of the Monte Carlo simulations is established [305].

3.4.5.1 The space-time permutation scan statistics model

The computational method of the space-time scan statistics is an adaptation of the

purely spatial scan statistic in space and time. The circular window is replaced by a

cylinder with the circular base representing the geographic space and the height corre-

sponding to the time period of the potential clusters. The cylinder sizes can be increased

from zero up to a maximum value in both space (radius) and time (height), see Figure

3.15. As in purely spatial scan statistics, each cylinder visits each event geographical

location and, additionally, it visits each possible time period.

z0

t

y

xt

t0

Figure 3.15: Principle of the space-time scan statistics: the scanning cylinders are
centred on single events (green dots), increasing their radius (e.i. cylinders on the left)

and their height based on a time-frame (e.i. cylinders on the right).

The two standard models (Poisson for discrete data and Bernoulli for binary data)

demand the definition of a control population in order to compute the expected number

of cases inside each scanning window. However, when the control population data is not

available or not known, the problem is overcome by using the space-time permutation

scan statistic model (hereafter STPSS). This model only requires case data which corre-

sponds to the observed events. Thus, the expected number of cases is estimated on the

base of the observed events under the assumption of no space-time interaction, meaning

that the spatial and temporal locations of all events are independent of each other.

Let C be the total number of observed cases and czd the number of cases observed

within a zone z in a day d. The expected number of cases µA for a space-time cylinder

A can be estimated as the sum of µzd (the number of expected cases per day and per

zone) belonging to cylinder A [160, 286, 293]:

µA =
∑
z,d∈A

µzd (3.26)
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where

µzd =
1

C
(
∑
z

czd)(
∑
d

czd) (3.27)

Let cA be the number of observed cases in a cylinder A. Inferring that this vari-

able follows hypergeometric distribution and that C is large compared to
∑

z∈A czd and∑
d∈A czd, then cA can be considered to be Poisson-distributed with mean µA [286, 293].

Thus, a Poisson Generalised Likelihood Ratio (GLR) can be computed as follows:

GLR = (
cA
µA

)cA(
C − cA
C − µA

)(C−cA) (3.28)

This ratio is calculated and maximised for every possible cylinder and Monte Carlo

simulations are performed to test the statistical significance of the detected clusters. For

further explanations of the permutation model refer to Kulldorff et al. [160].

3.5 Validity domains and simulated data for the forest fire

occurrences in Canton of Ticino

3.5.1 Validity domains

In the previous Section 3.4, we presented some methods used to evaluate and detect the

presence of clustering in point patterns: the Morisita index, the Box-counting method,

multifractality and the Ripley’s K -function. Although many of them are simple and

computationally light to apply, the estimation and the interpretation of the real clus-

tering of observed data in terms of statistical significance is often difficult. The correct

estimation of the degree of clustering of real data deals with both the finite number of

events and the complexity of the geographical space where events are observed [290];

for instance, geographical constraining factors such as lakes, topography, political and

socio-economic factors such as administrative limits, build-up areas, road-network, etc.

All these aspects define the so called “Validity Domain” (hereafter VD) [290]. Thus, it

can be defined as the space of interest which constraints the studied space reducing the

dimensionality of the analysed process.

An illustrative example of the VD is given by Tuia and Kanevski [290] and it is

exposed here in Figure 3.16.

This figure shows one hypothetical survey of a point pattern distributed in a bounding-

box space (Figure 3.16 left), and the same point distribution considering a VD describ-

ing the forest cover (shaded area in Figure 3.16 on the right). When considering the

bounding-box space (left), the point pattern seems to be clustered; however, when tak-

ing into account a more constrained space where the phenomenon is embedded (e.g.

the forest cover on the right), the pattern distribution is considered more homogeneous.

Thus, the degree of the spatial aggregation of the point pattern is also affected by the

limitations of the space where underlying processes take place.
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Figure 3.16: Example of the importance of validity domains: sampling in a square
study region (left) and sampling within a VD of the forest cover (right). Source: image

modified from Tuia and Kanevski [290] p. 35.

In this sense, the concept of VD is of great significance in the interpretation of the

clustering measures. The location of events outside of the VD regions is not pertinent

for the analysis and they can bias the estimation of the real degree of clustering of the

studied distribution. Still, the integration of the VD concepts into cluster analysis is

not a trivial task. Notwithstanding, one straightforward way is through a comparative

analysis as following:

1. Definition and selection of one or several VDs.

2. Generation of many Monte-Carlo simulations (random patterns generated from a

Poisson distribution) within the VDs. Each simulation must be composed of the

same number of events as the phenomenon under study. Thus, a reference degree

of clustering along with a confidence level can be further obtained [120, 143].

3. And finally, the clustering measure is applied to both the observed events (or raw

data) and the simulated patterns inside each VD. The different results are analysed

and compared. If need, statistical tests can be also applied [25, 120].

The concept of the VDs was applied to the case of forest fires in Ticino in two cases.

One case is the two-dimensional space where three geographical spaces are defined as

presented in Figure 3.17: (a) the forest cover in the Canton, (b) the political admin-

istrative boundaries of Canton of Ticino and (c) a bounding box covering the entire

geographical space of the Canton.

The second case is the one-dimensional space for the time analysis, i.e., the time

axis. Based on the same principle of the 2-D space, we create two time-VDs as follows:

1. tVD 1 comprising all the days of the entire studied period; that is, 14,463 days

from January 3rd 1969 to August 8th 2008 (Figure 3.18 gray line).

2. tVD 2 comprising only the days where fires had been detected; that is, 1,653 days

out of 14,463 days (Figure 3.18 green lines).
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(a) (b) (c)

Figure 3.17: Validity domains for the forest fires in Ticino: (a) Forest vegetation
cover, (b) Political administrative boundaries of Canton of Ticino and (c) Bounding

box covering the canton region.

03.01.1969 08.08.2008tVD 1 tVD 2

Figure 3.18: Time validity domains for the forest fires in Ticino: (gray line) All days
in the entire studied period and (green line) days with fire.

3.5.2 Simulated data in VD

Let us note that, contrary to the classic statistical applications, we only dispose of a single

realisation (a single measure) of the studied process, i.e the set of points representing

the forest fire events. This important limitation obliges us to make assumptions of

homogeneity, isotropy and ergodicity in order to carry out the analysis of the structure

of the real observed events.

A process is said to be homogeneous if it is invariant by translation, i.e., if its

properties do not vary from a point to other one of the space. A process is said isotropic

if it is invariant by rotation, i.e., if its properties do not vary with the orientation of the

space. And a point process is ergodic if the mean in the probability (concerning various

realisations) can be replaced by the spatial mean of the domain of study [74, 151].

The hypotheses of homogeneity and isotropy assure that the set of points presents the

same properties everywhere in the field of study. However, with a unique realisation, the

hypothesis of ergodicity can not be tested. For this reason, the application of simulations

is a crucial tool in the point process statistics.

In the case of the spatial VDs, based on the same number of the observed forest fire

events (raw data), we generated 99 CSR patterns (Poisson distributions) by applying

Monte Carlo simulations within each of the three VD. These simulated data were used

as reference patterns enabling comparisons with the real case. Figure 3.19 shows one

sample of the 99 simulations in each VD.
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Figure 3.19: Simulated patterns in the three spatial VDs for the case of forest fires in
Canton of Ticino: a) the observed forest fire pattern (raw data), b) one sample of the 99
CSR patterns simulated inside the forest cover, c) one sample of the 99 CSR patterns
simulated inside the political boundaries of Canton of Ticino, and d) one sample of the

99 CSR patterns simulated inside the bounding-box.

For the case of the temporal patterns, based on the same principle of the random

simulations in the 2-D space VDs, we have also generated 99 temporal random (TR)

distributions in each of the two time VDs as presented in Figure 3.20.
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(a) Raw pattern
(b) Simulated in tVD 2

Figure 3.20: Simulated patterns in two temporal VDs for the case of forest fires in
Canton of Ticino: (in red) the observed forest fire sequences (raw data), (in grey) one
sample of the 99 TR patterns simulated inside the tVD 1, and (in green) one sample

of the 99 TR patterns simulated inside the tVD 2.
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The reference TR patterns were generated by creating 99 random permutations of

the frequency of fires per day in order to destroy the dependence existing between the

number of events and the temporal location (days) but ensuring that the marginals of

the frequency of events remain unchanged. For the tVD 1, the frequency of events per

day were shuffled and then assigned randomly to the 14,463 days of the entire studied

period (Figure 3.20 upper panel).

On the other hand, for the tVD 2, the frequency of events per day were shuffled and

then assigned randomly to the original set of days containing fires (Figure 3.20 bottom

panel). Then, the clustering methods are also applied to these simulated samples and

their results are compared with the original structure of the forest fire events in Ticino

to evaluate the departure of the real pattern from a random structure.



Chapter 4

Applications and results

4.1 Introduction

This chapter presents the adaptation and the application of all clustering methods,

presented in Chapter 3, on the case of the forest fire occurrences in Canton of Ticino

which is representative of a complex region in the Swiss Alps, and the forest fire case in

Portugal. In this Thesis we only concentrate on the issues concerning the occurrence of

fire ignition. For that, we are interested in both assessing and understanding the dynamic

of forest fire regimes and, additionally, in assessing the potential causes or underlying

processes producing and/or controlling the distribution of the observed patterns in space

and/or in time.

As presented in the previous Chapter, the fundamental assumption of the adopted

stochastic methods taken in this Thesis is that the events are generated by some un-

derlying random mechanisms (i.e. Poisson process). Under this context, the forest fire

phenomenon can be modelled as a stochastic point process, for which the main char-

acteristic of the data consists on representing the events in the form of a set of points

distributed in the space and/or in time. To represent these events as a point pattern, we

considered the ignition point of each fire event. These points describe the geographical

location of the fire ignitions (X and Y coordinates) and the date of fire break-out (start

date: day/month/year). As additional attributes (marks) we count with information

about their ignition causes, burnt area and topographic characteristics such as altitude,

slope and aspect.

Each applied clustering method is illustrated with the case of the 2,401 forest fire

occurrences registered in Canton of Ticino in the last 4 decades (1969–2008). Moreover,

an application of the space-time permutation scan statistic method is also carried out

on the case of the forest fire occurrences in Portugal in the last 3 decades (1980–2007)

comprising more than 300,000 fire events (Subsection 4.4.2).

Section 4.2 presents the results of the spatial clustering analysis carried out for the

case of forest fires in Ticino by applying the following global methods: the Morisita index

(subsection 4.2.1), the Box-counting method (subsection 4.2.2), the multifractality for-

malism constituted by the Rényi generalised dimensions and the multifractal singularity

57
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spectrum (subsection 4.2.3) and the Ripley’s K -function (subsection 4.2.4). Section 4.3

discuses the results of the time analysis carried out on the same data by adapting the

above mentioned spatial clustering measures to the temporal case: the temporal Morisita

index (subsection 4.3.1), the temporal Box-counting method (subsection 4.3.2), the tem-

poral multifractality (subsection 4.3.3), and the temporal K -function (subsection 4.3.4).

And finally, section 4.4 discuses two applications of the spatio-temporal analysis carried

out using the space-time permutation scan statistics (STPSS): 1) The case of the forest

fires in Ticino (subsection 4.4.1) to detect and to identify space-time fire-ignition hot

spots during three periods (1969–1978, 1979–1990, 1991–2008) using single fire event

locations. And 2) the case of forest fires in Portugal (subsection 4.4.2) to assess the

robustness of the STPSS model to correctly detect clusters on aggregated datasets and

to identify space-time fire hot spots in the Portugal database where the fire occurrences

are georeferenced and aggregated at the Parish level (the smallest administrative unit).

4.2 Spatial analysis

Different measures of spatial clustering (fractal, statistical) are considered and applied

in the spatial analysis of forest fires in Canton of Ticino. The spatial variability of the

forest fires is a very complex process which is conditioned by an intermixture of human,

topographic, meteorological and vegetation factors. To compute measures of clustering

in complex shaped regions the concept of validity domain is applied to restrict the

spatial dimensionality of the phenomenon on the mapping space. Within the validity

domain, it is possible to generate spatially randomly distributed events which structure

properties are well known. These properties can be compared to the real phenomenon

and the deviation between these measures quantifies the real clustering. Each measure

is then described and executed for the raw data (observed forest fire events in Canton

of Ticino) and its results are compared to the ones obtained from the reference patterns

generated under the null hypothesis of spatial randomness embedded in each validity

domain. These comparisons enable estimating the real degree of clustering of the raw

data.

In this regard, taking into account the spatial characteristics of the forest fires in

Canton of Ticino during the period 1969–2008, the spatial clustering measures are used

to discover different structures of the analysed phenomenon and the 99 CSR patterns

generated in each of the three VDs (see Section 3.5) are used to assess the significance of

the spatial clustering. The analysis is also carried out for the phenomenon presented as

a marked point process, that is, taking into account additional information (marks) such

as the ignition causes. Considering this, we divided the data into natural-caused fires

(Raw natural fires) given by the fires ignited by lightning, and anthropogenic-caused

fires in order to detect differences in the patterns of these two general causes. For

the latest causes, we go further by carrying analysis out for particular anthropogenic-

originated fires: the arson-caused fires (criminal actions) and the negligence-caused fires
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(non-intentional actions). These analyses can reveal information about the underlying

processes and their relationship with the phenomenon under study. This section presents

the clustering measures developed and completely implemented in R software. For the

cases of the Morisita index, the Box-counting method and the multifractal formalism,

the used functions were completely created and developed by the author of this Thesis

in the R environment (see Appendix B). For the Ripley’s K -function, the measure is

estimated using the Kinhom and the Linhom functions from the package “spatstat” in R.

4.2.1 The Morisita index

The Morisita index analysis for the observed and the marked forest fire distributions in

Canton of Ticino for the period 1969–2008 and the simulated random distributions in

the three VDs is presented in Figure 4.1.
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(f) 99 simulations in forest
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Figure 4.1: The Morisita index analysis for the forest fire occurrences in Ticino
in the period 1969–2008: (a) Raw pattern (all fires), (b) Raw natural fires, (c) Raw
anthropogenic fires, (d) Raw arson fires, (e) Raw negligence fires, (f) 99 CSR simulations
in the forest cover, (g) 99 CSR simulations in the political boundary limits of Ticino,
and (h) 99 CSR simulations in a bounding box located in the geographical region of

Ticino.

Looking at the Morisita curves of the CSR patterns in the three different VDs (Figure

4.1 f, g, h), it is possible to depict the constraints imposed by the geographical space

defined for both the boundaries of Ticino and the forest cover. The Morisita index for

the 99 CSR patterns in the bounding box follows almost the same theoretical behaviour

as for an infinite CSR pattern. However, at very lower scales, great fluctuations are

detected due to the finite number of events of the forest fire phenomenon.

Comparing the CSR structures with the raw patterns, except for the natural fires,

the Morisita index shows significant degree of clustering at every scale (Figure 4.1 a, c,
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d, e). Natural fires (Figure 4.1 b) exhibit also a high level of clustering, though at scales

greater than 52 km it exhibits a random behaviour. One interesting characteristic is

that after this scale down forward lower scales, the raw, natural and anthropogenic fires

show similar clustering behaviours (Figure 4.1 a, b, c respectively).

Arson and negligence fires also present significant levels of clustering at all scales,

however, differences in their patterns are also visible. According to the Morisita in-

dex, arson fires are more clustered than negligence fires. These latest fires evidence a

clustering behaviour similar to that of all anthropogenic fires; a behaviour that can be

explained by the fact that negligence fires account for the 41.69% of all human-caused

fires while arson fires only account for the 14.20%.

4.2.2 The Box-counting fractal dimension

The analysis of the Box-counting fractal dimension on the raw and marked forest fires

structures is presented in Figure 4.2.
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Figure 4.2: The Box-counting fractal dimension analysis for the forest fire occurrences
in Ticino in the period 1969–2008: (a) Raw pattern (all fires), (b) Raw natural fires,
(c) Raw anthropogenic fires, (d) Raw arson fires, (e) Raw negligence fires, (f) 99 CSR
simulations in the forest cover, (g) 99 CSR simulations in the political boundary limits
of Ticino, and (h) 99 CSR simulations in a bounding box located in the geographical
region of Ticino. The log() refers to the natural logarithm and δ is measured in metres.

As mentioned in Subsection 3.4.2, the fractal dimension of a random 2-D point

distribution fluctuates around 2. This theoretical behaviour can be seen in the Box-

counting curve of the 99 CSR patterns in the bounding-box, dfbox = 1.98 (Figure 4.2

h), for scales higher than 3 km (> e8). It is not exactly 2 due to the finite number

of events (2,401 points in each pattern). The 99 CSR patterns in Ticino boundaries

and that on the forest cover manifest a decrease in the fractal dimensions, dfbox = 1.81
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and dfbox = 1.77 respectively (Figure 4.2 f, g), because of the geographical constraints

of imposed in each VD. Both distributions show similar fractal behaviours; although,

differences become visible at scales lower than 3 km (< e8) when their boundaries effects

appear. With this, we demonstrate that forest areas are clustered and impose directly

a degree of clustering to the forest fire structures. However, can we consider forest fire

clustered? Analogous to the Morisita index, the Box-counting fractal dimension of the

different forest fire patterns (Figure 4.2 a) exhibits significant levels of clustering which

can be depicted by their values notably lower than the 99 CSR patterns in the forest

cover, < dfbox = 1.77 (Figure 4.2 f).

The Box-counting fractal dimension for all raw fires is 1.67 (Figure 4.2 a) which shows

a departure from a random distribution at scales lower than 14 km (e9.5). Similar is the

clustering behaviour of the anthropogenic fires with a Box-counting fractal dimension of

1.65 (Figure 4.2 c). Therefore, it is difficult to differentiate from these two distributions.

Natural fires evince the highest clustering, dfbox = 1.35 (Figure 4.2 b), at almost all

scales comparing to the other structures. This behaviour is followed by the arson fires

with a Box-counting fractal dimension of 1.37 (Figure 4.2 d) and with a departure of

a CSR behaviour at scales lower than 49 km (e10.8). Negligence fires are also highly

clustered (Figure 4.2 e) with departure from the CSR process at scales lower than 22

km (e10).

4.2.3 Multifractality

The multifractal analyses are carried out by means of the Rényi generalised dimensions

Dq and the multifractal singularity spectrum f(α(q)). This multifractal formalism is

limited to only positive values of q because, when working with finite datasets, the

boxes with very small events will dominate in the entropy. This generates instability in

the statistics computation of the box and will dramatically affect the interpretation of

the real scaling behaviour of the areas with low number of events. This is the reason

why we focus on the characterisation of the areas with relative high number of events

(clustering).

These analyses are performed by inspecting the raw and marked forest fire patterns at

different levels by changing the values of q. Consequently, the probability distribution, pi,

was calculated as the fraction of the number of events in the ith box of size δ (pi = ni/N ,

where ni is the number of events falling in the box i and N is the total number of fires

in Ticino).

4.2.3.1 The Rényi generalised dimensions

Figure 4.3 portrays the Rényi generalised dimensions, for 0 ≤ q ≤ 10, used to characterise

the multifractal behaviour of the raw and marked forest fire patterns in Ticino. The non-

linearity of the Dq curves for all the considered fire structures discloses their multifractal

nature.
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Figure 4.3: The Rényi generalised dimension analysis for the forest fire occurrences
in Ticino in the period 1969–2008: (a) Raw pattern (all fires), (b) Raw natural fires,
(c) Raw anthropogenic fires, (d) Raw arson fires, (e) Raw negligence fires, (f) 99 CSR
simulations in the forest cover, (g) 99 CSR simulations in the political boundary limits
of Ticino, and (h) 99 CSR simulations in a bounding box located in the geographical

region of Ticino.

Dq values denote the degree of clustering of the distribution. The Dq curves of

the raw and marked forest fire patterns in Ticino do not fall inside the curves of the

CSR simulated pattern in all VDs, indicating an important departure from a random

process. Furthermore, their curves decline faster than those of the CSR simulations.

These substantial departures from randomness stipulate the significance of the clustering

of all raw and marked fire patterns. Although, natural fires (Figure 4.3 b) exhibit higher

clustering than the anthropogenic fires and the entire fire dataset (given by the lower

values of Dq), its multifractal behaviour is less strong than other structures (Dq=0 −
Dq=10). This means that the areas with lower and higher number of events are not too

different.

Regarding the width of the Dq spectrum (Dq=0 − Dq=10), all raw, anthropogenic,

arson and negligence fires (Figure 4.3 a, c, d, e) exhibit strong irregularities between

the areas of high and low number of events. That is, there are great differences be-

tween sparser and denser areas. This can also be depicted by comparing the differences

between Dq=0 and Dq=1. The Dq=0 values provide information of how the support of

the distributions (the points where the events are counted) occupies the geographical

space and it is equivalent to the Box-counting fractal dimension presented in the former

Subsection 4.2.2. The values of Dq>0 determine how the events are distributed on the

support; with Dq=1 measuring the pure state of the events distribution.

One interesting point is that looking at arson fires (Figure 4.3 d), its Dq values not

only distinguish from a highly clustered distribution (low values of Dq) but it also falls
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down to a value of 1. As explained in Section 3.4.2, the fractal dimension of a pattern

embedded in a 2-D space can range from 0 to 2, where 0 is the topological dimension

of a point, 1 the topological dimension of a line and 2 the dimension of a geographical

space. Thus, the Dq values of the arson fires evince a behaviour that is closer to fill up a

linear geographical space. This makes us associating the distribution of arson fires along

linear structures, for instance, the road network. Meanwhile, negligence fires (Figure 4.3

e) are less clustered than the arson fires and follow a clustering behaviour more similar

to the raw fires (Figure 4.3 a).

4.2.3.2 The multifractal singularity spectrum

The multifractal singularity spectrum analysis for all fire patterns in Ticino is illustrated

in Figure 4.4.
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Figure 4.4: The multifractal singularity spectrum analysis for the forest fire occur-
rences in Ticino in the period 1969–2008: (a) Raw pattern (all fires), (b) Raw natural
fires, (c) Raw anthropogenic fires, (d) Raw arson fires, (e) Raw negligence fires, (f) 99
CSR simulations in the forest cover, (g) 99 CSR simulations in the political bound-
ary limits of Ticino, and (h) 99 CSR simulations in a bounding box located in the

geographical region of Ticino.

As in the previous analysis of the Dq values, all fire structures exhibit significant

departures from the random patterns in the three VDs. The asymmetry of the raw and

marked distributions is more skewed to the left than for the CSR patterns confirming

that these structures present a significant degree of spatial clustering. This reflects the

uneven distribution of the irregularities of the raw and marked patterns (differences

between areas of high and low number of events).

The computed multifractal singularity spectrum is in agreement with the estimations

of the Rényi generalised dimensions. The anthropogenic fires (Figure 4.4 c) have a

multifractal behaviour similar to that of the raw fires (Figure 4.4 a), but its heterogeneity
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is just slightly higher as shown by the width of the αmax − αmin values. This similarity

can be interpreted as the strong contribution of the anthropogenic fires to the whole

structure. We must remember that these represent the 92.71% of all fires.

Additionally, the multifractal singularity spectrum for natural and arson fires (Figure

4.4 b, d respectively) are more skewed to the left than the other structures, indicating

stronger clustering. This is also depicted by their f(αq) curves which are lower and wider

than those of the raw, anthropogenic and negligence fires (Figure 4.4 a, c, e respectively).

Nevertheless, the irregularities of the arson fires are more heterogeneous and unevenly

distributed than the natural and negligence fires.

4.2.4 Ripley’s K -function

The Ripley’s K -function analysis for the raw, marked and VDs’ simulated forest fire

patterns is presented in Figure 4.5.

Figure 4.5: Ripley’s K -function analysis for the forest fire occurrences in Ticino
in the period 1969–2008: (a) Raw pattern (all fires), (b) Raw natural fires, (c) Raw
anthropogenic fires, (d) Raw arson fires, (e) Raw negligence fires, (f) 99 CSR simulations
in the forest cover, (g) 99 CSR simulations in the political boundary limits of Ticino,

and (h) 99 CSR in a bounding box located in the geographical region of Ticino.

This analysis exhibit the significant clustering of all raw and marked forest fire pat-

terns at scales up to 9 km. That is, the spatial distances at which these patterns are

above the curves of the 99 CSR in forest. This K -function analysis also depicts the spa-

tial constraints imposed by the forest cover and Ticino limits shapes, confirming once

again the importance of the introduction of the VD concept in the analysis of real point

patterns.

It is interesting noticing that raw, anthropogenic, arson and negligence fires (Figure

4.5 a, c, d, e respectively) exhibit almost the same spatial scales of clustering (up to 9–10
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km) and maximum of clustering at scales around 3 km. Meanwhile, natural fires (Figure

4.5 b) exhibits clustering behaviour at scales lower than 5 km and a maximum clustering

at around 4 km. Arson fires (Figure 4.5 d) show higher clustering behaviour regarding

the other patterns, while negligence fires (Figure 4.5 e) are less clustered compared to

the patterns of anthropogenic-caused fires.

4.2.5 Conclusions

Statistical, fractal and second-order measures were applied to characterise the clustering

behaviour of the raw, marked and CSR simulated structures of the forest fire occurrences

in Ticino during the period of 1969–2008. The concept of the validity domain was

implemented.

These methodologies allowed quantifying the homogeneity and/or irregularity of the

spatial distributions of the forest fire events (raw data, natural and anthropogenic fires,

from which arson and negligence fires were also studied). Each clustering measure de-

tected significant degree of clustering of the forest fire structures at every scale. By

applying the multifractal formalism we were able to both quantify the degree of clus-

tering of each pattern and the dissimilarities of their clustering properties. We also

demonstrated how different constraints of the geographical space, where events are dis-

tributed, decrease the dimensionality of the phenomenon on the mapping space. Fur-

thermore, comparisons between the clustering measures of the raw structures and the

CSR samples in the three VDs enabled estimating the significance of clustering of the

real data. It was shown that the results of the clustering analysis are very different from

measures computed in a regular geometrical space (usually considered in the literature)

because it includes empty spaces.

The discrepancy between the theoretical values for the random patterns and the

obtained values of the CSR patterns in the different VDs can be explained from the

finite size of the data (2,401 points of the forest fire database). The generation of

simulated data sets (CSR patterns) with similar characteristics of the real data (i.e. the

same number of points) allowed reducing the effects of the finite size of the data when

applying the clustering measures, and allowed evaluating the significance of the degree

of clustering of the real dataset. In this context, the results presented in this Thesis

suggest attention when interpreting clustering estimated from experimental datasets.

Thus, these methodologies allowed detecting interaction between events whether the

studied point pattern is clustered, randomly or regularly distributed and identifying

ranges of spatial scales where events exhibit different behaviours. Moreover, it allowed

us identifying underlying processes influencing the distribution of the different fire struc-

tures. Other several distributions were compared to infer dependence between variables

(marks), but these analyses are not presented in this document, for instance:

• Human fires occurring in the winter season (Nov–Apr) are more clustered than

those fires occurring during the summer season (May–Oct).
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• Winter fires are more clustered than summer fires.

• Arson and negligence fires are distributed dependently of each other.

Understanding these structures can assist fire managers and policy-makers to conduct

fines distribution of fire-fighting resources. This knowledge can also support nearest-

neighbour analyses to identify areas with higher fire incidences.

4.3 Time analysis

The temporal fluctuations of events can be characterised by means of temporal point

process models which describe the clustering patterns of observed events distributed

in time (one dimension). In this context, the forest fire occurrences in Ticino can be

modelled as stochastic time point processes where the events are characterised by their

occurrence in time.

The theoretical development of the applied measures was established in Chapter 3 for

the adaptation of the spatial measures to time analyses. Here we show the application of

those clustering measures reformulated to analyse the time fluctuation of point patterns.

The basic principle is that the points are considered occurring along the time axis instead

of a 2-D space.

Figure 4.6 shows the daily time sequences of forest fires in Canton of Ticino in the

period 1969–2008. This visualisation displays a forest fire activity inhomogeneously

spread along the time. This fire regime periodicity can be explained by meteorological

conditions [324, 325]. But, are there other mechanisms influencing these sequences?

In this context, clustering analyses can help at describing different dynamics that are

not easily detected by a simple scatter plot. Thus, purely time analyses on the forest fire

event sequences in Canton of Ticino in the period 1969–2008 are carried out considering

the entire data (raw fires), marked point processes taking into account the ignition

causes: natural and anthropogenic-caused fires, which in turn, are also analysed for the

particular cases of arson and negligence causes (as presented in the previous Section

4.2), and the 99 random patterns generated in each of the two time VDs (Section 3.5),

used to asses the significance of the temporal clustering of the real data.

This section presents the spatial clustering measures adapted to time analysis. They

were developed and completely implemented in R software. For the Morisita index, the

Box-counting method and the multifractal formalism, the used functions were completely

created and developed by the author of this Thesis (see Appendix B). For the tempo-

ral K -function, the measure is estimated using the function stkhat from the package

“splancs” in R environment.

4.3.1 The Morisita index

The estimation of the Morisita index for time analysis of the raw and marked forest fire

sequences in Ticino and the random simulated patterns in the two tVDs is presented in
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Figure 4.6: Daily time series sequences for forest fires in Ticino from 1969 to 2008.

Figure 4.7.

The Morisita index exhibits high degree of temporal clustering of all fire sequences

in Ticino at almost all timescales, given by the visible departure of the raw fires (Figure

4.7 a) from the random patterns in the two tVDs (Figure 4.7 f, g).

The marked natural and anthropogenic fires are also highly clustered (Figure 4.7

b, c respectively). Greater time fluctuations are exhibited in the case of natural fires

due to the small number of events (174 fires) during the entire period. Likewise, the

time sequences of arson and negligence induced fires present also an important degree

of temporal clustering (Figure 4.7 d, e respectively). However, fires caused by arson

actions show a temporal clustering behaviour only at scales lower than 20 years.

It is also evident a slightly degree of temporal clustering of the random patterns in

the tVD 1 at smaller timescales (Figure 4.7 f), while for the random patterns in tVD

2 the degree of clustering is greater (Figure 4.7 g). This can be explained by the fact

that the number of days presenting fire occurrences is less than the number of days in

the entire studied period. This condition imposes a certain level of temporal constraint

of the events. Therefore, the departure from temporal randomness is not evaluated

by considering the theoretical value of 1 as it is defined in the case of an infinite point

process, but instead, it is evaluated by looking at the departure from the Morisita values

of the simulated random patterns in the two tVDs.
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Figure 4.7: The Morisita Index analysis for the forest fire sequences in Ticino in
the period 1969–2008: (a) Raw pattern (all fires), (b) Raw natural fires, (c) Raw
anthropogenic fires, (d) Raw arson fires, (e) Raw negligence fires, (f) 99 TR simulations

in tVD 1, and (g) 99 TR simulations in tVD 2.

4.3.2 The Box-counting fractal dimension

The Box-counting fractal dimension analysis for the raw and marked forest fire sequences

in Ticno during the period 1969–2008 and the temporal random simulated patterns in

the two tVDs is showed in Figure 4.8.

This analysis for the temporal fire structures in Ticino were defined from timescales

of 40 years (e9.6) down to 20 days (e3). This interval corresponds to the timescales

where the simulated patterns in tVD 1 exhibit temporal randomness (dfbox = 0.99). In

this interval, the fractal dimension of the raw fires is 0.93 being slightly lower than the

random patterns in tVD 1 (Figure 4.8 a, f respectively). This indicates a feeble temporal

clustering of the raw data. Nevertheless, down to a timescale of 90 days (> e4.5) forest

fires do not exhibit temporal clustering because its fractal behaviour falls inside the

envelope of the random patterns in the tVD 1.

Moreover, the Box-counting fractal dimension of the raw data is exactly the same as

the fractal dimension of the random patterns simulated in tVD 2. This fractal behaviour

is completely expected as the Box-counting method does not distinguished from the

number of events inside the time intervals, instead, it only considers whether the time

interval contains events or not (a binary count). It is necessary to remember that tVD 2

consists on the same days of fire as the raw data. Thus, the intervals with fires (without

considering the number of fires) are the same for the two distributions: the raw data and

the TR patterns of the tVD 2. Consequently, in this case, it is impossible differentiating

the real pattern from the TR structures in tVD 2.
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Figure 4.8: The Box-counting fractal dimension analysis for the forest fire sequences
in Ticino in the period 1969–2008: (a) Raw pattern (all fires), (b) Raw natural fires,
(c) Raw anthropogenic fires, (d) Raw arson fires, (e) Raw negligence fires, (f) 99 TR
simulations in tVD 1, and (g) 99 TR simulations in tVD 2. The log() refers to the

natural logarithm and t is measured in days.

The marked natural and anthropogenic fires present different temporal structures

(Figure 4.8 b, c respectively). Greater time fluctuations are exhibited in the case of

natural fires showing a high level of temporal clustering (dfbox = 0.62) with a departure

from temporal randomness at timescales lower than 3 years (e7). The temporal anthro-

pogenic pattern behaves equals to the temporal pattern of all fires together. Again, the

method is not able to distinguish between these two temporal structures and the random

patterns in tVD 2 (dfbox = 0.93). This can be explained by the fact that anthropogenic

fires are present along the entire studied period, thus, the time-intervals containing an-

thropogenic fires are almost the same as for the raw fires and the random patterns in

tVD 2.

On the other hand, the time sequences of arson and negligence induced fires exhibit

temporal clustering with fractal dimensions of 0.75 and 0.89 respectively (Figure 4.8 d,

e). This reveals that arson fires are more clustered than negligence fires. Furthermore,

arson fires show a departure from temporal randomness at timescales lower than 1.5

years (e6.3) while negligence fires exhibit a departure at timescales lower than 6 months

(e5.2).

4.3.3 Multifractality: the Rényi generalised dimensions

The time multifractal analysis for the raw and marked forest fire sequences in Ticino

during the period 1969–2008 and the temporal random patterns simulated in the two
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tVDs was carried out by means of the Rényi generalised dimensions (for q ≤ 0) and

presented in Figure 4.9.
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Figure 4.9: The time multifractal analysis based on the Rényi generalised dimensions
for the forest fire sequences in Ticino in the period 1969–2008: (a) Raw pattern (all
fires), (b) Raw natural fires, (c) Raw anthropogenic fires, (d) Raw arson fires, (e) Raw
negligence fires, (f) 99 TR simulations in tVD 1, and (g) 99 TR simulations in tVD 2.

All of the observed fire patterns exhibit a multifractal behaviour which is depicted by

the non-linearity of the dependence between the Dq(t) values and their corresponding q

order-moments. Their substantial departure from the unstructured temporal distribu-

tions (Figure 4.9 f, g) indicates the significance of the temporal clustering of the observed

fire structures. Additionally, natural fires (Figure 4.9 b) are more clustered than the

other fire structures given by the lower Dq(t) values.

The multifractal analysis also reveals that anthropogenic and all raw fires present

higher complexities than the natural, arson and negligence fires (Dq=0–Dq=10). This

complexity indicates that the intervals with high and lower number of events are more

heterogeneous and unevenly distributed along different timescales. Regarding the width

of the Dq(t) spectrum, the five observed fire structures (Figure 4.9 a - e) reveal a certain

irregularity between the time-intervals with high and low number of events; though, it

is more accentuated in the anthropogenic induced fires. This can also be depicted by

comparing the differences of Dq=1–Dq=0.

Unlike the Box-counting method, the multifractal analysis is able to differentiate

the structure of the raw fire sequences from the random patterns in tVD 2. Similarly,

the method allows differentiating them from the structure of the anthropogenic fires.

Moreover, the reason why the random patterns show themselves multifractal behaviours

is due to the fact they were built under the same frequency of fires of the raw data.
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4.3.4 The temporal K -function

The temporal K -function analysis for the raw and marked forest fire sequences in Ticino

during the period 1969–2008 and the temporal random patterns simulated in the two

tVDs is carried out by means of the L-function and presented in Figure 4.10. This

function is a transformation of the K -function facilitating the graphical interpretation

of the curve.

Figure 4.10: The time K -function analysis by means of the L-function for the forest
fire sequences in Ticino in the period 1969–2008: (a) Raw pattern (all fires), (b) Raw
natural fires, (c) Raw anthropogenic fires, (d) Raw arson fires, (e) Raw negligence fires,

(f) 99 TR simulations in tVD1, and (g) 99 TR simulations in tVD 2.

The curves of the natural, arson and negligence fires (Figure 4.10 b, d, e respectively)

exhibit significant temporal clustering for time lengths of 24, 23 and 19 years respectively

(where the curves intersect the random patterns in tVD 1 and tVD2). Natural fires

(Figure 4.10 b) present a temporal clustering peak at a timescale of 15 years. Negligences

fires (Figure 4.10 e) exhibit a temporal clustering peak at 8 years, while arson fires

(Figure 4.10 d) show two temporal clustering peaks at 3 and 17 years respectively.

For the case of the raw forest fires and the anthropogenic fires, the level of temporal

clustering is less significant than the above mentioned structures. These patterns portray

temporal clustering for timescales up to 13 and 16 years respectively (Figure 4.10 a, c).

However, they both present a clustering peak at a timescale of 7 years. On the other

hand, all fires show temporal aggregations at the season level (∼ 6 months, the small



Chapter 4. Applications and Results 72

peaks of the curves) with yearly fluctuations. These fluctuations are more pronounced

on the natural fires because these events only occur during the summer season and not

along the entire year.

4.3.5 Conclusions

We have studied the properties of the temporal structure of forest fires sequences in

Ticino by means of the stochastic point processes formalism. The time dynamics of fire

sequences in Ticino were characterised and quantified by means of temporal analogous

forms of the spatial statistical measures explained in Chapter 3. All these cluster-

ing measures were reformulated to perform purely temporal analysis. Computations

were programmed and implemented in the R project environment. The functions for

the Morisita index, the Box-counting method and the multifractal formalism were pro-

grammed by the author of the Thesis, while the function for the temporal K -function,

we used splancs package.

These statistical measures are closely linked through the fractal theory offering an

interesting interpretation in terms of departure from temporal randomness. Each mea-

sure was executed for the raw data (the forest fires) and the marked point processes

such as fires caused by human, natural, arson and negligence actions. They were also

compared to patterns of reference generated under the null hypothesis of temporal ran-

domness embedded in the same time period of the raw data and with the same number

of fire events as the original data. The comparison enabled estimating the significance

of the deviation of the real data from temporal random processes. The results revealed

the presence of significant temporal clustering of all analysed structures at different

timescales: days, months and years. According to Telesca et al. [279], these temporal

clustering behaviours can be related to a mix of both meteorological (natural) conditions

and anthropogenic factors, conducting to a highly concentrated pattern of the forest fire

dynamics.

An important contribution of this research deal with the adaptation, analysis and

estimation of these global clustering measures for time sequences. This helps under-

standing the temporal structure of point events. Furthermore, the information resulting

from these analyses are useful for the definition of the hyperparameters of the local

clustering detection and mapping methods such as Scan Statistics [305] or space-time

kernel density applications.

4.4 Space-time analysis

The space-time analysis in this Thesis is carried out by the implementation of the space-

time permutation scan statistics model (STPSS) developed by Kulldorff et al. [160]. The

analyses presented in this section were published in the articles of Vega Orozco et al.

[305] and Pereira et al. [214]. Here, we present only the discussion of the analyses carried

out in each article, thereby, for further details one can refers to the concerned article.
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The spatio-temporal analysis is carried out by means of the space-time permutation

scan statistics (STPSS) applied to the phenomenon of forest fires in two different cases:

1) First case is presented in Subsection 4.4.1 developed for the forest fire occurrences

in Canton of Ticino during three periods 1969–1978, 1979–1990 and 1991–2008. This

study intended at detecting and identifying space-time fire hot-spots applying the scan

statistics method in a data with single event locations. 2) The second case is presented in

Subsection 4.4.2 using the forest fire occurrence database of Portugal during the period

1980–2007. This investigation aimed at both assessing the robustness of the model

to correctly detect space-time clusters on aggregated data and identifying space-time

clusters in the Portugal database with the fire events aggregated at the Parish level (the

smallest administrative unit).

Although these two phenomena represent the same environmental problem, they

present completely different characteristics either from the temporal/geographical con-

texts where events occurred as for the construction of the database where events are

organised. Thereby, different challenges and scientific interests are encountered in the

application of the mentioned methodology for the spatio-temporal cluster detection in

the two cases.

The STPSS model has proved to be very useful for the analysis of the distribution of

environmental data. The main advantage of this statistical tool is that it only uses the

observed cases instead of requesting both the case and the population-at-risk data. In

the case of forest fires, the identification of the control population referring these events

is a thorny task. Biomass could be considered as the material risking to be burnt; yet,

this element is quite complicated to quantify and to localise at high resolution level and

over large areas, becoming the major limitation for the implementation of other scan

statistical models.

In the present study, calculations were performed using the SaTScanTM software

developed by Martin Kulldorff [158]. This program allows the user indicating all the

requirements (hyperparameters) to perform the analysis, such as input data, coordinates

system, study period, number of Monte Carlo replications, etc.

4.4.1 The space-time permutation scan statistics model using single

events locations

This analysis aims at identifying hot spots in forest fire sequences by means of the STPSS

model and a geographical information system (GIS) for data and results visualisation,

as well as to analyse the ignition causes of the resulting clusters. The proposed scan

statistical methodology (see also Subsection 3.4.5) uses a scanning cylindrical window,

which moves across the space and time, detecting local excesses of events in specific

areas over a certain period of time. Finally, the statistical significance of each cluster is

evaluated through Monte Carlo hypothesis testing.

The case study is the forest fire occurrences in Ticino from 1969 to 2008. This dataset

consists of 2,401 georeferenced single fire events including the location of the ignition
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points and additional information (marks). From this geodatabase, several datasets

were extracted to perform different simulations regarding fire-origins (anthropogenic

and naturally caused fires) with different spanning periods. Only the two more signif-

icant studies are reported in this Thesis: one analysis using all the events enabling an

overall investigation of all fires, and the second analysis considering only the fire events

caused by lightning (natural fires). Because the STPSS method does not distinguish

between clusters generated by an increase risk of fire or by a different geographical event

distribution at different times [158], the first dataset, which includes all fires, was split

into three groups (datasets I, II and III) in order to obtain more homogeneous fire regime

conditions as possible for a sound statistical analysis, thus:

• Dataset I contains 833 fires occurring in the period 1969 to 1978,

• Dataset II holds 762 events happening between 1979 and 1990, and

• Dataset III comprises 806 fires burning between 1991 and 2008

The definition of these three datasets is based on different fire-preventative disposi-

tions that conditioned the distribution and frequency of anthropogenic fires in Ticino

in the last 40 years, such as: the major fire brigades reorganisation implemented in

1978, the systematic use of helicopters for both transport of the fire fighters and aerial

fire-fighting since 1980; and the implementation of two preventive legal acts (1989 and

1991) aiming at prohibiting burning activities in the open spaces [220]. The lightning

fire dataset was separately analysed over the entire study period (1969–2008) comprising

a total of 175 events, because their fire regime is quite different from the anthropogenic-

caused fires, and their ignition occurrences are not affected by the measures mentioned

above. Concerning the input data and the study period, cluster analyses are conducted

for four datasets as mentioned above and for each dataset a simulation is performed us-

ing the SaTScan software [158]. All fire events were specified as individual locations with

each point representing one fire occurrence (case) and the related date of fire-ignition.

The results are non-overlapping clusters identified using the retrospective space-time

permutation model. For the definition of the scanning space-time cylindrical window

parameters in SaTScan, multiple simulations were executed using different maximum-

size values. These hyperparameters were also compared with different comprehensive

spatial and temporal structural analyses that were completed in the previous Sections 4.3

and 4.2. Only the two most representative results, consistent with qualitative analyses

from the forest fire experts in Ticino, are presented in this paper. The scanning space-

time cylindrical window parameters used in these analyses were set as follows:

1. For the datasets I, II and III, the maximum spatial window size was set to a 3-km

radius and the temporal window was set to a maximum size of 25% of the time-

length of each dataset, enabling the detection of clusters spanning several years,

and a time interval of 1 month in order to detect clusters with monthly temporal

trends.
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2. For the lightning induced fires dataset the maximum spatial window size was set

to be a 3-km radius, and the temporal window was set to a maximum length of one

year and with a time interval of 15-days length in order to detect clusters within

one season since lightning fires only take place each year in summer.

3. The statistical significance threshold for cluster detection was fixed at 5% level of

confidence (i.e. p-value at 0.05) with the smallest p-value at 0.001. Therefore, 999

Monte Carlo replications were performed.

Results of the STPSS model of the analysis completed for datasets I, II and III are

presented in Table 4.1. By means of GIS techniques, the resulted clusters are graphically

mapped in Figure 4.11.

Table 4.1: Significant clusters of the STPSS analysis for datasets I (1969–1978), II
(1979–1990) and III (1991–2008) of the forest fire occurrences in Ticino.

Study Cluster Radius Time Observed Expected p-value
period (m) frame cases cases

1969–1978
1 2987

01-02-1973
7 0.40 0.007

28-02-1973

2 40
01-11-1978

3 0.03 0.050
30-11-1978

1979–1990

1 2212
01-12-1986

10 0.69 0.001
31-01-1987

2 2213
01-01-1984

21 5.08 0.001
31-01-1985

3 1639
01-01-1981

8 0.67 0.006
31-01-1981

4 1388
01-04-1981

4 0.08 0.034
30-06-1981

1991–2008

1 1440
01-10-1997

7 0.13 0.001
31-10-1997

2 0
01-02-2001

4 0.03 0.002
28-02-2001

3 2511
01-05-1997

6 0.27 0.012
31-08-1997

4 999
01-03-1992

4 0.07 0.018
31-03-1992

Source: Vega Orozco et al. [305]

Ten significant clusters are distinguished: two clusters in the sub-period of 1969–1978,

and four in each of the two sub-periods 1979–1990 and 1991–2008. In the three analyses,

the uncovered clusters are predominantly localised in the hilly deciduous forest belt of

the southern part of the study area (Sottoceneri), where the highest population density

is encountered. These clusters are mainly defined by 74 fires located in altitudes ranging

from the 300 to 1,250 m.a.s.l. and with slopes varying from moderate to very strong.

They mostly started in areas within 50 m of the forest edge (23 fires), broadleaves forests

(17 fires), chestnut stands (14 fires) and the 21 remaining burned in coniferous forest

with broadleaves and in areas within 50–100 m of the forest edge. From the seasonal

point of view, six out of ten clusters ignited during the winter period (November–April),

while the other four occurred in the summer season (May–November).
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Figure 4.11: Visualisation of the significant clusters resulting from the STPSS analysis
for datasets I - 1969–1978 (left), II - 1979–1990 (centre) and III - 1991–2008 (right) of

the forest fire occurrences in Ticino.

The ten detected clusters are not geographically persistent, i.e. they do not appear

at the same location in different times. In spite of this, seven clusters are identified in

two zones adjacent to three of the five major urban areas in the canton. The first zone

is in the very southern part, around the cities of Mendrisio and Chiasso, where three

clusters – one from each sub-period – are exhibited. These clusters are constituted by

fire events spotted in the winter season and all started by anthropogenic actions. In

this region, cluster 1 from the sub-period 1969–1978 (Figure 4.11 left) has the greatest

radius range of all ten identified clusters with a value of 2,987 m spotted in February

of 1973. The second cluster in this area is cluster 2 from sub-period 1979–1990 (Figure

4.11 centre) presenting the longest time frame (1 year).

The second zone is the central part of the Sottoceneri region near Lugano city. Four

clusters are recognised: two from dataset II (Figure 4.11 centre) and two from dataset

III (Figure 4.11 right). These clusters are largely ignited by criminal actions (arson).

Cluster 4 has the particularity of being detected in both winter and summer seasons

with a time frame from April 1981 to June 1981. All clusters in this central region were

principally burnt during the winter season in broadleaves forests and chestnut stands.

In this zone a particular cluster (cluster 2 from dataset III, Figure 4.11 right) consisting

of 4 fires, all detonated by arson actions at the same geographical location.

Forest fires caused by lightning display very different spatio-temporal patterns; con-

sequently, it is indispensable to make a distinction between forest fires due to natural

causes and to anthropogenic activities [224, 298, 318]. The outcome clusters are reported

in table 4.2 and displayed in Figure 4.12.

As presented in Figure 4.12, two significant clusters were detected in the mountainous

coniferous forests in the northern part of the study area, known as Sopraceneri, where

higher altitudes and slopes are found and less human development is settled. It is
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Table 4.2: Significant clusters of the STPSS analysis for natural fires in Ticino in the
period of 1969–2008.

Study Cluster Radius Time Observed Expected p-value
period (m) frame cases cases

1969–1978
1 1375

30-06-1989
3 0.051 0.007

12-08-1989

2 200
17-08-1997

3 0.069 0.032
30-09-1997

Source: Vega Orozco et al. [305]

Figure 4.12: Visualisation of the significant clusters resulting from the STPSS analysis
for natural caused fires (lightning) in Ticino in the period of 1969–2008.

important to call to mind that the original geodatabase reports only lightning-fires

during the summer period (May to November); consequently cluster time frames cannot

fall outside of this temporal range. Cluster 1 comprises 3 fires reported in June–August

1989 with altitudes ranging from 1,200 to 1,720 m.a.s.l. at strong slopes (25–38%); while

cluster 2 is defined by 3 fires that occurred in August–September 1997, at lower altitudes

than cluster 1, varying from 1,017–1,120 m.a.s.l., extreme slopes between 85 and 112 %

and all burned in spruce stands.

With the purpose of identifying temporary risk factors in the detected hot spots,
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due to particular and extemporaneous local conditions, the distribution of the ignition-

causes in each single disclosed cluster is compared with respect to the whole area during

the same time- frame of the cluster. Results of these analyses are shown in table 4.3; the

ratio value highlights the importance of the ignition-causes inside the cluster compared

to the same causes in the same frame-period over the area outside the cluster.

Table 4.3: Relative frequency (RF%) of fire causes inside the clusters and the ratio
(R) compared with the fire causes outside the clusters for the same period.

Study Cluster Arson Negligence Unknown Natural
period RF (%) R RF (%) R RF (%) R RF (%) R

1969–1978
1 0.0 0.0 85.7 1.4 14.3 0.5 0.0 -
2 0.0 0.0 66.7 1.4 33.3 1.0 0.0 -

1979–1990
1 60.0 2.3 30.0 1.0 10.0 0.3 0.0 -
2 33.3 1.9 52.4 1.5 14.3 0.5 0.0 -
3 37.5 0.8 0.0 0.0 62.5 3.0 0.0 -
4 0.0 0.0 0.0 0.0 75.0 2.3 25.0 5.5

1991–2008
1 100.0 a 0.0 - 0.0 0.0 0.0 -
2 100.0 8.6 0.0 0.0 0.0 0.0 0.0 -
3 0.0 0.0 33.3 1.6 16.7 1.0 0.0 0.0
4 0.0 0.0 50.0 1.6 0.0 0.0 0.0 -

a - no arson outside the cluster is detected.

Source: Vega Orozco et al. [305]

Clusters from dataset I (1969–1978) exhibit mainly frequencies of fires generated by

negligent human actions. Dataset II (1979–1990) reveals clusters with incidence of arson,

negligence and unknown causes in almost all clusters with few exceptions. Looking at

the ratio values for these ignition sources, the two first clusters expose an arson frequency

greater than the other causes, whereas, unknown causes are dominant in cluster 3 and

lightning in cluster 4. Dataset III (1991–2008) puts in evidence a high prevalence of

arson fires in clusters 1 and 2. In the first detected cluster, all fires were caused by

arson actions; while in the second cluster, arson has an incidence of 8.6 times more than

the average of the analysed sub-period. On the other hand, in the third and the fourth

clusters, no arson is encountered.

4.4.2 The space-time permutation scan statistics model using aggre-

gated data

In this subsection, the STPSS model is applied to the case of forest fire occurrences

in Portugal. We have decided to add this analysis in this Thesis because this dataset

is different from that of the forest fires in Ticino imposing other scientific challenges

for the implementation of the method. This work was achieved under the collabora-

tion established with the CITAB1 of the University of Trás-os-Montes and Alto Douro

(Portugal).

This study focuses on the use of the STPSS model to assess both the existence and the

statistical significance of clusters on aggregated datasets. Here, only the most relevant

results are exposed, for further details refer to Pereira et al. [214]. The investigated

1Centre for Research and Technology of Agro-Environment and Biological Sciences
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case study is represented by the Portuguese Rural Fire Database (PRFD) containing the

forest fire occurrences during the period 1980–2008 georeferenced to the Parsih level (the

smallest administrative unit) where they were detected. One important characteristic

of this database is that the fires are aggregated to geographical regions instead of using

single fire event locations. Considering this, the main goals are as follows:

1. Assessing the robustness of the STPSS to correctly detect clusters on aggregated

datasets;

2. Testing the existence of space-time clusters in the PRFD; and

3. Characterising the detected clusters.

In order to assess the potential bias introduced by the aggregation of the data on

the performance of the STPSS method, a synthetic database was designed (this part is

not developed in this Thesis, for details, refer to the article directly [214]).

Portugal has two official observed fire databases, both provided by the Institute

for the Conservation of Nature and Forests (ICNF, 2013), namely the national mapping

burnt areas (NMBA) for the years 1990–2011 and the previously mentioned PRFD [213].

This latest database is constructed from ground measurements and provides detailed

temporal information (date and time of both fire ignition and extinction); yet, the spatial

information is restricted to the name of the smallest detectable administrative regions

(i.e. the parish) where the fire was ignited. The history and characteristics of the PRFD

was recently assessed by Pereira et al. [213]. This database comprises more than 300,000

forest fires during the period of 1980 to 2007. In addition, it contains comprehensive

information on the amount of burned area of each fire (≥ 0.1 ha), the affected land cover

type, the fire ignition and extinction dates and time. The geographical coordinates of

the parishes’ centroids are assigned to each fire in the PRFD (Figure 4.13). This process

naturally leads to an artificial aggregation of fires with potential impact on the cluster

analysis; this is enhanced by the inhomogeneity of the parishes’ sizes, ranging between

0.06 km2 and 442 km2.

According to the results of Pereira et al. [213], only fires with burnt area equal and

greater to 0.1 ha are included in the analysis. For the STPSS analyses, the maximum

spatial and temporal window sizes were set up equal to the 50% of the observed cases

and the 50% of the study period respectively. Furthermore, the database was split into

four subdatasets considering different burnt area thresholds to identify different patterns

for small, medium, large and very large fires. Therefore, we carried out STPSS analyses

separately for the subdataset containing only all fires (burnt area (BA) ≥ 0.1 ha), the

subdataset of fires with BA ≥ 1 ha, the subdataset of fires of BA ≥ 10 ha and the

subdataset of fires of BA ≥ 100 ha.

Figure 4.14 shows the most significant clusters obtained by the STPSS model. These

analyses reveal the existence of statistically significant space–time clusters in all cases,

with different distribution patterns. The temporal dimension of the identified clusters
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Figure 4.13: Parish units of Portugal and their centroids assigned to each fire event.
Source: this image was taken from the article [214].

ranged between 1 to 13 years. Likewise, the spatial size ranges from few kilometres up

to the maximum size allowed by the analyses.

The obtained results for fires with BA > 0.1 ha and BA > 1.0 ha (Figure 4.14 a, b

respectively) are very similar regarding their duration, spatial size and location. In fact,

the two main detected clusters (1 and 2) have approximately the same size and reveal

an aggregation of fires during the same periods (1982–1988 for cluster 1 and 1995–2007

for cluster 2). These clusters are geographically located in the centre (cluster 1) and

north (cluster 2) of the country in the mountainous region where the greatest number of

fires is recorded every year. Forest management held during the 80s in the central region

should have favoured the decrease in the fire occurrences after this decade, whereas the

rural abandonment in the inner northern region should have contributed to the increase

of fires in the most recent period (1995–2007). A third small cluster is identified when

considering all fires in the database (BA > 0.1 ha).

For larger fires BA > 10 ha (Figure 4.14 c), four clusters are spotted, all of them

in the northern half of the country at locations slightly centred eastwards. Finally, for

very large fires (BA > 100 ha) the characteristics of the detected clusters are radically

different (Figure 4.14 d). The most significant cluster is centred in Guarda district

during the year 1994. The large cluster in the south of the country is due to the large

fires in 2003 and 2004 in the districts of Faro, Portalegre and Castelo Branco, formerly
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Figure 4.14: Visualisation of the most significant clusters resulting from the STPSS
analysis for the forest fire occurrences in Portugal. Clusters of fires with burned area ≥
0.1 ha, 1.0 ha, 10.0 ha and 100.0 ha (from the left to the right, respectively). In the top
panel, clusters are detected with a maximum scanning window size equal to the 50% of
the observed events and 50% of the total temporal dimension. On the bottom panel,
clusters are detected with a maximum scanning window size equal to 50 km radius and
50% of the total temporal dimension. Source: this image was taken from the article

[214].

identified by Trigo et al. [289] which explain them as a consequence of extreme weather

conditions. A third cluster was detected in the NW region of the country with a duration

of three years (2005–2007). Another cluster is uncovered in the central area spanning

11 years (1982–1992). Three other clusters are also revealed in the north-central regions

characterised by smaller spatial scales of less than 50 km and lasting between 1 and 5

years.

The vast spatial distribution of fires in Portugal makes the definition of the maximum

spatial window size a difficult task. Therefore, the analyses are repeated again reducing

the spatial scanning window at a maximum radius of 50 km (zmax = 50 km). Considering

the quasi-rectangular shape of Portugal, this chosen value roughly corresponds to the

half of the diameter of the shortest West-East distance of the country (∼ 200 km).

The reduction of the maximum size of the spatial window (zmax) basically led to an

increment of the number of statistically significant clusters and to a decomposition or

reduction in the size of the larger clusters (Figure 4.14 e–h). It is also worth noting that

the decomposition/reduction of the larger clusters appears to comply with the order of
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the statistical significance of the detected clusters. This becomes evident by comparing

the upper and the bottom panels of Figure 4.14, which can be summarised as follows:

1. Clusters in the central regions, which completely fall into the country boundaries,

are detected as neighbouring smallest clusters with the only exception of the case

of BA ≥ 100 ha, as a consequence of the great distance between the locations of

the fires implicated inside the cluster area.

2. Big clusters detected in the north and exceeding the country boundaries were

identified again within a smaller area.

3. When allowing for very large scanning windows, the detected clusters can be the

result of a lower density of events outside the cluster region instead of a true over-

density of events inside the cluster area. This is especially true when the number

of observed cases is low, as it can be seen when considering BA ≥ 100 ha: for

instance, cluster 2 in Figure 4.14 d is not statistically significant when imposing a

lower zmax.

Finally we can conclude that, in the context of the present study, clusters detected

by imposing an zmax of 50 km are more representative of the reality.

4.4.3 Conclusions

This subsection proposed the application of the STPSS model for forest fire events

represented as point patterns, and allowed both assessing and characterising the spatio-

temporal clusters of forest fires in Ticino and in Portugal. With this analyses we were

able to evaluate the capability of the STPSS method to correctly identify real clusters

in two different datasets presenting different characteristics: one dataset (forest fire

occurrences in Ticino) representing single fire events, while the second dataset (forest

fire occurrences in Portugal) represents fire events aggregated at the Parish level.

The detection of spatio-temporal fire hot spots, which was achieved with the STPSS,

is a very important task for performing a better management and implementation of

fire-fighting measures. Furthermore, the analysis of the predominant ignition-cause in-

side the detected clusters can be of great utility when mitigating different fire related

problems.

The results of the evaluation of aggregated events also provides useful analyses not

only for further studies in the field of fire management, where data are often organised

in aggregated formats, but also in other fields where the data are structured in the same

format, as it is often the case.

This methodology can be very computationally intensive, taking up to several days

or weeks. The computing time depends on a wide variety of variables such as the size

of the input dataset, the number of time intervals and the chosen analytical options.

Depending on these requirements, the SaTScan user guide [158] provides formulas for

an approximate calculation of the computing time and the memory requirements. Yet,
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the presented approach revealed to be very valuable and flexible, enabling analyses

at different time and space windows, as well as, considering different ignition sources

or frame periods separately. Compared with other cluster methods, space-time scan

statistics has the advantage to detect both cluster’s location and frame period, while

also testing their statistical significance. Nevertheless, one must keep in mind that

the number and size of the detected clusters are strongly dependent of the spatial and

temporal sizes of the scanning windows. The results of the analyses suggest that a good

practice is to allow for larger maximum scanning windows, compared to the overall size

of the study area, in a first stage of the detection analysis.

It is important to underline some of the specificities and limitations of this study.

The scanning windows used in this research had cylindrical shapes, yet other geometri-

cal shapes for the scanning window are also possible. Nonetheless, this study was not

intended to determine the most appropriate form of windows to detect clusters of fires.

On the other hand, we must be aware that clusters resulting from the STPSS analyses

could be the product of either an increase in the fire-ignition risk (e.g. arson activities,

pasture-fire practices during non-fire-weather conditions, negligence behaviour) or from

changes in structural-ignition conditions for specific zones in a particular time-period,

e.g. reforestation, afforestation, changes in fuel load or fuel distribution, increased prob-

ability of anthropogenic fire ignition due to changes in population distribution and/or

behaviour [305].

Moreover, a practical functionality of the proposed methodology, to support decision-

making, is the incorporation of the model outputs into a geographical information sys-

tem, to map and to identify fire-prone zones. Outcomes of the STPSS model simulations

were integrated into a GIS environment allowing the exposition of the detected clusters.



Chapter 5

Geospatial data mining and

mapping

5.1 Introduction

With the statistical analysis developed in Chapter 4, we demonstrated that the forest

fires in Ticino are significantly clustered and that most of them break out close to urban

developments and are strongly related to human-environmental factors. In general, we

can consider that the temporal characterisation of fire regimes can mainly be explained

by the weather and the climate conditions favouring the aggregation of fire ignitions

in certain periods of time (e.i. the seasonal regimes exposed in the temporal analysis

in Section 4.3). On the other hand, in space, anthropogenic and ground (topographic)

conditions play an imperative role in the geographical distribution of the fire activity.

Indeed, in Section 4.2, we showed that most of the forest fire hotspots caused by anthro-

pogenic sources (e.i. negligence or arson causes) are located near important urban areas

such as Lugano, Mendrisio and Chiasso (see Figure 4.11 for the scan statistics permu-

tation model analysis). Furthermore, the multifractal analysis of forest fires in Ticino

suggested that the spatial distribution of arson fires (fires caused by criminal activities)

follow linear structures that can be related to the road network (see Figure 4.3 d).

In this regard, and concerning only the spatial distribution of the human-caused

forest fire occurrences in Canton of Ticino, anthropogenic and ground factors related to

forest fire activity can be used for both characterising and mapping vulnerable zones

exclusively related to fire management problems such as the wildland urban interface

(WUI). Thanks to the collaboration with the Swiss Federal Institute for Forest, Snow and

Landscape Research (WSL), the knowledge acquired in Chapter 4 was used for defining

and characterising the WUI in the Swiss Alpine region. This research was developed

under the framework of the project “Wildland Urban Interface (WUI) and forest fire

ignition in Alpine conditions - (WUI-CH)”, co-directed by the Swiss Federal Office for

the Environment and the WSL research program “Forest and Climate Change - Phase I”.

The main objective of this research was to propose a systematic, statistical and flexible

84
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approach for assessing and mapping the WUI in Ticino. This methodology consists on

the following three main steps: 1) carrying out a random forests (RF) analysis (a machine

learning algorithm) to select the anthropogenic and ground variables most relevant to

fire distribution; 2) performing a statistical analysis to define a buffer distance between

the anthropogenic variables selected with the RF analysis and the wildland vegetation

(according to the user’s needs); and 3) building a GIS-based procedure (ModelBuilder)

to automatically mapping the resulting WUI.

Furthermore, the implementation of the RF analysis not only allowed selecting the

variables that most contribute to the fire ignition distribution and which are used to

define the WUI, but also led us to the estimation of the prediction of the fire occur-

rence. This prediction conveyed to the elaboration of a susceptibility map of fire ignition

occurrences in Canton of Ticino during the period 1990–2008. The results of this study

were published in the article Conedera et al. [68] and presented in several national and

international conferences as well (see Appendix A. Publications & Proceedings).

Accordingly, this Chapter is based on the mentioned study; however, only the meth-

ods and the results developed and obtained by the author are shown such as the data

preparation and preprocessing, the implementation of the RF algorithm for variable

selection, the development of a GIS ModelBuilder routine and the elaboration of the

final maps. This analysis is also restricted for the case of Canton of Ticino in order to

remain in the study area presented along this Thesis. Additionally, a second study is

also developed in this Chapter addressing the mapping of susceptible areas for forest

fire events. These two by-products are the first two attempts for forest fires activity in

a complex mountainous region as it is the case of Canton of Ticino and for which fire

managers currently focus their attention for fire management, monitoring, prevention

and allocation measures.

In this sense, both the WUI characterisation and the fire occurrence prediction (sus-

ceptibility mapping) together with the previous spatio-temporal statistical analysis in

Chapter 4 provided a comprehensive inside and useful information for understanding

predominant fire regimes and for identifying fire vulnerable regions in a mountainous

context. This inclusive assessment is fundamental to conduct fire management goals and

strategies in different spatio-temporal conditions, and to support policy and decision-

making for fire mitigation and risk monitoring.

Section 5.2 explains the data elaborated and used for this research concerning the

anthropogenic and topographical variables that are related to the human-caused forest

fire occurrences during the period of 1990–2008. Section 5.3 imparts the contributions

of the author in the methodology for WUI definition and mapping for Canton of Ticino.

Section 5.4 presents the methodology developed for the elaboration of the susceptibility

map of forest fire ignition in Canton of Ticino based on the variable importance measure

provided by the RF algorithm which allows estimating the probability of ignition of fire

occurrence. And finally, Section 5.5 presents the conclusions.
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5.2 Data preparation and pre-processing

As mentioned before, this Chapter deals only with human-caused forest fires, anthro-

pogenic infrastructure and topographic data of Canton of Ticino during the period

1990–2008. The reason of restricting the analysis to this frame period is due to the need

of using a forest fire dataset consistent with the last updated features information of

the Swiss Topographic Landscape Model (TLM3D). That is, we use the infrastructure

data existing at the time of the fire ignition. This model, updated since 2008 by the

Swiss Federal Office of Topography Swisstopo, is a big 3D geodatabase covering the

entire country. It includes natural and artificial landscape features such as roads and

tracks, public transportation, buildings, areas, land cover, hydrography, administrative

boundaries, toponomy, and the digital terrain model (DTM).

Concerning the forest fire ignition points, only proven direct anthropogenic fire ig-

nitions were considered. Specifically, we did not considered fires that were originated

from indirect anthropogenic activities such as high voltage power lines, natural causes

such as lightning-induced fires and summer fires of unknown origins. Since winter fires

are all of anthropogenic origins [219], we retained those fires of unknown origins break-

ing out at least 50 metres away from railways or high voltage power lines. Taking into

consideration all these conditions, we finally count with a total number of 672 fires (see

Table 5.1 and Figure 5.1).

Table 5.1: Anthropogenic forest fire ignitions in Canton of Ticino during the period
1990–2008.

HUMAN CAUSE No. fires

Agriculture 6
Arson (criminal) 151
Forestry 1
Negligence fires (tourists, hikers, thrown cigarettes) 271
Not extinguished camping fires 7
Other known causes 28
Other winter fires of direct human origins 208

TOTAL 672

The variables representing the human infrastructure considered in the present study

are: railways, highways, roads (down to 2 metres wide unpaved drivable roads including

those for 4WD tracks) and pathways considered as the transport facilities (see Figure

5.2) and the buildings and vineyards representing human activity. This information is

presented at 0.2 to 1.5 metres resolution.

In order to use these anthropogenic variables, we transformed these shapefile data

into raster layers (objects are composed by cells) of 25 metres cell-size (see Figure 5.3).

Then, raster maps giving the Euclidean distances from each cell to the closest source

were calculated for each infrastructure feature (see Figure 5.4). This procedure was

carried out by using the “Euclidean Distance” tool from the “Spatial Analyst” toolbox
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Figure 5.1: Anthropogenic forest fire distribution in Canton of Ticino in the period
1990–2008 (red dots) and the forest cover (green areas).

in ArcGIS. The maps of distances to the human infrastructures are presented in Figure

5.5.

Regarding the topographic components, we considered the altitude, the slope, and

the aspect which in turn it was divided into the North-South direction and West-East

direction (see Figure 5.6). These features were extracted from the digital height model

(DHM) of 25 metres resolution provided by Swisstopo. And finally, for the wildland

component where fires take place and from where the susceptibility mapping is predicted,

we considered the forest cover which comprises the following categories: “forest stands”,

“open forests” and “shrubland forests”, extracted from the Swiss TLM3D layer (see

Figure 5.1) of 1 to 3 metres resolution.

5.2.1 Data for WUI definition

For the definition of the WUI, the used dataset comprised only 672 direct anthropogenic

forest fire ignition points below 2500 m.a.s.l. (assumed as the upper limit of regularly

undertaken human activities in the Alps) [68], and their related anthropogenic infras-

tructure information which represent the urban component of the WUI (see Subsection

1.4.2). In order to relate these variables to the forest fire ignition points, we extracted

their corresponding values of the distance maps from each ignition point.
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Figure 5.2: The considered anthropogenic infrastructures (left to right): buildings,
roads, highways, pathways, railways and vineyards.

Feature in vector format Feature in raster format

Figure 5.3: Transformation of features in vector format to raster. Source: image
modified from the ArcGIS Help on line.
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Figure 5.4: Euclidean distance map calculation. Source: image modified from the
ArcGIS Help on line.
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Figure 5.5: Maps of distances to the human infrastructures: a) Distance to buildings,
b) distance to roads, c) distance to highways, d) distance to pathways, e) distance to

railways and f) distance to vineyards.
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Altitude (m)
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High : 1
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Figure 5.6: Topographic characteristics in Canton of Ticino: a) altitude, b) slope, c)
aspect North-South direction and d) aspect West-East direction.

On the other hand, the RF algorithm requires information about “positive” and

“negative” labels, that is, information regarding where the events take place (positive

labels) as well as the information where events do not take place (negative labels). This is

not a straightforward task due to the complexity of the forest fire phenomenon. We only

know the points where fire has broke out, wherefore we do not know the group of variables

conditioning the absence of fire. To overcome this difficulty, and in collaboration with

Michael Leuenberger, we developed a procedure that defines zones where no fires take

place by means of the k-means clustering method. This machine learning technique aims

at partitioning n observations into k clusters in which each event belongs to the cluster

with the nearest mean. This method allowed us identifying zones across the studied area

with similar characteristics of presence of fires. For the other zones, we assume that the

presence of fires is weak, though, we used these areas to randomly distribute the same

number of points as the anthropogenic forest fire ignition dataset (i.e. 672). These

points were classified as the negative class, meaning an absence of fire. For this negative

labelled points, we also extracted all the information related to the euclidean distances

to the human infrastructures, and then, we assembled them with the real anthropogenic

forest fire data in the same database. Thus, this data, holding a total number of 1,344

points (672 indicating the presence of fire and the other 672 points indicating the absence

of fire), was used to evaluate the predictor anthropogenic components most influencing

the forest fire occurrences in Canton of Ticino (see Table 5.2 and Figure 5.7).

5.2.2 Data for fire occurrence susceptibility mapping

As presented in the introduction, one objective of this Chapter is the elaboration of a

fire ignition susceptibility map. Susceptibility refers to the estimation of the probability

that an event occurs in a specific area without considering an absolute temporal scale.
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Table 5.2: Dataset 1 comprising the direct anthropogenic forest fire ignition points
(positive labels) and the negative class points holding information regarding their an-

thropogenic features.

Variable name Variable type

1. Distance to Buildings

Human infrastructure
2. Distance to Highways
3. Distance to Roads
4. Distance to Pathways
5. Distance to Railways

6. Distance to Vineyards Land cover

7. Fire
Positive label (Forest fire)
Negative label (No fire)

0.4 0.5 0.6 0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Positive label
Negative label

Y

X

Figure 5.7: Total point database used in the Random Forests for WUI definition. The
positive labelled points (in red) correspond to the observed anthropogenic forest fire
ignition points and the negative labelled points (in black) correspond to the absence of

fire.

For this type of map, two datasets were generated. The first dataset (1,344), similar

to dataset 1 for the WUI definition, comprises all points of both anthropogenic-induced

fires and negative class (no fire), with additional information regarding the topographic

features (altitude, slope, North-South aspect and West-East aspect) (see Table 5.3).

The second dataset corresponds to the grid where the probability of fire occurrence

will be estimated. This dataset consists on a regular grid of 25 meters resolution covering

the forest cover of Ticino. This database contains only the information regarding each

topographic feature at the location of each grid point and the minimum distances of each

grid point to the anthropogenic features (see Table 5.4). It does not hold information

about fire occurrence.
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Table 5.3: Dataset 2 comprising the direct anthropogenic forest fire ignition points
(positive label) and the negative class points holding information regarding their an-

thropogenic and topographic features.

Variable name Variable type

1. Altitude

Topographic features
2. Slope
3. North-South Aspect
4. West-East Aspect

5. Distance to Buildings

Human infrastructure
6. Distance to Highways
7. Distance to Roads
8. Distance to Pathways
9. Distance to Railways

10. Distance to Vineyards Land cover

11. Fire
Positive label (Forest fire)
Negative label (No fire)

Table 5.4: Dataset 3 comprising the grid points where the prediction of the probability
of fire occurrence is estimated.

Variable name Variable type

1. Altitude

Topographic features
2. Slope
3. North-South Aspect
4. West-East Aspect

5. Distance to Buildings

Human infrastructure
6. Distance to Highways
7. Distance to Roads
8. Distance to Pathways
9. Distance to Railways

10. Distance to Vineyards Land cover

5.3 Wildland-urban interface (WUI)

As explained in Chapter 1, in the wild vegetative areas with strong anthropogenic pres-

sure emerges a critical zone known as the wildland urban interface (WUI). This term

is broadly used to indicating areas where human infrastructures interact or intermingle

with wildland/forest areas [3, 59, 130, 231, 232, 263, 280]. Many environmental/eco-

logical problems are associated to the WUI; but the most relevant issues, particularly

in densely populated areas, are those related to anthropogenic-induced fire hazard and

management [162, 233]. This coexistence enhances both anthropogenic ignition sources

and flammable fuels. Furthermore, the growing trend of the WUI and global climate

change effects may even worsening the situation in the near future [68, 154, 188, 280].

Therefore, lately, many researches are engaged to the WUI problem, and it is currently

an important subject exclusively related to the forest fires phenomenon.

In fire prone regions around the world, i.e. the Mediterranean areas, the WUI des-

ignates principally zones of significant infrastructure threats due to the exposition to
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burning vegetation [68, 161] placing human lives and property at a high level the risk.

Conversely, in the Alpine region, the WUI represents susceptible areas where fire is

essentially triggered. In this region, most human settlement and infrastructures are

located on the valleys or on slope terraces, and houses are usually surrounded by cul-

tivated and open areas with important exposure to sunshine [68]. In such conditions,

although fire ignitions are highly clustered in areas adjacent to urban infrastructures

[67, 305, 324], areas with significant fuel loads (i.e. forests) hardly conduct fires toward

human infrastructures [68].

Few methods exist for mapping WUI and they mostly differ from their operational

approaches and implementations [221, 264]. Nevertheless, they all coincide with using

the same WUI components: the urban element represented by human infrastructures

and activities, the wildland element constituted by the burnable vegetation (forest)

and the interaction of the former two elements which represents the interface generally

expressed as a buffer distance.

Thus, in order to characterise the WUI in Canton of Ticino, we designed a systematic

and flexible methodology based on a machine learning algorithm, a statistical analysis

and a GIS routine (see Figure 5.8) considering the three main WUI components, as

follows:

1. First we performed a RF analysis to select the anthropogenic variables that most

influence the occurrence of fire ignition. This analysis allowed defining the elements

characterising the urban component of the WUI.

2. Then, with the forest fire ignition points and the anthropogenic variables selected

from the RF analysis, we carried out a statistical analysis to define the buffer

distance that designates the interface area between the forest and the human ac-

tivities. Whereas the wildland component was defined as the forest cover.

3. And finally, using a GIS routine created in ModelBuilder (ArcGIS), we automati-

cally mapped the WUI by intersecting the forest cover with the buffer areas around

the selected anthropogenic variables.

5.3.1 Anthropogenic variable selection by means of the Random Forests

method

The first step consists on defining the anthropogenic features that most contribute to

the ignition of human-caused forest fires in this Swiss Alpine domain, Canton of Ticino.

As revealed in the clustering analysis in Chapter 4, these underlying factors may act

differently at different scales. Thus, it is necessary evaluating the relative importance

(contribution) of each variable to the fire ignition at local scales.

Different approaches exist to evaluate the importance of a high number of variables

in the prediction of environmental events. Some examples are the Multiple Linear Re-

gression [105, 255, 270], the classification and regression trees [35], the geographically
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Figure 5.8: Methodology for WUI characterisation and mapping. The urban com-
ponent (blue box) is defined by using the Random Forests algorithm to select the
anthropogenic variables most influencing the distribution of human-caused fire igni-
tions. The wildland component (green box) is defined as the forest cover. The interface
component (yellow box) is defined by buffer distances estimated with the statistical
analysis. And, the WUI definition (orange box) is carried out through the application

of a GIS ModelBuilder routine. Source: schema modified from Conedera et al. [68].

weighted regression [102], the multivariate adaptive regression splines [106], the max-

imum entropy [146], among others. Although, the advantages of these models and

techniques to deal with high dimensionality data and to consider multivariate relation-

ships between the predictor variables, they also present gaps and drawbacks that hinder

the interpretation or reliability of the possible results, particularly in the case of com-

plex phenomena such as the forest fires. For instance, some of these models do not deal

with the nonstationary relationships between the variables, or do not provide exhaustive

outputs indicating the fire probability [7].

Among the machine learning methods, the non-parametric technique named the

Random Forests (RF) has markedly proved to be highly capable to deal with correlated

variables in multi-dimensional data (high number of variables), particularly, in complex

regions as the Alpine environment [68, 191]. This method is a classification and regres-

sion technique based on an ensemble of decision trees that provides a measure of the

importance of variables based on a permutation test [68]. It overcomes the problem

of instability in using single classification trees, resulting in higher prediction accuracy

[182, 269].

For the assessment of the importance and the related prediction power of each single

studied variable, the basic idea of this method relies on the fact that if a variable is

important to the prediction of the studied events and if such variable is removed from

the analysis, then the accuracy of the classification is degraded; otherwise, if the variable

is not important, the classification accuracy does not decay when the variable is dismissed

from the estimation [68]. RF model works as follows:

1. We first separate the data into two datasets: the training set holding about 70%

of the observed events (see Table 5.2) and the testing set with the 30% remained
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events (see Figure 5.9). The testing set is used to evaluate the quality of the

prediction, even if RF also provides an assessment of the prediction error.

Original dataset (1344 observations)

Training set (941 observations - 70%) Testing set (403 observations - 30%)

Figure 5.9: The dataset splitting into training (70 % of the original dataset) and
testing datasets (30 % of the original dataset).

2. Now, using only the training set, RF generates a great number of subsets (inBag

and out-of-bag subsets). The inBag subsets, also named bootstrap subsets, are

generated through the bootstrap technique where the observed events in the train-

ing dataset is iteratively resampled several times. The out-of-bag (OOB) samples

are obtained by keeping the observations left out during the resampling procedure

(about one-third of the overall dataset, see Figure 5.10). This allows improving the

classifier’s performance because the OOB observations are not used in the fitting

of the trees, thus the OOB’s estimates are essentially cross-validated accuracy es-

timates [75]. For the study case, we chose to generate 1000 inBag sets and, hence,

1000 OOB sets were also created.

OOB 1
(314 obs.)

...

Training set (941 observations - 70%)

Tree 1 Tree 2 Tree 1000

...

inBag 1
(941 obs.) OOB

2

inBag
2 OOB

1000

inBag
1000

Boostrapping

Parent
node

Children
node

Children
node

votes

Figure 5.10: Random Forests procedure for boostrapping, tree generation and clas-
sification: the training dataset is iteratively resampled several times with replacement
(boostrapping technique) and creates the inBag subsets. The data that have been left
out in the resampling procedure are retained and named the out-of-bag (OOB) subsets.
Then for each inBag subset a decision tree is grown by splitting each parent node into
two children nodes by means of using the best eligible splitter from a random selection

of the predictor variables. Each tree cats a vote at its terminal nodes.
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3. Then, for each inBag subset a decision tree is created (see Figure 5.10). The

decision tree is grown-down by splitting a parent node into two children nodes.

The splitting is carried out by applying the Gini index which allows choosing the

best splitter among some randomly selected predictor variables at each parent

node. For each training dataset, this index measures the inequality (or impurity,

diversity) of the data D as [135]:

Gini(D) = 1−
m∑
i=1

p2i (5.1)

where pi is the probability that a sample in D belongs to class Ci (estimated

by | Ci,D | / | D |) [135]. The sum is computed over m classes; which in the

case of this study, it corresponds to two classes (m = 2): Positive label (Forest

fire) or negative label (no fire). The Gini index considers a binary split for each

attribute. A weighted sum of the impurity of each resulting partition is computed.

For example, if a binary split on attribute A partitions D into D1 and D2, the

Gini index of D given that partitioning is [135]:

GiniA(D) =
| D1 |
| D |

Gini(D1) +
| D2 |
| D |

Gini(D2) (5.2)

This can be generalised as:

GiniA(D) =
k∑
i=1

| Di |
| D |

Gini(Di) (5.3)

where k is the number of children nodes (in our case k = 2). This provides the

quality of the split at the node.

For attributes with more than two values, subsets of values are considered. For a

discrete-valued attribute, the subset that gives the minimum Gini index for that

attribute is selected as its splitting subset. For continuous-valued attributes, each

possible split-point must be considered: the midpoint between two adjacent sorted

values is taken as a possible split-point. The point giving the minimum Gini index

for a given continuous-valued attribute is taken as the split-point of that attribute.

The reduction in impurity (diversity) that would be incurred by a binary split on

a discrete- or continuous-valued attribute A is:

∆Gini(A) = Gini(D)−GiniA(D) (5.4)

The attribute that has the minimum Gini index (that is, the one maximizing the

reduction in impurity) is selected as the splitting criterion. Every time a node is

split, the Gini value for the two descendant nodes is less than the parent node.

This binary partitioning is performed until further splitting no longer decreases
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the Gini index [35, 75]. A great variety of classification trees are grown returning

each different results.

4. Then, the OOB subsets are passed down the trees. This allows RF estimating

the prediction error rate (ER), also known as misclassification rate; where the

predicted class estimated with the OOB observations (majority vote among all

trees) is compared to the true class of the original set. That is, the ER is the

proportion of times that an OOB prediction is not accurate (see Equation 5.5).

ER(%) = 100 ∗ 1

N

N∑
i=1

Ei (5.5)

where N is the total number of observed points and Ei the error of the prediction

of the ith point. For classification, Ei corresponds to 1 if the class of the ith point

is voted (among all trees) different to the true class. This error rate has proven to

be quite accurate and unbiased given the great number of trees grown [169], and

it is useful for assessing the performance of the prediction.

5. Finally, RF provides a measure of the importance of the predictor variables. This

is done by looking at how much prediction error increases when the OOB data

for one variable is permuted while all others are left unchanged. That is, for each

variable, the values in the OOB observations are randomly permuted, and then the

modified OOB subsets are passed down the decision trees to get new predictions

[68, 75, 169, 182] (See Figure 5.11). The assessment of the importance of each

variable is carried out by estimating the difference between the misclassification

rate for the OOB observations and the misclassification rate of the modified OOB

subset and averaging over all trees (see Equation 5.6).

Im =
1

Tk

Tk∑
k=1

(Emk − Ek) (5.6)

where Tk is the total number of trees, m the analysed variable, Ek the misclas-

sification rate of the OOB subset in the kth tree, and Emk the misclassification

rate after permuting values of the mth variable in the OOB subset in the kth tree.

This measure, Im, is given as the percent increase of the ER (% IncMSE), where

the higher the %IncMSE, the higher the importance of the corresponding variable

[68].

The RF analysis was carried out, in collaboration with our colleague Michael Leuen-

berger, using the “randomForest” package in R statistical software [230]. The participa-

tion of the author of this Thesis in this analysis consisted in the preparation of the input

data and the interpretation of the results provided by the algorithm. Nevertheless, we

considered important to show the development and functioning the RF procedure.
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Figure 5.11: Random Forests procedure for variable importance estimation: one by
one of the variables in the OOB observations are randomly permuted. The modified

OOB data are passed down the trees to get new predictions.

The results of the RF analysis are presented in Figure 5.12. Based on the anthro-

pogenic variables used in the analysis, RF revealed that buildings are substantially the

most influencing features in the ignition occurrence of anthropogenic-caused fires. This

indicates that the fire occurrence in Ticino is highly shaped by the local permanent

presence of human activities. Following the importance variable rank, roads are the

second most relevant factor manifesting the importance of the infrastructures providing

human accessibility to wildland areas. This increases the probability of anthropogenic-

caused fires. The third important factor exposed by the RF is the vineyard crops. This

can be due to the close proximity of these cultivated lands to wild-vegetation areas.

Nevertheless, their lower importance regarding roads and buildings can be explained as

a response of the recent improvement in fire prevention measures implemented in the

Canton [220] which has contributed to reduce the impact of agricultural activities as a

fire-ignition source [68]. Likewise is the situation with the railways where the construc-

tion of protection infrastructures in the steepest sectors of the Gotthard line has been

implemented since 1975 [61]. These measures have essentially reduced the number of

fires caused by this activity, nevertheless, in rare cases, fire can break out by sparks of

the rail transport.

The low importance of the highways can be explained by the fact that these in-

frastructures do not provide accessibility to wildland areas; moreover, the preventive

measures against fire in such infrastructures contribute avoiding both fire ignition and

fire propagation of existing fires [61]. Regarding the pathways, they are the less impor-

tant human infrastructures in the distribution of fire ignition. Pathways are composed

by very small non-car-passable roads of less than 2 metres wide. Probably, in the forest

areas, these structures are less frequented by arsoners than e.g. the roads.
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Figure 5.12: Boxplots of the variable importance obtained with the Random Forests
algorithm. The percent increase of the mean squared error (%IncMSE) indicates the
contribution of each anthropogenic variable to the occurrence of anthropogenic-ignited

forest fires. Source: image taken from Conedera et al. [68].

5.3.2 Statistical analysis for buffer distance definition

The second step for WUI definition is the assessment of the size of the interface compo-

nent, that is, the areas where the interaction between human activities (infrastructures)

and wildland vegetation is importantly active. We characterise this component as a

buffer distance from the anthropogenic infrastructures (in this case the two most rele-

vant anthropogenic infrastructures detected by the RF algorithm: buildings and roads)

to the forest cover.

Thus, we needed an analysis providing information about the local neighbourhood

of the forest fires around the human activities. To this end, we performed the nearest

neighbour distance function analysis in order to estimate the Euclidean distances at

which fire ignition points arise from the two selected anthropogenic infrastructures. For

this, we decided to use a classical tool in point process statistics which is a generalisation

of the nearest neighbour distance function, GI,J(r), allowing estimating the (cumulative)

distribution of the distances r from the typical point of pattern I to the nearest neighbour

point of pattern J [13, 74, 89, 143, 316]. The values of this function range from zero

(scale at which no nearest neighbours have been encountered) to unity (scale at which

all points have a nearest neighbour) [316].

For the estimation of this function, we used the marked nearest neighbour distance

function, Gmulti included in the “spatstat” package [13] of the R software environment
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[230]. The results are presented in Figure 5.13.

Figure 5.13: The nearest neighbour distance distribution function for: the anthro-
pogenic forest fire ignition points to the nearest Buildings (left, red line); and the
anthropogenic forest fire ignition points to the nearest Roads (right, blue line). The
dashed green lines correspond to the probability distance distribution of 99 simulated

random patterns.

The two curves show the probability distribution of the distances from the forest fire

ignition points to the nearest or closest neighbouring buildings (Figure 5.13 red line in

the left) or roads (Figure 5.13 blue line in the right). The differences between the em-

pirical curves (fires to buildings and fires to roads) and the 99 random simulations allow

rejecting the null hypothesis of independence. It is also possible depicting that forest

fires arise closer to buildings than to roads (at shortest distances forest fires encounter

more buildings than roads) confirming the results from the RF analysis. Looking at

the distances to buildings, 50% of the forest fire ignition points encountered buildings

at a distance of 68 m, while the distance to roads is about 132 m. Depending on the

fire management purposes, one can use both distances to define the WUI; however, for

practical reasons, we decided to average these distances in order to use a buffer distance

that fits to the two infrastructure distributions. Therefore, the buffer distance estimated

for the WUI definition in Canton of Ticino where 50% of the fires take place is assumed

equal to 100 m.

5.3.3 The ModelBuilder routine

Finally, the third step of the methodology for the WUI definition was the construction

of a GIS routine that both automatically maps and characterises the WUI in Canton of

Ticino. This model routine was developed in ModelBuilder from the ArcGIS software

environment [96]. ModelBuilder is a visual programming language used to create, to edit

and to manage models. A model can be thought of a work-flow that strings together

sequences of geoprocessing tools by feeding the output of one tool into another tool as
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input [96]. Figure 5.14 shows the ModelBuilder routine created for mapping WUI in

Canton of Ticino. It can also be used and adapted to map the WUI of other study areas

and with other input features and parameters.

Input
infrastructure 1: 

Buildings 
(.shp)

Input wildland 
component: Forest 

cover (.shp)
3. Buffer

5. Erase

6.WUI
(.shp)

P

2. Union
Union

infrastructures
(.shp)

4. Intersect

Interaction
zone
(.shp)

P

P

Distance
value
(m)

P

1. Buffer
Buffer Roads 
as polygons 

(.shp)

P

Distance
value
(m)

P

Input
infrastructure 2: 

Roads
(.shp)

Buffer 
infrastructures
100m (.shp)

Figure 5.14: The ModelBuilder routine in ArcGIS 10.2 for the WUI definition in
Canton of Ticino. Input data is presented in dark blue, ArcGIS geoprocessing tools in
orange, tool’s parameters in light blue, and output data in green. The input and the
output data are in shapefile format (.shp). Source: schema modified from Conedera

et al. [68].

An interesting option in ModelBuilder is the possibility to generate the model’s dialog

box for the final user, and thereby presenting the model as an ArcGIS tool. The model’s

dialog box can be personalised to facilitate final users to use the model exposing only the

options and parameters that can/should be managed and modified. Figure 5.15 displays

the WUI model’s dialog box to be manipulated for the user. Here, it is possible to see

that only few parameters of the model are displayed, and that the geoprocessing tools

are left out as internal procedures beyond the reach of the model users. In this way, we

can protect the model to be modified by undesirable manipulations.

Regarding the structure of the WUI model, it consists on integrating all the elements

and parameters of the WUI components defined in the previous analyses to both build

and map the WUI in the entire study region. The following describes the different steps

of the model (see Figures 5.14 and 5.16):

1. Buffer: this procedure takes the half of the width value of the roads and creates

polygon buffers around these elements (Figure 5.14 - 1.Buffer, result Figure 5.16

- 1). The output is a shapefile of all the roads in a polygon format. Since we are

working at local scales, taking into account the real space occupied by the roads

is very important for the WUI characterisation.

2. Union: in this step, the two selected human infrastructures (buildings and roads)

are assemble together in the same shapefile (Figure 5.14 - 2.Union, result Figure
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Figure 5.15: The model’s dialog box created in ModelBuilder routine in ArcGIS 10.2
for the WUI definition in Canton of Ticino.

Figure 5.16: Procedure of the WUI model to estimate and characterise the WUI: 1)
Converting roads into polygons. 2) Combining the buildings and roads infrastructures in
the same shapefile. 3) Creating buffers of 100 m around infrastructures. 4) Intersecting
the infrastructure-buffer areas with the forest cover. 5) Eliminating the infrastructures

from the intersection areas. 6) Mapping WUI.
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5.16 - 2). In order to carry out this task, both layers must be of the same format

(e.g. polygon). This shapefile constitutes the infrastructure component of the

WUI.

3. Buffer: polygon buffers are built around the two human infrastructures using

the distance value defined in the statistical analysis (Figure 5.14 - 3.Buffer, result

Figure 5.16 - 3). For the case of Canton of Ticino, this distance value was estimated

at 100 metres. These polygons constitute the active interaction areas of humans

activities and it can be considered as a human interface.

4. Intersect: a geometric intersection between the human interface and the forest

cover is computed. The forest cover represents the wild-vegetation component of

the WUI (Figure 5.14 - 4.Intersect, result Figure 5.16 - 4). Only the overlapping

areas in both layers (human interface and forest cover) are retained. These areas

correspond to the WUI.

5. Erase: since the human infrastructures themselves are not part of the WUI, it is

necessary to eliminate them from the WUI polygons (Figure 5.14 - 5.Erase, result

Figure 5.16 - 5). This is why we apply the erase geoprocessing tool.

6. WUI: finally, it is possible to both map and characterise the WUI surfaces for the

study area (Figure 5.14 - 6.WUI, result Figure 5.16 - 6). These interfaces basically

can be viewed as the interaction zones between the fire-inducing anthropogenic

activities and the wildland fuel in this mountainous region [68].

Figure 5.17 shows the WUI map in Ticino created with our methodology (left) and a

visualisation of the WUI areas in Google Earth (right). WUI areas in Ticino, estimated

as the interface where the 50% of fires take place, count for about 31,000 ha, and

are characterised by forest areas of 100 metres around drivable roads and accessible

buildings. Therefore, these areas are mostly located in the low lands along the valleys.

Keep in mind that the definition of the WUI may change depending on the parameters

defined in the RF and the statistical analyses and on the existing conditions of the study

area.

For forest management interest, the defined WUI allows reducing the intervention of

forest areas for fire risk and fuel measures planning. That is, instead of considering the

130,000 ha of forested areas in Ticino, forest and fire managers can, in the first instance,

reduce the operating zones to the WUI areas to concentrate financial and preventative

technical measures. In this regard, WUI areas may depend on the forest management

purposes, where interfaces including different percentage of fire ignitions, for instance,

30% or 70% of fire events, can be considered. Consequently, the size of the WUI areas

may vary. Nevertheless, they will remain lower than the total forested areas. On the

other hand, the WUI areas together with other fire-relevant information such as detailed

fire risk maps [67], also facilitate the identification of fire ignition hot spots and other

fire-related risk regions [68].
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Figure 5.17: WUI final mapping (left). A visualisation of the WUI in Ticino in
Google Earth: a zoom to the zone of Bellinzona city (right).

5.4 Susceptibility mapping using the Random Forests

The implementation of the RF algorithm not only led us to identifying and selecting the

most relevant anthropogenic infrastructures for the human component of the WUI, but

it also allowed us generating a map of fire susceptibility by estimating the probability of

fire-ignition occurrence in specific areas without considering an absolute temporal scale.

This type of mapping is called “susceptibiliy mapping”.

This study was entirely developed applying the random forest machine learning al-

gorithm. It deals with the same data and study case as in the former Section 5.3 in

Canton of Ticino, but, in addition, we also added information about the topographic

features of fires. As for the random forests part in the former Section 5.3, we count with

the collaboration of our colleague Michael Leuenberger. This thesis author’s participa-

tion on this study was the preparation and geoprocessing of data to run RF and the

interpretation of the RF results.

The fundamental scientific problem conducting this research is the application of

a machine learning method to analyse and to model forest fire patterns in a high di-

mensional input feature space (e.g. great number of predictor variables). Thereby,

we intended to considering several number of ground environmental factors influencing

the ignition distribution of forest fires in a complex region such as Canton of Ticino.

For that two objectives were established: 1) estimating the importance of topographic

and anthropogenic factors for predicting fire ignition occurrences by means of the RF

algorithm, and 2) elaborating a susceptibility map.
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The procedure for the RF algorithm is the same as explained in Subsection 5.3.1 for

variable selection. Yet, this time we were not only interested in the variable selection

but we also considered the classification resulted from the RF to make predictions of

the fire occurrence on the forest cover in Ticino. The procedure is as following (see also

Figure 5.18):

4. Susceptibility map

RF trees

Error
assessment

with OOB sets
Variable

importance

OOB
subsets

inBag
subsets

Dataset on 
forest cover
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on forest cover
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1. Datasets creation: data on forest fires, data on forest cover

2. Random Forests model
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Error
assessment
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Figure 5.18: The methodology for the susceptibility mapping of fire occurrences in
canton of Ticino: 1) Creation of the two datasets. 2) Generating the RF model by using
dataset containing information on the forest fires (labelled points). 3) Running the RF
model on the dataset containing the information on the forest cover (unlabelled points)

in order to make predictions. And 4) Mapping the forest fire ignition susceptibility.

1. First we construct two datasets (see Figure 5.18 light green area): one dataset

(Dataset 2 - Table 5.3) containing labelled points (we know the class for each point:

Yes or No fires) used to build the RF model, and the second dataset (Dataset 3 -

Table 5.4) of unlabelled points (e.g. the class for any point in the grid is unknown),

where predictions are made based on the RF model that will be created with the

first dataset.

2. With the training dataset, we performed a RF classification (see Figure 5.18, light

blue area) as explained in Subsection 5.3.1. Then, we evaluated the precision of

the RF model by analysing the misclassification provided by RF. We have also as-

sessed the quality of the RF classification by running the model with the Testing

dataset (see Figure 5.18 yellow ellipse). This allowed us to obtain a misclassifica-

tion rate with data that was not used at all in the construction of the RF model.

Furthermore, the algorithm also provides the variable importance measure which

was used to display the predictor factors affecting the forest fire occurrences in

Ticino.

3. An advantage of the RF is that we can also compute different indexes of accuracy

such as the sensitivity which measures the proportion of true positive points that

are correctly classified (see Equation 5.7). That is, it measures how much the RF

model is able to classify positive points as positive instead of negative. This is
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an important measure in environmental studies since it is crucial that a model

classifies correctly, at least, the positive points, for instance, that a forest fire

labelled point is not classified as “no fire”.

Sensitivity =
TP

TP + FN
(5.7)

where TP is the number of true positive points (positive points classified as pos-

itives) and FN the number of false negative points (the positive points classified

as negative).

4. Next, using the RF model created with dataset 2, we passed dataset 3 (Table 5.4,

dataset to make predictions on the forest cover grid) down each tree to estimate the

prediction classes on the grid enveloping the forest cover in Ticino (see Figure 5.18

pink area). For prediction, a committee system, integrated in the RF algorithm,

votes for the most popular class and assigns the predicted class (value) to the

unlabelled points in the forest cover grid. The RF algorithm also provides a value

of the probability of belonging to the positive class (“fire”), which we had retained

as the probability of fire ignition (susceptibility estimation).

5. Finally, by means of GIS techniques, we mapped the resulting predictions which

represent the susceptibility to fire ignition (see Figure 5.18 orange area). This is

done by creating a table containing the geographical location of each point of the

predicted grid and its corresponding probability value estimated by the RF. This

table was then exported as a raster layer in ArcGIS software where the final fire

susceptibility map was elaborated.

5.4.1 Results and mapping

The RF analysis was carried out using the “randomForest” package [169] in the R sta-

tistical software environment [230]. The RF algorithm was performed on the forest fire

dataset of Canton of Ticino to make predictions on the probability of fire ignition. The

assessment of the quality of the RF model is displayed in Table 5.5. This table presents

the error rates obtained with the OOB observations (OOB ER), with the Testing dataset

(Testing ER) and the Sensitivity measure.

The OOB ER directly estimated by the RF model is 21.28%. This is a good accept-

able error value meaning that about 200 points out of the 941 points in the Training

dataset were misclassified. That is, that for 200 points, the predicted class did not corre-

spond to the true class (the label in the original dataset). Furthermore, when evaluating

the accuracy of the RF model with the Testing data, that is, the 403 events that were

not involved in creating the model, we obtained an error rate of 19.87%, quite similar to

the OOB error rate. This is a good estimation because when labelled points were added

to the model, the error did not increase. Additionally, the sensitivity measure indicates

that 79% of the forest fires points were correctly predicted as “fire”.
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Table 5.5: Error assessment of the Random Forests model for the forest fire ignition
occurrence in Canton of Ticino.

Index Value

OOB ER (%) 21.281 (± 0.681)
Testing ER (%) 19.87 (± 0.821)
Sensitivity (%) 79.00 (± 0.01)

The variable importance provided by the RF algorithm for the forest fire occurrences

in Ticino is presented in Figure 5.19
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Figure 5.19: Variable importance provided by the Random Forests algorithm for the
case of forest fire occurrences in Canton of Ticino using anthropogenic and topographic

features.

Here we can see that the altitude is the most influencing predictor variable for fire

ignition in Ticino. This is probably due to the fact that anthropogenic forest fires mostly

occur at lower and mid-altitudes between 190–1000 m.a.s.l., which can be associated to

the distribution of the urban areas in the Canton. Moreover, in the northern areas,

the mountainous part of Ticino, the topography is characterised by steep slopes which

limits the accessibility to higher forested areas. As a second most influencing predictor

variable, we found the distance to buildings, followed by distance to roads, to vineyards,

to highways, to pathways and to railways, slope, West-East aspect and North-South

aspect.
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As presented in the variable selection for WUI analysis, RF revealed once again that,

among the anthropogenic infrastructures, buildings and roads are the most predisposing

variables for forest fire ignition in Ticino. On the other hand, regarding the topographic

features, RF reported that slope and aspect hardly contribute to the prediction of fire

break-out.

To carry out predictions for the susceptibility mapping of fire ignition in Ticino, we

did not select the most influencing predictor variables, instead, we used all the variables

in the model and we proceeded to estimate the predictions. Figure 5.20 shows the fire

ignition susceptibility map in Ticino (left) with a visualisation on Google Earth (right).
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Figure 5.20: Susceptibility map of the forest fire ignition in Canton of Ticino.

As explained in Section 5.4, the prediction value corresponds to the probability of

belonging to the fire class. This value is a percentage of the positive votes (“fire”) over

all trees. The higher the percentage of the positive votes, the higher the probability to

have a fire event (Figure 5.20 red colour zones). Lower probabilities are given in yellow.

This map can also be interpreted as the degree of predisposition to fire ignition. We can

see that most of the higher susceptibility is located in the low areas along the valleys,

close to the built-up areas and around the road system .

5.5 Conclusions

With the statistical analysis presented in Chapter 4, we provided support and knowl-

edge about the direct impact of human activities in the distribution of anthropogenic

fire ignitions which are characterised by a strong clustering behaviour around human

settlements in a mountainous Swiss region such as the Canton of Ticino. Meanwhile, in
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this chapter, we confirmed that, among human activities, the main fire-ignition cluster-

ing attractors are motorised mobility and related easy access to settlements as shown

by the Random Forest analysis [68]. This revealed that the major WUI issue in this

mountainous region is the fire ignitions triggered mainly by human activities. Particu-

larly, the role of drivable roads in providing access to wild-vegetation lands influences

and enhances fire occurrence by negligence or criminal actions.

The two presented methodologies together with ArcGIS tools provide flexible, adapt-

able and reproducible decisional frameworks for WUI definition, WUI characterisation

and susceptibility mapping in different environments. The two methodologies proved

to be useful for planning and allocation of fire suppression resources and to support

decision making.

Random forests evinced to be a powerful algorithm which can deal with the high

complexity of the study area and with the high dimensionality of the data (a great

variety of predictor variables). The variable importance measure provided valuable

information to better understand the factors shaping the fire occurrence in the region.

With this information, we can design different scenarios by selecting different number

of variables that will be used to estimate predictions. As explained before in Subsection

5.4.1, we used all the predictor variables presented in the original database; nevertheless,

we could have carried out predictions by only using, for instance, the two, three or five

most influencing variables, and run the model to make predictions. This can be adapted

according to the forest and fire managers purposes.

Moreover, the random forests method also showed to be a powerful and useful tool for

fire ignition susceptibility mapping. We can improve this methodology by constructing

larger input spaces and by carrying out analysis to optimise the negative class definition.

Nevertheless, this technique can be used to extrapolate any predictor variable collected

at sample locations across the landscape and to understand which predictors are driving

the distribution with a high level of confidence. We, therefore, highly recommend this

statistical modelling tool to be used in predictive environmental mapping.

All the tools presented in this Chapter should support managers for decision-making,

to reduce the working geographical space by identifying the potential regions for fire sus-

ceptibility and WUI, and to select appropriate preventive plans, for instance, to allocate

water points, to plan interventions for fuel management, and/or to simulate scenarios

under different ground conditions to consider different fire-fighting strategies. It should

also facilitate the revision of fire fighting concepts such as fire brigades organisation,

infrastructure improvement, forestry measures and agricultural practices.

It is important to remind that both susceptibility maps and WUI maps need to be

revised with a certain frame period accounting for the changes in urban growth and in

land uses or any kind of ground conditions.



Chapter 6

Conclusions and future directions

6.1 Space-time pattern analysis

As discussed along Chapter 3, the statistical analyses are powerful techniques provid-

ing flexible solutions for both characterising and understanding the behaviour of the

observed patterns as well as inferring about the underlying processes. The range of

applications in which these methods are positively used is wide and will continue to

expand. Nevertheless, their adaptations and practical applications in complex phenom-

ena need to be further developed. In this context, this Thesis contributed in a better

understanding of the methodological issues encountered when working and considering

the complexity of the studied phenomenon, i.e. the heterogeneity of the embedded spa-

tial/temporal space where the events take place, the variability of the clustering, and

the multivariate nature of the phenomenon.

The application of this methodology also highlighted the importance of considering

multiple scales and shows the sensitivity of the clustering measures for different point

pattern distributions. From this perspective, the results emphasized the great power of

this methodology as an advance tool towards real-world implementations for complex

point processes. We should also point out the reformulation and adaptation of spatial

clustering measures for temporal sequences analysis as it is the case of the Morisita index,

the Box-counting method and the Rényi generalised dimensions. Besides, we must also

say that all these methods remain useful in many other application domains (presented

in subsection 1.3.5), though, this should not be adopted uncritically, i.e., hypotheses of

underlying mechanisms relevant for a particular phenomenon, may not be relevant in

other disciplines.

However, the classification of patterns as regular, random and clustered can be viewed

as an over-simplification of the description of the event’s structure, it is an useful ap-

proach in a early stage of the analysis [91], because patterns for which the hypothesis of

randomness is not rejected, scarcely merit any further formal statistical analysis.

The methodology developed in this Thesis is a new comprehensive and powerful

framework for the analysis of space/time point patterns that can be applied in different

domains. It allows gaining deeper knowledge and understandings of a point pattern

110
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when applied to complex phenomena. As presented along this work, its practical use is

a straightforward procedure allowing the characterisation of the degree of clustering of

the phenomena structures. Nevertheless, although its intelligibility to be applicable to a

wide variety of fields and, although, the efforts of the author of this Thesis in simplifying

the calculations and performance of the clustering algorithms, the application of certain

functions such as the Ripley’s K -function or the space-time permutation scan statistics

model can still result in time-computationally intensive tasks, taking up to several days

or weeks, when facing huge databases. The computing time depends on a wide variety

of variables such as the size of the input dataset, the number of spatial and temporal

intervals, among others.

Furthermore, the introduction of the VD concept and its consideration into the

clustering analysis empowered the interpretation of the real degree of clustering of the

studied patterns. The results displayed and proved to be very distinct from the clustering

values computed when considering only empty geometrical spaces (i.e. square) usually

considered in the literature.

Simulations inside the VDs were generated using the Monte Carlo approach to gen-

erate random point patterns (Poisson distributions) to carry out “goodness-of-fit tests”

for the point process model. The Poisson process is a very useful and simple point

process, in particular for the estimation of intervals of confidence which are used to

test the null hypothesis of CSR. The simulated pattens in each VD also allowed assess-

ing the performance of the statistical methods and visualising the models providing a

better understanding of the structures generated from the study event. We considered

the practical aspects involved when working with finite datasets and their limitations

imposed in the application of theoretical methods.

Consequently, the definition of the VDs in the practical implementation of point

pattern analysis are of great importance and pertinent for the assessment and for the

interpretation of the real clustering of the observed events. Indeed, theoretically, the

values of the clustering measures for a randomly distributed patterns (i.e. Poisson

distribution) are well known and defined (as explained in Section 3.4, i.e. for the Morisita

index the value is 1, for the Box-counting and multifractal formalism (1 or 2 for 1- or

2-Dimension respectively), and 0 for the L-function). However, real-world distributions

are subjected to a certain degree of variations related to both the finite number of

points of the observed events and the constriction of the embedded space. And taking

into account these constraints, one may likely find that the dimensionality of the point

distribution is therefore decreased as well.

6.2 Application on forest fire occurrences

For the application of the methodology in the case of the forest fire occurrences in

Canton of Ticino and in Portugal (presented in Chapter 4), theses analyses revealed

valuable information of the structure of the spatio-temporal global and local clustering.
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One of the main general findings is that anthropogenic and natural fire ignitions have

distinctive spatio-temporal patterns and that they are essentially non-random processes.

They depend on human and environmental variables that have also explicit patterns

that vary in the space and in time. For anthropogenic-triggered fires this investigation

provides very useful information concerning the characteristics of the clusters and their

structural and temporal components, as well as for their importance in the definition of

critical areas for fire mitigation such as the WUI areas and the susceptibility mapping.

Similarly, the detection of lightning induced fire patterns (natural fires) could be a

starting point for a deeper analysis for fire prevention in the mountainous regions, in

view of the dryer and lightning-fire richer summer periods in the future [66].

It is also important to distinguish between the two contexts of the clustering analyses

on the case of forest fires in Canton of Ticino: one, is the exploratory analysis carried out

through the application of the global clustering measures for testing hypotheses about

the general distribution structure of the fire occurrences allowing inferring the role that

different factors may play in causing the ignitions; and second, the predictive modelling

developed with the local clustering measures (space-time permutation scan statistics

model) to identify those areas that are most prone to ignitions. Both results can assist

the Forest Service and policy makers in the identification of fires hotspots useful for a

better definition of the infrastructural and organisational measures required to mitigate

the fire risk in a specific region.

Another practical functionality of the proposed methodology to support decision-

making is the incorporation of the model outputs into a geographical information system

(GIS), to map and to identify fire-prone zones. Outcomes of the space-time permutation

scan statistics model were integrated into a GIS environment allowing the exposition of

the detected clusters. Likewise, the methodologies developed for the WUI characterisa-

tion and the susceptibility mapping benefited from these techniques for data preparation,

pre-processing and results visualisation.

6.3 Contributions

The fundamental contributions of this Thesis can be summarised as follows:

• The development of a novel, flexible and comprehend methodology to both detect

and analyse clusters in space, time and space-time point data.

• The adaptation of traditional statistical and fractal-based techniques for spatial

and temporal analysis of point patterns.

• The introduction and the application of the validity domain concept in the point

pattern analysis, and the development of corresponding clustering measures with

relevant statistical tests.

• The application and the adaptation of the developed methodology in complex real

phenomena as it is the case of the forest fire patterns.
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• The performance of new analysis of forest fire occurrences using a generalised

K -function for an inhomogeneous process, also within different validity domains.

• The application of the space-time permutation scan statistics to two different cases:

1) single event locations using the forest fire occurrences data in Canton of Ticino,

and 2) aggregated data using the forest fire database from Portugal where the fire

events are georeferenced at the smallest administrative unit (Parish).

• The application and the adaptation of the proposed point pattern analysis method-

ology in different environmental and socio-economic studies (for details refer to

Subsection 1.3.5).

• The development of a novel, flexible and systematic methodology for the definition

and mapping of the WUI in Canton of Ticino presented as a complex mountainous

region.

• The development of a flexible methodology for the forest fire susceptibility mapping

in Canton of Ticino.

• The development and customisation of the global clustering measures in R envi-

ronment (an open source software for statistical computing and graphics).

6.4 Future perspectives

In global clustering measures. As presented along the Thesis, the proposed method-

ology offers a powerful and robust framework for the point pattern analysis of

space-time data. Nonetheless, further developments can still be done taking into

account other complexities of the real-world applications. In particular, further

developments may consider the following significant points:

Functional measures

The global clustering measures can be adapted to detect the structure and

dependences of the measures in a studied phenomena (i.e. burnt area for

the case of forest fires) through the generalisation to functional measures.

This may be conceptually interesting, since it forges a connexion between

the support of the measures and the measures themselves: the degree of

clustering of the support (point locations) is computed at different intensity

thresholds of the studied phenomena (measurements) providing an insight

into the spatial/temporal dependence of the measures [120].

Multivariate point processes

For instance, carrying out advance geostatistical analysis for multivariate

analyses and anisotropic modelling and simulations of the point patterns.

In local clustering measures. Adaptation and application of the scan statistics for

prospective analysis taking into account validity domains and irregular shapes of
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clusters. This task can follow the application of scan statistics for the retrospective

analysis for the forest fires data as presented in Section 4.4.

In WUI definition and mapping. Crossing WUI maps with other fire-relevant maps

to identify further fire ignition hot spots and/or other fire-related risk regions [68].

In susceptibility mapping. For fire ignition susceptibility we could further increase

the input space by adding information about, for instance:

• Livestock units as a proxy for biomass removal amount of fuel.

• The proportion of livestock owners from permanent resident population as an

indicator of the potential number of ignition sources.

• Population density maps.

• Vegetation type as a proxy for fuel distribution.

• Meteorological data.
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boxcounting The Box-counting method

Description

Estimation of the Box-counting fractal dimension for point processes. It can be

used to perform analyses for point processes in 1D (time sequences) or 2D (spatial).

Data must be in a data.frame format.

Usage

boxcounting <- function(x, y, minQ=NULL, maxQ=NULL, winobs=NULL

ts=FALSE, mQ=NULL)

Arguments

x Vector of x coordinates of data points.

y Vector of y coordinates of data points.

minQ Minimum number of boxes.

maxQ Maximum number of boxes.

winobs Vector containing the x and y ranges of the observed window: (min x,

max x, min y, max y).

ts Logical value indicating whether the point process is a time series.

mQ Matrix holding the counts of the events for each box at all box sizes.

When “NULL”, the algorithm estimates this matrix.

Details

The computation of this method consists on breaking the fractal pattern (point

set) into pieces by superimposing a regular grid of boxes of size δ1 on the region

under study. Then the number of boxes, N(δ1), necessary to cover the pattern

is counted; that is, one counts all occupied boxes despite the number of points in

each box. Next, the linear size of the boxes is reduced, δ2(< δ1) and the number of

boxes, N(δ2), is counted again. The algorithm goes on until a minimum size δmin

is reached. For a fractal pattern, the scales (δ) and the number of boxes (N(δ))

follow a power law:

N(δ) ∝ δ−dfbox (B.1)

where dfbox is the fractal dimension measured with the Box–counting method and

it is obtained by calculating the slope of the linear regression fitting the data

of the plot which relates log(N(δ)) to log(δ). Thus, this method quantifies the

dimensionality of a pattern by estimating the degree of the pattern spatial coverage

of the space.

Value

This function returns a data.frame containing:
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Q the box size.

logQ natural logarithm of the box size.

nQ the number of boxes for each box size Q.

lognQ the natural logarithm of the number of boxes for each box size Q.

morisita The Morisita index

Description

Estimation of the Morisita Index for point processes. It can be used to perform

a Morisita analysis for point processes in 1D (time sequences) or 2D (spatial),

functional measures and multipoint m-Morisita.

Usage

morisita <- function(x, y, marks=NULL, minQ=0, maxQ=1, nPmin=2,

nPmax=2, winobs=NULL, ts=FALSE)

Arguments

x Vector of x coordinates of data points.

y Vector of y coordinates of data points.

marks (Optional) For marked point processes. Values must be given in a vector

or data frame.

minQ Minimum number of boxes.

maxQ Maximum number of boxes.

nPmin Minimum n-Point Morisita (number of points to be taken for probability

estimation). By default is defined as 2.

nPmax Maximum n-Point Morisita (maximum number of points to be taken

for probability estimation). By default is defined as 2 (when only the

2-Point Morisita (conventional) is desired).

winobs Vector containing the x and y ranges of the observed window: (min x,

max x, min y, max y).

ts Logical value indicating whether the point process is a time series.

Details

This function was made with the contribution of Jean Golay. The Morisita index of

dispersion is a statistical measure used to characterise quantitatively the clustering

(non-homogeneity) of a point set. This classical index, Iδ, is obtained by dividing

the study region into Q identical boxes of size δ (i.e. length of the diagonal); first

starting with a relatively small box size which in turn is increased until a chosen

maximum value is reached. The number of events ni within each box i of size δ is

counted and related to the box size. The Morisita index is then computed as:

Iδ = Q

∑Q
i=1 ni(ni − 1)

N(N − 1)
(B.2)
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where N is the total number of points. It is then possible to draw a plot relating

every Iδ to its corresponding δ.

Now, the generalization of the classical formulation of the Morisita index, called

m-Morisita, is made by considering m points with m ≥ 2. It refers to a family of

indices computed as:

Im,δ = Qm−1
∑Q

i=1 ni(ni − 1)(ni − 2) · · · (ni −m+ 1)

N(N − 1)(N − 2) · · · (N −m+ 1)
(B.3)

Value

This function returns a data.frame containing:

Q the box size.

n-2 the resulting values for two points Morisita.
...

n-m the resulting values for m-points Morisita.

mQcount Quadrats count

Description

Divides the observation window into boxes (quadrats) and counts the number of

points or the probability function in each box. These two operations are computed

for a range of defined box sizes. It can be used for boxes in 1D (time sequences)

or 2D (spatial). Data must be in a data.frame format.

Usage

mQcount <- function(x, y, marks=NULL, minQ=1, maxQ=1, winobs=NULL,

ts=FALSE)

Arguments

x Vector of x coordinates of data points.

y Vector of y coordinates of data points.

marks (Optional) For marked point processes. Values must be given in a vector

or data frame.

minQ Minimum number of boxes.

maxQ Maximum number of boxes.

winobs Vector containing the x and y ranges of the observed window: (min x,

max x, min y, max y).

ts Logical value indicating whether the point process is a time series.

Details
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Quadrats count is an elementary technique for analysing spatial point patterns.

The window containing the point pattern is divided into an Qx ∗Qy grid of rect-

angular boxes or “quadrats”. The number of points (or the probability) in each

box is counted. Then, Q goes from minQ until a maximum maxQ is reached.

Value

This function returns a matrix containing:

Rows corresponds the size of the quadrats.

Columns contains the number of points (or the probability) in each quadrat.

mQcountFrac Quadrats count for fractal analysis

Description

Divides the observation window into 2Q boxes (quadrats) and counts the number of

points or the probability function in each box. These two operations are computed

for a range of defined box sizes. It can be used for boxes in 1D (time sequences)

or 2D (spatial). Data must be in a data.frame format.

Usage

mQcountFrac <- function(x, y, marks=NULL, minQ=0, maxQ=1,

winobs=NULL, ts=FALSE)

Arguments

x Vector of x coordinates of data points.

y Vector of y coordinates of data points.

marks (Optional) For marked point processes. Values must be given in a vector

or data frame.

minQ Minimum number of boxes.

maxQ Maximum number of boxes.

winobs Vector containing the x and y ranges of the observed window: (min x,

max x, min y, max y).

ts Logical value indicating whether the point process is a time series.

Details

It is the same procedure as for the “mQcount” function but for fractal process,

where the observation window is divided by 2Q boxes, instead of a sequence of

Q+ 1 divisions. (See Quadrats count). The number of points (or the probability)

in each box is counted.

Value

This function returns a matrix containing:

Rows corresponds the size of the quadrats.

Columns contains the number of points (or the probability) in each quadrat.
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multifractal The multifractal formalism

Description

Estimation of the Multifractal formalism for point processes. It estimates two

functions: the Rényi generalised dimensions and the multifractal singularity spec-

trum. It can be used to perform a multifractal analysis for point processes in 1D

(time sequences) or 2D (spatial). Data must be in a data.frame format.

Usage

multifractal <- function(x, y, marks=NULL, minQ=NULL, maxQ=NULL,

qmin=0, qmax=0, winobs=NULL, qseq=1,

ts=FALSE, drange=NULL)

Arguments

x Vector of x coordinates of data points.

y Vector of y coordinates of data points.

marks (Optional) For marked point processes. Values must be given in a vector

or data frame.

minQ Minimum number of boxes.

maxQ Maximum number of boxes.

qmin Minimum q order moment. By default is defined as 0.

qmax Maximum q order moment. By default is defined as 0.

winobs Vector containing the x and y ranges of the observed window: (min x,

max x, min y, max y).

ts Logical value indicating whether the point process is a time series.

drange A vector indicating the scale range at which the linear regression will be

made, c(1,2).

Details

Two different approaches are used here to conduct a multifractal analysis: (1) the

Rényi generalised dimensions (see function “renyidim”) which can be viewed as a

global parameter examining how different densities are distributed in the space;

and (2) the multifractal singularity spectrum (see function “singspect”) viewed as

a local parameter which examines the regularity of the distribution of regions with

similar scaling indices. Although, each of these two methods present a different

approach, they both describe the same information. They are both based on the

Box-counting method, where a regular grid of boxes of size δ is superimposed on

the point set and, for both methods , a probability distribution is computed in

each box.

Value
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This formalism returns a data.frame containing:

q the evaluated order moments.

Dq Dq, the Rényi generalised dimensions.

Alpha αq, the singularity strengths at order q.

fAlpha f(αq), the spectrum of the fractal dimensions of boxes with singularity

strength αq.

Tq τq, mass exponent function at order q.

renyidim The Rényi generalised dimensions

Description

Estimation of the Rényi information for point processes. It can be used to perform

analyses for point processes in 1D (time sequences) or 2D (spatial). Data must be

in a data.frame format.

Usage

renyidim <- function(x, y, marks=NULL, minQ=NULL, maxQ=NULL, qmin=0,

qmax=0, qseq=1, winobs=NULL, ts=FALSE, mQ=NULL)

Arguments

x Vector of x coordinates of data points.

y Vector of y coordinates of data points.

marks (Optional) For marked point processes. Values must be given in a vector

or a data.frame.

minQ Minimum number of boxes.

maxQ Maximum number of boxes.

qmin Minimum q order moment. By default is defined as 0.

qmax Maximum q order moment. By default is defined as 0 (when the fractal

dimension analysis is desired).

qseq Value at which the q moment will increase.

winobs Vector containing the x and y ranges of the observed window: (min x,

max x, min y, max y).

ts Logical value indicating whether the point process is a time series.

mQ Matrix holding the counts of events or the estimation of the mass func-

tion for each box at all box sizes. When “NULL”, the algorithm esti-

mates this matrix.

Details
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The spectrum of generalised dimensions, Dq, is estimated by computing the Rényi

information, Iq(δ), of qth order:

Iq(δ) =
1

(1− q)
log(

N(δ)∑
i=1

pi(δ)
q) (B.4)

where pi(δ) is the probability distribution in the ith box of size δ, q ∈ Z, and the

sum is taken for all non-empty boxes. When q → 1, Iq(δ) is defined as:

Iq(δ) = −
N(δ)∑
i=1

pi(δ) log(pi(δ)) (B.5)

Value

This function returns a data.frame containing:

Q the box size.

logQ the natural logarithm of the box size.

Rq the Rényi information for each q order moment.

singspect The singularity spectrum

Description

Estimation of the singularity strength (α) and singularity spectrum (multifractal

spectrum: f(α)) for point processes. It can be used to perform analyses for point

processes in 1D (time sequences) or 2D (spatial). Data must be in a data.frame

format. The code is based on the algorithms presented the book of: Seuront L.,

Fractals and multifractals in ecology and aquatic science, CRC Press, Boca Raton,

2010.

Usage

singspect <- function(x, y, marks=NULL, minQ=NULL, maxQ=NULL,

qmin=0, qmax=0, qseq=1, winobs=NULL,

ts=FALSE, mQ=NULL)

Arguments
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x Vector of x coordinates of data points.

y Vector of y coordinates of data points.

marks (Optional) For marked point processes. Values must be given in a vector

or a data.frame.

minQ Minimum number of boxes.

maxQ Maximum number of boxes.

qmin Minimum q order moment. By default is defined as 0.

qmax Maximum q order moment. By default is defined as 0 (when the fractal

dimension analysis is desired).

qseq Value at which the q moment will increase.

winobs Vector containing the x and y ranges of the observed window: (min x,

max x, min y, max y).

ts Logical value indicating whether the point process is a time series.

mQ Matrix holding the counts of events or the estimation of the mass func-

tion for each box at all box sizes. When “NULL” the algorithm estimates

this matrix.

Details

Chhabra and Jensen, 1989 proposed a method estimating the multifractal singu-

larity spectrum directly from the data as a function of the qth order moments

without the application of the Legendre transform. Let µ(q) be the normalised

measure of the probabilities in the boxes of size δ, such as:

µi(q, δ) =
[pi(δ)]

q∑
i[pi(δ)]

q
(B.6)

where, q provides a tool for exploring denser and rarer regions of the singular

measure. Then, αq and f(αq) can be computed as:

αq = lim
δ→0

∑N(δ)
i µi(q, δ) log pi(δ)

log δ
(B.7)

and

f(αq) = lim
δ→0

∑N(δ)
i µi(q, δ) logµi(q, δ)

log δ
(B.8)

Value

This function returns a data.frame containing:

Q the box size.

logQ the natural logarithm of the box size.

Aq αq, the singularity strength for the order q.

fAq f(αq), the fractal dimension of the singularity strength for the order q.
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[244] A. Rényi. Probability Theory. Akadémiai Kiadò, Budapest, 1970.
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