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Résumé 
 

Aujourd’hui, en pratique clinique, l’évaluation fonctionnelle des patients souffrant de pathologies 

du pied et de la cheville se limite principalement à une approche subjective qui se base sur des 

questionnaires cliniques. Ceci est dû au fait que la plupart des analyses objectives de référence ne 

peuvent être conduites que dans des laboratoires de recherche en raison de la taille et du coût des 

équipements. Néanmoins, grâce au développement récent d’un système ambulatoire d’analyse de 

la marche qui se compose de capteurs inertiels 3D et de capteurs de pression embarqués, 

l’incorporation de l’analyse de la marche dans la pratique clinique est maintenant possible.  

Le but de cette thèse est de montrer la capacité de ce système portable à étudier une pathologie 

spécifique du pied et de la cheville et présente un score d’évaluation quantitatif basé sur l’analyse 

de la marche.  

L’arthrose de cheville terminale (AOA) a été sélectionnée car c’est une pathologie progressive et 

invalidante dont les traitements dépendent de la sévérité. Les chirurgies les plus fréquemment 

appliquées sont l’arthrodèse de cheville (AA), l’arthroplastie totale de cheville (TAR) et, dans des 

cas trop sévères ou des situations d’échec, l’arthrodèse calcanéo-talo-tibiale (TTCA). En général 

l’évaluation subjective montre que les résultats sont, somme toute, assez semblables quelle que 

soit la technique chirurgicale appliquée. Néanmoins, l’analyse objective de la marche montre que 

des différences significatives peuvent être observées et ce, pas seulement pour le pied malade ou 

opéré, mais aussi pour le pied opposé. 

Le travail de thèse se base sur l’étude de 89 participants dont des sujets contrôles, des patients 

souffrant d’arthrose de cheville terminale, des patients après arthrodèse de cheville, prothèse de 
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cheville et arthrodèse TTCA. Les participants ont été évalués fonctionnellement en se basant sur 

des scores cliniques (AOFAS, FAAM et EQ-5D) ainsi que par analyse ambulatoire de la marche. 

Les analyses de marche ont été réalisées dans un espace ouvert permettant aux participants de 

marcher naturellement. Pour chaque participant on a examiné le côté affecté et le côté sain.  

Dans le but de rendre le système d’analyse de la marche assez simple pour être utilisable en 

pratique cette thèse s’est basée sur l’analyse des composantes principales pour identifier les 

paramètres pertinents pour la clinique tout en maintenant l’information importante. Un modèle de 

marche prédictif a pu ensuite être développé qui puisse être utilisé comme un score pour analyser 

les patients et identifier des information qui ne sont pas détectables par l’analyse subjective 

habituelle. 

La réduction du nombre de paramètres pertinents de 48 à 17 a montré sa cohérence avec le 

maintien d’une corrélation forte (>0.7) entre tous les groupes et le set complet de paramètres. Des 

scores paramétriques individuels ont ensuite pu être attribués et un score total a pu être calculé. 

Les scores finaux, qui montrent notamment la supériorité fonctionnelle de l’arthroplastie totale de 

cheville, suivie de la TTCA et de l’AA, s’alignent avec les résultats connus d’analyse de marche. 

Ce travail de thèse est un pas important en direction d’une plus large utilisation de l’analyse de 

marche ambulatoire en pratique clinique. En effet, un système ambulatoire d’analyse de marche a 

été appliqué avec succès puis a servi au développement d’un score de marche à la fois précis et 

simplifié qui offre le potentiel d’utiliser l’analyse de la marche beaucoup plus facilement en 

pratique clinique et en recherche. 
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Summary 

Today’s clinical practice for determining the functional status of patients presenting with foot and 

ankle pathologies and to assess the efficacy of their surgical treatment is mainly restricted to 

subjective functional assessment based on questionnaires. This is due to the current gold standard 

for objective assessment being restricted to research laboratories as a result of the size and cost of 

the equipment. However, with the recent development of a cost effective, portable, ambulatory 

gait analysis (AGA) system, which uses wearable 3-D inertial sensors and pressure insoles, the 

incorporation of an objective gait assessment as part of clinical practice is now a possibility.  

The goal of the present thesis is to show the capability of such a system in reference to a selected 

foot and ankle pathology, and to introduce a quantitative functional gait based outcome score. 

The selected pathology was end-stage ankle osteoarthrosis (AOA) because it is a progressive 

debilitating disease which can be addressed by various surgical treatments, depending on its 

severity. The most common treatments include ankle arthrodesis (AA) and total ankle 

replacement (TAR) and, failing that, tibiotalocalcaneal arthrodesis (TTCA). In general, subjective 

assessment finds the outcome of all surgeries to be fairly similar. However, objective gait 

assessment found that significant differences are to be seen, not only in a patients affected / 

operated side, but also the contra lateral unaffected / un-operated side. 

The present work enrolled 89 participants, including healthy controls, end-stage AOA patients, 

AA patients, TAR patients and TTCA patients. The participants were examined using a functional 

assessment based on clinical scores (AOFAS, FAAM and EQ-5D) as well as an ambulatory gait 
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analysis system. Trials were performed in an open space to allow participants to walk naturally. 

Both sides, for each participant, were tested.  

To simplify objective assessment for clinical practice, it was the aim to utilize the ambulatory 

system to establish clinically relevant gait parameters and to subsequently develop a predictive 

gait model which can be used as a score in assessing patients and identifying information missed 

by current subjective assessments. For the development of a simple, yet meaningful gait score for 

AOA and its surgical corrections, robust parameter reduction using principal component analysis 

was carried out to minimize the number of relevant parameters, whilst maintaining the majority of 

important information. 

The resultant reduction to 17 out of 48 parameter set was consistent in showing strong correlation 

with the full parameter set across all groups (>0.7). Individual parameter scores were then given 

to each parameter based on an established outlier classification and a total gait score was 

calculated accordingly. Final scores align with all previous gait analyses with TAR patients 

receiving the highest scores, followed by TTCA, and AA each showing improvement over AOA 

patients. 

The work presented here is an important step towards promoting the use of ambulatory gait 

analysis in clinical practice. Hence, a validated AGA system was successfully applied and 

developed to a simplified and accurate gait score which offers the potential to use AGA more 

easily in clinical practice and for research purposes.  
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1 Introduction 

1.1 Ankle joint 

The foot and ankle (F&A) is arguably one of the most complex skeletal architecture and 

functional unit in the human body, including 28 bones and more than 30 joints. The ankle 

complex is, in fact, a multi-joint mechanism made up of the true ankle (tibiotalar) joint and the 

subtalar (talocalcaneal) joint (Figure 1), and plays an important role in locomotion [Leardini et 

al., 2014]. A true ankle joint is a hinge type of joint, made by the distal end of the tibia and fibula 

and the proximal side of the talus. The three articular surfaces include: 

1. Medially, the articulation between the medial malleolus and the medial border of the talus. 

2. Laterally, the articulation between the lateral malleolus the lateral border of the talus. 

3. Centrally, the articulation between the distal tibia and the superior dome of the talus.

 

Figure 1: The Ankle Joint Complex, presenting tibiotalar articulation (true ankle joint) and 

talocalcaneal articulation (subtalar joint), lateral view (left), anterior view (right).(Figure is 

adopted from the Lotus Physiotherapy and Rehabilitation: http://www.loftusphysiorehab.com.au), 

and from the American Academy of Orthopedic Surgeons: http://orthoinfo.aaos.org) 

http://www.loftusphysiorehab.com.au/ankle-anatomy-and-physiology/
http://orthoinfo.aaos.org/topic.cfm?topic=a00391


18 

 

The articular cartilage covers the articulating surfaces of the joint. The articular cartilage of the 

ankle joint, unlike that of other weight bearing joints, is thin and uniform in thickness, which 

helps distribute stress under loaded situation [Shepherd and Seedhom, 1999, Simon et al., 1973, 

Wynarsky and Greenwald, 1983]. This is one of the reasons why primary osteoarthrosis is not 

common in the ankle joint. 

The normal freedom of motion around the ankle joint is 20 degrees of extension (also known as 

dorsiflexion) and 50 degrees of plantar flexion in the sagittal plane, 3 degrees of eversion and 8 

degrees of inversion in the coronal plane, while motion in the transverse plane is almost 

neglectable. A normal loading force during level ground walking is 3-5 times the body weight and 

tends to increase with more demanding activities such as running or jumping [Stauffer et al., 

1977]. Moreover, compared to other weight bearing joints, F&A joints are generally subjected to 

a higher force per square centimeter [Thomas et al., 2006]. 

1.2 Ankle degenerative diseases 

The type of arthritis causing low inflammatory chronic progressive degeneration of the joints is 

osteoarthritis. The term was used interchangeably with osteoarthrosis, but recently the definition 

for osteoarthrosis in medical literature has been redefined as a non-inflammatory chronic 

progressive degenerative disease of the joints [Berenbaum, 2013, Mercuri, 2008]. Both 

osteoarthritis and osteoarthrosis are associated with wear and tear of the intra-articular cartilage, 

which eventually leads to narrowing of the joint space, enhanced subchondral bone sclerosis, 

formation of osteophytes, and development of subchondral cysts (Figure 2). Symptoms include 

pain, swelling, joint contracture, and muscle atrophy directing towards different levels of 

functional limitation [Buckwalter et al., 2004, Lawrence et al., 1998]. In 70-80% of cases ankle 
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arthritis is post-traumatic and non-inflammatory in origin [Thomas et al., 2006, Valderrabano et 

al., 2009]. In 10-15% of cases, ankle arthritis develops secondary to other diseases, for example 

rheumatoid arthritis, [Michelson et al., 1994]. While <10% of cases reported are of primary origin 

[Thomas et al., 2006, Valderrabano et al., 2009]. 

 

Figure 2: Radiographic image of end-stage ankle osteoarthrosis, lateral (left) and antero-

posterior (right) views. Reduction of joint space, subchondral bone sclerosis and osteophytes 

can be observed. 

In Europe and North America, 15-20% of the adult population suffers from arthritis with ~10% of 

those including osteoarthrosis [Lawrence et al., 1998, Saltzman et al., 2005, Glazebrook et al., 

2008]. In fact, it has been projected that 25% of the American adult population (67 million 

people) would be diagnosed with some form of arthritis by 2030 [Hootman and Helmick, 2006]. 

Nonetheless, the incidence is low for ankle joint, compared to hip and knee joints, however the 

debilitating effect of the disease is comparable in terms of  pain and loss of function negatively 

affecting patients’ quality of life (QOL) [Thomas et al., 2006, Agel et al., 2005]. The severity of 

the disease is classified based on standardized ankle radiographs. Its functional implication can be 
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assessed using various clinical scores. Different treatment options are available including 

medication, physiotherapy, footwear, lifestyle modification, as well as various surgical 

corrections. 

1.3 Surgical corrections for end-stage ankle osteoarthrosis 

Several surgical options are available to treat ankle osteoarthrosis (AOA), ranging from joint 

preserving surgeries to salvage procedures [Crevoisier, 2009]. However, choosing the optimal 

surgical solution relies on multiple intrinsic and extrinsic factors including: severity of 

degeneration, number of joints involved, quality of the bone and of the surrounding soft tissues, 

general health of the patient, age of the patient, life style of the patient and, importantly, 

expectations of the patient from the surgery. The following subsections detail the common 

surgical options for AOA. 

1.3.1 Ankle arthrodesis 

Ankle arthrodesis (AA) or tibiotalar fusion was first introduced in 1879 [Albert, 1879] and has 

since become the most commonly used surgical treatment for end stage AOA. For a long time it 

has been widely regarded as the gold standard (Figure 3). AA has shown a positive outcome in 

terms of pain relief and functional improvement (based on clinical scores) [Daniels et al., 2014, 

Esparragoza et al., 2011, Haddad et al., 2007]. However, in terms of mobility, the tibiotalar joint 

is completely fused which, in turn, reduces the foot mobility by ~70% in the sagittal plane [Abdo 

and Wasilewski, 1992]. The residual mobility is obtained utilizing compensatory motion of the 

subtalar and mid tarsal joints. The tibiotalar joint should be fused in a neutral dorsiflexed position 

with ~5 degrees of hindfoot valgus and 5 to 10 degrees of external rotation [Buck et al., 1987, 

Abdo and Wasilewski, 1992, Bertrand et al., 2001]. Studies suggest that an optimal fusion 
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position, along with a good subtalar joint health, results in better functional outcome [Bertrand et 

al., 2001, Ben Amor et al., 1999].  

 

Figure 3: Anteroposterior (right) and lateral (left) radiographic images presenting a 

consolidated ankle arthrodesis. To achieve fusion primary stabilization has been performed 

using internal screws and staple fixation. 

1.3.2 Total ankle replacement 

Total ankle replacement (TAR) was first performed in 1970 [Henne and Anderson, 2002]. Since 

then several changes have been made in the prosthesis designs [Henne and Anderson, 2002, 

Saltzman, 2000, Neufeld and Lee, 2000] to reduce the rate of implant failures and improve 

implant longevity (Figure 4). Current TAR designs include both fixed and mobile bearing 

systems. The new generation of implants also have superior anatomic designs which can 

reproduce close to natural joint kinematics [Rush and Todd, 2013]. Midterm clinical results are 

comparable to those obtained after AA [Haddad et al., 2007]. However, the implant longevity is 

still compromised as it deteriorates with time [Henricson and Carlsson, 2015, Jastifer and 

Coughlin, 2015]. Note that this is also as a result of higher physical activity level in TAR patients 



22 

 

[Schuh et al., 2012, Valderrabano et al., 2006, Naal et al., 2009], but this tends to also be a sign of 

superior functionality. As such, TAR is generally preferred for older patients with low physical 

demand. Nonetheless, younger patients today opt for surgery not just for pain reduction but to 

improve functionality and, according to the American College of Foot and Ankle Surgeons, the 

demand for TAR surgeries among younger patients has constantly been on the rising [ACFAS, 

2012]. 

 

Figure 4: Anteroposterior (right) and (left) lateral radiographic views presenting a total 

ankle replacement using a Salto Talaris® fixed bearing anatomical prosthesis. 

1.3.3 Tibiotalocalcaneal arthrodesis 

Tibiotalocalcaneal arthrodesis (TTCA), involves the fusion of both the tibiotalar and the subtalar 

joints (Figure 5). It was first introduced by Russotti and Johnson in 1988 for the treatment of 

combined OA of the tibiotalar and subtalar joints [Russotti et al., 1988]. TTCA is, however, not a 

frequently used procedure and is usually used as a salvage procedure following the failure of 

other ankle and hindfoot surgeries or as primary procedure for complex ankle-hindfoot 
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pathologies [Chou et al., 2000]. Use of a retrograde intramedullary nail is the modern approach as 

it has the advantage of providing better primary stability compared to other implants. Recent 

studies have shown good clinical results and high patients’ satisfaction using this 

technique[Thomas et al., 2015].In terms of function, Gellmann et al reported a similar restriction 

in the sagittal plane motion for both AA and TTCA, however, in the frontal plane, there is a 40% 

decrease in motion for TTCA patients [Gellman et al., 1987]. 

 

Figure 5: Anteroposterior (right) and lateral (left) radiographic image presenting a 

tibiotalocalcaneal fusion using a retrograde intramedullary locking nail. 

1.4 Outcome assessment in ankle surgeries 

Outcome assessment of orthopedic surgeries play an important role in health care delivery as it 

help surgeons measure the efficiency of the surgery [Ayers and Bozic, 2013]. Previously, the 

outcome of orthopedic surgeries was determined solely from the surgeons’ perspective 

(radiographic results, physical examination) [Lieberman et al., 1996]. However, in last few 

decades patient perspective has been given higher importance [Bayley et al., 1995, O’Connor and 

Brinker, 2013]. As a result there has been a continuous rise in the popularity of subjective 
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assessment surrounding patient reported outcome measures (PROMs) [Franklin et al., 2013, 

Pinsker et al., 2013]. In general, the absence of quantitative and qualitative assessment of gait 

biomechanics is the biggest setback in today’s clinical setting. 

1.4.1 Radiographic assessment 

At present, both pre and post-operative outcome assessment of end-stage ankle surgeries is 

mainly based on radiographic results [Saltzman et al., 2010, Ellington et al., 2013, Bestic et al., 

2008]. Pre-operative radiographic assessment looks at the joint in a static loaded position and 

assists in classifying the severity of AOA.  Post-operatively, radiographic results assess the 

success of the operation based on the anatomic structures. For example, good alignment and 

union following AA and TTCA, or good bone and implant health, along with the good implant 

position, in TAR. Radiographic results also assess internal complications including nonunion, 

fractures, adjacent joint arthritis, perihardware lucency or fracture, syndesmotic screw loosening, 

hardware fracture, heterotopic ossification and or increased varus or valgus position of the ankle 

[Lee et al., 2013, Houdek et al., 2014].  Overall, radiographic assessment is an important 

anatomical assessment method which helps in treatment decision making and in assessing the 

success of the operation. However, radiographic assessment can only view the joint in a static 

loading position and as such does not take into consideration dynamic loading, which is important 

for functional independence and to provide a complete picture in terms of joint functionality. 

1.4.2 Subjective outcome assessment 

Assessment of the functional status of patient post-operatively, generally relies on subjective 

questionnaires consisting of PROMs, along with the clinician reported scores [Nunley et al., 

2012, Ellington et al., 2013, Saltzman et al., 2010]. Today, a variety of scores are used in clinical 
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practice, including global health status scores, region specific scores, and disease specific scores 

[Picavet and Hoeymans, 2004, Martin et al., 2005, Pinsker and Daniels, 2011, Roos et al., 2001, 

Domsic and Saltzman, 1998, Hiller et al., 2006]. There are, however, known issues with this 

subjective assessment approach and numerous studies have questioned the validity and precision 

of such methods, especially for the outcome of F&A surgeries [Pinsker et al., 2013, Pinsker and 

Daniels, 2011, Button and Pinney, 2004, Parker et al., 2003, Naal et al., 2010, Hunt and Hurwit, 

2013, Mani et al., 2015].  In particular, PROMs have been shown to give ambiguous results as 

patients do not reliably estimate their functionality, i.e. pain thresholds, activity level, general 

apprehension, etc[O’Connor and Brinker, 2013, Bernstein, 2012]. Due to such an inherent flaw of 

subjectivity, it is, therefore, generally accepted that rating the outcome of a surgery purely based 

on PROMs is not justifiable [Noble et al., 2013]. As such, in a clinical setting, it would be more 

practical to use empirical evidence based assessment measures, i.e. objective [Martin and Irrgang, 

2007]. However, due to being both time and cost effective, subjective scores are still widely used 

in clinical practice and research. In fact, more scores of this type are being introduced every few 

years [Manoli et al., 1997, Martin et al., 2005, Roos et al., 2001, Dawson et al., 2011, Angthong 

et al., 2011, Coster et al., 2012, Morssinkhof et al., 2013, Niki et al., 2013, Martinelli et al., 2014], 

while methods of objective evaluation of a patient’s functional status following F&A surgeries 

are currently either inadequate or still require improvement to be used in clinical practice. 

The only available objective test for physical therapists to assess functional status in rehabilitation 

setting includes “timed up and go test” and “6 minute walk test”, however these tests are found to 

be somewhat simplistic and cannot fully describe the qualitative aspect of gait. Moreover, these 

are first and foremost fitness tests and where not originally designed for the assessment of activity 

of daily living (ADL) [Senden et al., 2011].  To add to this, a high non-compliance rate of patients 



26 

 

in following the prescribed home-based exercise prescription[Jack et al., 2010], can result in 

physiotherapists being generally misinformed about a patient’s functional status. Nonetheless, a 

standardized objective gait assessment method would solve this problem. Furthermore, the 

introduction of gait training, using real-time movement feedback, can be motivational for the 

patient as they are capable of seeing their progress and can, for example, establish personal goals 

[Kim and Mugisha, 2014].  

1.4.3 Gait assessment 

Gait assessment involves the study of locomotion. In 1890, Christian Wihhelm Braune and Otto 

Fischer first studied gait mechanics in humans[Baker, 2007]. However, with the naked eye, it was 

not possible to capture the details of the human gait. In early 1900, pioneers Eadweard Muybridge 

and Étienne-Jules Marey developed a motion capture system, which completely changed the 

study of gait assessment [Baker, 2007] and today, with modern advancements in motion capture, 

it is generally agreed to be the best method of assessing biomechanics. Gait assessment can 

provide information regarding balance, joint loading, and joint range of motion as well as spatial 

and temporal aspects of gait. Note that, despite the advantages in terms of clinical application, 

gait assessment is restricted generally to research laboratories due to the high cost and size of 

equipment required. However, with recent advancements in technology, gait assessment in a 

clinical setting is now very much a possibility. 

Laboratory confined gait assessment 

A gait lab consists of video and or infrared cameras and a pressure embedded walkway. For gait 

assessment, the retroreflective markers are placed on anatomical locations as they are tracked by 

the infrared cameras which give complete information of the movement of each joint in 3-D as 

https://en.wikipedia.org/wiki/%C3%89tienne-Jules_Marey
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well as measure the spatial, temporal and kinematic parameters of gait. While the force plates 

have flat, rigid array of pressure sensors embedded in the floor, walking ramp or treadmill. The 

size of force plates are usually between 2-10m long and can only measure 1 to 5 consecutive steps 

at any given time. This system has been found to be accurate and reliable for gait assessment and 

is currently the gold standard; however, measurement device errors, calibration problems, soft 

tissue artifacts and marker displacement are some of the commonly faced problems. Furthermore, 

patients’ need to make contact with the center of the force plate with enough force to achieve an 

accurate reading [Razak et al., 2012]. This is one of the major drawbacks, as patients consciously 

place their feet on the force plate rather than adhering to their natural walking pattern. Moreover, a 

walking distance of 2-10 m in a safe lab environment is not functionally representative. 

Ambulatory gait assessment  

Ambulatory gait assessment (AGA) is a new method that is not restricted to a laboratory environment. 

It utilizes body worn 3-D motion sensors (Accelerometer and Gyroscope) and pressure sensor 

embedded insoles[Tao et al., 2012]. An inertial measurement unit (IMU) combines the use of 3-D 

accelerometers and gyroscopes, which are commonly available motion sensors. The accelerometer 

measures motion, the gyroscope measures angular velocity and the pressure insoles, which have 

sensors embedded in the shoe, measure the applied pressure at any given time. Unlike lab based 

method AGA is portable, affordable, and convenient. Moreover, it gives the freedom to perform a 

test anywhere, for any distance and therefore is able to capture the natural gait of a patient 

effectively. 
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2 Research questions 
 

As mentioned above, three dimensional gait analysis is a superior assessment method compared 

to PROMs. However, gait assessment has always been regarded as an expensive, complex, time 

and space consuming method, hence, more applicable for research than clinical perspective. But 

with the advancement in technology, the AGA methods have been developed which are relatively 

less expensive, easy to use and less space consuming. However, the time consuming part in terms 

of handling the raw gait data and interpretation of an overwhelming number of gait parameters 

with respect to particular pathologies is still a challenge.  

In terms of practicality, an assessment method to be used in clinical practice should be, reliable, 

robust, clinically meaningful and still easily applicable. Therefore, there is a need to simplify gait 

assessment by removing the redundant gait parameters and find the ideal number of clinically 

relevant parameters which could capture most alterations in patient’s gait and can be easily 

managed in busy clinical setting. 

2.1  Goals of the thesis 

The research question of the thesis is answered based on 4 goals: 

1. Identify clinically relevant gait parameters.  

2. Quantify the importance of bilateral gait assessment. 

3. Compare subjective and modern objective gait assessment methods. 

4. Develop a robust objective gait score for use in clinical practice. 
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3 Methodology 

3.1  Gait Assessment 

3.1.1 Ambulatory gait assessment used in this research 

The AGA system used throughout the present research included five 3-D inertial sensors, each 

consisting of 3-D gyroscopes and 3-D accelerometers as well as PEDAR
® 

pressure insoles. The 

system has already been validated against the gold standard lab based method [Rouhani, 2010], 

see Figure 6. 

 

Figure 6: Validation of utilized ambulatory gait assessment against the gold standard lab based 

method. Patient wearing inertial sensors and pressure insole, walking over the pressure plate 

embedded platform surrounded by high frame rate cameras. Image courtesy of H. Rouhani 

[Rouhani, 2010]. 

Sensor Placement 

Inertial sensors were attached to the medial aspect of both tibia, as well as to the posterior aspect 

of the great tuberosity of the calcaneus, between the bases of the first and the second metatarsals, 

and on the dorsal aspect of the proximal phalanx of the first toe, of the foot being tested, see 
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Figure 7.All five sensors were connected to two portable data-loggers (Physilog®, BioAGM, 

CH).  

 

Figure 7: Sensor placement for the ambulatory gait assessment system. On the tested ankle 

(left side) sensors are placed at the dorsal aspect of the proximal phalanx of the first toe, 

between the bases of the first and the second metatarsals, the great tuberosity of the 

calcaneus. 

Pressure insoles 

The insoles were available in 4 sizes, see Figure 8, and custom-made sandals were used to 

adequately secure the pressure insoles. The plantar pressure data were collected, from the 99 cells 

of the Pedar-X® insoles, at the sampling rate of 200 Hz. The stance time of the gait cycles for 

each trial was identified using sum of the pressure over loaded elements of the insole [Rouhani et 

al., 2011] 
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Figure 8: Different PEDAR insole sizes. 

After the patient preparation, functional calibration of the system is performed by fast passive 

motions of the knee joint followed by walking 50m long straight hospital corridor. All 

participants subsequently perform two walking trials of 50m each at their natural walking speed. 

The protocol for the gait assessment can be seen in Appendix I. Raw data is then subject to post-

processing algorithms including the splitting of Pedar data into 10 subregions of foot. These 

algorithms were written at the École Polytechnique Fédérale de Lausanne (EPFL),in Matlab
® 

to 

allow for subsequent statistical analysis [Rouhani, 2010, Mariani, 2012].  

3.1.2 Multisegment foot model 

This study utilized multisegment foot model for joint kinematic and plantar pressure assessment 

(Figure 9). Multisegment foot models can differentiate between movements of each segment and 

are therefore significantly accurate. For kinematic assessment, study utilized the multisegment 

foot model dividing the foot into 4 segments including shank (SH), hindfoot (HF), forefoot (FF) 

and toes (TO) [Rouhani et al., 2012]. Furthermore, for plantar pressure assessment division of 

foot into multiple subregions helps to provide more localized assessment. Overall the foot is 

https://www.epfl.ch/
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divided into 10 subregions, namely; Hindfoot lateral (HL), Hindfoot medial (HM), Midfoot 

lateral (ML), Midfoot medial (MM), Forefoot lateral (FL), Forefoot medial (FM), Forefoot central 

(FC), First toe (TF), Second toe (TS), Lateral toes (3rd to 5th) (TT) [Rouhani et al., 2011]. 

 

 

Figure 9: Segmentation of foot for kinematic assessment (left) as well as ten sub-regions of 

foot (right) for plantar pressure assessment. 

 

3.1.3 Gait parameters assessed in the study 

Spatiotemporal parameters 

Stance Phase (% GCT): Walking is generally a cyclic event and the time which a foot spends in 

contact with the ground is defined as the stance phase. It starts with heel strike of a foot and 

continues until the toe of the same foot leaves the ground. It constitutes about 60% of the gait 

cycle time (GCT). 

Swing Phase (%GCT): The time in which the foot is not in contact with the ground during the gait 

cycle is defined as the swing phase. It starts with toe-off phase and continues until just before the 

heel strike of the same foot. It constitutes about 40% of the GCT. 

Cadence (steps/min) is defined as the number of steps per minute. 
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Stride length (m) is the distance between two successive placements of the same foot while 

walking or running. It also represents one gait cycle.  

Peak swing speed (PSS) (°/sec) represents the peak angular velocity of the shank (PAVS) during 

the swing phase. 

Inner stance phase events in St % include (see Figure 10): 

Load, the initiation of the stance phase as the heel touches the ground. It constitutes to between 

10-12% of the stance phase. 

 Foot flat is the second event of the stance phase when the whole foot is in contact with the 

ground. It constitutes to between 50-60% of the stance phase. 

Push-off is the last event during the stance phase when only toes are in contact with the ground, 

just before the start of the swing phase. It constitutes to between 30-40% of the stance phase. 

 

 

Figure 10: Inner stance events showing load, foot-flat and push-off phases along with the 

heel-strike (initial contact) and toe-off (terminal contact). Image courtesy of B. Mariani 

[Mariani et al., 2013]. 

Heel-strike pitch angle (HSP) (°) is the angle between the ground and the heel during the initial 

contact of the foot to the ground. 
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Toe-off pitch angle (TOP) (°) is the angle between the ground and the toes during the terminal 

contact of the foot to the ground. 

 

Kinematic parameters:  

Joint kinematics assesses the range of motion (ROM) during dynamic activity. Intersegment 

motion along the sagittal (dorsiflexion/ plantarflexion), coronal (inversion/ eversion) and 

transverse (internal rotation/ external rotation) planes (Figure 11) were assessed. Motion around 

four intersegments was assessed, including; forefoot-hindfoot (FF-HF), hindfoot-shank (HF-SH) 

forefoot-shank (FF-SH) and toe-forefoot (TO-FF) [Rouhani et al., 2012]. Furthermore, 

coordination between the segments performing the motion was assessed in the sagittal plane for 

three intersegments including- FF-HF, HF-SH and FF-SH, utilizing the continuous relative phase 

(CRP) method (detailed in section 5.3.3). 

 

Figure 11: Ankle motion for each of the three planes; sagittal, coronal and transverse. 

Plantar pressure parameters: 

Initial Contact (Tin) (St% time) is the time of initial contact of each foot subregion to the ground. 

Terminal Contact (Tout) (St% time) is the time of terminal contact of each foot subregion. 
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Total contact duration (Tc) (St% time) is the total time a foot subregion remains in contact to the 

ground, i.e.  Tc=Tout-Tin. 

Maximum Force (Max F) (BW %) is peak force in each foot subregion during loading. 

Maximum Pressure (Max P) (kPa) is peak pressure in each foot subregion during loading. 

 

Note that the variability of spatiotemporal, kinematic and plantar pressure parameters was also 

assessed. 

3.2  Clinical assessment 

American Orthopedic Foot and Ankle Score-hindfoot (AOFAS) is the most commonly used 

subjective outcome score in clinical practice and research. It is completed by the clinician, based 

on patient’s response and physical examination [Kitaoka et al., 1994]. 

Foot and Ankle Ability Measure Score (FAAM) is a self-reported health related quality of life 

questionnaire for patients with foot and ankle pathologies. The score has ADL (activity of daily 

living) and sports sections [Martin and Irrgang, 2007, Borloz et al., 2011]. 

EQ-5Dis developed by the EuroQol Research Foundation, it assesses quality of life based on 5 

dimensions (Mobility, Self-Care, ADL, Pain and Anxiety) as well as visual analog score (VAS) 

for health status on the day of assessment [Hung et al., 2015]. All three questionnaires can be 

viewed in full in the Appendix II. 
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4 PhD thesis milestones 

 

 

Figure 12: Milestones described in the following chapter. 
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4.1  Initial investigation 

4.1.1 Introduction 

To test the potential of gait parameter reduction in clinical practice, an initial study was 

performed in moderate to severe hallux valgus (HV) pathology. HV is a pathologic condition 

which includes a medial angulation of the first metatarsal together with a lateral angulation of the 

first toe and causes pain and difficulty in walking. Lapidus is a common surgical procedure to 

treat moderate to severe HV. The goal was to characterize gait in patients with HV and find 

clinically relevant parameters. Furthermore, the patients were followed 6 months postoperatively 

and assessed using the similar gait parameters to check if the reduced parameters add clinically 

relevant information. This particular condition was chosen for the initial investigation for the 

following reasons: 1) Moderate to severe HV is a frequently encountered pathology and is 

associated with a commonly performed surgery at our institution so that it offers a great potential 

patient availability; 2) This pathology is associated with sufficient pain to provoke a pathologic 

gait pattern;  3) Lapidus procedure allows returning to full weight bearing after 3 months 

facilitating, therefore, pre- and postoperative gait assessment within a relatively short period. The 

first hypothesis of the study was that it is possible to characterize gait in HV deformity with 

reduced set of parameters. Second hypothesis was that at early post op period of 6 months the 

reduced set of parameters will provide clinically useful information which is missed by the 

existing clinical assessments.  

4.1.2 Method 

Study included 26 feet with moderate to severe HV and 30 healthy feet from controls were 

assessed and compared. Further on, 10 randomly selected patients who underwent Lapidus 
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correction were followed at 6 months postoperatively. Subjective assessment was performed 

using two foot and ankle specific questionnaires, FAAM and AOFAS-forefoot. Gait assessment 

encompassed the measurement of gait parameters including spatiotemporal (cadence, stance, 

inner stance events, double support, stride, speed, peak swing speed, toe off and heel strike pitch 

angles) kinematics (sagittal, coronal and transverse plane motion around first metatarsophalangeal 

joint (TO-FF intersegment) and total foot (FF-SH intersegment). Lastly plantar pressures 

parameters including total contact duration, maximum force and pressure in 10 foot regions as 

explained earlier. Assessment method was same as described earlier in the methodology.  

For the first part of the study, comparison between controls and the pathologic group was 

performed using the Wilcoxon rank-sum test. Furthermore, the gait parameters, showing a 

significant difference with the controls, were then filtered via forward stepwise regression to 

obtain the most clinically relevant gait parameters for HV deformity which could help describe 

gait deviations in the pathology. The correlation between the filtered gait parameters and FAAM 

and AOFAS scores were also assessed using Spearman's correlation coefficient [Bluman, 1997]. 

For the second part of the study, preoperative versus postoperative comparison is performed using 

the Wilcoxon rank-sign test while comparison of the postoperative outcome with the controls 

were performed using the Wilcoxon rank-sum test. For all comparisons level of significance was 

set at p<0.05 [Bluman, 1997]. 

4.1.3 Results 

Based on the statistical outcome, out of the studied gait parameters, 9 relevant gait parameters 

were found, including: cadence, speed, foot-flat phase, push-off phase, peak swing speed, toe-off 

pitch angle, first metatarsophalangeal joint (MTP1) motion TO-FF) around sagittal plane, total 
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contact duration at hind foot and peak vertical force at the first toe. These parameters showed 

good correlation with the clinical scores (Figure 13), and were capable of clinically describing the 

pathology and postoperative prognosis. While post Lapidus, the gait parameters including the 9 

clinically relevant parameters showed no improvement, in fact most of the 9 parameters showed 

deterioration at 6 months postoperatively representing existing altered gait post operatively. 

Detailed description of gait outcome for both HV and post Lapidus can be found in Appendix IV 

pages 118-131. 

Clinical scores outcome both pre and postoperatively are given in Table 1. Significant 

improvement in radiographic outcome and AOFAS score was reported. While FAAM scores 

showed no difference in the functional outcome.  

  

 

Figure 13: Correlation between gait parameters and clinical scores. All gait parameters 

showed significant correlation, >50%, with both foot and ankle clinical scores (p<0.05) 

[Chopra et al., 2015a]. 
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Table 1 : Clinical assessment preoperatively and 6 months postoperatively, mean (SD) 

Clinical assessment 
HV 

(Pre-operative) 

Post Lapidus 

(Post-operative) 

FAAM-ADL 73.46 (19) 74.46 (11.79) 

AOFAS – total (100) 43 (8) 83 (14)* 

AOFAS – pain  20 (0) 33 (5)* 

AOFAS - function 25 (5) 37 (7)* 

M1/M2 (º) 16 (2.1) 5.3 (2.7)* 

HVA (º) 31 (5.6) 10.4(7.3)* 

DMAA (º) 12 (4.0) 9.2 (4.3) 

*represents (p<0.05), M1/M2: intermetatarsal angle, (HVA): hallux valgus angle, DMAA: distal 

metatarsal articular angle. AOFAS and Radiographic results reported significant improvement at 

6 months postoperatively while FAAM score reported no improvement.[Chopra et al.] 

 

4.1.4 Discussion 

The study managed to successfully isolate the nine gait parameters most clinically relevant in 

characterizing gait variations in HV patients. These nine gait parameters also showed good 

correlation with the clinical scores which shows the clinical significance of these parameters in 

terms of functional outcome. It is also therefore assumed that these parameters alone can 

adequately describe abnormal gait mechanics in HV patients. For example, a gait with slow speed 

and low cadence is a sign of low activity level and can fairly describe the existence of 

apprehensive and or pain. Long foot-flat and short push-off duration, along with a slow peak-

swing speed, describes altered toe propulsion during the terminal stance and early swing phase. 

Reduced toe-off pitch angle and MTP1 sagittal movement can describe the reduced mobility of 

the hallux and toes. The longer contact duration at the hind foot, explains the compensation due to 
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the weak propulsion during weight transfer. Finally, weak vertical force at the first toe could help 

in understanding the partial loading of the hallux due to pain.  

These nine gait parameters also showed no improvement in functional outcome of patients at 6 

months post Lapidus when compared to the preoperative status. In contrast, the AOFAS forefoot 

score and radiographic results showed significant improvement at 6 months postoperatively. 

Hence, postoperatively, if rehabilitation is planned such that these 9 parameters could be brought 

back in-line with an accepted standard, this has the potential to provide good biomechanical 

prognosis. 

 

4.1.5 Conclusion 

The study concludes that; 

1. Subjective assessment may over estimate functional outcome of the surgery. 

2. Objective assessment adds information which has high potential clinical relevance in 

terms of improving rehabilitation.  

3. The physical parameters give empirical evidence related to outcome of a surgery and 

therefore are a valuable component of the patient assessment. 

4. Simplification of the gait assessment method using AGA method and reduction of number 

of assessed gait parameters to the most clinically relevant ones could promote gait 

assessment as part of clinical assessment. 
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 5 Final study 

5.1 Participant recruitment 

The main study performed for the thesis purpose enrolled a total of 89 participants divided into 

three groups including: end-stage ankle osteoarthrosis (AOA) patients; patients who underwent 

three different types of surgery for end-stage ankle AOA surgeries; controls. The patients enrolled 

in the present work were protected under the ethics comity approval of the UNIL already obtained 

for the initial studies by Hossein Rouhani. All participants gave their informed consent. Details of 

participants’ demographics are given in Table 2. 

AOA group 

Participants consisted of patients with isolated post-traumatic end-stage AOA stages 3 and 4 

according to Kellgren and Lawrence, who were not affected by any other pathology of the spine 

and or lower extremities. 

Surgical group 

For AA and TAR subgroups, participants consisted of patients who have had isolated post-

traumatic end-stage AOA, and undergone isolated AA or TAR, between 2003 and 2011. For 

TTCA, participants consisted of patients who have had combined OA of the ankle and subtalar 

joints or had failed TAR surgeries. All surgeries had been performed at the Orthopedic 

Department of the CHUV by a single surgeon, PD Dr. Xavier Crevoisier. Patients were excluded 

if they were affected by any other pathology of the spine and lower extremities. 

Controls 

The control population consisted of healthy volunteers who had no prior history of lower limb 

pathology, injury or surgery. 
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Table 2: Demographics of the study participants, mean (SD) 

Demographics AOA AA TAR TTCA Controls 

No. of participants 15 15 20 15 24 

Age (range) 65 (45-77) 64 (46-79) 63 (42-81) 64(56-81) 52(33-76) 

Sex 5F/ 10M 9F/ 6 M 7F/ 13M 6F/ 9M 17F/ 7M 

Weight 77.8 (12.5) 75.7 (15.7) 81.2 (14) 81.9 (15.3) 69.6 (15) 

Height 166.7 (8.4) 164.9 (8.8) 170 (7.6) 171.9 (8.3) 170 (7.8) 

BMI 27.9 (3.4) 27.5 (5.1) 28.5 (7.9) 27.7 (4.7) 24.1 (4.3) 

Post-surgical follow up - 4.7 (2.7) 2.7 (2) 2.5 (2) - 

 

5.2 Clinical assessment 

The functional status of all study participants according to the three subjective questionnaires is 

given in Table 3. Note that notably low AOFAS score in AA and TTCA patients is due to the 

mobility subscale in the “Function” section of the score. Nonetheless a comparable functional 

status is reported in all three surgical groups, while a lower score is reported for AOA patients, as 

one would expect. These results also suggest that, the further gait comparison between groups 

would not have bias as the functional status of the surgical groups is similar.  

Table 3: Clinical Assessment of the study participants, mean (range) 

Clinical scores AOA AA TAR TTCA 

AOFAS-total 48 (31-72) 66.8 (61-74) * 82 (63-100) * 61 (52-86) * 

AOFAS-Pain 12 (0-20) 24.5 (20-30)* 30 (20-40) * 28 (20-40) * 

AOFAS-Function 31 (17-42) 32.7 (30-36) 42 (27-50) * 26 (10-36) 

FAAM-ADL 61 (32-90) 68.8 (37.5-97.5) 75 (45-97.5) * 72 (48-100) 

EQ-5D 0.47 (-0.14-0.76) 0.60 (0.08-0.73) * 0.66 (0.16-1) * 0.57 (0.08-1) * 

     * represent significant difference from the AOA group. 
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5.3 Gait assessment 

Gait assessment included two walking trials at a normal walking speed over a 50m long hospital 

corridor with each side being tested individually. The following sections details the main gait 

results for each group. More in-depth analysis can be found in [Chopra et al., 2014], [Chopra, 

2015b], [Chopra, 2015a] (see Appendix IV, pages 132-167). 

5.3.1 Spatiotemporal parameters 

Speed 

Previous studies, on health status of patients with chronic diseases [Studenski et al., 2011], have 

found walking speed to be a useful parameter in determining functional status of the patients. 

Furthermore, strong correlation has been observed between walking speed and patient mortality 

[Studenski et al., 2011]. A linear relation has also been reported between walking speed, stride 

length and cadence [Lelas et al., 2003, Kirtley et al., 1985]. Figure 14, shows the average walking 

speed, stride length and cadence of each study group. In comparison to the controls, case groups 

consistently reported a reduced walking speed with an inherent low stride length and reduced 

cadence. Among the three surgical groups, TAR patients reported the fastest walking speed, 

longest stride length and highest cadence.  

Inner stance events 

Percentage of inner stance events for all study groups are presented in Figure 15. A notable 

difference is seen in foot-flat and push-off durations in all three surgical groups on both operated 

(Op) and unoperated (Unop) sides, resulting in longer flatfoot and shortened push-off durations. 
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Figure 14: Average walking speed, stride length and cadence with SD of all study 

groups. The discussed linear relationship between speed, stride and cadence is also 

confirmed.  Stars represent significant difference (p<0.05).  

 

The initial and terminal contact during the stance phase is reported in terms of HSP (loading 

angle) and TOP (push-off angle), respectively (see Figure 10). Figure 16 shows the HSP and TOP 

angles for all study groups. The results show a reduced TOP in all case groups in comparison to 

both controls and their unaffected (Unaff)/ Unop sides. A reduced TOP is the consequence of the 
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longer foot-flat duration which leads to a reduced loading of the hallux. In contrast to TOP, HSP 

showed mixed results between groups. It can be noted that fusion surgeries lead to different 

bilateral HSPs with a reduced angle on the Unop side, while TAR and AOA patients generally 

showed bilateral symmetry. 

 

Figure 15: Inner stance events for controls and the two sides of each case group. Foot-flat 

and push-off duration in both sides of all case groups have shown visible difference with the 

controls. Stars represent significant difference (p<0.05). 
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Figure 16: Toe-off pitch (TOP) and Heel-strike pitch (HSP) angles. Results show, better 

bilateral outcome in HSP in comparison to TOP. For easier readability results are displayed 

using two different scales. Stars represent significant difference (p<0.05). Note that TOP 

angle is 3-4 times larger than HSP as the former is followed by the swing phase. 

 

5.3.2 Plantar pressure parameters 

The assessment of joint loading during dynamic activity is a valuable tool for understanding 

weight bearing joints, as abnormal loading is related with the wear and tear of joints causing 

progressive degeneration. For the knee joint, several studies have attempted to reduce knee 

loading to prevent the progression of OA [Fregly, 2012, Kinney et al., 2013]. The foot plantar 

pressure assessment can detail loading anomalies, which could be studied by dividing the foot 

into different subregions. For example, in healthy adults, their loading pattern follows the 
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following trend; hindfoot medial to midfoot lateral to forefoot central, and lastly to the hallux 

during push-off. The peak loading pattern in controls and the altered loading pattern in the fusion 

surgery groups can be seen in Figure 17. Results report an altered loading pattern and or 

magnitude at different foot subregions in the case groups. Below plantar pressure outcome for the 

four case groups are presented and compared with controls and their contralateral normal sides.  

 

Figure 17: Peak pressure pattern of each group during stance phase. Solid line represents 

the Aff/ Op side and dotted line represents Unaff/ Unop side. AA and TTCA show a 

significantly altered peak pressure pattern for the Op side. The Unop side of TTCA showed 

equal peak pressure over whole of hindfoot. 

 

Ankle osteoarthrosis 

In comparison to the controls, AOA patients showed significant variations in 5 subregions for Tc, 

4 subregions for Max F and 3 subregions for Max P on the affected (Aff) side and, on the Unaff 

side significant difference was reported in 6 subregions for Tc, 5 subregions for Max F and 2 

subregions for Max P (Figure 18).  All parameters show a reduced loading at the hallux. 

Comparing the Aff and Unaff side, difference was reported in all three parameters, Tc, Max F and 
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Max P, in the toe subregions. Above described results suggest the importance of assessment of 

complete foot for ankle pathology as, foot and ankle being a closed chain system, biomechanical 

alteration at one joint leads to adaptation in other surrounding joints. Further detail can be found 

in [Chopra, 2015a] (Appendix IV, pages 157-167). 

Ankle arthrodesis 

AA patients show a variation in Tc at 4 subregions as well as for Max F at 4 and Max P at 6 

subregions of their Op side when compared to healthy controls (Figure 19). A lateral shift in 

loading pattern is also reported at the hindfoot on the Op side (Figure 17). The Unop side of AA 

patients showed differences in Tc at 9, Max F at 1 and Max P of 5 subregions. Such asymmetry is 

expected to have an undesirable effect on the contralateral foot in the long run. An Op to Unop 

side comparison also reported significant differences in Tc at 8 subregions as well as for Max F 

and Max P in 4 and 6 subregions, respectively. This clearly shows gait asymmetry, which is 

representative of a limping gait pattern. Further details can be found in [Chopra, 2015b] (see 

Appendix IV, pages 140-156). 

Total ankle replacement 

In TAR patients, when compared to the healthy controls, the Op side showed significant 

differences in Tc for 5 subregions, for Max F and Max P at 4 and 2 subregions, respectively, and 

the Unop side showed significant differences in Tc for 3 subregions as well as Max F and Max P 

at 2 subregions each  (Figure 20). Furthermore, a reduced loading was reported at the midfoot 

lateral region on both sides. Op to Unop comparison shows relatively good symmetry with major 

differences for Tc at the TS, Max F and Max P at HL. The loading pattern of both sides is also 

seen to be similar to the controls. Further detail can be seen in [Chopra et al., 2014] (see 

Appendix IV, pages 132-139). 
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Figure 18: Bilateral total contact duration (Tc) (% St), Max Force (Max F) and Max 

Pressure (Max P) in 10 foot subregions for AOA patients. Black represents control, orange 

represent AOA Aff side and Orange light represent Unaff side AOA. Stars represent 

significant difference (p<0.05). Gait symmetry can be seen except for the toe subregions. 

 

 

 

 

 



54 

 

 

 

Figure 19: Bilateral total contact duration (Tc) (% St), Max Force (Max F) and Max Pressure (Max 

P) in 10 foot subregions for AA patients. Black represents control, red represent AA Op side and red 

light represent Unop side. Stars represent significant difference (p<0.05). Bilateral gait symmetry is 

seen to be altered significantly over all 10 subregions. 

 

Tibiotalocalcaneal arthrodesis 

Lastly, in TTCA patients when compared to controls Op side showed differences in Tc, Max F 

and Max P at 5,3 and 3 subregions, respectively, and Unop side showed difference in Tc for 5 

subregions as well as for Max F and Max P at 1 subregion each (Figure 21). Furthermore, both 
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sides showed differences in parameters in similar subregions when compared to the controls 

except Tc and Max P at toe regions.  Op to Unop side comparison reported a difference only in Tc 

for second toe region, suggesting good gait symmetry. Note that, unlike AA the loading pattern at 

the hindfoot is seen to be preserved following TTCA. Further detail can be seen in [Chopra, 

2015b] (see Appendix IV, pages 140-156). 

 

Figure 20: Bilateral total contact duration (Tc) (% St), Max Force (Max F) and Max Pressure (Max 

P) in 10 foot subregions for TAR patients. Black represents controls, blue represent TAR Op side 

and blue light represent Unop side. Stars represent significant difference (p<0.05). Bilateral gait 

symmetry is seen to be preserved in TAR patients and is comparable to the controls. 
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Figure 21: Bilateral total contact duration (Tc) (% St), Max Force (Max F) and Max Pressure (Max 

P) in 10 foot subregions for TTCA patients. Black represents control, green represent TTCA Op side 

and green light represent Unop side. Stars represent significant difference (p<0.05). Bilateral gait 

symmetry is seen to be preserved except for the hallux subregion. 

 

5.3.3 Kinematics 

Joint kinematic results provide information regarding the freedom of motion around a joint.  End-

stage AOA is known to cause joint stiffness making kinematic assessment an important tool to 

quantitatively assess joint restriction. However, walking function does not necessarily require a 
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joint to move to its full range and any restriction detected by a passive range of motion test, if not 

severe, may not properly estimate functional restriction. Furthermore, during goniometric 

assessment of ROM each joint is assessed individually which gives little to no information 

regarding how different intersegments coordinate together. Nonetheless the measured mean 

intersegment range of motion in all three planes for the study groups is given in Table 4. 

As seen, the majority of the motion occurs in the sagittal plane during forward propulsion of the 

body while walking. Notable differences were reported in the case groups compared to the 

controls. The Aff side of AOA patients showed reduced sagittal plane ROM in all four 

intersegments compared to controls. Among the surgical groups AA Op side notably showed 

reduced ROM in all intersegments in all planes, while their Unop side showed no significant 

difference at all. TAR Op side showed similar result as AOA patients reporting reduced ROM in 

all four intersegments in the sagittal plane, with the Unop side showed no difference. Lastly, 

TTCA Op side showed reduced motion in all intersegments in the sagittal plane, as well as for the 

HF-SH and FF-SH intersegments in the coronal and transverse planes. While, TTCA Unop side 

only showed a reduced ROM in the sagittal plane, at TO-FF and FF-SH intersegments. Note that 

body worn inertial sensors are, however, subject to drift error from accumulated signal noise 

while measuring sensors orientation angles [Takeda et al., 2014], particularly in the coronal and 

transverse planes [Rouhani et al., 2012].  

Figure 22 shows the division of motion between dorsiflexion and plantarflexion during the stance 

phase of the gait cycle. A reduced plantar flexion can be seen at the end of the stance phase in 

most groups. Notably, the HF-SH intersegment of the Unop side of AA and TTCA groups 

showed no difference with the controls in terms of ROM, however, the movement pattern showed 

more similarity to the Op side than to the controls.  
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Table 4: Range of motion in three planes of each intersegments, mean (SD) 
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Furthermore, the FF-SH intersegment of the Unop side of both AA and TTCA groups showed 

plantar flexed position during heel strike, unlike controls, while the Op side shows a neutral 

motion. For TO-FF intersegment all four groups reported reduced ROM and at the end of the 

stance reduced dorsiflexion was seen in AOA, AA and TTCA groups.  

 

 

Figure 22: Range of motion in sagittal plane for three intersegments over 100% stance duration. Positive angle 

represents dorsiflexion and negative represents plantar flexion. Bold lines show controls and case groups 

accordingly, dotted line show the Unaff/ Unop side. 
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Continuous relative phase 

 
 

CRP allows one to look at intersegment coordination throughout the gait cycle, providing an 

otherwise missed qualitative perspective of the ankle dynamics. CRP is calculated in 

accordance with the following equations, 

𝛷 = 𝑡𝑎𝑛−1  
𝜔

ɵ
 ,     (2.2) 

where 𝛷 is the phase angle, 𝜔 is the angular velocity and ɵ the static angle and the CRP is the 

difference in phase angle between segments, 

𝐶𝑅𝑃 = 𝛷2 −𝛷1.     (2.3) 

An example following the derivation for the forefoot-hindfoot intersegment is shown in 

Figure 23. The final plot shows the CRP for the full duration of a gait cycle, with positive 

values representing distal rotation and negative values representing proximal rotation. CRP 

was calculated for the three main foot segments of both sides for all groups. Investigation was 

only in the sagittal plane, due the given importance by previous significance results. Results 

can be found in Figure 24. 

Forefoot-hindfoot coordination 

Most notably, TAR is the only surgical option with both sides showing initial contact results 

similar to the controls. AA patients only show comparable results in the Op side, with their 

Unop side initial distal rotation comparable to AOA patients. Furthermore, both sides of TTCA 

patients have a worse initial distal rotation than AOA patients. Looking at push-off peaks, both 

AA and TAR perform reasonably well in comparison to controls, however, TTCA patients 
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show significant asymmetry albeit still an improvement on AOA patients which, in fact, show 

distal rotation for the Op side.      

 

Figure 23: Example of CRP derivation for the forefoot-hindfoot intersegment. [Chopra 2015] 
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Figure 24: CRP curves of all groups for the three inter-segments in sagittal plane. 
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Hindfoot-shank coordination  

In general, all surgical options appeared to have made significant improvements over AOA 

patients, bringing the ROM in the distal segment in-line with controls, with the exception of a 

notable asymmetry in TTCA patients. Looking at the push-off peaks, AA and TTCA both 

show a significant reduction in proximal rotation of their Op sides, likely due to joint fusion. 

However, TAR patients, in fact, showed significant asymmetry during push-off with a distal 

rotation observed at the Op side. 

Forefoot-shank coordination  

Again, all surgical options appeared to make significant improvements over AOA patients, 

with reduced asymmetry and a ROM of comparable magnitude to the controls in both initial 

contact and push-off. Of the three surgeries, TAR shows the best results with both Op and 

Unop sides being comparable to controls, see Appendix IV, pages 176-191. 

5.3.4 Gait variability 

Gait variability looks at the fluctuation in walking function [Hausdorff, 2005]. Notably, 

variability in spatiotemporal and kinematic parameters is found to be associated with an 

increased risk of fall in patients following hip and knee arthroplasty [Jorgensen and Kehlet, 

2013, Kiss, 2010, Kiss, 2011]. The gait variability is calculated using the coefficient of 

variation, in accordance with 

𝐶𝑉(%) =
𝑠𝑡𝑑𝑒𝑣

𝑚𝑒𝑎𝑛
∗ 100.     (2.4) 

In the present study, [Chopra S., 2015] the effect of gait variability in AOA patients was 

investigated, before and after the surgical correction. In contrast to gait parameters, results 
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showed little to no correlation between the clinical scores (Figure 25). In fact, FAAM score 

showed < 20% correlation with most gait variability parameters with exception of foot-flat 

variability. The study concluded that, unlike hip and knee OA, in AOA gait variability is not 

found to be an important parameter when determining the outcome of the ankle surgeries, see 

Appendix IV, pages 168-175. 

 

 

Figure 25: Correlation between AOFAS and FAAM with a. gait parameters, b. variability 

in gait parameters. Good correlation (> 40%) is reported between the clinical scores and 

gait parameters while weak correlation (< 40%) is reported for gait variability.[Chopra 

S., 2015] 
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6 Development of the gait score 
 

6.1 Introduction 

The final goal of the thesis was to develop a simple, yet robust objective assessment score 

which is both easy to use and can provide an accurate clinical representation of the patient’s 

functional status in comparison to the existing subjective assessment methods.  As previously 

discussed, the pilot study reported drawbacks in the use of clinical subjective scores which, 

though capture variation in functional status in patients with deformity, are not reliable enough 

to assess postoperative functional status. This is mostly due to the outcome of subjective 

questionnaires being highly weighted towards pain threshold and once the pain is reduced, the 

overall average outcome of the score tends to increase irrespective of the real functional ability 

of the patient. The pilot study also suggested that for clinical usability and simplicity it is 

important to reduce the number of parameters used for assessment to a more manageable 

amount, whilst retaining the majority of information. This section details the development of 

an objective gait score utilizing most clinically relevant gait parameters as well as showcasing 

its reliability and capability relative to subjective methods both in AOA and following its 

surgical corrections.  

6.2 Method 

Data from 80 participants including 15 AOA, 50 post-operative patients including; 15 AA, 20 

total ankle replacement TAR, and 15 TTCA patients, and 15 controls were included. Detailed 

description of the study group is given in section 5.1. However, from the total 25 controls 

examined in this thesis, only 15 age matched controls were included in this part of the study in 
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order to remove age related discrepancy in the development of the final gait score. Gait 

assessment was performed using the described ambulatory gait assessment system (detailed in 

section 3.1) clinical assessment was made using the two clinical foot and ankle specific 

(AOFAS, FAAM) and one global health status score (EQ5D) (detailed in section 3.2). 

6.2.1 Data reduction 

Primarily data reduction was carried out focusing on the AOA group and all the 48 gait 

parameters (detailed in section 3.1.1) were utilized. Firstly, gait parameters in AOA patients 

showing significant difference with age matched controls were identified using the t test (at 

p<0.05, 25 out of 48 parameters). The goal was then to further reduce this parameter set to find 

least number of parameters whilst maintaining a sufficiently strong correlation (> 0.7) to the 

complete parameter set. Note that, unlike the pilot study which used stepwise regression, this 

process was carried out using the principal component analysis (PCA), as PCA has been found 

to be a more robust method of multivariate data reduction, particularly for parameter sets with 

such widespread variances [Daffertshofer et al., 2004, Meyer et al., 2015].  

Principal component analysis 

PCA is the deliberate reduction in dimensionality of a data set, which consists of a large 

number of correlated variables, whilst retaining as much information as possible. This is 

achieved by transforming the data to a new set of variables, which are then ordered so that the 

first few retain the majority of initial information [Jollieff, 2012]. 

PCA starts with a mathematical transformation which results in a number of “components” 

equal to the number of original variables. Each component is an eigenvector, i.e. main axis, of 

the transformed parameter “subspace”, with each component representing a specific 
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percentage of data variance. Components are then ordered by percentage of variance and the 

number of principal components (PCs) is decided by a threshold of accumulated variance 

(topic specific). The remaining components are referred to as residuals and represent the 

square prediction error (Figure 26).Subsequent analysis of both PCs and residuals can be used 

to improve model accuracy by investigating the “lack-of-fit” (Q-statistic) as well as the 

“goodness-of-fit” (Hotelling T
2
-statistic). In this study, we set >90 % of variance as the 

inclusion criteria for PCs in accordance with [Deluzio and Astephen, 2007, Jackson, 1991]. 

Note that, with such a high threshold, residuals are almost redundant and as such only the 

T
2
-statistic analysis was used in data reduction. 

 

Figure 26: 2-D PCA visualization plot defining the principal component and residual, Q. 

 Hotelling T
2
-statistic 

 

The Hotelling T
2
-statistic calculates the distance between the theoretical central point of a base 

distribution and any another “subject” point within the parameter space. This allows one to 
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express patient variation across all principle components in a single value. The Hotelling 

T
2
-statistic is calculated following [Deluzio and Astephen, 2007, Deluzio et al., 1997], 

       𝑇2 = 𝑥𝑇 𝜮𝑛 
−2𝑃𝑇𝑥,      (2.5) 

where 𝑥 is the new observation, 𝑃 is the space transform vector, 𝑛 is the number of principle 

components and 𝜮𝒏 contains the magnitude of all principle components. Figure 27 shows a 

simplified data elimination process using the T
2
-statistics as it would be in 2-D, i.e. only two 

principle parameters (PP). It shows that if the T
2
-statistic of both PP1&2 is equal to only PP1, 

then the influence of PP2 is almost zero suggesting that PP2 is not necessary in providing good 

correlation with the full data set. In such a situation, PP2 is removed. 

 

Figure 27: Parameter Reduction 2-D Visualization. 

 Data reduction steps 

The complete process of data reduction is outlined in Figure 28. Note that this method is not 

solely applicable to this use, but could be used in any similar process of data reduction for 

various other pathologies and or different aspects of gait. Following the identification of 25 
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significant parameters, PCA was performed on both the full (48n parameters) and reduced (25 

parameters) data sets. Pending acceptable correlation with the subject groups (> 0.9), i.e. AOA 

Aff, this process is repeated each time with removing the least significant parameter from the 

reduced data set until the correlation is below the defined threshold. Following this, PCA was 

carried out with the remaining reduced parameter set on all subject groups.  If the correlation 

exceeds a more lenient threshold (>0.7) for all groups, the reduced parameter set is selected. 

However, if any do not exceed this level of correlation, the most significant missing 

parameters from these specific groups were identified and the whole reduction process is 

repeated accordingly until each side of all groups exceed the lenient correlation threshold. 

 

 

Figure 28: Flow chart of data reduction method. 
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6.2.2 Scoring system 

The scoring system is based on each of the remaining parameters following data reduction. 

Score was provided to individual parameters and along with that final score was provided 

based on the individual scores. All the included parameters were weighted equally for the ease 

of interpretation of the individual scores. To define the range for the individual parameter 

scores Tukey’s outlier detection method was used [Seo, 2002]. Tukey’s method finds outliers 

by defining the range as follows – Q3+(1.5*IQR) and “Q1-(1.5*IQR)  as upper and lower 

inner fences and Q1-(3*IQR) and Q3+(3*IQR) as upper and lower outer fences, with anything 

beyond the outer fences as extreme outlier”[Tukey, 1977], where Q1 and Q3 are the first and 

third quartiles of an age matched control group and IQR is the interquartile range. Based on the 

method, multiples of 1.5*control (IQR) are given a score between 0 and 3, with 0 representing 

optimal performance (very good), score of 1 representing good, 2 representing average and 

score of 3 reporting severe gait abnormality (Figure 29). 

 

Figure 29: Scoring system utilizing the Tukey's outlier detection method. IQR: interquartile range, Q1: 1
st
 

quartile and Q3: 3
rd

 quartile 



71 

 

6.3 Results 

6.3.1 Data reduction 

In this study, 15 parameters were originally identified with very high correlation to the AOA 

Aff group. This reduced set was then also found to show high correlation in all three groups 

including AOA, AA, and TAR. However, the TTCA Op group correlation was only moderate 

to low (0.45), which may be due to TTCA not solely being an isolated surgery for AOA, but 

patients may have also had subtalar pathologies. As a result the 5 most significant parameters 

of TTCA patients which were not already included were added and the reduction process was 

repeated until all four groups reported strong correlation (>0.7) (Table 5).The resultant final 17 

parameters include; cadence, speed, peak swing speed, toe-off pitch angle, sagittal plane 

motion at toe-forefoot, forefoot-hindfoot and forefoot-shank intersegments, coronal plane 

motion at forefoot-shank intersegment, total contact at hindfoot lateral, midfoot lateral, 

forefoot central and first toe, maximum force at hindfoot medial, second and forst toe and 

lastly, maximum pressure at hindfoot medial and forst toe, with total contact at hindfoot lateral 

and forefoot central being included to sufficiently represent TTCA. 

Table 5: Correlation coefficient (r) of reduced parameter sets with results using all 48 

parameters. 

No. of parameters AOA AA TAR TTCA 

15 0.968 ** 0.918** 0.81** 0.45 

17 0.914** 0.80** 0.85** 0.76* 

** represents p<0.001 and * p<0.01 
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6.3.2 Scoring system 

Gait score results coincides with previous comparative studies of this thesis, with, on average, 

TAR performing significantly better than AOA, TTCA showing moderate improvement and 

AA showing little to no improvement. Detailed gait score for all the four case groups including 

AOA, AA, TAR and TTCA are given in Appendix III. Comparison between the outcome of 

the gait score and the clinical scores can be seen in Figure 30. The median gait score reported 

for AOA, AA, TAR and TTCA were 64 (17), 67 (10), 74 (4.5) and 71 (12), respectively, with 

significant improvement reported only in TAR group. On the other hand, AOFAS is shown to 

be giving an exaggerated outcome with significant improvement in functional status following 

all surgical corrections. FAAM on the other hand, reported outcome similar to the gait score 

when compared with the AOA group. However, for comparison between surgeries, FAAM 

reported similar outcome following TAR and AA in contrast to the gait score which reported 

significantly reduced gait score in AA compared to the TAR group. Difference between the 

outcome of F&A specific clinical scores were found to be similar as was reported in the pilot 

study.  

Table 6 and Figure 31 show the correlation between the gait score and subjective scores. In 

general, little to no correlation is found (<0.4) which, following established issues with 

subjective scoring, is expected. Note that the subjective scores themselves even show little to 

no correlation with each other. 
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Figure 30: Median and IQR of outcome of the proposed gait score and two clinical scores. 

represents significant difference with the AOA, represents significant difference with the 

TAR. It can be noted that outcome of both the F&A specific clinical scores differ. None of 

the two clinical scores coincide with the gait scores. 

 

Table 6: Correlation (r) between the scores for each of the four case groups is given with 

the level of significance (p) 

Groups Gait score vs FAAM Gait score Vs AOFAS 
FAAM  vs 

AOFAS 

AOA 0.07 (p=0.8) 0.28 (p=0.46) 0.40 (p=0.28) 

AA 0.46 (p=0.15) 0.05 (p=0.88) 0.14 (p=0.67) 

TAR 0.08 (p=0.76) 0.36 (p=0.17) 0.79 (p=0.0002) 

TTCA 0.16 (p=0.64) 0.61 (p=0.046) 0.43 (p=0.18) 

Combined 0.27 (p=0.07) 0.42 (p=0.003) 0.59 (p=0.35) 
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Figure 31: Correlation between gait score and the clinical subjective scores. All four 

group combined. 

 

6.4 Discussion  
 

The aim of this thesis was to develop a gait score for AOA and its surgical treatments. 

Improving upon the pilot study, a robust data reduction method using PCA was used to 

optimize the number of parameters, whilst retaining a high correlation of the selected 

parameters not just with the full data set of AOA but with all three surgical groups (AA, TAR 

and TTCA). It is of note that, in accordance with results presented earlier in this thesis, the 

importance of these 17 parameters in terms of gait alteration can be confirmed. In addition 7 of 

9 parameters which were found to characterize HV is also found in the AOA gait score, 

suggesting the score has the potential to be used for other F&A pathologies.  
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Reduced parameter set rationale 

Spatiotemporal parameters included were: cadence, speed, PSS and TOP. Speed and cadence, 

both highly correlated, have been shown to be parameters which can assist in health status 

diagnosis. Furthermore, both PSS and TOP have been shown to play important roles in 

maintaining both the walking speed and swing angular momentum which are essential in 

characterizing gait.   

For kinematics, the gait score included: sagittal plane motion at TO-FF (hallux), FF-HF 

(midfoot) and SH-FF (ankle). This is because compare to the three planes, sagittal plane 

performs the majority of motion for propelling the body forward with each section of the foot 

being equally represented within this plane.  

Plantar pressure parameters included: Max F and Max P at hindfoot medial, Tc, Max F and 

Max P at the first toe and Max F ofthe second toe as well asTc of the hindfoot lateral, midfoot 

lateral and forefoot central regions. All parameters together shows both impact force in the 

most important regions for pathological patients, hindfoot and toes, as well as gives general 

information about the contact duration of each major foot region.  

All in all, each of the remaining parameters show essential information regarding pathological 

gait characteristics with no left out parameters giving information which is not already 

represented and or deemed important.  

Scoring System 

The decision to include individual parameter scoring along with the overall final score was to 

allow for an independent cross-reference to overall performance which could assist clinicians 
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in quickly assessing particular issues for given individuals. Furthermore, the scoring system 

gave equal weightage to all the parameters in the gait score this might not be the best method 

in terms of statistics, however, from clinical perspective gait parameters are seen to be related 

to each other and alteration in one parameter has shown effect on other. In such scenario, 

giving more weightage to certain parameters over other would not seem beneficial. In fact this 

could make the interpretation of the score more complex.   

In conclusion, the developed gait score is thought to be a robust, practical (quick and easy to 

use/assess/show progress), and reliable assessment method. Nonetheless, the responsiveness, 

reliability and repeatability of the score require further study. In particular, the score needs to be 

rigorously tested in greater study population and also for different foot and ankle pathologies.  
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7 Conclusion and perspectives 

In recent years, research into orthopedic surgery has shown that objective assessment can be 

used to improve understanding of the biomechanical and functional status of a patient, both 

pre- and postoperatively. This, in conjunction with the recent development of a cost effective 

and portable ambulatory gait assessment (AGA) system, has brought forward the question of 

the potential for objective gait assessment for foot and ankle (F&A) surgeries in clinical 

practice, a field currently dominated by potentially error-ridden subjective questionnaires. As a 

result, this study was carried out to test the validity of such a system for use in clinical practice, 

including the development of an objective outcome score to complement and or rival such 

questionnaires. 

7.1 Answering thesis questions 

7.1.1 Identification of clinically relevant gait parameters 

A pilot study, using the AGA system on patients with hallux valgus, showed that it is possible 

to quantitatively characterize a patient’s gait with a reduced parameter set, 9 of the 47 

parameters. Another investigation also found that for a qualitative interpretation of overall 

functionality, foot intersegment coordination can be very useful. Finally, in developing a gait 

score, progressing on used methods of identifying parameter significance, it was shown that it 

was possible to characterize AOA and surgical patients with only 17 of the 48 parameters. 

Overall, a clear and robust method of identifying clinically relevant gait parameters was 

established. 
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7.1.2 Quantifying importance of bilateral gait assessment 

Bilateral gait assessment is not common in F&A studies with unoperated / unaffected side 

largely been ignored and or presumed normal. An investigation looking at bilateral 

performance found that unilateral ankle surgeries can, in fact, have an equally detrimental 

effect on the contralateral side. For example, surgical comparison found that TAR and TTCA 

surgeries resulted insignificantly better gait symmetry than AA. In fact, even preoperative 

AOA patients showed better bilateral gait mechanics than the AA. Results showed the 

importance of bilateral gait assessment.  

7.1.3 Comparing subjective and modern objective gait assessment methods 

Studies repeatedly showed the importance of using AGA over subjective assessment methods, 

with subjective assessment notably exaggerating how well a patient is performing. F&A 

surgery outcomes were compared against each other based on clinical scores as well as gait 

assessment. While clinical scores showed all surgeries to result in a similar functional status, 

significant differences were to be seen in objective assessment.   

7.1.4 Development of a robust gait assessment score 

A predictive and robust model for quantifying patient functionality was developed using 

principle component analysis (PCA) for parameter reduction and optimization and a general 

scoring system for individual parameter performance relative to controls.  The base model was 

developed using the AGA results for the reduced parameter set with a final score being given 

corresponding to the total individual parameter points scaled to a maximum score of 100. Final 

scores coincide with all previous comparative studies throughout the thesis suggesting that 
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such a multivariate assessment of a specific set of gait parameters is not only feasible, but 

provides a more accurate description of a patient’s functionality than subjective scores. 

7.2 Clinical significance 

The work presented here is an important step towards promoting the use of AGA in clinical 

practice. Hence, a validated AGA was successfully applied for assessment of selected foot and 

ankle pathologies and their treatments. Furthermore, the development of the gait assessment 

score simultaneously transforms AGA to a simplified and to a more accurate assessment tool. 

It has, therefore, the potential to be used more easily in clinical practice and for research 

purposes. It not only permits the objective evaluation of F&A pathologies and the efficacy of 

their treatment but also has the potential to be used for optimization of early rehabilitation and, 

therefore, to prevent the development of adapted and or compensatory gait patterns. 

Moreover, in context with the cost effectiveness and availability, the gait score could also be 

utilized to assess the quality of the existing F&A clinical scores and check their robustness and 

accuracy and find the most accurate functional score available. The score could also be 

employed in developing a new subjective functional score for F&A pathologies which could 

correlate 1 to 1 with the gait score. 

7.3 Perspectives 

Further research is now required to test the reliability and the robustness of the developed gait 

score. Studies involving larger population sizes, various and also less severe F&A pathologies 

should be conducted. Applicability of the score to optimize early rehabilitation protocols after 

F&A surgery should also be studied.   
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Appendix 1: Gait Assessment Protocol    
Protocol for multi-segment foot and lower limb biomechanics measurement 

using wearable systems 

Protocol is developed by Hossein Rouhani as part of his doctoral research at LMAM-EPFL  

Slight modifications were made in the protocol with respect to the current study 

Devices: 

1- Inertial sensors (Physilog) 

2- Pressure insoles (Pedar, Novel) 

Measurement for each foot takes around 1 hour. 

Sensor installation : 

1- « Vicon » double-faced tapes are used for attaching inertial sensors on the skin.  

2- Make sure all systems are fully charged and ready to use. Note that, Physilog’s charge is 

usually sufficient for up to 3 to 4 measurements, however, Pedar system needs to be 

charged after 1 or 2 measurements. Pedar also provides two batteries so rotation of battery 

after every 2 measurements could be helpful and prevent unexpected data loss.  

3- Develop the folder for each measurement and name it with the initials of name, furthermore 

gather information regarding the height, weight, age, shoe size and pathology (pre-op, post-

op, follow-up period, pathology side and other pathologies). 

4- Difference size of Pedar insoles are available, so try different sizes for the participants and 

make a tradeoff between suitable length and width of the insoles. Take a note of the chosen 

insole size. 
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5- Attach the insoles to the corresponding custom made sandals. Use the rolled wide tapes for 

this purpose; put the tapes in the way to avoid sliding of the insoles both in antero-posterior 

and medio-lateral directions. Insole must be placed well in the sandals from all directions. 

 

 

6- For the inertial sensors, attach the double-side tapes on the opposite face of the label-face of 

the sensor. Place the inertial sensors on the skin in the way that their cables are facing the 

proximal/ upward directions. Place the sensors as close as possible in the anatomical 

planes. 

7- Inertial sensor  placements : 

i- Master A: proximal phalanx of the first ray (phalanges), on the dorsal aspect, between 

the first interphalangeal and metatarsophalangeal (MPJ1) joints. 

ii- Master B: between the bases of the first and the second metatarsals, dorsal aspect. 

iii- Slave A: The posterior aspect of the great tuberosity of the calcaneus, just below the 

end point of the Achilles tendon. 
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iv- Slave B: The medial aspect of the tibia, close to the ankle joint, on the bony surface, 

away from the tibialis anterior muscle. 

v- Master Third: The medial aspect the contra-lateral tibia, close to the ankle joint, on the 

bony surface, away from the tibialis anterior muscle. 

  

 

8- Reinforce the inertial sensor over the skin by additional medical micropore tape. For 

Master A sensor, role the tape around the hallux to secure the sensor position. 

9- To enhance contact between the foot and the insole, role two series of tapes around the foot 

and shoe. 

10- Neatly collect the free cables of inertial sensors on each foot and secure them with a 

Velcro band around ankle, leaving enough length for free ankle and MPJ flexion-extension. 

11- Connect the Pedar-box to the insoles using the Pedar-cable, such that the foot figure on 

the Pedar cables must face outward and visible from both sides. 
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12- Fasten the Velcro of the sandals with the Velcro band around ankle to secure the insole 

cables. 

13- Lastly, fasten Velcro bands around both shanks and thighs to hold all the cables. Provide 

sufficient cable length for the knee flexion. 

Data-logger (boxes) connections: 

1- Insert the SD cards inside the Physilogs. Do not forget to empty the SD cards before 

inserting. 

2- Connect the synchronization cables: the red points on the cables and the Physilogs (master 

and slave) must always align with each other. The connecting cable for the master Physilog 

is signed which makes it easy to differ between the slave and master connecting cables. 

While for the Pedar there is an optic connector which must be inserted in the « synch in » 

(trigger in) port of the Pedar-box. Connect the Pedar box to its battery using its cable. 

3- Fasten the belt, to hold the two Physilogs, Pedar box and battery, around participant’s waist 

comfortably tight enough. 

4- Make sure the Pedar cable does not bend during, both, sensor installation and measurement. 

Place the Pedar-box in the belt in the lateral side of body. Place it a bit in posterior side in 

order to avoid its antenna being hidden by participant’s arm. 

5- Ask the participant to walk around a little to see if the worn system is comfortable, 

especially if the belt is too tight or a cable stretches during gait. 

Pedar software setup: 

1- Connect the hard-key and the Bluetooth dangle to the laptop’s USB ports. 
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2- Open the Pedar software.  Give a name to the files : « initials-participant’s name followed 

by the number given to the participant» 

3- Choose the insole type in 100 Hz 

4- In the Pedar software follow:  

a. Data acquisition> test connection: check if the connection is with BT, write a 

number of those in the list into the box and click on “test connection”. Confirm 

that « connection is ok ». 

b. Data acquisition>Mode> set it to “Online+flash” 

c. Expert setting>edit insole configuration>insole type> set the cut-off to 1kPa 

d. Expert setting> Expert setting>edit insole configuration>>sync setup : trigger-

input=> each picture 

e. Data acquisition>load configuration> load insole types to flash 

f. Data acquisition>Measurement with mask> delete all masks, select Right or Left 

insole, choose all elements on this insole, load this mask, set the frequency to 

200Hz, ask the subject to unload the left and then the right insole 

 

Measurement protocol: 

Functional calibration of the inertial sensors: 

1- First step, ask participant to stand still for at least 10 sec. Describe them to stand straight 

with natural distance and opening angle between the feet. Press the master Physilog 

button to turn ON the system and then press again to turn OFF after around 10 sec. (the 

program uses the median posture). 
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2- In general, for each Physilog recording, press start of the master Physilog while asking the 

subject to stand motionless then waist to see twice the synchronized blinking of the LED 

on the Physilogs. Then the subject can move (or walk). After finishing the movements 

press the Physilog button to stop recording. Wait to see that all LEDs turn off. Then you 

may start another recording. 

3- Second step, ask participant to sit on a table, ask them to hold his ankle and foot joints 

fixed while the knee is not blocked. Also ask them not to perform any active movement. 

Then the examiner will turn ON the Physilog and perform passive flexion-extension at the 

knee joint for 20 times, with rather fast pace. Turn OFF the Physilog as soon as the test 

finish. 

 

 

4- Third step, while the participant still sit on the table, ask to relax the ankle but with no 

active ankle motion. Turn ON the Physilog and perform ankle flexion-extension 20 times in 

a relatively faster pace after which turn OFF the Physilog. 
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Corridor gait measurement: 

5- Final step, click on the red button on the Pedar software interface. Bring the participant to 

the corridor and ask them to stand straight facing the direction of the corridor. Explain the 

participant to walk in a natural way along the corridor (50m) with their preferred walking 

speed. Ask to walk on a straight line as much as possible without losing the natural gait. 

Describe them NOT TO TURN as soon as they reach to the end of the corridor and instead 

ask them to stand still as soon as they stop walking.   

6- Press the Master Physilog button, wait to see the synchronized blinking of the Physilogs 

and Pedar functioning synchronized to Physilogs. Meanwhile subjects MUST stand still for 

at least 1 sec before starting the gait. After fulfilling all these conditions, ask the participant 

to walk to the end of the corridor. Follow the participant with the laptop. 
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7- Stop the Master Physilog at the end of the corridor after participant stops walking. Then, 

press (||) button in the Pedar software to record the Pedar data. 

Data saving: 

Create four folders: M (master), S (slave), and P (Pedar) in each subfolder. 

1- Cut-paste the BIN files from the Master and Slave SD cards to the corresponding folders. 

2- Copy the ASCII files in “P” folder of the participant.  
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Appendix II: Clinical Scores (AOFAS, FAAM, EQ 5D) 
AOFAS  Score Cheville - Arrière-pied (100 Points Total)    

    

Douleur (40 points)       

 40 Aucune    

 30 Faible, occasionnelle   

 20 Modérée, quotidienne     

 0 Sévère, Presque toujours présente      

Fonction (50 points)       

Limitation des activités, moyens auxiliaires requis     

 10 Pas de limitation, pas de moyens auxiliaires        

 7 Pas de limitation des activités quotidiennes, limitations des activités récréatives, pas de 
moyens auxiliaires requis  

 4 Limitation des activités quotidiennes et récréatives, canne basse  

 0 Limitation sévère des activités quotidiennes et récréatives, déambulateur, béquilles, 
fauteuil roulant  

Périmètre de marche maximal 

 5 Plus que 600 mètres  

 4 400-600 mètres       

 2 100-300 mètres 

 0 Moins de 100 mètres  

Surfaces de marche      

 5 Aucune difficulté quelle que soit la surface    

 3 Quelques difficultés en terrain inégal, dans les escaliers, en pente, sur les échelles  

 0 Difficultés sévères en terrain inégal, dans les escaliers, en pente, sur les échelles   
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Anomalies de la marche 

 8 Aucunes, discrètes         

 4 Evidentes      

     0 Marqueés 

Mobilité sagittale (flexion-extension) 

 8 Normale ou faible restriction (30° ou plus)        

 4 Restriction modérée (15°-29°)      

    0 Restriction sévère (moins de 15°)       

Mobilité de l’arrière-pied (inversion-éversion) 

 6 Normale ou faible restriction (75-10% de la normale)      

 3 Restriction modérée (25-74% de la normale)      

    0 Restriction sévère (moins de 25% de la normale) 

Laxité de la cheville – arrière-pied (antéro postérieure et varus-valgus) 

 8 Stable   

 0 Vraiment instable      

Alignement (10  points)       

 10 Bon, pied plantigrade, cheville – arrière-pied bien alignés      

 5 Altéré, pied plantigrade, quelques degrés de désaxation de la cheville – arrière-pied, pas 

de symptômes  

 0 Mauvais, pied non plantigrade défaut d’axe sévère et symptomatique   
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Foot and Ankle Ability Measure (FAAM) 

 

Evaluation des capacités fonctionnelles du pied et de la cheville 

Merci de répondre à chaque question en donnant la réponse qui décrit le mieux votre état au 

cours de la semaine passée (une seule réponse par question). 

Si l’activité en question est limitée par autre chose que votre pied ou votre cheville, notez non 

applicable (N/A). 

 

 Pas de 

difficulté 

 

Légère 

difficulté 

Difficulté 

modérée 

Difficulté 

sévère 

Incapable 

de le faire 

N/A 

Se tenir debout 

 

� � � � � � 

Marcher sur un terrain régulier 

 

� � � � � � 

Marcher pied nu sur un terrain 

régulier 

 

� � � � � � 

Monter une pente 

 

� � � � � � 

Descendre une pente 

 

� � � � � � 

Monter les escaliers 

 

� � � � � � 

Descendre les escaliers 

 

� � � � � � 

Marcher sur un terrain irrégulier � � � � � � 
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Monter et descendre d’un 

trottoir 

 

� � � � � � 

S’accroupir 

 

� � � � � � 

Se mettre sur la pointe des pieds 

 

� � � � � � 

Faire les premiers pas (le matin 

au réveil / après une position 

assise prolongée) 

 

� � � � � � 

Marcher 5 minutes ou moins 

 

� � � � � � 

Marcher environ 10 minutes 

 

� � � � � � 

Marcher 15 minutes ou plus � � � � � � 

 

 

 

 

 

 

 

 

En raison de votre pied et de votre cheville, quel est le niveau de difficulté pour faire: 
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 Pas de 

difficulté 

Légère 

difficulté 

Difficult

é 

modérée 

Difficulté 

importante 

Incapable 

de le faire 

N/A 

Les tâches ménagères 

 

� � � � � � 

Les activités de la vie 

quotidienne 

 

� � � � � � 

Les soins personnels 

 

� � � � � � 

Un travail léger à modéré 

(se tenir debout, marcher) 

 

� � � � � � 

Un travail lourd (pousser/ 

tirer, grimper, porter) 

 

� � � � � � 

Les activités de loisirs � � � � � � 

 

A combien estimez-vous votre niveau actuel de fonctionnement dans les activités habituelles de 

votre vie quotidienne de 0 à 100, 100 étant votre niveau de fonctionnement avant votre problème 

de pied ou de cheville et 0 étant l’incapacité à faire la moindre de vos activités quotidiennes 

habituelles ? 

 

���.0 % 
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Questionnaire EQ-5D 

Veuillez indiquer, pour chacune des rubriques suivantes, l’affirmation qui décrit le mieux votre état de 

santé aujourd’hui, en cochant la case appropriée : 

 
 

 

Mobilité :  

Je n’ai aucun problème pour me déplacer à pied  

J’ai des problèmes pour me déplacer à pied  

Je suis obligé (e) de rester alité(e)  

  

Autonomie de la personne :  

Je n’ai aucun problème pour prendre soin de moi  

J’ai des problèmes pour me laver ou m’habiller tout(e) seul(e)  

Je suis incapable de me laver ou de m’habiller tout(e) seul(e)  

  

Activités courantes :  (exemple : travail, études, travaux domestiques, activités 

 familiales ou loisirs) 
 

Je n’ai aucun problème pour accomplir mes activités courantes  

J’ai des problèmes pour accomplir mes activités courantes  

Je suis incapable d’accomplir mes activités courantes  

  

Douleurs/gêne :  

Je n’ai ni douleurs, ni gêne  

J’ai des douleurs ou une gêne modérée  

J’ai des douleurs ou une gêne extrême  

  

Anxiété/dépression :  

Je ne suis ni anxieux (se), ni déprimé(e)  

Je suis modérément anxieux (se) ou déprimé(e)  

Je suis extrêmement anxieux (se) ou déprimé(e)  
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Cette section permet de nous renseigner sur votre état actuel (EQ-5D) : 
 

 

 Etat de santé le meilleur 

Imaginable 

 

    
 

100 
 
 
 
 

90 

 
 
 

80 

 
 
 

70 

 
 
 

60 

 
 
 

50 

 
 
 

40 

 
 
 

30 

 
 
 

20 

 
 
 

10 

 
 
 

 0 

Pour vous aider à indiquer dans quelle mesure tel ou tel état de santé 

est bon ou mauvais, nous avons tracé une échelle graduée (comme 

celle d’un thermomètre) sur laquelle 100 correspond au meilleur état 

de santé que vous puissiez imaginer et 0 au pire état de santé que vous 

puissiez imaginer. 

 

Nous aimerions que vous indiquiez sur cette échelle où vous situez 

votre état de santé aujourd’hui. Pour cela, veuillez tracer une ligne 

allant de l’encadré ci-dessous à l’endroit qui, sur l’échelle, correspond 

à votre état de santé aujourd’hui. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
 

 

 
 

 
 

  
 

 

  
 

 

  
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

   
 Etat de santé imaginable 
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Appendix III: The Gait Score  
Scoring instructions 

 

 

 

Figure 1a: Flowchart representing process of development of gait score from the raw gait 

data.  

 

 

Scoring results in our population 
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Table 1 (a-d) shows gait score for AOA, AA, TAR and TTCA patients with bilateral outcome. 
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116 

 

Legends for the final score displayed in table 1 

Cadence (steps/min) -Cad 

Speed (m/s)-Spd 

Toe-off pitch angle (°) - TOP 

Peak swing speed (°/s) - PSS 

TO-FF Sagittal plane ROM- MTP-s 

FF-HF Sagittal plane ROM- MT-s 

FF-SH Sagittal plane ROM- Ank-s 

FF-SH Coronal plane ROM- Ank-c 

Hindfoot lateral total contact duration (% St) - TcHL 

Midfoot lateral total contact duration (% St) - TcML 

Forefoot central total contact duration (% St) - TcFC 

First toe total contact duration (% St) - TcTF 

Hindfoot medial maximum force (BW %) - fHM 

Hindfoot medial maximum pressure (kPa) - pHM 

Second toe maximum force (BW %) - fTS 

First toe maximum force (BW %) - fTF 

First toe maximum pressure (BW %) - pTF 
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Background: Hallux valgus is one of the most common forefoot problems in females. Studies have looked at gait
alterations due to hallux valgus deformity, assessing temporal, kinematic or plantar pressure parameters individ-
ually. The present study, however, aims to assess all listed parameters at once and to isolate the most clinically
relevant gait parameters for moderate to severe hallux valgus deformity with the intent of improving post-
operative patient prognosis and rehabilitation.
Methods: The study included 26 feetwithmoderate to severe hallux valgus deformity and 30 feetwith no sign of
hallux valgus in female participants. Initially, weight bearing radiographs and foot and ankle clinical scores were
assessed. Gait assessment was then performed utilizing pressure insoles (PEDAR®) and inertial sensors
(Physilog®) and the two groups were compared using a non-parametric statistical hypothesis test (Wilcoxon

rank sum, P b 0.05). Furthermore, forward stepwise regressionwas used to reduce the number of gait parameters
to the most clinically relevant and correlation of these parameters was assessed with the clinical score.
Findings: Overall, the results showed clear deterioration in several gait parameters in the hallux valgus group
compared to controls and 9 gait parameters (effect size between 1.03 and 1.76) were successfully isolated to
best describe the altered gait in hallux valgus deformity (r2 = 0.71) as well as showed good correlation with
clinical scores.
Interpretation: Our results, and nine listed parameters, could serve as benchmark for characterization of hallux
valgus and objective evaluation of treatment efficacy.
© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Hallux valgus (HV) deformity is an outward lateral angulation of the
great toe and is most commonly found in female patients in clinical
practice (Nix et al., 2010; Roddy et al., 2008). The deformity is progres-
sive in nature, and can eventually become debilitating, compromising
activities of daily living of the patients. At an advanced stage, the defor-
mity is known to cause pathologic gait deviation due to continual pain
and discomfort. Studies have even shown a link between severe HV
and impaired balance/frequent incidence of falls in elderly patients
(Menz and Lord, 2001, 2005).

There are a wide variety of surgical interventions available for
the correction of HV, based on the type and severity of the deformity,
yielding good to excellent outcomes depending on the profile of the
patients and on the outcome measures applied (Lin and Bustillo,
2007). A number of studies have assessed the outcome of these surgical
procedures,most of which are based on questionnaires and radiograph-
ic evaluation (Dennis and Das De, 2011; Garrido et al., 2008; Kopp et al.,
evin.moerenhout@chuv.ch
).

119
2005) with relatively few on plantar loading (Bryant et al., 2005;
Martinez-Nova et al., 2011). There are also few studies which
have assessed gait deviation in HV patients (Canseco et al., 2010;
Deschamps et al., 2010; Galica et al., 2013; Mickle et al., 2011;
Waldecker, 2002;Wen et al., 2012). Based on the results of a systematic
review byNix et al. (2013) a number of fundamental limitations exist in
these studies and there is no determinable agreement in the results.
This would suggest that information regarding gait characterization in
HV deformity is yet to be fully explored.

With the advancement of technology and further development in
wearable motion sensors and pressure insoles (Lambrecht and Kirsch,
2014; Razak et al., 2012), it is likely that gait assessmentwill be included
as part of diagnostic and outcome assessment in the foreseeable future.
Studies have already isolated gait parameters which define gait devia-
tions (Chopra et al., 2014; Mariani et al., 2012, 2013; Mickle et al.,
2011; Rouhani et al., 2011a; Taranto et al., 2007; Yavuz et al., 2009),
however not all of those parameters are clinicallymeaningful for specif-
ic deformities. It is therefore important that we not only characterize
gait deviations in HV patients but also simplify the procedure by reduc-
ing the number of assessed parameters to the most clinically relevant.
The gait parameter which displays significant alteration due to the ex-
tent of the HV deformity and positively correlates to the clinical scores,
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with a potential to accurately assess the prognosis post operatively will
be counted among the clinically relevant gait parameters.

This study aims to investigate the gait characteristics in patientswith
moderate to severe HV deformity by assessing spatiotemporal,
kinematic and plantar pressure parameters, as well as their variability.
Furthermore, the study aims to simplify gait assessment by isolating
the most clinically relevant parameters in defining gait alterations in
HV patients.

2. Methods

2.1. Participants

Twenty six female feet with moderate to severe HV deformity and
thirty healthy female feet were assessed. Inclusion criteria for the HV
group include radiographic results of hallux valgus angle (HVA) and
M1–M2 intermetatarsal angle (IMA) between 20–40° and 14–20°
respectively, and presence of significant pain due to HV. In the case
group, patients with HV present in both feet had each measured as an
independent observation. The exclusion criteria included the presence
of any other pathology of the foot and ankle and or previous surgeries
or trauma of the lower limbs/other conditions which may affect their
gait. All the participants gave their informed consent and approval of
the ethics commission of the University hospital was obtained.

2.2. Clinical assessment

Commonly used foot and ankle questionnaires, including Foot and
Ankle Ability Measure (FAAM) (Borloz et al., 2011) and American
Orthopaedic Foot and Ankle Society (AOFAS) (Hunt and Hurwit, 2013)
forefoot score, were administered to evaluate the preoperative func-
tional status of patients with the HV deformity.

Radiographic assessment was performed by a single independent
observer and illustrated the IMA, HVA and distal metatarsal articular
angle (DMAA) (Fig. 1).
Fig. 1. Radiographic measurements in weight bearing position representing M1–M2
intermetatarsal angle (IMA), hallux valgus angle (HVA) and distal metatarsal articular
angle (DMAA).
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2.3. Gait assessment

Gait assessment was performed using ambulatory pressure insoles
(Pedar-X®, Novel, Germany) and five 3-D inertial sensors, connected
to two portable data-loggers (Physilog®, BioAGM, CH) (Rouhani et al.,
2011b, 2012). The sensors were placed at the medial aspect of both tib-
ias, and on the tested foot, to the posterior aspect of the great tuberosity
of the calcaneus between the base of the first and second metatarsals,
and on the dorsal aspect of the proximal phalanx of the first toe. The
insoles were available in 4 different sizes along with the custom made
sandals, can be found in Fig. 2.

To carry out the gait assessment, each participant was asked to walk
twice, back and forth, along a 50m longhospital corridor at their normal
walking speed. The plantar pressure data were collected, from the 99
cells of the Pedar-X® insoles, at the sampling rate of 200 Hz. The stance
time of the gait cycles for each trial was identified using sum of the
pressure over loaded elements of the insole (Rouhani et al., 2011b).
The kinematic data were collected, from the Physilog® system, during
the 100% stance phase of the gait cycle at a rate of 200 Hz (Rouhani
et al., 2012). For kinematic assessment, foot and ankle complex is divid-
ed into four joint segments (shank, hindfoot, forefoot and toes) and the
joint angles were calculated based on the proximal and distal segments
(Rouhani et al., 2012). To obtain repeatable joint angles consistently
among subjects, the sensor signals and subsequent joint angles were
expressed relative to the foot and shank's anatomical frames, instead
of the inertial sensors' technical frames (Rouhani et al., 2012). A detailed
description of the validatedmeasurement protocol can be seen in previ-
ous publications (Rouhani et al., 2011b, 2012). The first and last three
cycles of each trialwere discarded to eliminate thewayward effects dur-
ing initiation and termination of walking. The average of all remaining
gait cycles was then taken for each trial. Spatiotemporal, kinematic
(joint angles) and plantar pressure parameters were assessed for all
gait cycles of each walking trial of 50 m. From an average of 35 to 40
gait cycles per trial for each participant spatiotemporal parameters
were assessed, including: stance phase of the gait cycle time (GCT%);
cadence, double support time (GCT%), inner-stance events (loading,
foot-flat and push-off phase (stance phase %)); stride length (m),
speed (m/s), peak swing speed (°/s), toe off pitch angle (°) and heel
strike pitch angle (°). Three dimensional joint angles including dorsi-
plantar flexion, inversion–eversion, internal–external rotation were
assessed in their respective plane of movement i.e. sagittal, coronal
and transverse plane during 100% of the stance phase for both the 1st
metatarsophalangeal joint (MTP1) and the total foot, based on the fore-
foot–toe and shank–forefoot segments respectively. Plantar pressure
Fig. 2. Sensor placement for the tested foot.
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Table 2
Spatiotemporal parameters of gait with their variability (GV) in HV and control groups,
results in mean (STD).

Gait
parameters

HV
(STP)

Control
(STP)

HV
(GV (%))

Control
(GV (%))

Cadence
(steps/min)

105.47 (12.88)⁎ 122.46 (8.85) 3.37 (1.33) 2.98 (0.79)

Stance (GCT%) 58.81 (1.74) 58.30 (1.79) 3.18 (1.64) 2.79 (1.17)
Loading (St%) 10.41 (1.99) 12.05 (3.55) 13.45 (6.63) 10.64 (3.82)
Foot-flat (St%) 59.84 (6.24)⁎ 50.64 (6.85) 4.64 (2.3)⁎ 6.16 (2.27)
Push-off (St%) 29.75 (5.11)⁎ 37.29 (5.14) 7.43 (2.95) 7.63 (2.61)
DS (GCT%) 24.19 (6.01)⁎ 20.33 (3.5) 10.1 (7.2) 12.5 (5.8)
Stride
length (m)

1.23 (0.17) 1.32 (0.125) 9.11 (4.23) 9.90 (3.47)

Speed (m/s) 1.11 (0.25)⁎ 1.36 (0.18) 10.42 (3.66) 11.12 (2.87)
PSS (°/s) 369.60 (56.19)⁎ 438.49 (44.36) 9.06 (3.51) 9.29 (3.89)
TOP (°) −68.24 (8.06)⁎ −80.07 (4.9) 9.12 (5.03) 9.64 (5.54)
HSP (°) 19.10 (3.6) 20.49 (4.35) 14.69 (5.4) 14.57 (4.11)

DS: double support, PSS: peak swing speed of shank, TOP: toe-off pitch angle, HSP: heel-
strike pitch angle, GCT: gait cycle time, St%: stance %.
⁎ P b 0.05.
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parameters were assessed at 10 different anatomical sub-regions —

hind-foot lateral and medial ((HL), (HM)), mid-foot lateral and medial
((ML), (MM)), fore-foot lateral, central and medial ((FL), (FC, (FM))
and toes divided into first toe (TF), second toe (TS) and lateral toes
(TT) (Rouhani et al., 2011b). The parameters assessed included; total
contact duration (% stance time), maximum pressure (kPa) and maxi-
mum vertical force (% body weight). Furthermore, gait variability (GV)
for all gait parameters were assessed for each participant from the
two groups.

2.4. Statistical analysis

Resultswere analyzed usingMATLAB version 2011a (TheMathWorks
Inc. ®) and compared the average of each gait parameter over a full gait
cycle for both patients and controls. For each parameter, mean, standard
deviation (STD) and coefficient of variation (CV% = 100 × STD / mean)
was calculated. The CV% represented the gait variability for each param-
eter. The comparison between HV patients and the controls were
performedusing the non-parametricWilcoxon rank-sum testwith statis-
tical significance set at (P b 0.05). The resultant gait parameters, showing
a significant difference when compared to the control group, were then
filtered via forward stepwise regression to form a model containing
only the most clinically relevant in describing gait deviations due to
severe HV deformity. The coefficient of determination, indicating the
refinedmodel's accuracy,was calculated via the adjusted r2method to es-
tablish the model's degree of freedom in the model and the correlation
between the filtered gait parameters and FAAM and AOFAS scores was
investigated using Spearman's correlation coefficient. The effect size of
these 9 parameters was calculated using the Cohen's d formula.

3. Results

3.1. Clinical assessment

Demographics of the study population and clinical score results are
presented in Table 1. As expected, both scores reported a significantly
reduced functional status when compared with the controls. The radio-
graphic results of theHVpatients presentedmean IMAof 15.5° (13–20),
an HVA of 31.3° (22–39) and DMAA of 9.7° (0–16).

3.2. Gait assessment

3.2.1. Spatiotemporal parameters of gait and their variability
Table 2 shows the spatiotemporal parameter results along with the

stride to stride gait variability. The HV group showed a significantly
reduced (P b 0.05) cadence, push-off, speed, maximum swing speed
and toe-off pitch angle while significant increase in the foot-flat and
double support, when compared with the control group. The inner
stance distribution of both groups is shown in Fig. 3. As shown, compar-
ing the stride to stride gait variability of each gait cycle in the HV group
to the control population showed significant reduction only in foot-flat
parameter.

3.2.2. Kinematic parameters and variability
The kinematic parameters and their variability for both the MTP1

joint and total foot were assessed in all 3 planes (Table 3) and a
Table 1
Demographics & clinical scores outcome, results in mean (STD).

Physical characteristic HV Control

Age (years) 53.69 (10.57)⁎ 49.8 (6.45)
BMI (kg/m2) 23.3 (3.9) 22.5 (3.7)
FAAM (%) 68.69 (18.5) ⁎ 100 (0)
AOFAS 46.4 (11)⁎ 100 (0)

⁎ P b 0.05.
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comparative analysis between HV group and controls was carried out
for kinematic parameters (Fig. 4). At MTP1, in all three planes of move-
ment (sagittal, coronal and transverse) a significant reduction in the
range of mobility was reported throughout the stance phase. On the
other hand, at the total foot, a significant reduction in movement was
noted in the sagittal plane. Kinematic variability between the
two groups showed significant difference only in the sagittal plane
movement at the MTP1 joint.

3.2.3. Plantar pressure parameters and variability
The plantar pressure outcome of the 10 aforementioned foot sub-

regions was assessed for HV group and controls. In hindfoot and
midfoot, lateral andmedial subregions, significantly increased total con-
tact duration was reported while it is found to be reduced significantly
at the first toe region in HV group compared to controls. Maximum
vertical force was found to be significantly increased in midfoot lateral
and decreased in first toe region. Finally, maximum pressure was
found to be significantly high at the midfoot lateral and lateral toe
regions and significantly low at the first toe region (Table 4). A compar-
ison of the standardized mean difference of total contact duration,
maximum vertical force and maximum pressure between controls and
HV group for the defined subregions is shown in Fig. 5. The variability
in plantar pressure parameters was found to be significantly different
compared with the control group in total contact duration, maximum
vertical force or maximum pressure in most sub-regions with the
exception of midfoot lateral, forefoot lateral and lateral toes (Table 4).
Furthermore, a significant difference in total contact duration variability
was only observed in hind foot lateral and first toe regions, while a
Fig. 3. Inner stance events (loading, foot-flat and push-off) in HV and controls. ★ repre-
sents significant difference as compared to control (P b 0.05).



Table 3
Kinematic results and their variability (GV) in HV and control groups, results in mean
(STD).

Joint Planes HV
Joint angle
(deg)

Control
Joint angle
(deg)

HV
(GV (%))

Control
(GV (%))

MTP1 Sagittal 34.8 (8.3)⁎ 40 (5.1) 6.3 (4.2)⁎ 4.3 (1.6)
Coronal 10.97 (3.4)⁎ 12.7 (3.9) 15.3 (6.3) 15.5 (7.6)
Transverse 7.9 (1.7)⁎ 9.1 (3.7) 15.3 (6.3) 15.5 (7.6)

Total foot Sagittal 27.3 (5.0)⁎ 31.0 (7.7) 8.9 (4.5) 8.1 (3.9)
Coronal 16.9 (4.3) 16.1 (4.2) 14.4 (7.4) 16.2 (5.7)
Transverse 14.3 (6.6) 13.5 (4.4) 14.4 (7.4) 16.2 (5.7)

⁎ P b 0.05.
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similar comparison in maximum vertical force variability showed
significant difference in 6 out of 10 sub-regions; hindfoot lateral and
medial, forefoot central and medial, second toe and first toe. Variability
in maximum pressure was found to be significantly different in midfoot
medial and first toe regions. Significant increase in gait variability was
observed in all three plantar pressure parameters at the first toe region.
3.2.4. Determination of clinically relevant gait parameters and their corre-
lation with clinical scores

Out of 47 parameters including 11 spatiotemporal, 6 kinematic and
30 plantar pressure parameters (3 parameters in 10 subregions each),
9 gait parameters were isolated to be the most clinically relevant and
best describe the altered gait in HV deformity. This predictive model
was constructed using the forward stepwise regression method from
the selected parameters which were found to have a maximum adjust-
ed r2 (coefficient of determination) of 71. These parameters include ca-
dence, speed, foot-flat phase, push-off phase, peak swing speed, toe-off
pitch angle, MTP1 motion around sagittal plane, total contact duration
at hind foot (lateral and medial) and peak vertical force at the first
toe. The effect sizes of these parameters were 1.53, 1.06, 1.38, 1.45,
1.31, 1.76, 1.03, 1.55 and 1.5 respectively. Finally correlation between
the constructed model and the clinical scores was assessed, to which
Fig. 4. Kinematic curves in three planes at MTP1 and total foot. Solid
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AOFAS forefoot score showed a correlation of 0.47while FAAMoutcome
score showed a correlation of 0.78.

4. Discussion

This study aimed to characterize gait in moderate to severe hallux
valgus deformity with the intent of simplifying gait assessment by
reducing the number of assessed parameters to those most clinically
relevant. Comparing HV patients to a control group, the results showed
significant alterations in a number of gait parameters. Further, nine gait
parameters including spatiotemporal, kinematic and plantar pressure
parameters were successfully isolated which are all clinically relevant
and can characterize gait in HV deformity. These parameters also
showed a fair to good correlationwith AOFAS and FAAM scores, respec-
tively and hence can represent both functional and biomechanical
aspect of outcome assessment when used in clinical practice.

Spatiotemporal results of this study showed a visible deterioration in
several parameters in contrast to previous studies (Canseco et al., 2010;
Deschamps et al., 2010; Mickle et al., 2011). Interestingly, a longer foot-
flat phase along with a weaker push-off in HV deformity was observed
(Fig. 3) which could be a sign of affected second and third rockers of
the foot during the stance phase of the gait cycle. The altered third
rockers of foot at theMTP1, at least in severe HVdeformity, would affect
weight transfer, progressively affecting a patients' walking momentum
and would result in increased energy expenditure during walking. This
might not be a very demanding situation for young adults but for elderly
population this could have a considerable effect on their quality of life.
The unstable weight transfer, increased energy consumption inwalking
along with several other age related problems can make the situation
more complicated leading to a significant reduction in physical activity
levels in elderly, which itself is a problem.

Kinematic results showed significantly reduced movement at MTP1
(Table 3) which corresponds to two available studies on kinematics in
HV deformity (Canseco et al., 2010; Deschamps et al., 2010). However,
of these studies, one assessed only sagittal plane mobility (Deschamps
et al., 2010) and the other did not adequately define the severity of
HV in their study population (Canseco et al., 2010), questioning their
line represents controls and dash-dot line represents HV group.
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Table 4
Plantar pressure parameters (PPP) and their variability (GV) in HV and control groups in 10 sub-regions of foot, results are given in mean (STD).

Foot sub-regions Gait parameters HV
(PPP)

Control
(PPP)

HV
(GV (%))

Control
(GV (%))

HL Tc 57.7 (8.2)⁎ 46.6 (6.4) 10.6 (4.8)⁎ 7.3 (2.6)
Max F 27.6 (8.9) 31.3 (10.2) 14.2 (6.7)⁎ 9.6 (5.5)
Max P 95.8 (28.8) 102.8 (28.3) 99.5 (21.3) 101.7 (26.7)

HM Tc 62.5 (10.2)⁎ 49 (6.4) 9.3 (4.7) 7.9 (2.7)
Max F 38.8 (12.3) 39 (8.6) 12.6 (8.5)⁎ 8.2 (3.8)
Max P 119.2 (41.5) 131.5 (30.1) 92.2 (23.4) 80.4 (14.6)

ML Tc 52.5 (15.79)⁎ 36.2 (14.8) 17.8 (16.4) 23.7 (18.3)
Max F 12.5 (7.8)⁎ 7.7 (5.1) 31.2 (17) 40.1 (35.7)
Max P 33.5 (17)⁎ 21.6 (9.8) 133.4 (54.5) 154.5 (36.8)

MM Tc 37.4 (17.5)⁎ 20.6 (11.7) 24.4 (15.4) 21.56 (16.1)
Max F 5.4 (4.7) 3.1 (2.8) 51.1 (51.9) 67.6 (64.7)
Max P 14.5 (9.5) 10.3 (5.3) 202.3 (33.3)⁎ 216.8 (50.6)

FL Tc 78.9 (13) 77.1 (10.9) 8.9 (7.4) 6.1 (6.8)
Max F 35.2 (13.1) 31.1 (6.3) 18.1 (9.8) 16.8 (6.8)
Max P 117.8 (40.8) 111.7 (27.8) 73.6 (15.9) 82.2 (14.6)

FC Tc 70.1 (69.7) 69.7 (12.1) 11.2 (8.1) 6.9 (4.4)
Max F 27.8 (10.9) 28.8 (5.4) 17.4 (19.1)⁎ 6.6 (4.4)
Max P 124.4 (49.3) 129.6 (24.1) 89.8 (19.3) 84.8 (13.7)

FM Tc 47 (15) 46.6 (15.3) 29.1 (12.3) 21.9 (12.4)
Max F 14 (7.2) 14.2 (5.8) 42.3 (22.6)⁎ 33 (21.1)
Max P 58.7 (27.6) 60.8 (25) 125.7 (30) 121.5 (17.1)

TT Tc 24.3 (11.9)⁎ 16.6 (9.2) 31.3 (21.2) 34.1 (18.3)
Max F 5.6 (4.1) 3.8 (3) 43 (37.4) 43.4 (28.3)
Max P 24.4 (14.8)⁎ 16.3 (8.9) 150.1 (43.9) 181.4 (51.8)

TS Tc 25.4 (10.4) 25.1 (12.6) 25.4 (19.8) 16.9 (12.4)
Max F 5.8 (3.3) 5.7 (3.6) 30.5 (18.2)⁎ 21.5 (16.7)
Max P 46.2 (23.8) 41.2 (16.7) 95.3 (42.9) 113 (35.4)

TF Tc 34.2 (12.5) 37.2 (10.9) 32 (18.1)⁎ 15.3 (7.9)
Max F 10.2 (8.7)⁎ 16.5 (8.3) 25.9 (9.3)⁎ 21.5 (16.2)
Max P 55.9 (32.7)⁎ 83.3 (28.1) 152.4 (41.6)⁎ 108.1 (17.6)

Tc: total contact duration (stance %), Max F: maximum vertical force (BW%), Max P: maximum pressure (kPa); foot subregions— HL: hindfoot lateral, HM: hindfoot medial, ML: midfoot
lateral, MM: midfoot medial, FL: forefoot lateral, FC: forefoot central, FM: forefoot medial, TT: 3rd to 5th toes, TS: second toe, TF: first toe.
⁎ P b 0.05.
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validity. The present study has none of these shortcomings as we in-
cluded clinically defined moderate to severe HV patient population
and movement at all three planes were assessed. Our results suggested
that the reduced mobility at MTP1 at the terminal stance could justify
the reduced toe-off pitch angle and peak swing speed along with the
incomplete push-off phase observed in our patient group. For the total
foot, overall reduced movement along the sagittal plane was reported
in HV group in comparison with the controls, although at the terminal
stance increased mobility was reported when compared to controls
this could be due to the increased compensatory movement at the
forefoot for the reduced movement along the sagittal plane at the
hallux. Due to the limited availability of literature related to the joint
mobility inHVdeformity it is hard to drawconclusions as to significance
of these findings.

Plantar pressure results found various similarities and contradictions
to previous studies. In the toe region, this study found a significantly
reduced peak pressure at the hallux and an increased peak pressure
on the 3rd–5th toes in HV group similar to Galica et al. (2013). This is,
however, in stark contrast to a few studies who either found no signifi-
cant differences in hallux pressure (Mickle et al., 2011) or reported an
increased peak pressure at the hallux region (Bryant et al., 2005;
Martinez-Nova et al., 2010). Furthermore, looking at the forefoot re-
gions, under the metatarsal heads, no significant difference was found
in any peak pressure compared to controls, similar to some studies
(Galica et al., 2013; Martinez-Nova et al., 2010), while others reported
contrasting results with an increased peak pressure under the first
and second metatarsal heads (Bryant et al., 2000, 2005; Mickle et al.,
2011). In themidfoot regions, an increased loading of themidfoot later-
al region was also witnessed, while no previous study reported any
differences. Finally, our results showed a longer contact duration in
the hindfoot and midfoot regions in HV patients, which has not been
previously studied in detail. It is clear that discrepancies and contradic-
tions are present in existing gait studies of HV deformity, however, our
123
results were found to be consistent, with regard to maximum force and
peak pressure, with the Framingham foot study (Galica et al., 2013),
which assessed gait in 1123 feet with HV deformity.

Gait variability describes fluctuation in stride–stride gait parameters
(Hausdorff, 2005). It has been found to be positively associated with
increased instability and increased risk of fall in several medical condi-
tions, including aging (Arnold et al., 2011; Stergiou and Decker, 2011).
Existing studies reported an increased risk of fall in HV patients above
75 years of age with an impaired gait, especially on uneven terrain
(Menz and Lord, 2001, 2005). In the elderly population, there could be
several medical reasons for an increased risk of fall along with the
general deterioration due to aging, reduction in physical activity levels,
reduced speed of walking and increased gait variability. It is known that
gait variability in spatiotemporal and kinematic gait parameters are
more valuable compared to plantar pressure in relation to the risk of
fall (Callisaya et al., 2010; Hamacher et al., 2011). It is not known, how-
ever, if there is a relation between increased gait variability due to HV
deformity and an increased risk of falling. Based on our results, a signif-
icant increase in variability in plantar pressure parameters and sagittal
plane movement at hallux was reported in HV group in comparison
with the controls, this is likely due to the constant pain in moderate to
severe stage of the deformity. In theory, HV could be a contributing
factor towards the increased risk of falling in older elderly with moder-
ate to severe HV, in contrast to their younger counterparts. Our findings
suggest that gait variability does not seem like ameaningful assessment
parameter regarding moderate to severe HV deformity as it can be
affected by several other health and age related factors.

Lastly, the study managed to successfully isolate the nine gait
parameters most clinically relevant in characterizing gait variations in
HV patients. The nine parameters include cadence, speed, foot-flat,
push-off, peak swing speed, toe-off pitch angle, MTP1 sagittal plane
movement, total contact duration at hind foot and peak vertical force
at the first toe. These nine gait parameters also showed good correlation



Fig. 5. Standardizedmean difference (SMD) between control and HV group for plantar pressure parameters at 10 subregions of foot. Negative graph represents higher values inHV groups
as compared to controls, ★ represents (P b 0.05).
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with the clinical scores which shows the clinical significance of these
parameters in terms of functional outcome. It is also therefore assumed
that these parameters alone can adequately describe abnormal gait
mechanics in HV patients. For example, a gait with slow speed and
low cadence is a sign of low activity level and can fairly describe the ex-
istence of apprehensive and or pain. Long foot-flat and short push-off
duration, along with a slow peak-swing speed, describes altered toe
propulsion during the terminal stance and early swing phase. Reduced
toe-off pitch angle and MTP1 sagittal movement can describe the
reduced mobility of the hallux and toes. The longer contact duration at
the hind foot, explains the compensation due to the weak propulsion
during weight transfer. Finally, weak vertical force at the first toe
could help in understanding the partial loading of the hallux due to
12
pain. Postoperatively, it would be the aim of the rehabilitation to bring
these parameters back in-line with an accepted standard for a good
biomechanical prognosis.

This study does have a limitation in that the control population is
significantly (P b 0.05) younger compared to the hallux valgus patients.
However, the age difference is merely four years on average, and is
highly unlikely to have caused a divergent outcome. The BMI of partic-
ipants in both the groups also falls under the healthy weight,
representing a similar general health status. To conclude, this study
proposes to simplify gait assessment in clinical practice by utilizing
the ambulatory gait assessment method and by reducing the number
of assessed gait parameters to only the nine most clinically relevant.
This would ultimately consume less time and make gait assessment in
4
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clinical practice feasible. Hence, this paper is an attempt towards simpli-
fication of gait assessment for clinical practice.

5. Conclusion

The study successfully isolated nine gait parameters which can best
describe the altered gait present in HV patients. The clinical significance
of this study is the potential benchmarking in characterizing the sever-
ity of HV, the simplification of gait assessment for use in clinical practice
and potential contribution to objective evaluation of treatment efficacy
and value of rehabilitation programs.
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Subjective versus objective assessment in early clinical outcome of
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Background: Studies have assessed the outcome of hallux valgus surgeries based on subjective questionnaires,
usually the American Orthopaedic Foot and Ankle Society Score, and radiographic results reporting good to
excellent outcome at 6–12 months postoperatively. However, contrasting results were reported by gait studies
at 12–24 months postoperatively. In a previous study, we found nine gait parameters which can describe the
altered gait in hallux valgus deformity. This study aimed, to assess the outcome of modified Lapidus at 6 months
postoperatively, using gait assessment method, to determine if the nine specified gait parameters effectively
relates with the clinical scores and the radiological results or add information missed by these commonly used
clinical assessments.
Method:Weassessed 21 participants including 11 controls and 10 patientswithmoderate to severe hallux valgus
deformity. The patient group was followed 6 months postoperatively. The ambulatory gait assessment was
performed utilizing pressure insoles and inertial sensors. Clinical assessment includes foot and ankle question-
naires along with radiographic results. Comparison was made using non parametric tests, P b 0.05.
Findings: Altered gait patterns, similar to the preoperative outcome, persisted at 6 months postoperatively when
compared to controls. The foot and ankle ability measure score showed an outcome comparable to the gait
results. In contrast, the American Orthopaedic Foot and Ankle Society Score and radiographic results showed
significant improvement.
Interpretation: Study supports the reliability of nine defined gait parameters in assessing the outcome of
hallux valgus surgeries. The existing clinical assessment overestimates the functional outcome at the early
postoperative phase.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Hallux valgus (HV) is one of the most commonly seen orthopedic
conditions in clinical practice with an estimated prevalence of 23% to
35.7% (Nix et al., 2010). Several surgical options are available based on
the severity of the deformity (Lin and Bustillo, 2007; Robinson and Lim-
bers, 2005). At present, the clinical assessment of the outcome of these
surgeries is based on radiographic presentation and subjective question-
naires, mainly the American Orthopaedic Foot and Ankle Society Score
(AOFAS) — forefoot (Adam et al., 2011; Coetzee and Wickum, 2004;
Dennis and Das De, 2011; Kerr et al., 2010; Kopp et al., 2005; Schuh
et al., 2008). However, radiographic images do not take the dynamic
loading into account and the reliability of subjective questionnaires has

come into question in the last decade (Baumhauer et al., 2006; Button
and Pinney, 2004; Guyton, 2001; Parker et al., 2003; SooHoo et al.,
2003). According to the cited studies, the AOFAS score has consistently
shown an average score of greater than 80 already at 6 months postop-
eratively (Coetzee and Wickum, 2004; Dennis and Das De, 2011; Kerr
et al., 2010; Kopp et al., 2005; Schuh et al., 2008) which could be met
with skepticism. Also, regarding HV deformity (Canseco et al., 2010;
Chopra et al., 2015; Deschamps et al., 2010; Galica et al., 2013; Wen
et al., 2012) and its surgical correction (Bryant et al., 2005; Cancilleri
et al., 2008; Dhukaramet al., 2006; Schuh et al., 2010), notmany studies
have looked upon the complete biomechanical profile of the foot and
not much information is available regarding the foot mechanics post-
operatively. Furthermore, no clinical study so far has looked upon the
outcome of modified Lapidus correction prospectively based on gait
assessment.

In recent years, objective gait assessment has left its mark in under-
standing the biomechanics of the foot and ankle in various foot pathol-
ogies and in assessing the functional outcome of the surgeries (Chopra
et al., 2014; Khazzam et al., 2007; Turner et al., 2003). Objective gait as-
sessment takes into account dynamic loading, functional progress and
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existing gait impairments. This information could improve rehabilita-
tion with early detection of abnormal gait parameters (Coutts, 1999;
Schuh et al., 2009). The new generation gait assessment methods are
also portable, affordable and easy to use (Lambrecht and Kirsch, 2014;
Razak et al., 2012).

In our previous study (Chopra et al., 2015), nine gait parameters
were found which can best describe the altered gait in moderate to se-
vere HV deformity. These nine parameters also showed fair to good cor-
relation with AOFAS and Foot and Ankle Ability Measure (FAAM) score
respectively. The aim of the current study was to objectively assess the
early outcome of themodified Lapidus procedure for correction ofmod-
erate to severe HVdeformity at 6months postoperatively based on sub-
jective questionnaires, radiographic presentations and functional gait
assessment. Postoperative follow-up of 6 months was chosen over
three months or 12 months because the former is too early for full
weight bearing and the latter is long after the peak recovery phase
and also because studies have shown good recovery around 6 months
postoperatively for HV surgery (Kerr et al., 2010; Schuh et al., 2008,
2009). Another important reason behind choosing the 6 months post-
operative period is that, by this time physiotherapy sessions are finished
and, in general, the compliance to exercise at home has been shown to
decline gradually due to several factors includingmotivation (Campbell
et al., 2001) and hence it is a crucial time to assess the prognosis. The
working hypothesis of the study is that gait assessment should show
comparable results to the other utilized assessment methods.

2. Materials and methods

2.1. Participants

Ten females patients with moderate to severe HV deformity (mean
age 51.3 (10.3) years, mean BMI 22.9 (3.2) kg/m2) and eleven healthy
female volunteers with no sign of HV deformity (mean age 50.4 (7.1)
years, mean BMI 24.3 (3.8) kg/m2) were compared. All ten patients
were consecutive cases which were listed for modified Lapidus correc-
tion. The contralateral sides of most patients also had signs of HV but
are asymptomatic. All 10 patients underwent 9 sessions of physical re-
habilitation, 1 session per week, at 3 months postoperatively. The pa-
tients were followed at 6 months postoperatively to monitor the early
recovery. Indications for modified Lapidus procedure included moder-
ate to severe HV with insufficiency of the first ray as expressed by
marked transfer metatarsalgia, and/or hypertrophy of the secondmeta-
tarsal, and/or osteoarthrosis of the second tarso-metatarsal joint. Pa-
tients were excluded if they were affected by neurologic or other
pathologies of the lower extremities or have had previous HV corrective
surgery. The control population included volunteerswith noprior histo-
ry of neurological conditions or other pathologies of the foot and ankle
or any previous surgeries or trauma of lower limbs which may affect
their gait. All participants gave informed consent. Approval of the ethics
commission of the University was obtained.

2.2. Operative procedure

Lapidus procedure was performed as a modification of the original
technique (Lapidus, 1934). Patients were placed supine and given a
third generation cephalosporin prophylaxis. A 300 mmHg tourniquet
was inflated at the thigh. Percutaneous lateral release of the first
metatarso-phalangeal joint (MTP1) was performed, longitudinally sec-
tioning the capsule just above the lateral sesamoid while keeping the
tendon of the adductor hallucis intact. A medial longitudinal incision
was then carried out, the MTP1 was exposed and the dorso-medial
pseudo-exostosis was removed from the first metatarsal head. Another
more proximal incision was performed dorsally to expose the first
tarso-metatarsal joint (TMT1) and the joint between the first cuneiform
and the base of the second metatarsal. Articular cartilage was removed
from these joints using a sharp raspatorium, and then the surfaces were

prepared by multiple drilling and microfractures. The first and second
metatarsal (M1/M2) angle was reduced and the TMT1 was stabilized
with two 3.5 mm cortical lag screws. A third positioning screw was
then inserted frommedial to lateral between the bases of thefirst meta-
tarsal and the second metatarsal (Fig. 1). At this point, if a contact be-
tween the first and second toes was still present, a basal medial
closing wedge osteotomy of the basis of the first phalanx of the hallux
was performed (Akin osteotomy) and stabilized, medially, with a
transosseous 1.0 Vicryl suture. The MTP1 capsule was then closed
with separate 1.0 Vicryl sutures and the skin incisions were closed
with separate 3.0 Vicryl Rapid sutures. The dressing was adapted to
gently pull the first toe into varus. On postoperative day one the dress-
ing was changed, a removable short leg cast was adapted, and patients
were mobilized in 10 kg partial weight bearing for six weeks, followed
by six weeks of progressive weight bearing. The cast was removed at
three months and physiotherapy was continued for about two months.

2.3. Clinical assessment

Clinical assessment included subjective questionnaires — AOFAS
forefoot score and FAAM— activity of daily living (ADL) score and radio-
graphic findings (antero-posterior and lateral load radiographies).
Radiographic assessment was performed by a single independent ob-
server, illustrating theM1/M2 angle, hallux valgus angle (HVA) and dis-
talmetatarsal articular angle (DMAA) (Chopra et al., 2015). The ADL sub
score of FAAM was utilized instead of total FAAM (ADL+ sports), be-
cause the sports section of the scorewas ignored bymost of the patients
and hence inclusion of total FAAM score could have masked the real
outcome. Both clinical and radiographic assessment were performed
preoperatively and six months after surgery.

Fig. 1. Antero-posterior radiographic presentation of modified Lapidus procedure. After
reduction, fixation was achieved using two 3.5mm lag screws across the first tarso-meta-
tarsal joint and one positioning screw across the bases of the first and secondmetatarsals.
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2.4. Gait assessment

Gait assessment was performed, once for controls and twice for
the case group — preoperatively and 6 months post-operatively,
using ambulatory pressure insole (Pedar-X®, Novel, Germany) and
five inertial sensors, each consisting of 3-D accelerometers and gyro-
scopes. The system and the assessment protocol had been previously
validated and shown high test–retest reliability (Rouhani et al.,
2011a, 2012). Sensors were connected to two portable data-loggers
(Physilog®, BioAGM, CH) (Rouhani et al., 2012). The sensors were
placed at the medial aspect of both tibias, and on the tested foot, to
the posterior aspect of the great tuberosity of the calcaneus between
the base of the first and second metatarsals, and on the dorsal aspect
of the proximal phalanx of the first toe (Chopra et al., 2015). The
insoles were available in four different sizes with custom made
sandals.

For gait assessment, participants walked along a 50 m long hospital
corridor, at their preferred normal walking speed. This procedure was
repeated twice for each participant. The gait data were collected at the
sampling rate of 200 Hz. The first three and last three cycles of each
trial were discarded to negate the wavering effects during the start
and end of the walking trials. The average of all remaining gait cycles
was taken for each trial. The kinematic data were collected, during the
100% of the gait cycle (Rouhani et al., 2012). Spatiotemporal, kinematic
and plantar pressure parameterswere assessed for all gait cycles of each
trial.

The spatiotemporal parameters included cadence (steps/min),
stance and swing phase (gait cycle time % (GCT%)), inner-stance
events (loading, foot-flat, and push-off phases) (stance phase %)
(Mariani et al., 2013), heel strike pitch angle (°) and toe off pitch
angle (°), peak swing speed (°/s), double support time (GCT%), stride
length (m) and speed (m/s). Joint range of motion (ROM) was
assessed in the sagittal (dorsiflexion/plantarflexion), coronal (inver-
sion/eversion), and transverse (abduction/adduction) planes for the
MTP1 joint during 100% of the gait cycle (Rouhani et al., 2011a,
2012). Plantar pressure parameters including total contact duration
(% stance time), maximum pressure (kPa) and maximum vertical
force (% body weight) were assessed at 10 anatomical sub-regions
based on a previously validated protocol (Rouhani et al., 2011b).
The anatomical sub-regions of the foot includes: hindfoot (lateral
(HL) and medial (HM)); midfoot (lateral (ML) and medial (MM));
forefoot (lateral (FL), central (FC) andmedial (FM)); and toes (divid-
ed into third to fifth toes (TT), second toe (ST) and first toe/hallux
(FT)).

The nine gait parameters identified as the important parame-
ters in characterizing gait in HV deformity in previous study
(Chopra et al., 2015), including cadence, speed, foot-flat phase,
push-off phase, peak swing speed, toe-off pitch angle, MTP1 mo-
tion around sagittal plane, total contact duration at hind foot (lat-
eral and medial) and peak vertical force at the first toe were
specifically scrutinized.

2.5. Statistical analysis

Results were analyzed usingMATLAB version 2011a (TheMathWorks
Inc.®). For each participant, the average of each gait parameter over
all gait cycles was calculated. The Shapiro–Wilk test of normality
was performed to test if the normal distribution exists in groups for
each assessed parameter. Results showed that most gait parameters
were not normally distributed among the groups; therefore non
parametric tests were used for comparison. The Wilcoxon rank-
sum test was used to compare between the case groups and the con-
trols, while preoperative versus postoperative comparison was per-
formed using the Wilcoxon rank-sign tests. The level of significance
was set at P b 0.05.

3. Results

3.1. Objective gait assessment

Table 1 shows the spatiotemporal parameters of gait in controls, HV
(pre-operative) and post modified Lapidus (6 months post-operative)
groups. Significant differences were reported between controls and
the two case groups in similar parameters including — cadence, foot-
flat, push-off, speed, PSS, TOP (P b 0.05) (Fig. 2). The postoperative ver-
sus preoperative comparison showed significant difference in push-off
duration and TOP (P b 0.05). MTP1 motion in all three planes is given
in Fig. 3. In the sagittal plane, significantly reduced ROM in both HV
33.9° (8.6) (P = 0.04) and post modified Lapidus 27.4° (6.3) (P =
0.0002) groups was reported in comparison to the healthy controls
33.9° (8.6). Furthermore, in the coronal plane, significantly reduced
ROM was reported in HV group 11.2 (2.8) in comparison to controls
15.1 (4) (P = 0.026). No difference was reported postoperatively in
comparison to the preoperative outcome for MTP1 motion in all three
planes. No significant difference in range of movement was observed
between the three groups in the coronal and transverse planes.

The plantar pressure parameter results in 10 sub regions of the foot
are given in Table 2. For total contact duration parameter, in comparison
with the controls, significant difference was reported in HV group at
four regions (HL, HM, ML and TT), and for modified Lapidus patients
at seven regions (HL, HM, ML, FL, FC, FM and FT). For the preoperative
versus postoperative comparison significant difference was reported
at five regions (HL, HM, ML, FL and TF). For the maximum vertical
force parameter, significant difference was reported between controls
and the two case groups around midfoot lateral and hallux regions,
but for the postoperative group the significant difference was also re-
ported at forefoot central region. For the preoperative versus postoper-
ative comparison significant difference was reported only at the lateral
toes and hallux regions. Finally, for maximum peak pressure parameter,
in comparison with the controls, significant difference was seen at hal-
lux, lateral toes andmidfoot lateral regions in preoperative group,while
in postoperative group significant difference was reported in hallux,
forefoot central and midfoot lateral regions. For preoperative versus
postoperative comparison significant difference was seen in forefoot
central and lateral toe regions for maximum peak pressure. Midfoot lat-
eral is the only foot regionwhere all three parameterswere significantly
different between the HV group and the controls. Postoperatively, all
three plantar pressure parameters at hallux were seen to deteriorate.

The nine gait parameters, known to characterize gait in HV, showed
no improvement postoperatively. In fact, six out of the nine parameters
were seen to deteriorate further, including toe-off pitch angle, foot-flat
phase, push-off phase, maximum force at hallux, total contact duration
at the hindfoot and MTP1movement in the sagittal plane. Hence, based

Table 1
Spatiotemporal parameters of gait, results in mean (SD).

SPT parameters Control HV
(pre-operative)

Post Lapidus
(post-operative)

Cadence 122.46 (8.85) 106.7 (13.6)⁎⁎ 105.5 (11.38)⁎⁎

Stance (GCT%) 58.30 (1.67) 59.94 (1.9) 59.1 (2.6)
Load (St%) 12.38 (3.6) 10.7 (1.49) 11.49 (2.77)
Foot-flat (St%) 50.64 (7.2) 58.1 (6.6)⁎⁎ 61.86 (6.4)⁎,⁎⁎

Push-off (St%) 37.58 (5.2) 31.2 (5.58)⁎⁎ 26.68 (4.6)⁎,⁎⁎

DS (GCT%) 21.1 (2.5) 25.9 (6.6)⁎⁎ 25.1 (5.9)⁎⁎

Stride length (m) 1.3 (0.1) 1.25 (0.17) 1.2 (0.1)
Speed (m/s) 1.3 (0.2) 1.1 (0.3)⁎⁎ 1.07 (0.2)⁎⁎

PSS (°/s) 443.26 (50.5) 369.5 (57.5)⁎⁎ 364.05 (43.9)⁎⁎

TOP (°) −79.4 (5.6) −69.6 (9.5)⁎⁎ −61.5 (6.99)⁎,⁎⁎

HSP (°) 19.7 (4.98) 19.9 (2.4) 20.8 (3.4)

DS: double support period, PSS: peak swing speed, TOP: toe-off pitch angle, HSP: heel-
strike pitch angle.
⁎ Represents (P b 0.05) for preoperative vs postoperative comparison.
⁎⁎ Represents (P b 0.05) compared to control.
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on the outcome of the nine clinically relevant gait parameters no im-
provement in gait was reported at 6 months post modified Lapidus in
comparison with the preoperative status.

3.2. Subjective and radiographic assessment

The radiographic results preoperatively and 6months post modified
Lapidus procedure are given in Table 3. Results show a significant im-
provement in theM1/M2 andHVAwith no case of non union or delayed
union. The AOFAS score also reported significant improvement postop-
eratively, however moderate restriction in passive ROM both at MTP1
and 1st inter phalangeal joint was reported both preoperatively and 6
months postoperatively with no significant difference. However, the
FAAM-ADL score reported a similar outcome as the gait assessment
based on the nine clinically relevant gait parameters, showing no im-
provement in the functional status of the patients.

4. Discussion

The study aimed to assess an early outcome of modified Lapidus
procedure for correction of moderate to severe HV deformity based
on clinical and functional gait assessment. Furthermore, it aimed to
check if the gait assessment method adds clinically relevant infor-
mation and/or provides similar results to the commonly used assess-
ment methods in clinical practice. The results show that the
ambulatory gait assessment method successfully assesses the gait
deviation in HV patients as seen in other laboratory based gait stud-
ies (Canseco et al., 2010; Deschamps et al., 2010; Galica et al., 2013;
Wen et al., 2012). Looking solely at the nine clinically relevant gait
parameters for HV deformity, the results showed no improvement
in functional outcome of patients at 6 months postoperatively
when compared to the preoperative status (Figs. 2 and 3). In con-
trast, the AOFAS forefoot score and radiographic results showed sig-
nificant improvement at 6 months postoperatively.

Fig. 2. Spatiotemporal parameters comparison between the groups. HV: preoperative hallux valgus, post Lapidus: 6 months postoperatively.★ represents significant difference compared to
control (P b 0.05), ☆ represents significant difference compared to preoperative HV.
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Several studies have assessed the outcome of various HV correction
surgeries based on the commonly used AOFAS forefoot score, and radio-
graphic results (Adam et al., 2011; Coetzee and Wickum, 2004; Dennis
and Das De, 2011; Garrido et al., 2008; Kerr et al., 2010; Kopp et al.,
2005; Lapidus, 1934; Schuh et al., 2008) and each one of these studies
showed an early good to very good outcome similar to the current
study. In contrast to this, very few studies have assessed postoperative
outcome based on selective gait parameters,mainly the plantar loading,
and showed no significant biomechanical improvement 12 or 24
months postoperatively. All these studies have shown an improvement
in the AOFAS score and radiographic outcome (Cancilleri et al., 2008;
Dhukaram et al., 2006; Saro et al., 2007). The study by Saro et al.
(2007) compared the outcome of chevron and Lindgren procedure,
based on plantar pressure distribution and reported an increased con-
tact area and peak pressure at hallux 6 months postoperatively, but at
12 month follow-up the results went back to the preoperative level. In
contrast to the above study, our study showed reduced plantar loading
at hallux 6 months postoperatively. Another study by Schuh et al.
(2010) assessed outcome of chevron osteotomy 12 months postopera-
tively based on plantar loading. The study also provided postoperative
physical therapy and gait training for a better rehabilitation of their par-
ticipants. The outcomeof the study showed positive outcome, improved
loading at hallux and hence restoration of normal gait (Schuh et al.,
2010). Based on the above information, mediocre biomechanical out-
comes seem common after HV surgeries even with the radiographic re-
sults showing good to excellent anatomic alignment. This undesirably
low biomechanical outcome could be perceived as an outcome of in-
complete rehabilitation. This proves the importance of physical rehabil-
itation and early gait assessment for the good functional recovery from
HV surgeries. This study also questions the capability of theAOFAS score

in assessing the functional status of HV patients postoperatively. How-
ever, the AOFAS score is the most commonly used foot and ankle
score in clinical practice, but its reliability has been questioned before
(Hunt and Hurwit, 2013). Based on our results, the FAAM score showed
a comparable outcome with the gait assessment results in comparison
to the AOFAS score, which over estimated the outcome. The study sug-
gests the utilization of both objective and subjective assessment for a
complete functional assessment.

In clinical practice, so far, gait analysis has been looked upon as a
time consumingmethod of assessment in comparison to physical obser-
vation, imaging techniques and health questionnaires. This ideology is
strong for smaller joints like foot and ankle in comparison to hip and
knee joints. However, with the existing studies, it is clear that the bio-
mechanical prognosis does not reach the expected level afterHV surger-
ies. This is because, so far, no existing method in the clinical practice
assesses the biomechanical outcome which could direct towards im-
provement of biomechanical outcome of the surgeries. But with the
simplification of the gait assessment method, as discussed above, and
the reduction of the number of assessed gait parameters to the most
clinically relevant ones (Chopra et al., 2015), it is an opportunity to pro-
mote gait assessment as part of clinical assessment for a better function-
al outcome of the HV surgeries. This study has few limitations including
the small subject size, which could have influenced the results. Howev-
er, the main aim of the study was not to rate the modified Lapidus pro-
cedure, but to compare the outcome of different assessment methods
and to see if any similarity exists between the outcome of subjective
and objective assessmentmethods. The nine gait characterizing param-
eters for HV have already been defined by the previous study with good
effect size (Chopra et al., 2015). Hence, the present study, even with the
small subject size, showed similar parameters to be clinically relevant

Fig. 3. First metatarso-phalangeal joint kinematics in the three planes for the three groups during 100% of the gait cycle. ★ represents significant difference compared to control (P b 0.05), no
difference reported between preoperative and postoperative outcome.
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for the outcome assessment of HV surgeries. The strength of the study is
the prospective design which helped to extract useful information that
has strong implications in terms of functional recovery. Comprehensive
assessment utilized in the study included the subjective questionnaires,
the radiographic outcome and a complete gait assessment, hence pro-
viding detailed information of patient status.

Clinical implications of the study is that for the foreseeable modified
Lapidus procedure to correct moderate to severe HV, the preoperative
patient's information could help predict the possible level of outcome.
Further, the optimization of postoperative rehabilitation could be
achieved with early gait assessment. Importantly, clinical applicability
of the nine defined gait characterizing parameters in HV deformity
was confirmed for accurate assessment of the surgical outcome.

5. Conclusion

In conclusion, the study strongly suggests the inclusion of gait as-
sessment during early postoperative period following HV surgery with
the potential clinical application that an individual's rehabilitation pro-
grams could be devised using the most accurate data for the best possi-
ble outcome. Furthermore, the robustness of thenine gait characterizing
parameters inHVallows for accurate assessment in clinical practice. Ad-
ditionally, for clinical foot and ankle research, these nine parameters
could promote reliable comparison and promote consistency between
the studies when determining future outcome.
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ABSTRACT: Previous studies assessed the outcome of ankle arthrodesis (AA) and total ankle replacement (TAR) surgeries; however,
the extent of postoperative recovery towards bilateral gait mechanics (BGM) is unknown. We evaluated the outcome of the two
surgeries at least 2 years post rehabilitation, focusing on BGM. 36 participants, including 12 AA patients, 12 TAR patients, and 12
controls were included. Gait assessment over 50m distance was performed utilizing pressure insoles and 3D inertial sensors, following
which an intraindividual comparison was performed. Most spatiotemporal and kinematic parameters in the TAR group were indicative
of good gait symmetry, while the AA group presented significant differences. Plantar pressure symmetry among the AA group was also
significantly distorted. Abnormality in biomechanical behavior of the AA unoperated, contralateral foot was observed. In summary, our
results indicate an altered BGM in AA patients, whereas a relatively fully recovered BGM is observed in TAR patients, despite the
quantitative differences in several parameters when compared to a healthy population. Our study supports a biomechanical assessment
and rehabilitation of both operated and unoperated sides after major surgeries for ankle osteoarthrosis. � 2013 Orthopaedic Research
Society. Published by Wiley Periodicals, Inc. J Orthop Res

Keywords: ankle arthrodesis; total ankle replacement; inertial sensors; plantar pressure parameters; bilateral gait

Osteoarthrosis (OA) of the ankle joint leads to both
anatomical and biomechanical deterioration.1–4 During
the end stage of the disease, a compensatory gait
pattern is often observed,5 where a patient’s asymp-
tomatic contralateral foot bears an excessive and
disproportionate load during dynamic activities. The
result is the natural development of an asymmetrical
gait pattern.1

Ankle arthrodesis (AA) and total ankle replacement
(TAR) are frequently used surgical options to treat
end-stage ankle OA. Ideally, the gait pattern improves
12months postoperatively,4,6 following completion of a
physical rehabilitation program. To evaluate their out-
comes in terms of pain and function, most studies
utilize clinical questionnaires. Several of them reported
no difference between treatments at mid-term follow-
up.7–9 However, more objective studies, utilizing gait
analysis methods, reported a better outcome with TAR
in terms of mobility.3,6,10 Notably, these studies com-
pared the operated foot with a control population and
preoperative versus postoperative functional capabili-
ties. No comprehensive information is available regard-
ing the advantages of AA or TAR in terms of restoring
bilateral gait mechanics (BGM).

Studies of the outcomes of other joint replacement
surgeries, such as hip and knee, reported altered BGM
after unilateral total joint arthoplasty.11–13 These stud-
ies showed asymmetry in joint kinematics, moments,

and loading due to increased load on the unoperated
contralateral joint from a persistence of preoperative
gait abnormalities. We aimed to investigate the out-
come of AA and TAR looking at BGM. We hypothesized
that, in light of promising clinical7–9 or biomechani-
cal3,4,6,10 results from these procedures, a patient’s
BGM would be compromised after either surgery and
that the effects are more likely observed in AA
compared to TAR. We sought to qualify and quantify
this gait asymmetry in terms of kinematics, kinetics
and spatiotemporal parameters.

MATERIALS AND METHODS
Participants
36 participants were divided into three groups: 12 AA
patients, 12 TAR patients, and 12 healthy controls. Consecu-
tive patients with isolated post-traumatic end stage OA, who
had undergone isolated AA or TAR, between 2003 and 2011,
were evaluated. All surgeries had been performed by the
senior author (XC) at the Orthopaedic Department of the
University Hospital of Lausanne. The mean follow-up period
postoperatively was 4.7 years (�2.7 years). Patients were
excluded if they were affected by other pathologies of the
spine and lower extremities.

To avoid bias towards patients with an inhomogeneous
clinical outcome, the AOFAS ankle hind foot scale14 was
administered to determine if patients could participate.
Patients with AOFAS score <70 for TAR and <60 for AA
were excluded; these values were chosen according to the
range reported in previous studies of TAR, using the same
implants (Salto1, Tornier SA, Saint Ismier, France),15 and of
functional results following AA.16 The lower score was
considered for AA to compensate for bias due to the mobility
subscale. The control population was volunteers with no
prior history of lower limb pathology. All participants gave
informed consent. Approval of the ethics commission of the
University of Lausanne was obtained.
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Measurement System
Gait assessment was performed using an ambulatory pres-
sure insole (Pedar-X, Novel, Germany) and five inertial
sensors consisting of 3D accelerometers and 3D gyroscopes.
The sensors were attached to the medial aspect of both
tibias, and on the tested foot, to the posterior aspect of the
great tuberosity of the calcaneus between the base of the first
and second metatarsals, and on the dorsal aspect of the
proximal phalanx of the first toe. Sensors were connected to
two portable data-loggers (Physilog, BioAGM, CH). Each foot
was measured separately. Insoles, with custom made san-
dals, were available in four sizes and were used according to
the participants’ shoe sizes. The setup, reliability, and
accuracy of the applied gait assessment technology was
previously validated.2,17

Measurement Protocol
To obtain repeatable joint angles consistently among sub-
jects, the sensor signals and subsequent 3D joint angles were
expressed relative to the foot and shank’s anatomical frames,
instead of the inertial sensors’ technical frames.17 To achieve
this, a functional calibration based on passive knee move-
ments was conducted.18 After calibration, participants per-
formed two walking trials at their natural pace in a straight
line along a 50m hospital corridor. The same procedure was
repeated for the contralateral foot.

Spatiotemporal parameters, kinematics (joint angles) and
plantar pressure were assessed for all gait cycles of each trial
using previously validated algorithms.2,19,20 The first and
last three cycles of each trial were discarded to negate
wayward effects during initiation and termination of walk-
ing. The average of all remaining gait cycles was then taken
for each trial.

The spatiotemporal parameters included stance and swing
phase gait cycle time (GCT), inner-stance events (loading,
foot-flat, and push-off phases (stance phase %)), and heel
strike pitch (HSP) and toe off pitch (TOP) angles. The HSP
and TOP were included because they are associated with the
chronology of the stance phase when the foot is loaded.

3D joint angles, during ambulation, were assessed in the
sagittal (dorsiflexion/plantarflexion), coronal (inversion/ever-
sion), and transverse (abduction/adduction) planes, for the
following segments: forefoot-toes (FF-TO); hindfoot-forefoot
(HF-FF); shank-hindfoot (SH-HF); and overall foot, shank-
toes, (SH-TO).21

Plantar pressure parameters were assessed at 10 anatom-
ical sub-regions: hindfoot (lateral and medial (HL, HM));
midfoot (lateral and medial (ML, MM)); forefoot (lateral,
central and medial (FL, FC, FM)); and toes (divided into
third to fifth toe (TT), second toe (TS) and first toe (TF)),
based on a previously validated protocol.17 The parameters
assessed total contact duration (% stance time), maximum

pressure (Max P) (kPa), and maximum vertical force (Max F)
(% body weight). The gait data were analyzed using MAT-
LAB version 2011a (The MathWorks, Inc.).

Outcomes were assessed for the operated (Op) ipsi-lateral
and unoperated (Unop) contralateral foot and subsequently
compared (AA Op vs. AA Unop and TAR Op vs. TAR Unop).
Similarly, both sides of the control group were compared for
each individual and, to avoid bias towards the dominant
side, a further global comparison, randomizing sides of
individuals, was conducted. Finally, both sides of each
surgical option were compared to the controls.

Statistical Analysis
The average of each gait parameter over all gait cycles for
each individual was compared between the operated (Op),
unoperated (Unop) sides and between controls, using non-
parametric statistical analyses. A Wilcoxon signed-rank test
was performed to compare the intraindividual symmetry
between the Op and Unop sides and a Wilcoxon rank-sum
test for interindividual comparison between the Op groups
and controls. The level of significance was alpha <0.05. The
analyses were performed using Stata/IC12.0 (StataCorp).
Median and inter-quartile range (IQR) of each parameter
was calculated over all individuals in each population.

RESULTS
Demographics
No difference was seen between the two Op groups in
age, weight, and BMI; however, the control group was
significantly younger and healthier than the Op
groups (Table 1). A significant difference occurred in
the AOFAS hind foot scores between the two patient
groups, (p¼ 0.005); this difference was in the function
subscale (p¼ 0.0004), which is heavily weighted by the
two mobility questions. Hence, pain and alignment
subscales showed no difference between the two
groups, representing fair homogeneous clinical results
of the two surgeries.

Spatiotemporal Parameters of Gait
In the AA group, five of eight spatiotemporal param-
eters showed a significant difference (p<0.05) between
the Op and Unop sides, while the TAR group showed a
significant difference in TOP only (Table 2). Signifi-
cant differences were found against controls: the Op
AA group (swing time, foot-flat, push-off, HSP, TOP);
Unop AA (stance time, foot-flat, push-off, TOP); Op
TAR (stance time, foot-flat, push-off, and TOP); and
Unop TAR (stance time, swing time, foot-flat, push-off,

Table 1. The Demographic Parameters of Patients and the Participants in the Control Group

Physical Characteristics TAR AA Control

Age (years) 63.6 (9.6)† 65.6 (8.3)† 45.6 (10.3)
Height (cm) 170.6 (7.5)† 164.1 (8.9) 165.3 (8.7)
Weight (Kg) 81.1 (15.2)† 74.5 (16.2)† 61.9 (12.5)
BMI (Kg/m2) 27.74 (4.08)† 27.62 (5.4)† 22.5 (3.7)
Sex 8M, 4F 5M, 7F 3M, 9F
AOFAS hindfoot score 88 (11)†,� 66 (7)†,� 100 (0)

Values presented in median (IQR). †Represents significant difference (p< 0.05) compared to control, �represents significant difference
(p<0.05) between TAR and AA.
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and TOP). Stance and TOP angle comparison is shown
in Figure 1a–c.

Kinematics
The ROM between the Op and Unop sides of the AA
group showed significant differences in: sagittal and
coronal plane movements of FF-TO; sagittal and
transverse plane movements of HF-FF; and move-
ment in all three planes of SH-HF and SH-FF
(Table 3). In contrast, a symmetrical joint movement

was observed in the TAR group between the Op
and Unop side except for a significant difference in
sagittal and coronal plane movements of FF-TO and
SH-HF, respectively. Comparing with the controls,
significant differences were found in: Op AA group
(all joint angles); Unop AA (sagittal plane movement
of FF-TO); Op TAR (sagittal plane movement of FF-
TO, HF-FF, SH-FF and coronal plane movement of
SH-HF); and Unop TAR (transverse plane movements
of HF-FF).

Table 2. Median (IQR) of Spatiotemporal Parameters of Operated/Un-operated Sides of Patients and Controls

Temporal Parameters TAR Unop TAR Op AA Unop AA Op Control A Control B

Stance (GCT) 60.3 (2.9)† 59.9 (3.8)† 63.4 (5.5)�,† 60.9 (5.5)� 57.65 (2.4) 58.87 (1.9)
Swing (GCT) 39.7 (2.9)† 40.5 (4.8) 41.3 (4.0)� 44.3 (3.1)�,† 42.4 (2.42) 41.1 (1.9)
Loading (St.%) 10.6 (1.9) 11.1 (3.6) 10.9 (5.1)� 15.5 (6.5)� 11.5 (3.2) 10.3 (2.3)
Foot-flat (St.%) 57.8 (2.7)† 56.8 (7.7)† 65.0 (10.7)† 65.01 (8.3)† 54.0 (9.1) 53.5 (5.4)
Push-off (St.%) 31.0 (2.7)† 32.8 (6.2)† 31.1 (5.3)† 29.9 (9.4)† 34.7 (8.2) 37.3 (5.2)
HSP (˚) 20.1 (8.0) 21.8 (4.0) 20.6 (1.1) 1� 21.6 (7.2)�,† 21.3 (7.1) 19.0 (4.7)
TOP (˚) �71.5 (6.9)�,† �64.9 (4.7)�,† �51.0 (25.8)�,† �30.3 (36.1)�,† �78.8 (6.8) �80.5 (2.8)

GCT, gait cycle time; St%, % of stance phase; HSP, heel strike pitch angle (the angle formed by the walking surface and the most
posterior point on the heel at heel strike); TOP, toe off pitch angle (the angle formed by the walking surface and the toes at toe-off).
�Indicates significant difference (p< 0.05) of Op-Unop comparison. †Represents significant difference (p<0.05) compared to control
average.

Figure 1. (a, b) Inter and intra-individual comparison of stance phase between the operated groups and controls, c. Inter and intra-
individual comparison of TOP. represents significant difference (p<0.05) compared to controls. indicates significant difference
(p< 0.05) of Op-Unop comparison.
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Plantar Pressure Parameters
In 8 of 10 sub-regions (HL, HM, ML, MM, FL, FC,
FM, TF), Tc results showed significant differences
between the two sides of the AA group (Table 4). Max

P and Max F were significantly different in 6 of 10
(HM, MM, FC, FM, TT, TS) and 3 of 10 (FC, FM,
FT) sub-regions, respectively. All together, 17 of 30
plantar pressure results were significantly different,

Table 4. Median (IQR) of Plantar Pressure Parameters of Operated/Un-operated Sides of Patients and Controls

Foot Region
Plantar
Pressure TAR Unop TAR Op AA Unop AA Op Control A Control B

Hindfoot lateral Tc (St.%) 55.10 (15.1) 51.8 (14.5)† 87.1 (20.4)�,† 55.4 (18.1)�,† 45.4 (5.2) 49.9 (5.7)
Max P (kPa) 96.11 (37.2)� 77.7 (20.4)� 113.9 (52.4) 121.9 (67.1) 97.3 (49.2) 109 (43.6)
Max F (BW%) 23.2 (10.5)�,† 17.97 (8.5)� 26.2 (12.5) 27.5 (15.2) 34.6 (15.1) 29.4 (15.2)

Hindfoot medial Tc (St.%) 55.80 (16)† 54.54 (11.4) 89.8 (26.4)�,† 53.1 (18.3)�,† 50.4 (5.3) 53.6 (6.5)
Max P (kPa) 120.2 (57.5) 109.7 (53.5) 130.8 (91.9)� 86.2 (62)�,† 108.6 (49.9) 141.0 (34.2)
Max F (BW%) 32.9 (16.7) 29.2 (13.9)† 40.9 (28) 26.0 (21.2) 36 (9.0) 40.2 (11.9)

Midfoot lateral Tc (St.%) 61.1 (15.6)† 59.2 (9.6)† 101.8 (37.7)�,† 61.2 (21.3)�,† 31.6 (34.8) 37.7 (12.6)
Max P (kPa) 32.7 (28.2)† 41.7 (14.6)† 55.8 (19.3)† 59.1 (29.2)† 13.7 (13.1) 18.7 (8.8)
Max F (BW%) 10.3 (13.5)† 15.2 (4.3)† 23.3 (9.5)† 16.2 (12.2)† 5.5 (4.1)� 8.2 (5.8)�

Midfoot medial Tc (St.%) 31.54 (28.1)† 34.54 (13)† 65.1 (16.9)�,† 26.5 (27.1)�,† 23.6 (19.2) 21.9 (19.4)
Max P (kPa) 9.9 (10.4) 14.5 (3.9)† 17.1 (9.5)�,† 10.8 (7.9)� 10.6 (7.3) 8.9 (4.2)
Max F (BW%) 3.3 (4.4) 3.7 (2.3) 5.8 (3.5)† 5.5 (3.6) 2.5 (4.2) 1.2 (2.5)

Forefoot lateral Tc (St.%) 84.7 (14.9) 83.8 (9.1)† 123.5 (22.4)�,† 76.8 (12.6)� 79.5 (16.5) 83.1 (5.1)
Max P (kPa) 102.3 (56.7) 117.4 (43.1) 128.1 (67.4) 129.7 (48.4)† 111.6 (29.4) 114.6 (28.6)
Max F (BW%) 28.5 (7.1) 25.1 (14.7) 36.1 (14.5) 32.4 (13.5) 30 (9.3) 30.4 (9.8)

Forefoot central Tc (St.%) 77.5 (13.6) 70.6 (13.3) 117.04 (28.8)�,† 64.8 (17.7)� 70.4 (24.3) 73.5 (11.6)
Max P (kPa) 151.7 (43.5) 125.9 (47.3) 177.6 (63.6)�,† 111.7 (40)� 123.6 (18.4) 141.2 (31.7)
Max F (BW%) 27.5 (5.1) 21.8 (8.9)† 32.4 (12.3)�,† 24.5 (9.4)�,† 28.9 (3.4) 29.8 (4.9)

Forefoot medial Tc (St.%) 72.9 (30.1)† 55 (16.1) 91.5 (25.1)�,† 40.8 (23.3)� 42.3 (28.9) 53.3 (16.1)
MaxP (kPa) 86.3 (49.5)† 62.6 (27.3) 100.9 (53)�,† 43.7 (23.8)� 52.7 (33.4) 61.6 (18.5)
Max F (BW%) 19.2 (8.7) 11.1 (8.4) 17.5 (14.7)�,† 8.7 (5)�,† 13 (9.5) 14.4 (4.5)

Third toe Tc (St.%) 12.4 (10.6) 11.8 (13.8) 26.4 (9.1)† 23.5 (23.6) 15.3 (9) 11.6 (15.5)
Max P (kPa) 12.0 (7.0) 9.2 (13.4) 25 (4.9)�,† 15.9 (12.4)� 13.9 (6.6) 14.2 (10)
Max F (BW%) 2.1 (2.4) 0.9 (3.6) 3.8 (1.8) 3.0 (3.9) 3.5 (3.9) 2.8 (4.8)

Second toe Tc (St.%) 29.5 (13.3)� 32.3 (9.5)� 31.3 (18.5) 16.9 (20.4) 29.6 (17.6) 29.5 (11.7)
Max P (kPa) 35 (13.9) 41.1 (19.4) 56.6 (43.8)� 43.3 (25.6)� 32.8 (12.2) 40.7 (6.2)
Max F (BW%) 4.9 (2.5) 5.6 (3.1) 5.1 (6.4) 4.4 (3.2) 5.8 (3.5) 7.3 (4.1)

First toe Tc (St.%) 33.9 (15.1) 37.6 (8.7) 47.3 (23.5)� 20.5 (13.5)�,† 35.3 (17.3) 38.4 (15)
Max P (kPa) 70.7 (39.2) 55.4 (42.3) 113.5 (65.6) 44.3 (23.2)† 91.5 (40.5) 81 (28)
Max F (BW%) 9.4 (7) 9.5 (6.6)† 11.3 (8.4)�,† 5.7 (4.7)�,† 18.3 (10.6) 13.5 (11.8)

�Indicates significant difference (p<0.05) of Op-Unop comparison. †Represents significant difference (p<0.05) compared to control
average.

Table 3. Median (IQR) of Joint Angles of Operated/Un-Operated Sides of Patients and Controls

Joints Joint Movements TAR Unop TAR Op AA Unop AA Op Control A Control B

FF-TO Dorsi-plantarflexion 38.4 (6.2)� 33.2 (13.9)�,† 35.1 (8.9)�,† 20.1 (10.9)�,† 42.6 (9.4) 41.7 (4.1)
Inv-eversion 11.7 (2.7) 10.3 (2.3) 10.6 (4.8)� 7.3 (4.2)�,† 12.1 (5.2) 11.3 (5.6)
Abd-adduction 9.4 (1.7) 8.5 (3.3) 9.8 (2.9) 10.2 (3.1)† 8.5 (4.4) 6.8 (4.5)

HF-FF Dorsi-plantarflexion 23.9 (4.5) 18.9 (8.7)† 22.1 (4.5)� 10.4 (4.9)�,† 23.6 (5.6) 26.9 (4.2)
Inv-eversion 7.9 (2.9) 6.8 (3.1) 6.3 (3.4) 5.1 (1.9)† 6.96 (3) 7.6 (2.2)
Abd-adduction 4.2 (1.4)† 5.8 (5.9) 7.3 (2.4)� 3.5 (2.6)�,† 6.2 (1.96) 6.2 (1.98)

SH-HF Dorsi-plantarflexion 13.9 (7.3) 9.6 (5.4)† 12.8 (4.9)� 10.3 (4)�,† 13.4 (2.5) 12.1 (1.7)
Inv-eversion 12.7 (3.7)� 6.7 (2.4)�,† 11 (3.0)� 7 (2.4)�,† 12.3 (6.2) 10.2 (3.1)
Abd-adduction 8.7 (5.6) 7.81 (2.2) 9.7 (3.9)� 5.8 (2.1)�,† 8.5 (3.7) 9.7 (5.7)

SH-FF Dorsi-plantarflexion 26.8 (4.3) 30 (6.8) 27.2 (4.6)� 15.5 (4.3)�,† 32.1 (5.6) 31.5 (4.96)
Inv-eversion 18.8 (5.5) 14.6 (4.4) 14 (2.9)� 7.1 (2.1)�,† 17.5 (7.8) 13.1 (4.0)
Abd-adduction 9.3 (4.7) 10.8 (5.7) 10 (2.8)� 6.5 (3.7)�,† 10.1 (4.4) 14.6 (4.6)

TO, toes; FF, forefoot; HF, hindfoot; SH, shank. �Indicates significant difference (p< 0.05) of Op-Unop comparison. †Represents
significant difference (p<0.05) compared to control average.
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indicating bilateral asymmetry in the AA group.
Similar comparison in the TAR group showed signifi-
cant difference in 3 of 30 plantar pressure results (HL
(Max P and Max F) and TS (Tc)). Hence, the TAR
group showed better BGM in plantar pressure com-
pared with the AA group. Comparing with the con-
trols, significant differences were seen in; AA Op (13
out of 30); AA Unop (18 out of 30); TAR Op (12 out of
30); and TAR Unop (8 out of 30). Comparison of the
mean difference of maximum force among each group
is shown in Figure 2.

DISCUSSION
Both AA and TAR surgeries are associated with
residual ipsilateral biomechanical abnormalities.22–24

Our results show that, at least two years after
rehabilitation, TAR patients demonstrated BGM com-
parable to the controls. Conversely, AA patients
showed persistent BGM alterations.

Spatiotemporal Parameters of Gait
In the stance phase of the AA and TAR groups,
both Op and Unop sides showed significantly longer

Figure 2. Box and whisker plots representing mean difference of maximum force (D Max Force) in 10 foot regions between operated
and unoperated sides of AA, TAR and the two sides of controls. HL, hindfoot lateral; HM, hindfoot medial; ML, midfoot lateral; MM,
midfoot medial; FL, forefoot lateral; FC, forefoot central; FM, forefoot medial; TT, third to fifth toes; TS, second toe; TF, first toe. Force
normalized to body weight %.
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foot-flat and shorter push-off durations compared to
controls (Fig. 1a,b), corresponding to a previous study
by Mariani et al.19 Notably, the durations on the Unop
sides of both groups adapted according to their Op
sides. Comparatively longer foot-flat duration in both
sides of the AA group represent a slower walking pace.
Also, the smaller TOP observed in both AA and TAR
group compared with controls could be due to the
weaker push-off. However, this difference with the
controls was smaller in the TAR group (Fig. 1c).
Spatiotemporal results show that AA, unlike TAR,
patients show deterioration in their gait symmetry,
representing an altered BGM.

Kinematics
The kinematic outcome of all three groups were
consistent with previous studies,3,17,25 though a higher
ROM in sagittal plane midfoot movements was ob-
served, consistent with Scott and Winter,26 who
reported transverse tarsal movements between 10˚
and 20˚. No explanation for this increase in amplitude
exists; however, it is likely due to differing preferred
walking speeds amongst participants; our participants,
walking at a comparatively slow pace, bore longer
plantar flexion during the last 5–10% of stance in the
mid foot region.

Comparing the AA group with controls, a reduced
ROM was observed throughout; all joint angles for Op
side, 10 of 12 for Unop side. Previous studies focused
on hindfoot and midfoot mobility whereas our results
detail a significant reduction in first toe mobility in
the sagittal and coronal planes after AA and TAR
surgeries. As before, the overall joint ROM results
prove better in TAR patients compared to AA.

Plantar Pressure Parameters
We report that the Tc of the Op AA side is significantly
smaller compared with Unop side in most sub-regions,
differing from Schuh et al.,27 who reported a decrease
in Tc only in the forefoot and toe regions. Our results
also show a significant increase in the Tc of AA
patient’s Unop side in all regions compared to the
controls. A compensatory gait pattern in AA patients
is due to these issues present in the Op foot. TAR
patient results show good symmetry in Tc, comparable
to the controls.

Specific regions in the foot take Max P during
ambulation.28 Studies comparing the normal regional
peak pressure distribution showed notable continuity
among healthy individuals.29,30 The regional Max P
typically follows a triangular pattern: medially at
hindfoot to laterally at the midfoot to centrally in
forefoot and finally to the first toe region. Our results
show similar peak pressure regions bilaterally in the
control and TAR groups; however, AA patients bore a
lateral displacement of pressure on their Op foot.
Similar results were reported by Rouhani et al.2 For
AA patients, abnormal reduction in Max P was seen
on the medial sub-regions of the hindfoot, midfoot, and

forefoot regions compared to the Unop side. Interest-
ingly, the Max P on the lateral subregions of the Op
side was not different to the Unop side, representing a
relative lateral shift of Max P on the Op AA foot. Tthe
Unop AA foot also showed an increase in Max P at all
regions compared to controls, showing a clear pressure
imbalance for AA patients. Previous studies comparing
Op AA foot with the contralateral Unop foot (Schuh
et al. and Fuentes-Sanz et al.) failed to demonstrate
this pressure imbalance as they did not separate all
foot regions into lateral and medial sub-regions.25,31

In box plots (Fig. 2), the medians of control and
TAR groups were closer to zero in most regions,
representing symmetrical loading, but in the AA group
the median was far below zero in the medial sub-
regions of hindfoot, midfoot, and forefoot representing
asymmetrical loading between sides. A similar com-
parison by Schuh et al. for AA patients only reported
differences in the lateral, midfoot region. Fuentes-
Sanz et al.31 reported no difference in the maximum
force between Op and Unop sides of AA patients.

Schuh et al. compared the Op side with the
asymptomatic contralateral side and reported no dif-
ference in Max F, Max P of hindfoot, medial midfoot
and forefoot regions of either foot, or Max P in the
lateral midfoot region of the Op foot. Fuentes-Sanz et
al. showed no difference in gait, spatiotemporal, or
kinematic and kinetic parameters between the Op and
Unop feet of AA patients. These different results
compared to our findings are due to aspects of their
assessment procedures including: (a) value of Max F
was not normalized to body weight and, hence, not a
reliable interpreter; (b) foot models were divided into
only five and six sub-regions, respectively; (c) pressure
data were collected using fixed location pressure plat-
forms. The use of a pressure platform, which makes
patient’s apprehensive during this section of each
walking trial, leads to an adverse effect on their
walking pace/mechanics; mobile pressure insoles miti-
gate this issue and provide data throughout the
walking trial.

Our findings draw attention to the negative impact
of ipsilateral AA on the contralateral foot, leading to
altered BGM. For several gait parameters, especially
plantar pressure parameters, the difference of the non
operated foot to the controls was even more than that
of the operated foot to the controls. This could support
extended indications for TAR. However, the decision to
perform TAR or AA depends on other criteria beyond
our biomechanical findings. Promoting an intense
rehabilitation program for either surgery and for both
feet could be beneficial. Patient education regarding
gait mechanics and breaking the adapted abnormal
BGM post surgery would also help. Gait assessment
6 months postoperatively is recommended as a progno-
sis measure. Any significant alteration during the
early rehabilitation stages could be corrected with the
help of orthosis/insoles or a change of rehabilitation
protocol based on the patient’s requirements and could

6 CHOPRA ET AL.

JOURNAL OF ORTHOPAEDIC RESEARCH MONTH 2013

140



lead to an overall improvement in BGM after either
surgery.

The strength of our study is its design and gait
analysis technology. Both Op and Unop sides were
compared to assess BGM and subsequently compared
with the controls to determine the deviation from the
ideal. Also, we provide the first comprehensive bio-
mechanical profile of the asymptomatic Unop foot after
AA and TAR, which was disregarded in previous
studies. Finally, the gait analysis system allowed
comparison of data recorded over a long walking
distance, reflecting a more natural gait pattern com-
pared to recordings of only a few steps.

Our study has limitations. The small population
questions the validity of the results; however, differ-
ences in parameters reached and exceeded reputable
levels of significance. Several previous gait studies of
AA and TAR involved a similar number of patients per
group.3,10,25 Valderrabano et al. justified the use of
smaller population by calculating power based on a
pilot study. The presence of pre-operative data would
have provided information with regards to altered
BGM in case of end stage ankle OA and to what extent
this alteration was reduced after successful TAR or
AA; however, from the posteriori knowledge, the
distorted gait parameters in end stage OA is known.1,4

The non randomization of the allotted treatment is
another limitation; however, randomization is ethical-
ly unacceptable in patients with post traumatic end
stage OA because the decision to perform either AA or
TAR depends on various factors. The absence of
randomization could bias the results in comparing the
two groups. But we did not aim to compare the
superiority of one surgery over the other; rather, the
major implication was to understand BGM after
either. Measurements were performed on one foot at a
time; however, this method should not affect the
results due to high test-retest repeatability.2,3 The
significantly different demographics of the controls
compared with the cohorts could be a limitation;
however, our aim was to compare intraindividual
results and not patients vs. controls. The control group
was added to assess the level of gait deviation. Finally,
spanning eight years (2003–2011) for recruitment may
appear large; however, the minimum follow up was 2.7
years and, in our experience, the clinical situation is
stabilized 2 years postoperatively.

In conclusion, we found significantly altered gait
mechanics in the unoperated side of AA patients. In
clinical terms, our findings demonstrate that patients
who received TAR had a good ROM, less limp, and a
well balanced gait. AA patients, however, exhibited
restriction in their operated side and were consistently
more dependent on their unoperated side for support.
These findings suggest that rehabilitation should also
consider the unoperated side after major surgeries for
ankle OA. Furthermore, our study supports the need
for assessment of both operated and unoperated sides
when determining the outcome of TAR and AA and

that this principle should be applied when evaluating
all foot and ankle pathologies and their respective
treatments.
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ABSTRACT 

Background: Gait alterations including gait asymmetry have been reported to follow ankle 

arthrodesis, however, not much information is available regarding tibiotalocalaneal arthrodesis. 

The study aimed to functionally assess and compare the gait mechanics following both the 

surgeries. 

 Methods: 36 participants, including 12 patients from each of the two surgical groups and 12 

healthy age matched controls, were assessed using clinical scores and ambulatory gait analysis, 

utilizing pressure insoles and 3D inertial sensors. Both operated and unoperated sides of patients 

were tested and compared based on 47 measured gait parameters.  

Findings: Both case groups reported reduced hindfoot and forefoot motion, decreased cadence, 

speed, and stride length, increased foot flat phase, and increased loading duration of the hindfoot 

and the lateral midfoot. Ankle arthrodesis patients also reported overloading of the unoperated 

hindfoot, midfoot and forefoot, representing extensive bilateral asymmetry.  

Interpretation: Our findings reject the hypothesis that tibiotalocalcaneal arthrodesis, with greater 

articular restriction, is more detrimental for gait mechanics than ankle arthrodesis. Specifically, 

considering plantar pressure parameters, tibiotalocalcaneal arthrodesis reported better outcome in 

terms of bilateral gait mechanics. Future research should aim to determine which pathologic gait 

parameters are predictive for long term outcome. 

 

 

143



Submitted to Clinical Biomechanics 

 

INTRODUCTION 

Tibiotalocalcaneal arthrodesis (TTCA) involves fusion of both tibiotalar and subtalar joints. It is 

an established surgical procedure for combined end stage diseases of the ankle and subtalar 

joints. It is also used as a salvage procedure for failed ankle and hindfoot surgery [2, 7]. Several 

fixation methods are available for TTCA [2, 4, 7], out of which retrograde intramedullary nailing 

has been reported to be associated with good initial stability and positive outcome [2, 4, 13]. Few 

studies have assessed the outcome of TTCA in comparison to other ankle surgeries, most of 

which utilize radiographic assessment and clinical scores [2, 4, 7]. Furthermore, biomechanical 

studies of TTCA are mostly in-vitro cadaveric studies which are not representative for functional 

biomechanics [3, 17]. Limited data is available regarding gait alterations following TTCA [24]. 

On the other hand, Ankle arthrodesis (AA) involves fusion of only tibiotalar joint and is a well 

documented and widely used procedure to address end stage diseases of the ankle joint [25]. 

Several studies have assessed the outcome of AA, giving mixed outcome based on the 

assessment method used. Studies assessing AA based on the clinical scores and pain assessment 

has continued to report good to excellent outcomes [4, 10, 25], however, studies assessing the 

biomechanical outcome following AA reported significant alterations in gait mechanics. Peak 

pressures during walking at hindfoot and forefoot [23] has been found to be shifted laterally [6, 

20]. Such an alteration, result in the adaptation to a compensatory gait mechanics in adjacent 

joints, both ipsilaterally, as well as at the contralateral side to achieve the most economical gait 

pattern [6, 20, 25] . Furthermore, studies assessing the long term outcome of AA, based on 

radiographic results, reported arthritic changes in neighboring joints [8, 11].  

With the current state of knowledge regarding AA, as well as limited gait mechanics information 

following TTCA, one may assume that gait alteration would be higher in TTCA patients because 

of the fusion of both tibiotalar and  subtalar joints. The goal of the present study is to provide a 

comprehensive bilateral gait assessment following TTCA and AA to compare the outcomes. The 

working hypothesis is that, due to further articular restriction, the gait alteration and inherent 

asymmetry following surgical correction would be greater in TTCA comparison to AA. 
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MATERIALS AND METHODS 

Participants 

This is a retrospective cohort study, reporting the evidence level of III. The study involved 36 

participants, including 12 AA patients, 12 TTCA patients and 12 healthy controls.  TTCA group 

consisted of patients, who had the surgery either as a salvage procedure for failed total ankle 

arthroplasty or as a primary procedure for simultaneous ankle and subtalar osteoarthrosis.  The 

AA group consisted of patients with post-traumatic end stage ankle osteoarthrosis, who had 

undergone isolated AA, during the same period and were selected based on the same exclusion 

criteria as the TTCA group. The average follow-up period, was 4.5±2 years. All surgeries had 

been performed by the senior author. The control population consisted of volunteers who had no 

prior history of lower limb pathology or injury. Study population demographics are presented in 

Table 1. All participants gave their informed consent. Approval of the ethics commission of the 

University was obtained. 

Table 1: Demographics and Clinical Scores 

Demographics & 

Clinical Scores 

TTCA AA Control 

Age (years) 63.6 (9.6) † 65.6 (8.3) † 54.4 (5.9) 

Height (cm) 174 (6.7) † 164.1 (8.9) 165.3 (8.7) 

Weight (Kg) 86.7 (17) † 74.5 (16.2) † 61.9 (12.5) 

BMI (Kg/m
2
) 28.6 (5.8) † 26.5 (4.5) † 22.5 (3.7) 

Sex 7M, 5F 5M, 7F 3M, 9F 

AOFAS-hindfoot 66 (10.1) 65 (6.8) - 

FAAM-ADL 72 (16.4) 68.8 (17.6) - 

EQ5D 0.67 (0.2) 0.66 (0.16) - 

*
 Indicates significant difference (p<0.01) of Op-Unop comparison. 

†
Represents significant 

difference (p<0.01) compared to control average.
 ¶ 

Represents significant difference (p<0.01) of 

TTCA Op and AA Op side comparison 
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Clinical Assessment 

Clinical evaluation included the American Orthopedic Foot and Ankle Society (AOFAS) 

Hindfoot Score [14] and the Foot and Ankle Ability Measure Score (FAAM)- activity of daily 

living (ADL) section [5], in conjunction with the general health specific score EQ5D [12]. For 

FAAM, the sport section of the score was ignored by most patients in the two case groups and as 

such was not included. 

Gait Assessment 

Ambulatory gait assessment included the use of pressure insoles (Pedar-X®, Novel, Germany) 

and four inertial sensors each consisting of 3-D accelerometers and gyroscopes. The system had 

been previously validated and shown to have high test-retest reliability [20, 21]. Sensors were 

placed, on the medial border of the shank (both sides), posterior calcaneal tuberosity and between 

the bases of the first and second metatarsal, following a previously validated protocol [21]. 

Sensors were connected to two portable data acquisition systems (Physilog®, BioAGM, CH). 

Pressure insoles were available in four sizes, with custom made sandals.  

Functional calibration was performed in accordance with the previously published study [9], 

following which participants performed two 50 m walking trials at their natural speed in a 

hospital corridor. In the case groups, both operated (Op) and unoperated (Unop) sides were tested 

for the evaluation of gait symmetry. 

For gait data analysis, all gait cycles of the two trials, except the first and last three gait cycles of 

each trial, were included. This was done to negate unsteadiness during the initiation and 

termination of walking. While for plantar pressure parameter assessment the foot was divided 

into 10 different anatomical sub-regions for an elaborate understanding of plantar loading. The 10 

foot subregions include: hindfoot (lateral and medial (HL, HM)), midfoot (lateral and medial 

(ML, MM)), forefoot (lateral, central and medial (FL, FC, FM)) and toes (divided into third to 

fifth toe (TT), second toe (TS) and first toe (TF)) [20]. And the parameters assessed included 

total contact duration (Tc) (% stance time), maximum pressure (Max P) (kPa), and maximum 

force (Max F) (% body weight). For kinematic assessment, a validated multisegment foot model 
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was used [21]. Kinematics data were recorded in the sagittal, coronal and transverse planes over 

100% of the stance phase. Based on the joint coordinate system the inter-segment joint range of 

motion (ROM) during ambulation was assessed for the following segment couples: forefoot-

hindfoot, hindfoot-shank and forefoot-shank. Lastly, the spatiotemporal parameters of gait 

included: cadence, stance, stride, speed, peak angular velocity and inner-stance events (loading, 

foot-flat, and push-off phases expressed in % of stance phase) [15].  

Statistical data analysis 

The average of each gait parameter over all gait cycles was calculated separately for both sides of 

each individual. Shapiro-Wilk test of normality showed normal distribution in half of the 

parameters. Hence both non-parametric (Wilcoxon rank sum/ Wilcoxon signed-rank tests) and 

parametric (unpaired and paired student t test) tests were used to compare case groups with the 

controls and to compare Op and contralateral Unop sides of both case groups, respectively.  The 

level of significance was set at p < 0.01 to prevent the likelihood of false positive results due to 

multiple parameters and multiple comparisons. Data were analyzed and compared using 

MATLAB version 2011a (The MathWorks Inc.) 

RESULTS 

Demographics and Clinical Scores  

Demographic comparison showed no significant difference between the two case groups. 

However, compared to the controls, both case groups were, on average, older and heavier (Table 

1). The outcome of all three clinical scores was similar in both case groups, suggesting 

comparable clinical status of the patients in the two groups. 

Plantar Pressure Parameters 

Plantar pressure parameters results in 10 sub regions of the foot are summarized in Table 2. 

Comparing the Op side of AA patients to the controls, the following significant differences were 

observed:   (Tc) was longer in the HL, HM, ML and shorter in the TF; (Max P) was higher in the 

ML, FL and lower in the TF (Max F) was higher in the ML and lower in the TF. In comparing 
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the Unop side with the controls,  significant differences were found in 11 out of 30 parameters, 

including: longer (Tc) in the HL, HM, ML, MM, FC and FM; higher (Max P) in the ML, MM, 

and FM; higher  (Max F) in the ML, and MM. 

Table 2: Median (IQR) of plantar pressure parameters (PPP) of gait 

Foot segments PPP 
TTCA 

Op 

TTCA 

Unop 

AA 

Op 

AA 

Unop 
Control 

Hindfoot Lateral Tc 65.7 (17) 
†¶

 64.9 (23.5)
 †
 52.6 (16.6)

 * †¶
 87.7 (14.8)

 * †
 46 (9) 

 
Max P 124.8  (57) 122.3 (68) 121.9(67.1) 121.6 (50.5) 106 (54.6) 

 
Max F 28.6 (15.9) 30.3 (17.9) 27.4 (15.5) 28.2 (17.5) 29.4 (16) 

Hindfoot Medial Tc 64.1 (12)
 †¶

 74.7 (17.1)
 †
 51.9 (17.8)

 *†
 90.1 (15.6)

 * †
 48.9 (9.7) 

 
Max P 143.1 (42.8)

 ¶
 124.5 (63.6) 78.9 (42.9)

 *¶
 129.2 (104.4)

*
 142.7 (40.2) 

 
Max F 40.3 (8.9) 35.7 (14.7) 24.9 (21.4) 38.6 (31.3) 39.1 (9.6) 

Midfoot Lateral Tc 56.8 (7.5)
 †
 69.6 (18.7)

 †
 59.1 (19.3)

 * †
 106(12.2)

 *†
 35.9 (5.7) 

 
Max P 54.5 (16.9)

 †
 44.1 (27.6)

 †
 59.1 (29.2)

  †
 55.6 (29.2)

 †
 17.4 (6.9) 

 
Max F 18.1 (6.4)

 †
 18.5 (5.1)

 †
 16.2 (8.3)

 †
 23.3 (9.5)

 †
 7.4 (3.7) 

Midfoot Medial Tc 43.2 (6.6) 54.5 (30.6) 23.7 (25.4)
 *
 65.9(19.3)

 * †
 37 (11.7) 

 
Max P 21.07 (5.4)

 ¶
 21.5 (17.6) 9.7 (7.7)

 ¶
 16.9 (9.1)

 †
 10.6 (7.3) 

 
Max F 5.6 (2.2) 6.6 (6.7) 3.96 (3.7) 5.7 (3.6)

 †
 2.5 (2) 

Forefoot Lateral Tc 81.5 (11.5) 85.1 (4.8) 78.1 (13)
 *
 123.5 (22.4)

 *
 77.8 (24.6) 

 
Max P 142.8 (21.7) 109.6 (22.98) 128 (19.4)

 †
 140.9 (66.4) 114.6 (22.3) 

 
Max F 34.8 (6.9) 27.2 (12.9) 31.3 (9.3) 36.5 (13.4) 33.6 (9.8) 

Forefoot Central Tc 71.1 (12.6)
 *
 81.4 (2)

 *
 62.3 (20.9)

 *
 118.7 (19.9)

 * †
 70.4 (24.3) 

 
Max P 136.2 (24.4) 126.7 (51.9) 110.8 (35.1)

 *
 173.1 (60.7)

 *
 141.2 (35.5) 

 
Max F 27.9 (6.8) 24.3 (8.6) 22.7 (8.6) 31.7 (10.2) 28.9 (3.4) 

Forefoot Medial Tc 63.8 (11.2)
 †
 66.6 (12)

 †
 40.4 (25.3)

 *
 91.9 (26.4)

 *†
 40.3 (18) 

 
Max P 74.7 (18.1)

 ¶
 67.9 (41.7) 39.9 (26.6)

  *¶
 100.8 (66.7)

 * †
 53.9 (18.5) 

 
Max F 16.3 (3.1)

 ¶
 14.3 (6.6) 7.8 (4.9)

  * ¶
 17.1 (12.6)

 *
 13 (3.8) 

Third Toe Tc 27.7 (11.9) 34.9 (16) 23.5 (23.6) 26.4 (9.1) 19.5 (11) 

 
Max P 15.8 (7.9) 18.3 (8) 15.9 (12.4) 25 (4.9) 13.9 (6.6) 

 
Max F 3.2 (1.9) 4.6 (1.7) 3.0 (3.9) 3.8 (1.8) 4.5 (3.4) 

Second Toe Tc 36.1 (5.7) 42.5 (13.7)
 †
 16.9 (20.4) 31.3 (18.5) 25 (16) 

 
Max P 52.7 (12.5) 51.9 (15.2) 43.3 (25.6) 56.6 (42.6) 40.7 (6.2) 

 
Max F 5.2 (2.5) 6.8 (3.1) 4.4 (3.2) 5.1 (6.4) 5.2 (3.5) 

First Toe Tc 30.5 (7.4) 46.3 (26.3) 21 (15)
 * †

 45 (19)
 *
 35.3 (7.9) 

 
Max P 64.9 (18.1)

 †
 70.98 (15.9) 52.2 (25)

 †
 93.2 (76.1) 81 (26.4) 

 
Max F 8.6 (2.9) 12.4 (2.9) 5.7 (5.1)

 †
 9.7 (5.4) 13.4 (10) 

*
 Indicates significant difference (p<0.01) of Op-Unop comparison. 

†
Represents significant 

difference (p<0.01) compared to control average.
 ¶ 

Represents significant difference (p<0.01) of 

TTCA Op and AA Op side comparison, Group p value represents normality   
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Comparing the TTCA group’s Op side to the controls, the following significant differences were 

observed:   (Tc) was longer in the HL, HM, ML and FM; (Max P) was higher in the ML and 

lower in the TF; (Max F) was higher in the ML. In comparing the Unop side with the controls, 

significant differences in 7 out of 30 parameters including: longer (Tc) in the HL, HM, ML, FM, 

and TS; higher (Max P) in the ML; higher (Max F) in the ML.  

 

Figure 1: Plantar pressure parameters, total contact duration (Tc), maximum force (Max 

F) and maximum pressure (Max P), differences between operated and unoperated sides in 

AA (red) and TTCA (blue). Negative results represent higher value on the unoperated side and 

positive results represent higher value on the operated side.        p<0.01 
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Op versus Unop side comparisons for the AA group showed a significant increase in (Tc) in the 

HL, HM, ML, MM, FL, FC, FM, and TF; significantly higher (Max P) at the HM, FC, and  FM 

as well as significantly higher (Max F) in the FM on the Unop side.  All together 12 out of 30 

parameters showed significant difference. In stark contrast, the TTCA group only showed one 

significant difference: longer (Tc) of the FC region on the Unop side. In order to better illustrate 

the bilateral symmetry based on plantar pressure distribution, Figure 1 represents the mean 

difference between the two sides in each of the two case groups, values close to zero represent 

good symmetry. 

Comparison between the Op sides of TTCA and AA showed higher values in the TTCA group 

for the following variables: (Tc) in HL, HM; (Max P) in the HM, MM and FM; (Max F) in the 

FM. No significant difference was reported between the Unop sides of the two case groups. 

Kinematics 

The inter-segment ROM results are summarized in Table 3.  Comparing to the controls, the Op 

sides of both TTCA and AA groups showed a significantly reduced ROM at each intersegment in 

the three planes (p<0.01) with an exception of the forefoot-hindfoot segment in the coronal plane 

for both cases and transverse plane in TTCA. Reduced ROM of the Unop sides of the case groups 

compared to the controls was observed in the sagittal plane at forefoot-hindfoot, forefoot-shank, 

and in the transverse plane at forefoot-shank in TTCA and at forefoot-shank in sagittal plane in 

AA. 

The Op versus Unop side comparison showed significant reduction in the motion of the forefoot-

hindfoot and forefoot-shank in the sagittal plane and hindfoot-shank and forefoot-shank in the 

coronal plane and in forefoot-shank in the trasnsverse plane for AA patients, whilst in TTCA 

patients significant reduction was reported for the hindfoot-shank and forefoot-shank motion in 

the sagittal plane and forefoot-shank motion in the coronal plane. Furthermore, comparison 

between the Op sides of the two case groups showed that hindfoot-shank motion of the TTCA 

patients were significantly reduced in the sagittal plane. No differences were reported between 

the Unop sides of the two case groups. It can be noted that forefoot-shank motion on the Op side 

in both case groups were similar, representing similar level of restriction with and without 
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subtalar fusion. This was best illustrated in the sagittal and coronal planes (Figure 2). These 

graphs also demonstrate the pattern of pathologic motion with the absence of complete plantar 

flexion and inversion at the end of stance phase for both AA and TTCA Op and Unop as well as 

the excess of dorsiflexion before push off of the Unop side of both AA and TTCA patients. 

 

Table 3: Median (IQR) of intersegment displacement in sagittal, coronal, and transverse 

planes 

Plane 
Inter-

segments 

TTCA 

Op 

TTCA 

Unop 

AA 

Op 

AA 

Unop 
Control 

Sagittal FF-HF 12.2 (4.3)
 †
 17.8 (3.1)

 †
 10.4 (4.4)

 † *
 19.9 (5.0)

 *†
 26.6 (6.1) 

 HF-SH 4.9 (2.2)
 †*¶

 12.8 (5.8)
 *

 9.6 (5.3)
 †¶

 12.2 (5.6) 12.1 (3.8) 

 FF-SH 16.4 (2.1)
 †*

 27.7 (5.2)
 †*

 16.9 (5.3)
 †*

 27.1 (4.1)
 *†

 34.2 (4.7) 

Coronal FF-HF 5.3 (2.7) 9.36 (7.1) 5.0 (1.6) 6.5 (2.7) 8.3 (4.4) 

 HF-SH 7.4 (2.2)
 †
 8.5 (3.0) 6.7 (2.4)

 †*
 10.6 (2.8)

 *
 10.4 (3.1) 

 FF-SH 8.0 (2.0)
 †*

 16.4 (1.8)
 *

 7.2 (1.3)
 † *

 13.5 (2.8)
 *
 15.1 (6.2) 

Transverse FF-HF 5.6 (4.3) 8.4 (3.6) 2.9 (3.2)
 †
 5.9 (2.9) 6.2 (3.4) 

 HF-SH 3.3 (1.3)
 †
 8.5 (1.8) 5.8 (2.1)

 †*
 9.75 (4)

 *
 9.3 (3.5) 

 FF-SH 5.7 (2.1)
 †
 7.6 (5.3)

 †
 5.5 (2.5)

 †
 10.1 (3.9) 13.9 (5.6) 

*
 Indicates significant difference (p<0.01) of Op-Unop comparison. 

†
Represents significant 

difference (p<0.01) compared to control average.
 ¶ 

Represents significant difference (p<0.01) of 

TTCA Op and AA Op side comparison 
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Figure 2: Forefoot-shank segment motion in sagittal and coronal planes. Black solid line 

represents control, colored solid line represents.  Operated side and dashed lines represent 

Unoperated side. AA (red) and TTCA (blue). Similar levels of restriction of both AA and TTCA 

Op sides are observed.  

Spatiotemporal Parameters  

Spatiotemporal parameters results for each group are summarized in Table 4. In comparison with 

the controls, both Op and Unop sides of each case group showed reduced cadence, prolonged 

stance phase duration (with the exception of the Op sides), reduced duration of loading phase 

(with the exception of the Op sides), prolonged duration of foot-flat phase, reduced duration of 

push-off, shorter stride, lower speed and reduced peak angular velocity (p<0.01). The Op versus 

Unop side comparison showed a reduced duration of stance, a prolonged phase of loading and a 

reduced peak angular velocity in the AA group, whilst Op side of TTCA patients was associated 

with reduced duration of stance, a prolonged phase of loading. Comparison between the Op sides 
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of TTCA and AA groups showed no significant difference in any parameter. Similar non 

significant results were reported when the Unop sides of the two case groups were compared. 

 

Table 4: Median (IQR) of spatiotemporal parameters of gait 

Parameters 
TTCA 

Op 

TTCA 

Unop 

AA 

Op 
AAUnop Control 

Cadence 

(steps/min) 
90.7 (18.6)

†
 98.4 (17.1)

†
 103.7 (16.8)

†
 105 (17.5)

†
 122 (12.2) 

Stance (GCT) 59.2 (2.4)
*
 62.6 (1.9)

*
 
†
 56.8 (2.3)

 *
 61.5 (2.2)

*†
 57.4 (2.1) 

Load (St.%) 12.2 (5.4)
*
 8.8 (2.6)

*†
 13.1 (3.5)

 *
 9.8 (2.6)

 *†
 12(4.2) 

Foot-flat (St.%) 65.7 (12.0)
†
 65.7 (11.1)

†
 62.8 (11.4)

 †
 63.1  (5.7)

†
 52 (5.1) 

Push-off (St.%) 23.9 (7.8)
†
 26.1 (10.9)

†
 26.8 (7.5)

 †
 28.8  (4.4)

†
 36.9 (5.8) 

Stride (m) 1.1 (0.2) 
†
 1.1 (0.2)

†
 1.08 (0.2)

 †
 1.13 (0.2)

†
 1.26 (0.2) 

Speed (m/s) 0.8 (0.3)
†
 0.9 (0.3)

†
 0.85 (0.3)

 †
 0.95 (0.2)

†
 1.3 (0.3) 

PAVS (°/s) 321.7 (94)
†
 363 (92.3)

†
 336 (70.3)

*†
 369 (33)

*†
 412.9 (69.7) 

*
 Indicates significant difference (p<0.01) of Op-Unop comparison. 

†
Represents significant 

difference (p<0.01) compared to control average.
 ¶ 

Represents significant difference (p<0.01) of 

TTCA Op and AA Op side comparison. GCT%: % of gait cycle time, St.%: % of stance time, 

PAVS: peak angular velocity. 

 

DISCUSSION  

Several studies have assessed gait mechanics following AA [6, 18, 22, 25] however, only one 

study, by Tenenbaum et al. [24], assessed the same following TTCA. From a solely clinical 

perspective AA and TTCA have been compared using functional scores reporting good outcome 

following either surgery [1]. However, biomechanical comparison following AA and TTCA is 

missing in the literature. Hence, the present study is the first to comprehensively assess and 

compare gait mechanics following both AA and TTCA as well as additionally assess gait 

symmetry. A further strength of the study is the assessment protocol, which utilize a 
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multisegment foot model providing a comprehensive bilateral gait profile. Furthermore, the 

ambulatory gait assessment system used is not lab based and tests the participants in an open 

environment, providing truly representative data without spatial restriction. 

The patients of both case groups were homogeneous in terms of clinical status and demographics, 

contributing to the lack of bias between the groups. Compared to the controls, our patients were 

slightly, older and heavier which may be regarded as a weakness of the study. However, the 

differences between the observed gait of patients and those of the controls were so significant 

that, older controls are unlikely to have lead to different results. Another limitation could be the 

relatively small study size. However, comparable previous gait studies included similar number 

of patients per group [6, 16, 20, 22, 26], and differences in recorded parameters reached reputable 

levels of significance at p<0.01. Missing preoperative data is another limitation of the study, 

which could have given better insight to each patient’s initial level of bilateral symmetry. 

However, TTCA patients consisted of mostly failed cases of total ankle replacement or combined 

arthrosis of tibiotalar and subtalar joints and in such cases one could assume that walking would 

have been painful and that unoperated side loading would likely have been increased to reduce 

pain. 

Overall, gait results in the present study were comparable with those already reported [6, 22, 24-

26]. However, kinematics outcome in our controls, especially in the sagittal plane, were reported 

to be slightly higher than in previous studies [18, 25]. This could be the result of drift error 

reported in body worn inertial sensors [9, 19, 21]. However, a few degrees of error are suspected 

due to the external effects on the sensors [19]. A slow walking speed (0.5 m/s) is shown to report 

less error in comparison to moderate (0.9 m/s) to fast (1.3 m/s) walking speed [19, 21]. Our 

results also showed some motion around hindfoot-shank intersegment in TTCA, where there 

should be none. Regardless, the pros of using wearable sensors are more beneficial than the cons. 

For AA patients, studies that used a three segment model reported comparable hindfoot motion, 

while higher forefoot motion 15±5° in comparison to 10.4±4.4° the present study in the sagittal 

plane [25]. Another study by Wu et al [18] also reported slightly higher motion in all three 

intersegments in all three planes. Comparing TTCA results with the only related gait study 
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available, Tenenbaum et al [24], difficulty arises, as the study used a single-segment foot model 

and kinematics results are reported in the sagittal plane only. Their study showed the total range 

of motion of the ankle in the sagittal plane to be 10.2±1.9° which is significantly less in 

comparison to this study 16.4±2.1°. In terms of gait symmetry, they reported 24.1±4.3° for the 

unaffected limb against 27.7±5.2° motion in this study. 

The working hypothesis of the study was that gait alteration following TTCA would be greater in 

comparison to AA and that gait symmetry would also be increased. Gait assessment revealed an 

altered gait pattern in both Op and Unop sides in each case group when compared to the controls. 

As such, one can answer the working hypothesis in terms of pathologic gait as well as in terms of 

gait symmetry. Furthermore, the hypothesis can be explained from both a quantitative and a 

qualitative perspective.  

Pathologic gait: Quantitative aspects revealed the following number of abnormal parameters: for 

plantar pressure 7 out of 30 in TTCA against 9 out of 30 in AA Op sides (7/30 TTCA and 11/30 

AA Unop sides), for kinematics 7 out of 9 for TTCA against 8 out of 9 for AA Op sides (3/9 

TTCA and 2/9 AA Unop sides), for spatiotemporal parameters 6 out of 8 for both TTCA and  AA 

patients Op sides  (8/8 for both TTCA and AA Unop sides). These results place TTCA and AA 

on a similar pathologic level even if a slightly better performance is observed for TTCA in 

plantar pressure and kinematics. From a qualitative perspective, the AA patients appear to 

abnormally overload the lateral border of the foot, whilst TTCA patients have a tendency to 

overload the lateral forefoot. Regarding kinematics, as expected, there is a reduced sagittal 

hindfoot motion in TTCA compared to AA patients. There is also similar level of stiffness of the 

foot found in both groups and spatiotemporal data is similarly pathologic for both groups. 

Gait symmetry: Quantitative aspects revealed the following number of abnormal parameters: for 

plantar pressure 1 out of 30 for TTCA patients against 12 out of 30 for AA patients; for 

kinematics 3 out of 9 for TTCA patients against 5 out of 9 for AA patients; for spatiotemporal 

parameters 2 out of 8 for TTCA patients against 3 out of 8 for AA patients. This places TTCA 

and AA patients on a similar level of gait asymmetry regarding kinematics and spatiotemporal 

parameters, but regarding plantar pressure data, TTCA patients present significantly better gait 
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symmetry. From a qualitative perspective one can observe stronger overload and longer contact 

duration of the hindfoot, midfoot and forefoot in the Unop side of AA patients which is 

representative of a limping gait.  

In conclusion, the present study is the first to comprehensively assess and compare gait 

mechanics after TTCA and AA. Findings reject the hypothesis that TTCA is more detrimental for 

gait mechanics than AA. Furthermore, based on the results of the plantar pressure parameters, 

TTCA patients appeared to perform better than AA patients, especially in terms of gait 

symmetry. This study gives interesting insights into the outcomes of both TTCA and AA 

surgeries and it appears that TTCA is by far not as detrimental in terms of gait mechanics as once 

thought. Of course, evaluating patients’ outcome at a relatively short term follow up, i.e. less than 

5 years, does not allow for definitive clinical recommendations. As such, further research should 

be carried out to determine which pathologic gait parameters are representative of a for long term 

outcome. 
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Abstract 

Studies have found significantly altered gait parameters followingsurgical treatment of ankle 

osteoarthrosis, including abnormal gait mechanics in patients’ unoperated side. This is usually 

assumed to be a residual effect of a preoperative adapted gait pattern. However, influence of 

ankle osteoarthrosisoutcome on the contralateral foot is not well studied.This study,aims to 

assess bilateral gait mechanics in ankle osteoarthrosis patients to understand the extent of gait 

alterations.20 participants, including 10 healthyand 10 end-stage ankle osteoarthrosiscases, 

were assessed using 3-D inertial sensors and pressure insoles. Altogether,48 gait parameters 

were assessedand compared (p<0.01). Comparing the affected and unaffected sides in the case 

group, 8 out of 48 parameters showed significant difference. Furthermore, in comparison to 

the controls, affected and unaffected sides showed significant difference in 20 and 14 out of 

48 parameters, respectively.Patients with end-stage ankle osteoarthrosis show altered gait 

parameters on both affected and unaffected sides when compared with controls. However, 

contrary to previous postoperative assumptions relative gait symmetry exists preoperatively. 

This suggests that postoperative gait asymmetry followingankle osteoarthrosis is not 

necessarily a residual effect, but rather a consequence of surgery and orinadequate 

rehabilitation. 

Keywords: Ankle arthritis, gait analysis, plantar pressure, kinematic, gait symmetry 
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Introduction 

Ankle Osteoarthrosis (AOA) is a chronic progressive degenerative disease which affects the 

quality of life of patients because of pain and progressing deformity. Among the incidences of 

osteoarthrosis of weight bearing joints, the AOA is relatively low, in comparison to hip and 

knee joints, with only 1–4% of the adult population being affected with the disease
1, 2

. Post 

traumatic and  secondary AOA are the most common forms of AOA presented in clinical 

practice and are seen frequently in the younger aged population
1, 3

 in comparison to hip and 

knee osteoarthrosis
4, 5

, hence the impact on a patient’s quality of life and work capacity can be 

severe. 

Several surgical options are available for the treatment ofend-stage AOAbased on the severity 

of the disease and the structures involved. Treatment is inclined towards reducing pain and 

making the patient as functionally independent as possible. Nonetheless, AOA patients in 

early adulthood may face a greatly restricted lifestyle.Studies have assessed gait mechanics 

post ankle surgeries and reported existence of altered gait mechanics on both operated and 

unoperated sides
3, 6, 7

. An explanation for this alteration is that it is due to residual gait 

alterations from the preoperative period, where constant pain would have resulted in 

asymmetrical loading
2, 8

. Studies have assessed AOA patients based on spatiotemporal and 

kinematic parameters on the affected foot
9, 10

, or based on plantar pressure parameters of both 

affected and unaffected sides 
2, 11

. Even so, Horisberger et al did not include a baseline control 

group to compare with 
2
. The study aims to improve understanding of gait mechanics in end-

stage AOApatients by assessing all aspects of gait on both the affected and the unaffected 

sides. 

Methods 

20 participants were divided into twoage matched groups: 10end-stage AOApatients and 10 

healthy controls. Case group consisted of the consecutive patients with isolated post-traumatic 
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end-stage ankle osteoarthrosis, stages 3 and 4 according to Kellgren and Lawrence, who had 

not been affected by other pathologies of the lower extremities or spine. The control 

population consisted of volunteers with no prior history of lower limb or spinal pathology. All 

participants gave their informed consent and approval of the ethics commission of our 

University was obtained.Clinical and demographic status of AOApatients is given in Table 1. 

Clinical assessment included; the American Orthopedic Foot and Ankle Society Score for 

hindfoot (AOFAS) 
12

, the Foot and Ankle Ability Measure Score- activity of daily living 

section (FAAM) 
13

, along with the general health specific score EQ-5D 
14

. 

Table 1: Demographics of the study population, result in mean (SD) 

Demographics and Clinical assessment AOA Control 

Age 65.8 (8.9) 64.9 (9.1) 

BMI 27.6 (3) 25.7 (5.5) 

AOFAS-total 48 (18) † 100 (0) 

FAAM-ADL 61 (19) † 100 (0) 

EQ-5D 0.47 (0.3) † 1 (0) 

† represents (p<0.05) in comparison to the controls 

Gait assessment was performed using an ambulatory pressure insole (Pedar-X, Novel, 

Germany) and five inertial sensors consisting of 3-D accelerometers and gyroscopes. The 

sensors were attached to the medial region of both tibias, the posterior aspect of the great 

tuberosity of the calcaneus between the base of the first and second metatarsals, and on the 

dorsal region of the proximal phalanx of the first toe. Sensors were connected to two portable 

data acquisition systems (Physilog, BioAGM, CH). In the case group, each footwas measured 

separately. Insoles were available in four sizes. The setup, reliability and accuracy of the used 

technology and assessment protocol have been validated by Rouhani H et al.
15, 16

. 

Each test started withfunctional calibration of the assessment system, via passive knee 

movements
17

, followed by two walking trials at the natural walking speed along a 50m 
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distance. The procedure was then repeated for the contralateral foot. The first and last three 

cycles of each trial were discarded to removethe instabilities during the initiation and 

termination of walking. Subsequently, spatiotemporal, kinematics and plantar pressure 

parameters were assessed for all gait cycles of each trial. The spatiotemporal parameters 

assessed include; stance in percentage of gait cycle time (GCT%),cadence (steps/min), inner-

stance events 
18

(load, foot-flat, and push-off phases (stance %)), stride (m), speed(m/s), peak 

swing speed (°/s) and heel-strike pitch (°) and toe-off pitch (°) angles. Intersegmentrotations 

during ambulation, were assessed in thesagittal (dorsiflexion/plantarflexion), coronal 

(inversion/eversion), and transverse (abduction/adduction) planes, for the following 

intersegments: forefoot-toes, hindfoot-forefoot, shank-hindfoot and shank-forefoot
16

. 

Plantar pressure parameters were assessed at 10 anatomical sub-regions
7
 including; hindfoot- 

lateral and medial; midfoot- lateral and medial; forefoot- lateral, central and medial; and toes - 

third toe (third to fifth toe), second toe and first toe. The parameters assessed total contact 

duration (% stance), maximum pressure (Max P) (kPa), and maximum force (Max F) (% body 

weight).  

The average of each gait parameter for each individual was compared between the 

AOAaffected and unaffected sides and with the controls, using nonparametric statistical 

analyses. A Wilcoxon signed-rank test was performed to compare the intraindividual 

symmetry between the affected and unaffected sides in the AOAgroup and a Wilcoxon rank-

sum test for comparing both sides of the case group with controls. The level of significance 

was p<0.01.  

Results 

The spatiotemporal results are displayed in Table 2. In comparison to the controls, 

affectedside of the AOAgroup showed a reduced cadence, shorter stride, lower speed, reduced 

peak swing speed and lower toe-off pitch angle (p<0.01). On the other hand, the unaffected 
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side showed reduced cadence, increased foot-flat duration, reduced push-off duration, speed, 

and peak swing speed (p<0.01) in comparison to the controls. Comparingaffected 

andunaffected sidesno significant difference was reported. 

Table 2: Spatiotemporal parameter of gait, result in mean (SD) 

Spatiotemporal 

parameters 

AOA 

Affected side 

AOA 

Unaffected side 
Control 

Stance (GCT%) 58.6 (2.5) 61.8 (3.8) 58 (2.4) 

Cadence (steps/min) 96.9 (15.8) † 98.4 (14.9) † 114.2 (9.5) 

Load(St%) 9.6 (3.05) 9.1 (3.1) 11.7 (2.58) 

Foot-flat (St%) 61.3 (10.2) † 64.8 (7.2) † 54.2 (3.2) 

Push-off (St%) 29.1 (9.3) 26.1 (4.8) † 34.04 (3.86) 

Stride (m) 0.99 (0.25) † 1.02 (0.26) 1.25 (0.1) 

Speed (m/s) 0.83 (0.3) † 0.86 (0.3) † 1.2 (0.1) 

Peak swing speed (°/s) 289.1 (81.2) † 316.7 (69.1) † 389.86 (38.4) 

Toe-off pitch angle (°) 55.2 (11.4) † 59.7 (10.7) 70.25 (6.4) 

Heel-strike pitch angle(°) 16.6 (5.8) 16.5 (6.9) 20.1 (3.8) 

† Comparison to the controls (p<0.01), * comparison to unaffected side (p<0.01).  

Inter-segment displacement results are summarized in Table 3.  Comparing to the controls, 

the affected side of AOAgroup showed a significantly reduced range of motion at all four 

intersegment in the sagittal planewhile the unaffected side showed difference only in the toe-

forefoot intersegment (p<0.01). Affected and unaffected sides comparison showed significant 

difference in the motion of the forefoot-hindfoot and forefoot-shank intersegment in the 

sagittal plane and forefoot-shank intersegment in the coronal plane (p<0.01). 
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Table 3: Intersegment rotations at sagittal and coronal planes, result in mean (SD) 

Movement 

Planes 
Intersegments 

AOA 

affected side 

AOA 

unaffected side 
Control 

Sagittal Toes-forefoot 27.6 (9.2) † 32.4 (7.8) † 40.6 (4.9) 

 
Forefoot-hindfoot 12.3 (3.5) †* 23.7 (7.3) 24.8(6.8) 

 
Hindfoot-shank 10.4 (3.9) † 14.5 (4.3) 16.1 (3.5) 

 
Forefoot-shank 15.9 (6.6) †* 24.3 (5.8) 28.9 (6.5) 

Coronal Toes-forefoot 10.1 (3.2) 11.5 (2.9) 13.1 (2.6) 

 
Forefoot-hindfoot 16.7(7.3) 15.2 (2.9) 11.0 (3.8) 

 
Hindfoot-shank 15.2 (6.9) 12.1 (3.8) 13.1 (3.6) 

 
Forefoot-shank 11.7 (3.8) †* 16.5 (4.5) 16.0 (4.2) 

† Comparison to the controls (p<0.01), * comparison to unaffected side (p<0.01).  

Plantar pressureresults for 10 sub regions of the foot are given in Table 4. Comparing the 

AOA affected side to the controls, the following differences were reported; Tc was 

significantly shorter in the first toe (p<0.01) and longer in midfoot lateral and forefoot central 

subregions, Max F and Max P was significantly lower in the hindfoot medial, first and second 

toeregions (p<0.01) on the affected side. Comparing the AOA unaffected side to the controls, 

significant difference was found atTc in midfoot lateral, forefoot central, third and first toe 

regions and Max F at hindfoot lateral, forefoot lateral and first toe regions(p<0.01). The 

affected and unaffected side comparison in the case group showed significant differences only 

in the toe regions; reduced Tcand Max F in first and second toe andreduced Max P in second 

toe region(p<0.01) on the affected side.  
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Table 4: Plantar pressure parameter of gait, result in mean (SD) 

 

† Comparison to the controls (p<0.01), * comparison to unaffected side (p<0.01).  

Discussion 

Altered gait patterns are known to continue even after surgical correction of end-stage AOA
3, 

7
. It is widely assumed that this alteration is nothing other than the residual effect of the 

preoperative walking pattern, usually asymmetrical due to severe pain and or discomfort
2
.  

However, this study assessed bilateral gait mechanics in end-stage AOApatients and found 

Foot  

segments 

Plantar 

pressure 

AOA  

affectedside 

AOA  

unaffectedside 

Control 

Hindfootlateral Tc 56.1 (17) 61.3 (22.8) 49.6 (9.3) 

 Max F 22.4 (9.6) 17.8 (6.7)† 28.1 (8.5) 

 Max P 82.9 (21.9) 74.98 (26.7) 95.7 (35.8) 

Hindfoot medial Tc 58.2 (17.1) 66.7 (16.8) 63.8 (19.1) 

 Max F 27.7 (5.9) † 27.2 (12.9) 42.6 (9.7) 

 Max P 97.0 (21.5) † 99.2 (44.5)  139.1 (35) 

Midfoot lateral Tc 59.5 (12.4)† 60.4 (20.8)† 44.8 (15) 

 Max F 12.5 (7.9) 11.4 (9.5) 10.5 (5.3) 

 Max P 30.6 (13.0) 34.6 (24.3) 27.2 (14.8) 

Midfoot medial Tc 40.1 (17.4) 35.2 (12.7) 28.8 (7.8) 

 Max F 5.1 (2.5) 3.4 (2.5) 4.5 (2.7) 

 Max P 16.3 (6.0) 12.9 (6.6) 13.7 (5.6) 

Forefoot lateral Tc 87.8 (4.8) 89.2(4.9) 79.8 (14.1) 

 Max F 28.6 (12.9) 22.7 (11.5)† 34.2 (9.5) 

 Max P 116.9 (41.1) 93.2 (44.4) 106.7 (39.1) 

Forefoot central Tc 84.7 (5.7)† 85.4 (11.5)† 72.3 (13.3) 

 Max F 26.3 (7.9) 20.0(11.6) 29.8 (8.6) 

 Max P 148.9 (42.3) 109.1 (59.3) 132.9 (29.7) 

Forefoot medial Tc 63.1 (12.3) 65.2 (16.1) 60.7 (16.5) 

 Max F 14.1 (7.5) 14.5 (9.1) 18.2 (8.1) 

 Max P 73.5 (36.8) 75.3 (39.5) 74.3 (25.6) 

Third toe Tc 30.7 (14.3) 29.4 (9.9)† 18.6 (5.9) 

 Max F 2.3 (2.0) 4.2 (1.8) 4.0 (3.2) 

 Max P 14.7 (5.9) 21.3 (6.7) 17.6 (6.9) 

Second toe Tc 23.2 (12.6)* 37.7 (6.8) 30.8 (7.7) 

 Max F 2.1 (1.5)† * 5.8 (2.5) 5.7(3.6) 

 Max P 26.8 (14.0)†* 46.2 (16.9) 37.3 (12.3) 

First toe Tc 20.3 (11.4) †* 48.7 (9.6)† 34.9 (8.3) 

 Max F 4.4 (4.4) †* 8.6 (2)† 14.7 (7) 

 Max P 37.2 (29.7) † 55.3 (13.9)† 80.8 (26.7) 
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very littleasymmetry, in comparison to the postoperative outcome following certain ankle 

surgeries shown in previous publications
6, 7

.  

Gait pattern of the affected side in the AOApatients, in the present study, were similar to 

previous studies separately assessing different gait parameters. Among spatiotemporal 

parameters, reduced stride length, cadence and speed on the affected side were reported in 

comparison to the controls which are similar to previous studies
8, 10

. However, in contrast to 

previous studies, the stance phase showed no significant difference in comparison to the 

controls. Out of the 10 studied spatiotemporal parameters, five showed significant difference 

forboth affected and unaffected sides in comparison to the controls. Furthermore, the bilateral 

comparison in AOA group showed good symmetry. This level of symmetry in spatiotemporal 

parameters is far greater to postoperative outcomes
7
. Moreover, in comparison to the controls 

several parameters showed significant difference on both operated and unoperated sides after 

either surgeries representing existence of altered gait mechanics 
7
.  

Kinematic results of the present study showed significant difference in all four inter-segments 

in the sagittal plane on affected side in comparison to the controls- also observed in previous 

studies 
9, 10

.In the coronal plane no difference was reported with the controls on the affected 

side, confirming to Kozanek e al. 
9
 but contrary to Khazzam et al 

10
 where a significant 

reduction in coronal plane motion on the affected side around the tibia, hindfoot and forefoot 

was reported.  

Lastly, plantar pressure parameter results partially coincide with the study by Horisberger et 

al 2009
2
 which showed significantly low peak pressure (kPa) at hindfoot and the toe regions 

on the affected side in comparison to the unaffected side. Results show that the three toe 

subregions of the affected side have both maximum force and pressure presenting 

significantly lower values in comparison to the unaffected side. However, for the hindfoot 

subregion, no significant difference between the two sides were reported- following the study 

168



Submitted to Journal of Applied Biomechanics 

 

by Shih LY et al.
11

. The significantly reduced total contact duration in the hallux subregion on 

the affected side in comparison to the unaffected side confirms to the study by Horisberger et 

al 
2
. However, followingankle arthrodesis and or total ankle replacement, significant 

differences were reported in the loading pattern of whole foot and hindfoot, respectively
7
. 

This suggests that the hindfoot mechanics change after both surgery andtheireffects can be 

seen even on the unoperated side.  

Findings draw attention to the possibly negative impact of ipsilateral ankle surgeries on the 

contralateral foot. Altered gait mechanics on the unoperated side are seemingly not pre-

existing but rather postoperative adapted gait pattern. This may be due to several reasons, 

such as apprehension, pain, prolonged immobilisation, naturalisation to the postoperative 

changes, and insufficient rehabilitation. If true, this would mean that such asymmetry could 

be corrected, if not completely prevented. 

Strength of the study is the elaborate assessment of 48 gait parameters in patients with 

end-stage ankle osteoarthrosis. The gait analysis system utilized is portable and allows to test 

the patients in an open environment capturing data from several number of consecutive gait 

cycles instead of just a few within a restricted gait lab environment.The study does have a 

limitation that is the small population size. Nonetheless, the results presented reached 

reputable level of significance. Furthermore, comparable gait study by Kozanek M et al, 

assessedkinematic in AOApatients including similar number of patients and tested only the 

affected side
9
. 

In conclusion, patients with end-stage AOA showed significant difference in most gait 

parameters for both affected and unaffected sides when compared to a control group. 

However, the gait symmetry is seen to persist following end-stage AOA. Results suggests that 

the postoperative gait asymmetry may not be influenced by the preoperative gait pattern but 

rather due to other postoperative reasons including long immobilization phase, pain and 

169



Submitted to Journal of Applied Biomechanics 

 

adapted walking pattern learned during the early rehabilitation phase. Hence, our findings 

suggest that, if these alterations can be captured during the rehabilitation phase, the situation 

could be reverted with proper gait training. 
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Abstract 
Background: Higher variability in gait parameters has been reported in patients’ with arthrosis of hip and knee joints, 
leading to dynamic instability and increased risk of falling. Higher variability and gait instability has also been noted to 
persist months after surgery. Ankle arthrosis is likely similar, but information regarding this is lacking. The purpose of the 
study was to evaluate gait variability following ankle arthrosis and its surgical treatments, ankle arthrodesis and total ankle 
replacement.  

Methods: Seventy participants, divided into controls, ankle arthrosis, ankle arthrodesis and total ankle replacement, 
performed gait assessment wearing 3-D inertial sensors through which gait parameters and the variability were compared 
among groups. Correlations between American Orthopedic Foot and Ankle score and Foot and Ankle Ability Measure 
score with the gait parameters and their variability were calculated.  

Results: All three case groups reported gait variability similar to that of the controls. On the contrary, significant 
differences (P < .01) were reported in several gait parameters when compared to the controls in all case groups. 
Furthermore, both clinical scores showed little to no correlation with gait variability and a good correlation was reported 
with gait parameters (P < .0001).  

Conclusions: The study did not find gait variability to be as reliable compared with gait parameters when assessing the 
outcome of ankle surgeries. Furthermore, among the gait parameters, walking speed showed a strong correlation with the 
patients’ functional status and is confirmed as an important parameter for ankle arthrosis. 

Key words 
End stage ankle surgeries, American Orthopaedic Foot and Ankle Score, Foot and Ankle Ability Measure, Outcome 
evaluation, Gait assessment 
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1 Introduction 
Gait variability describes the fluctuation in gait parameters from stride to stride and has been reported as a quantifiable 
indicator of walking function [1]. It is expressed by the coefficient of variance (CV %) of spatiotemporal and kinematic 
parameters of gait. In a dynamic environment, gait variability plays a very important role in providing a stable and good 
functional mobility with time [1-3]. Hence, some variability in gait parameters is normal and important for stability and 
quality of movement. However, undesirably high or low variability in gait parameters due to a disturbance in gait 
regulating systems is not adaptive in nature and leads to instability, increasing the risk of fall [1, 2]. Pathologic joint laxity or 
restriction leads to compensatory gait patterns with biomechanical deficits, produced by the surrounding structures. This 
leads to the abnormal increase or decreases in gait variability and reduced postural stability due to the loss of normal 
sensorimotor integrity [4]. The importance of gait variability in assessing gait stability and regularity has been proven in 
several studies [5, 6]. Gait variability is also found to be more sensitive in assessing gait instability and fall risk compared to 
other methods [1, 5].  

In hip and knee arthrosis, instability and increased risk of falling has been found to be associated with higher gait 
variability. As such, it is suggested as a meaningful factor in assessing post-surgical outcome [7-11]. Studies have shown the 
existence of adapted gait mechanics in end-stage ankle arthrosis patients [12], which are also found to persist even after 
surgical correction of the disease [13-15]. Altered gait mechanics in ankle arthrosis, as in arthrosis of hip and knee joints, may 
result in reduced physical activity, gait instabilities and risk of fall [8, 9]. It is, therefore, important to understand the 
relationship between gait variability and gait stability in ankle arthrosis and after its surgical corrections.  

The present study aimed to assess gait variability-a marker of gait instability, gait irregularity and risk of fall in end stage 
ankle arthrosis and its two common surgical treatments: ankle arthrodesis and total ankle replacement. Participants gait 
were evaluated using an ambulatory measurement system. The working hypothesis of the study was that the gait 
parameters and their variability differ significantly in ankle arthrosis, ankle arthrodesis and total ankle replacement in 
comparison to the controls. Furthermore, the correlation between foot and ankle clinical scores and gait parameters along 
with their variability was assessed. 

2 Material and methods 

2.1 Participants 
The study included 70 participants divided into four groups: 15 ankle arthrosis, 20 total ankle replacement, 15 ankle 
arthrodesis, and 20 healthy controls. Patients with unilateral isolated end stage ankle arthrosis, stages 3 and 4 according to 
Kellgren and Lawrence [16], were included. The operated group consisted of patients with unilateral surgery (ankle 
arthrodesis or total ankle replacement), with no other pathology of the lower limbs, spine or other factors affecting gait. 
Inclusion criteria for healthy controls were the absence of any lower limb symptoms or pathology and or other factors 
affecting gait. All participants gave informed consent. A single surgeon performed both total ankle replacement and ankle 
arthrodesis surgeries. Patients’ selection for ankle arthrodesis or total ankle replacement was nonrandomized and based 
purely on patients interest. For total ankle replacement surgeries, (Salto, Tornier®, Montbonnot, FR), a mobile bearing 
implant with three components was used through an anterior approach. For ankle arthrodesis surgeries, internal fixation 
was performed through a lateral approach using 7.0 cannulated screws (Synthes®, Oberdorf, CH). The mean postoperative 
follow-up period for the two surgical groups for the gait assessment was 4.7 years (± 2.7 years). Approval of the ethics 
commission of the University hospital was obtained. 

2.2 Assessment method 
Clinical assessment was performed using the hindfoot score AOFAS (American Orthopaedic Foot and Ankle Score) [17] 

and the French version of daily activity sub score of the FAAM (Foot and Ankle Ability Measure) score [18]. The sports 
section of the FAAM was not included in the statistical comparison because most of our patients from all three groups had 
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left the section incomplete. Gait assessment was performed using 3D inertial sensors, which were connected to an 
ambulatory data-logger (Physilog®, BioAGM, CH). The sensors (3D accelerometers and gyroscopes) were attached to 
bony surfaces, minimizing the soft tissue artifact due to muscle contraction. The placement of the sensors was the same as 
in a previous validation study [15]. Participants were provided with custom made flat sandals that were available in various 
sizes. Based on the validated protocol, participants walked twice, at their preferred walking speed, along the 50-meter long 
hospital corridor [19]. Spatiotemporal and angular parameters of gait assessed include: cadence (step/min), stance time (gait 
cycle time (GCT %)), inner stance event (load, foot-flat and push-off) [20], stride (m), speed (m/sec), peak swing speed 
(PSS) (˚/sec), toe-off pitch angle (TOP) (˚) and heel-strike pitch angle (HSP) (˚). The affected side was tested for the study 
groups and randomly selected side for the controls.  

2.3 Statistical analysis 
For each trial of 50 m, the mean and standard deviation (SD) of each assessed parameter was estimated over all gait cycles 
after discarding the first three and last three gait cycles. After that, stride-to-stride variability was calculated using the 
coefficient of variation (CV% = 100 × SD/mean). Shapiro-Wilk test of normality was performed to test if the normal 
distribution exists in all groups for each assessed parameter. Results showed that most gait parameters and variability 
parameters were not normally distributed among the groups. Hence, robust non-parametric Wilcoxon rank sum test were 
performed to compare gait parameters and their variability between all four groups. Correlation between gait parameters 
and their gait variability with the clinical scores was calculated using Pearson’s correlation coefficient. For all statistical 
analysis, the level of significance was set at P < .01 instead of P < .05. This is because with multiple comparisons between 
groups, a lower significance threshold could have a higher probability of false positives.  However, for demographic and 
clinical score comparison the significant level was set at P < .05 as the multiple comparisons would not affect the outcome. 

3 Results 

3.1 Demographics & Clinical score 
No significant difference was seen between the three case groups in age and body mass index (BMI). However, all three 
case groups were on average older and heavier (P < .05) compared to the controls. A significantly higher (P < .01) AOFAS 
score was reported in both surgical groups in comparison with the ankle arthrosis group. Furthermore, function sub score 
were found to be similar in ankle arthrosis and ankle arthrodesis groups. Lastly, the FAAM-ADL sub score showed 
improvement in both the operative groups in comparison to the ankle arthrosis group. However, the improvement was 
found to be significant only in total ankle replacement group (P = .01) when compared with the ankle arthrosis group (see 
Table 1). Both the clinical scores showed a significantly reduced functional status in patients of the three case groups in 
comparison to the controls.  

Table 1. Demographics and Clinical Scores of Participants in Control Group and of Patients, mean (SD) 

Physical Characteristics Control Ankle Arthrosis Ankle Arthrodesis Total Ankle Replacement 

Age (years) 59.3 (8.9) 65.8(9.8)
*
  64.2 (9.3)

*  63.6 (9.3)
*
 

BMI (Kg/m2) 24.36 (4.9) †
¶∞

 29.7 (6.2)* 28.08 (6.4)* 28.72 (4.8)* 

Sex 16F/ 4M 10F/ 5M 9F/ 6M 8F/ 12M 

AOFAS Total 100 (0) †
¶∞

 55 (20)*¶∞
 70 (11.5)†* 81.5 (20.7) †* 

Pain 40(0) †
¶∞

 20 (20)*¶∞
 30 (15)†* 30 (7.5) †* 

Function 50 (0) †
¶∞

 31 (8)*∞ 31 (4)*∞ 41 (8.7)†*¶
 

Alignment 10 (0) †
¶∞

 5 (2.5)*¶∞
 10 (0)†* 10 (0)†* 

FAAM-ADL 100 (0) †¶∞
 61.2 (18.5) *∞ 68.75 (17.6)* 79.8 (17.4)*† 

Note. *indicated significance difference compared to controls, † represent significant difference compared to ankle arthrosis, ¶ indicates significant difference compared to 
ankle arthrodesis, ∞ represent significant difference compared to total ankle replacement (P < .05). AOFAS: American orthopaedic foot and ankle society hindfoot score, 
FAAM-ADL: Foot and ankle ability measure score - activity of daily living section. 
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3.2 Spatiotemporal and angular parameters of gait  
Results of gait parameters for the four groups are given in Table 2.  Comparing with the controls, the ankle arthrosis group 
showed significantly reduced cadence, load, push-off, stride, speed, PSS, HSP, TOP (P < .01) and increased foot-flat 
duration (P < .01). Similarly, ankle arthrodesis group showed significantly reduced cadence, push-off, stride, speed, peak 
swing speed, toe-off pitch angle  (P < .01) and increased foot-flat duration (P < .01). Whilst, total ankle replacement group 
showed significantly reduced cadence, push-off, speed, TOP (P < .01) and increased foot-flat duration (P < .01).  

Comparing with the AOA group, no significant difference was seen in the ankle arthrodesis group. However, total ankle 
replacement group showed a significantly increased cadence, stride, speed, peak swing speed, heel-strike pitch angle and 
toe-off pitch angle (P < .01). Lastly, a comparison between total ankle replacement and ankle arthrodesis group showed a 
significantly increased cadence, stride, speed, peak swing speed and reduced toe-off pitch angle (P < .01). 

Table 2.  Parameters of Gait in Controls and Patients, mean (SD) 

Gait Parameters Control Ankle Arthrosis Ankle  Arthrodesis Total Ankle  Replacement 

Cadence  117.6 (1.3)†¶∞ 96.56 (16.5)* ∞ 100.1 (12.1)* ∞ 109.3 (9.4)†¶  

Stance (GCT %) 58.47 (1.99)  58.8 (2.4) 58.8 (2.7) 58.9 (2.2) 

Load (St %) 12.1 (3.3)† 9.7 (2.9)* 11.9 (4.4) 11.3 (2.4) 

Foot-flat (St %) 52.5 (5.9)†¶ ∞ 60.8 (10.2)* 61.1 (8.5)* 57.7 (6.1)* 

Push-off (St %) 35.5 (4.87)†¶ ∞ 29.6 (9.6)* 26.9 (5.6)* 30.98 (6.4)* 

Stride (m) 1.3 (0.1)†¶ 1.04 (0.2)*∞ 1.04 (0.18)*∞ 1.17 (0.12)†¶ 

Speed (m/s) 1.3(0.18)†¶∞ 0.84 (0.27)* ∞   0.87 (0.23)* ∞ 1.08 (0.2)*†¶ 

PSS (˚/s) 407.5 (52.7)†¶ 290.7 (73.7)* ∞  306.4 (47.4)* ∞ 372.1 (53.7)† ¶ 

HSP (˚) 20.48 (4.05)† 16.7 (5.2) *∞ 19 (5.4) 20 (4.4) † 

TOP (˚) -74.7 (7.6)†¶ ∞ -55.1 (10.2)*∞ -53.5 (6.9)*∞ -63.5 (8.6)*†¶ 

Note. *indicated significance difference compared to controls, † represent significant difference compared to ankle arthrosis, ¶ indicates significant difference compared to 
ankle arthrodesis, ∞ represent significant difference compared to total ankle replacement (P < .01). PSS: peak swing speed, HSP: heel-strike pitch angle, TOP: toe-off pitch 
angle. 

3.3 Variability in parameters of gait  
Results of gait parameter variability are given in Table 3.  

Table 3.  Stride to Stride Variability (expressed by CV% (100 × std/mean)) of Gait Parameter in Controls and Patients, 
mean (SD) 

Gait Parameter variability Control Ankle Arthrosis Ankle Arthrodesis Total Ankle Replacement 

Cadence 3.2 (1.1) †¶
 4.3(2.1)* 4.1 (1.3) * 3.4(1.0)  

Stance 2.8 (1.1)
 †¶

 3.8 (2.0)
* ∞  3.3 (0.9)*  2.9 (1.2)

 †
 

Load 
Foot-flat  
Push-off 

11.0 (3.1) 

6.7 (2.4)
 ∞

 

8.5 (2.4) 

13.2 (6.5) 
6.3 (4.7) 
13.1 (8.1) 

13.1 (5.5) 
5.6 (2.1) 
9.3 (4.0) 

12.2 (4.9) 
5.68 (3.5) * 
8.9 (4.7) 

Stride 10.2 (2.5) 11.5 (4.4)  11.3 (3.36) 12.2 (2.7)  

Speed 11.7 (2.1)
 
 13.1 (4.6)  12 (2.4) 12.3 (2.5)

 
 

PSS 
HSP 
TOP 

9.6 (3.5)  
14.8 3.3) 
10.3 (3.7) 

11.3 (2.8)  
18.2 (9.5) 
12.3 (3.7) 

10.6 (3.2) 
15.4 (5.8) 
11.1 (3.3) 

10.2 (1.8)  
14.9 (3.2) 
10.7 (2.6) 

Note. *indicated significance difference compared to controls, † represent significant difference compared to ankle arthrosis, ¶ indicates significant difference compared to 
ankle arthrodesis, ∞ represent significant difference compared to total ankle replacement (P < .01). PSS: peak swing speed, HSP: heel-strike pitch angle, TOP: toe-off pitch 
angle. 
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patients. The working hypothesis of the study was that the gait variability differs significantly in ankle arthrosis, ankle 
arthrodesis and total ankle replacement groups in comparison to the healthy controls. The study, however, did not report 
much difference in variability between the controls and the three case groups. These results gave a contrasting outcome in 
comparison to the studies assessing variability in arthrosis of hip and knee joints where the variability was reported to be 
higher in comparison to the controls [8, 9]. 

Comparing the variability in ten gait parameters between the controls and the three case groups, significant differences 
were reported for ankle arthrosis and ankle arthrodesis in only 2 out of 10 parameters and for total ankle replacement one 
out of 10 parameters. In contrast, comparing the gait parameters between the controls and the case groups reported 
significant differences in ankle arthrosis (9/10 gait parameters), ankle arthrodesis (7/10 gait parameters) and total ankle 
replacement (5/10 gait parameters) groups.  Furthermore comparing variability between the ankle arthrosis group and the 
two surgical groups’ significant difference was reported in only stance variability in total ankle replacement group, whilst 
gait parameter comparison showed significant difference in 6 out of 10 parameters in total ankle replacement group. Lastly, 
the comparison between the two surgical groups showed no difference in variability, whilst in gait parameters 5 out of 10 
showed significant difference. As such, the study rejects the null hypothesis that gait variability is abnormally high 
following ankle arthrosis surgical treatments; ankle arthrodesis and total ankle replacement, in comparison to the healthy 
controls and  as well as among each other.   

In our study, the AOFAS and FAAM score results, representing the functional status of the patients, showed consistent 
results with previous studies [13, 15, 23, 24]. A moderate to strong correlation was reported between both the clinical scores and 
the gait parameters in comparison to their variability. This suggests that the gait parameters relates better with the clinical 
status of the patient than their variability. On the contrary, the clinical score for knee had shown a strong correlation with 
the variability of knee motion in severe knee arthrosis [9]. No clear correlation was seen between age and gait parameters 
and or variability. The reason could be the patients’ age (average 65 years), which is considered relatively early for the 
initiation of the age related general neuromuscular deterioration [3, 5]. Furthermore, BMI also showed weak correlation with 
the gait variability, similar to the previous study assessing gait variability in knee arthrosis [9].  

Arthrosis of hip and knee joints is mostly due to idiopathic degeneration and tends to appear at an older age in comparison 
to ankle arthrosis, 70% of cases have a post-traumatic origin and most patients develop the disease at a relatively young 
age [23]. Elderly patients along with the existing insufficient neuromuscular control due to hip or knee degeneration may be 
the reason behind the high incidence of fall during the early postoperative phase [7]. Furthermore, the major postural 
muscles of the lower limbs including quadriceps, gluteus, and hamstrings are affected (wasting and or compensatory over 
activity) with arthrosis of knee and hip joints [25-27], affecting the balance and increasing the risk of fall. Muscles affected 
significantly in end stage ankle arthrosis include medial soleus and only fatty degeneration was reported in other  
muscles [28]. This may be the reason postural stability remains preserved in ankle arthrosis as well as why gait variability 
parameters are not as important in ankle arthrosis as they are in arthrosis of other weight bearing joints.   

Strength of the study is the large cohort size, including ankle arthrosis, ankle arthrodesis and total ankle replacement 
patients, which revealed more precise results of comparison between the four study groups. The ambulatory gait analysis 
system used in the study also allowed measurement of several strides at a time, in an open environment-necessary for an 
accurate assessment of gait variability [3]. The study, however, also has some limitations. In FAAM, only ADL section of 
the score was utilized, instead of the complete score (ADL + sports). However, the purpose of the score was to find the 
extent of the correlation between functional status and gait variability. The results reported utilization of the FAAM-ADL 
was also conclusive irrespective of the inclusion of the sports section results.  It is important to note that one cannot assume 
causality of the defined outcome of either of the surgical groups based purely on surgical intervention due to a lack of 
pre-operative data. On average there was a difference in demographics of controls compared to the study groups but our 
results showed no effect of age or BMI on the outcome of variability. Furthermore, the difference of 5 years between the 
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controls and the case groups would not affect the gait results so significantly as to alter the outcome, and hence, this was 
considered to have little impact on the conclusions.  

In conclusion, the study found that, unlike in hip and knee joint problems, gait variability is not an important parameter as 
compared to other parameters of gait for ankle joint pathologies. The study found that gait variability in ankle arthrosis, 
ankle arthrodesis and total ankle replacement patients were comparable to controls. However, gait parameters in all three 
case groups were found to be significantly different. As a result, the study found no additional information in patients’ 
status utilizing gait variability parameters. The study, therefore, concludes that there is no evidence for basing the outcome 
assessment of an ankle arthrosis surgery on gait variability. 
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Abstract 

Today, ankle joint kinematic assessment gives important information regarding the freedom of 

motion. It does not, however, provide information regarding intersegment coordination. This study 

aimed to determine whether or not intersegment coordination can provide valuable, otherwise missed 

information in relation to kinematic alterations of the ankle joint. The study consisted of 40 

participants, including 12 total ankle replacement (TAR) patients, 12 ankle arthrodesis (AA) patients 

and 16 controls. Gait assessment was carried out wearing 3-D inertial sensors. Intersegment 

coordination was determined by calculation of the continuous relative phase (CRP) between foot 

intersegments. CRP analysis found useful information regarding the magnitude and directionality of 

segment motion throughout the gait cycle, with AA patients reporting an altered coordination pattern 

for all three intersegments, forefoot-hindfoot, hindfoot-shank and forefoot-shank, and TAR patients 

showing alterations in the hindfoot-shank intersegment. Results show that assessment of intersegment 

coordination can provide further information, otherwise missed by general kinematic assessment, 

which could be used to optimize patient rehabilitation. Furthermore, the study showed that such 

information could be used to compare surgical outcomes. As a result, the study concludes that the 

inclusion of intersegment coordination assessment could be beneficial in clinical practice. 

Keywords: Kinematics, ankle arthrodesis, total ankle replacement, continuous relative phase 
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Introduction  

In foot and ankle research, gait analysis has played an important role in understanding alterations in 

gait mechanics for various foot and ankle pathologies. Gait analysis gives information on joint 

kinematic, allowing one to understand the extent of a patient’s mobility. Conventional foot and ankle 

kinematic assessment portrays the whole foot as a single rigid body, 1, 2 however for a structure with 

multiple articulations, a single segment models have been found to be less accurate. As a result, 

several multi-segment foot models were developed to attain detailed information on individual joint 

rotation. 3-7 

Multi-segment foot models assess joint rotation based on the movement between the two segments, 

hence were more accurate in assessing the amount of movement at different foot regions in 

comparison to the single segment model. 8-10 However, this method does not explain the relative 

action of one segment with respect to the other to achieve the defined movement at a joint at any 

particular phase of the gait cycle. 11 Knowing the complex anatomy of the foot and ankle joints, along 

with the available surgical options where the outcome consists of different levels of joint restrictions, 

the inter-segment coordination quantification would be an interesting method to understand the 

adaptation and compensation made by different foot segments. The relative phase dynamics helps to 

assess the inter-segment coordination by utilizing angular displacements and angular velocities of the 

segments surrounding the joint. 12 Inter-segment coordination has been studied for various sports 

injuries 13, 14 as well as for hip and knee joint pathologies, 12, 15 but research relating to degenerative 

diseases of the ankle joint is relatively sparse.  

The continuous relative phase (CRP) has been shown to be a reliable tool in characterizing inter-

segment coordination based on the phase plane portraits of the distal and proximal segments. 12-14 

CRP may therefore be an interesting parameter in assessing the clinical status of the ankle joint after 

the surgical correction. The aim of the study is to find whether or not inter-segment coordination adds 
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beneficial information which is missed by commonly used kinematic assessments.  To achieve this, 

joint displacement and inter-segment coordination were assessed utilizing a validated measurement 

system (3-D inertial sensors) and protocol.  The segments studied include, forefoot (FF), hindfoot 

(HF) and shank (SH) for the two most commonly used surgical treatments for end-stage osteoarthrosis 

of ankle joint- ankle arthrodesis (AA) and total ankle replacement (TAR).  

 

Materials and methods 

Participants 

This is a retrospective cohort study, with a level of evidence III. The study consisted of three groups:  

12 AA patients, 12 TAR patients and 16 healthy controls, totaling 40 participants. Only patients with 

isolated post-traumatic end-stage osteoarthrosis, who had undergone isolated AA or TAR, between 

2003 and 2013, were evaluated. All surgeries were performed by the senior author in the University 

Hospital’s Orthopedic Department. The mean postoperative follow-up period was 4.7 (±2.7) years 

for AA and TAR patients. Patients were excluded if they were affected by other pathologies of the 

spine and or lower extremities. Control group inclusion criteria included no prior history of any foot 

and ankle pathology and or any previous surgeries or trauma of lower limbs which may have affected 

their gait. All participants gave their informed consent. Approval of the ethics commission of the 

University was obtained. 

2.2 Measurement system and protocol 

Gait assessment was performed using inertial sensors consisting of 3-D accelerometers and 

gyroscopes, in conjunction with the validated protocol. 16 The sensors were attached to the medial 

aspect of the tibia, at the posterior of the greater tuberosity of the calcaneus and between the base of 

the first and second metatarsals. These bony anatomical landmarks were chosen to minimize soft 

tissue instabilities. Sensors were connected to a portable data acquisition system (Physilog®, 
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BioAGM, CH) and data was recorded with a frequency of 200Hz. 16  Custom sandals were given to 

each participants for optimal placement of sensors. Following the preparation of each participant, 

functional calibration was performed, 17, 16  after which the participants walked 50m along the hospital 

corridor twice at their natural pace. For the case group, both operative (Op) and unoperated (Unop) 

sides were tested. Note that the test retest reliability of the utilized gait assessment method and 

protocol has both been thoroughly substantiated. 16, 18 

Data Analysis 

Kinematic data was measured for 100% of the gait cycle in the sagittal plane. Angular velocity and 

relative angles were calculated based on the joint coordinate system. 16 For a detailed assessment, 

stance and swing phases of the gait cycle were then subdivided into: initial contact (IC), loading 

response (LR), mid-stance (MSt), terminal-stance (TSt), pre-swing (PSw) in the stance phase and 

initial-swing (ISw), mid-swing (MSw) and terminal-swing (TSw) in the swing phase 19. Phase plane 

portraits were created for each participant by plotting the angular velocity (ω) against angular 

displacement (θ) for all three segments. Phase plane portrait helps one to evaluate gait variation. 20 

Furthermore, phase angles (ɸ) were calculated for each segment as ɸ =tan-1(ω/ θ).  Finally, CRP of 

all three intersegment pairs was calculated by subtracting the phase angle of the distal segment from 

that of the proximal segment. An illustration of CRP calculation for one intersegment is given in 

Figure 1.  

For CRP calculation, there is a difference in opinion regarding normalization of the phase angle data 

13, 21, 22 and several methods have been reported to normalize the phase portraits with uncertain 

conclusions. 23, 24 In this study, the phase plane portrait was not normalized due to ambiguity in the 

literature. The sole purpose behind the phase plane portrait normalization is to produce the scalar 

multiple of the original data such that the amplitude difference can be negated. 22 It is also reported 

that CRP is not affected by differences in amplitude between segments due to the inverse tangent 
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function removing amplitude differences. 22 A study by Worster et al 25 reported an undesired induced 

noise from the alterations made by the normalization of the data and supported the above findings of 

keeping the original phase plane portrait. 

 

Figure 1: Illustration of continuous relative phase (CRP) calculation using forefoot (FF) and 

hindfoot (HF) data from the control group. 
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To characterize the inter-segment coordination maximum peaks, both positive and negative, were 

calculated at the sub-phases of the gait cycle. This helped to evaluate which of the two segments, 

distal or proximal, led the movement during the stance and swing phases of the gait cycle. Positive 

peaks represent that the distal segment dominates movement and vice versa. Finally, mean absolute 

relative phase (MARP) was calculated in accordance with the previous publication.26 MARP 

calculates the mean absolute value of the total CRP curve points in each gait cycle, such that the two 

segments are moving in close relation to each other if the value is close to zero.   

Statistical analysis 

Range of motion (ROM), MARP and maximum and minimum CRP peaks, were calculated for each 

gait cycle. Coefficient of multiple correlations (CMC) was also calculated for each of the three CRP 

inter-segment pairs for all groups. The strength of the CMC was considered strong at r=0.9, moderate 

at r=0.5 and weak at r=0.25.27 Analysis of variance (ANOVA) post hoc Wilcoxon rank sum and 

Wilcoxon signed rank tests were performed between groups (p<0.05). 

Results 

Intersegment coordination 

Evaluation of the CRP curves found various peak patterns in each of the three intersegments (figure 

2). Forefoot-hindfoot intersegment, when comparing to the controls showed AA patients have 

significantly low peaks during the ISw-MSw phase in both Op and Unop sides as well as a 

significantly large peak during LR-MSt for the Unop side (p<0.05). This represents a reduction in 

hindfoot rotation for both sides of the AA group during the early swing phase and an increased 

forefoot rotation on the Unop side during the early to mid stance phase.  Such an over activity at the 

forefoot may be detrimental in long run. In contrast, TAR patients reported no significant difference 

in their intersegment coordination pattern when compared to the controls (Table 1a). Op to Unop side 

comparison showed significant difference in the peak at the LR-MSt phase for AA patients, 
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representing a bilateral asymmetry in the early to mid stance phase, but again, no difference for TAR 

patients. Furthermore calculating the MARP, the Unop forefoot-hindfoot intersegment of AA patients 

showed significantly large values in comparison to the controls and to the Op side, this is likely due 

to the increased rotation at the forefoot segment.  

 

Figure 2: CRP curves at the three inter-segments in sagittal plane; black line represents 

controls, bold line represents operated side and dot line represent unoperated side 

 

Looking at the hindfoot-shank intersegment, in contrast to the controls little to no peak was reported 

during the ISw-MSw phase for both Op and Unop sides of AA patients (Table 1b). TAR patients 

showed similar results for the Unop side, however a comparable peak magnitude was found in their 
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Op sides, but in the opposite direction. This would hint at a significant hindfoot rotation, rather than 

shank. Furthermore, during the LR-TSt phase, a significantly low peak is reported for the Op side of 

TAR patients when compared with the controls, which could be as a result of the low range of motion 

reported for the hindfoot-shank intersegment. Such differences suggest that, even though TAR 

operation preserves some motion in the tibiotalar joint it is still not comparable to the controls. Op to 

Unop side comparison reported similar results for both case groups, with a significant difference 

being seen in the peak of the IC-LR phase. In the Op side of TAR patients, a reduced hindfoot rotation 

is observed, while the Unop side showed normal rotation, but for a longer period of the phase. While 

in AA patients, a large hindfoot rotation was reported on the Op side which is similar to the controls 

in terms of magnitude but the coordination pattern is relatively uneven. The hindfoot-shank 

intersegment MARP was found to be low for Op side of TAR patients in comparison to the controls 

and the Unop side due to the reduced hindfoot rotation throughout the stance phase. Furthermore, AA 

Op side also reports a significantly low MARP in comparison to the controls, which is likely due to 

the reduced shank rotation during the swing phase. Note that both surgeries report a restriction of 

movement as well as altered coordination strategy for the hindfoot-shank intersegment. This can be 

explained by the fused tibiotalar joint of AA patients and that tibiotalar motion is only partially 

preserved in TAR patients. Looking at the forefoot-shank intersegment, when compared to the 

controls, significantly reduced peak magnitudes were observed, during the MSt-TSt and ISw-MSw 

phases for the Op sides of both case as well as during the ISw-MSw phase for the Unop side of AA 

(Table 1c). Furthermore, AA patients show an intersegment coordination pattern which appears 

different in comparison to the controls for the Op side, and, again the Unop side show a significantly 

large forefoot rotation as observed in the forefoot-hindfoot intersegment. For the Op to Unop side 

comparison, AA patients showed significantly different peaks during the LR-MSt and MSt-TSt 

phases, likely due to the over activity of the forefoot segment on the Unop side. 
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Table 1a: Max peak in CRP curve at 3 sub-phases of the gait cycle in forefoot-hindfoot segment, 

mean (SD)    

 

Gait 

Phases 

CON TAR Op TAR Unop AA Op AAUnop Group  

p value 

LR-MSt 40.8 (20) 50.5 (23.1) 58.1 (24.4)  37.5 (23.5) ¶ 68.98 (26.8)*  0.2 

MSt-TSt 57 (20.6) 42.8 (14.5) 47.1 (20.2) 50.9 (24.5) 70.9 (17.1) 0.79 

ISw-MSw -58.9 (23.6) -60.2 (19.28) † -58.9 (20.9) -30.5 (19.9)*  -37.6 (25.1)*  0.05 

 

 Table 1b: Max peak in CRP curve at 3 sub-phases of the gait cycle in hindfoot-shank segment, 

mean (SD)       

 

Gait 

Phases 

CON TAR Op TAR Unop AA Op AAUnop Group  

p value 

IC-LR -19.5 (11.3) -12.3 (9.7) ¶ -20.8 (13.1) -13.1 (9.3) ¶  -19.8 (13) <0.001 

LR- TSt 29.9 (11.2) 17.7 (11.2)*  35.9 (19.7)  25.7 (17.7) 26.3 (10) <0.001 

ISw-MSw -39.3 (14.7) -4.9 (10.2)* -10.6 (10.7)* -6.6 (8.9)* -15.8 (15.9)* <0.001 

 

 Table 1c: Max peak in CRP curve at 3 sub-phases of the gait cycle in forefoot-shank segment, 

mean (SD)       

 

Gait 

Phases 

CON TAR 

Op 

TAR 

Unop 

AA 

Op 

AA 

Unop 

Group  

p value 

IC-LR -17.5 (10.7) -12.7 (13.3)  -22.7 (14)  -12.3 (6.8) -19 (11.6) <0.001 

LR-MSt 59 (12) 57.6 (18.3) 65.4 (18.7) 43.5 (24.3) ¶ 73.8 (24.8)  0.58 

MSt- TSt 68.7 (20.3) 52.2 (16.6) * 65.8 (22.4) 50.2 (22.8) * ¶ 76.8 (11.6) 0.99 

ISw-MSw -71.8 (18.4) -49 (18.9)* † -56.7 (23.9) -22.8(17.6)*  -48.3 (21)*  0.16 

 Initial contact (TC), loading response (LR), Mid Stance (MSt), Initial Push-off (IP), initial swing 

(ISw), mid-swing (MSw). * represents difference in comparison with controls, † represent significant 

difference between AA and TAR and ¶ represent significant difference between Op and Unop sides 

(p<0.05) 

 

189



Submitted to Journal of Orthopedic Research in December 2015 

 

In contrast, TAR patients had generally good bilateral coordination symmetry. Comparing the Op 

sides of both case groups, TAR patients showed a significantly large peak during the ISw-TSw phase, 

as a result of better shank mobility. The forefoot-shank intersegment MARP reports a significantly 

large value for the AA Unop side in comparison to both the controls as well as the Op side; this is 

again due to the increased activity of the forefoot, as seen in forefoot-hindfoot intersegment. In 

contrast, the Op side of both case groups reported a low MARP, representing an overall reduction in 

mobility (Table 2). 

Lastly, the CMC for forefoot-hindfoot, hindfoot-shank and forefoot-shank CRP curves was found to 

be 0.95, 0.8 and 0.98, respectively, indicating comparable inter-joint coordination patterns between 

each group.  

 

Table2: Mean Absolute Relative Phase, mean (SD)    

 

Intersegme

nts CRP 

CON TAR Op TAR Unop AA Op AAUnop Group  

p value 

Forefoot-

hindfoot 

15.5 (3.5) 14.9 (4.2)  16.7 (4.2)  14.7 (5.8) ¶ 21.6 (7.0) * <0.0001 

Hindfoot-

shank 

7.1 (2.3) 5.2 (1.6) *¶ 7.6 (2.3) 5.0 (2.1) *  6.5 (2.1)  <0.0001 

Forefoot 

Shank 

20.6 (3.8) 16.6 (3.9) * 22.3 (3.7)  14.4 (7.6) * ¶ 27.8 (10.2) * <0.001 

 * represents difference in comparison with controls, † represent significant difference between AA 

and TAR and ¶ represent significant difference between Op and Unop sides (p<0.05) 

 

Intersegment displacement  

The mean joint angular displacement results, based on inter-segment rotations, are given in Table 3.  

Figure 3 represent the division of motion between dorsiflexion and plantarflexion at different phases 

of the gait cycle. In comparison to the controls, significant differences were reported on the Op sides 
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of both AA and TAR patients for hindfoot-shank and forefoot-shank intersegments as well as the 

forefoot-hindfoot for AA. Op to Unop side comparison showed a significant difference in all three 

intersegments for AA patients. However, TAR patients only reported a difference in the forefoot-

shank intersegment. Comparison between the Op sides of the two case groups showed significant 

differences in forefoot-hindfoot and forefoot-shank intersegments.  

 

 

 

Figure 3: Graph presenting dorsi and plantar flexion movement in the sagittal plane over 100% 

of the gait cycle.           represents significant difference to the controls. 
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Table 3: Angular displacement, in the sagittal plane, for three intersegments. Mean (SD) 

Joint 

coordinate 

CON TAR  

Op 

TAR  

Unop 

AA  

Op 

AA  

Unop 

Group  

p value 

forefoot-

hindfoot 

23.7 (6.3) 20.3 (6.2) † 23.9 (6.1) 10.3 (3.5) * ¶ 20.3 (3.2)  <0.001 

hindfoot-

shank 

12.5 (3.6) 9.7 (3.6) * 13.4 (4.3) 8.6 (3.4) * ¶ 12.3 (3.1) 0.004 

forefoot-

shank 

29.2(7.5) 22.5 (5.9) * †¶ 28.6 (4.7) 16.1 (4.0) * ¶ 28 (2.9)  <0.001 

* represents difference in comparison with controls, † represent significant difference between AA 

and TAR and ¶ represent significant difference between Op and Unop sides (p<0.05) 

 

Discussion 

This study aimed to introduce intersegment coordination when assessing the kinematics of the ankle 

joint, utilizing CRP as it has generally not been studied for foot and ankle segments joint surgeries. 

The purpose of the study was not to compare the outcome of the two surgeries but to see if CRP 

method for inter-segment coordination assessment could be of any benefit for clinical population with 

different ankle surgeries. The study provided baseline intersegment coordination patterns for the 

controls and then compared them with the results of AA and TAR patients. Results show that the use 

of CRP for assessing intersegment coordination following ankle surgeries can provide qualitative 

information regarding the relationship between segments in motion.   The magnitude and position of 

the CRP peaks in the gait cycle not only provide information about joint kinematics and sensorimotor 

functions but also about the loading pattern in each of the foot segments. As a result, the study 

suggests the use of both intersegment ROM and coordination analysis in kinematic assessment of the 

ankle joint. 

Assessing the ROM of the ankle joint following AA and TAR surgeries showed similar results as the 

previous studies, with both the surgical groups showing reduced mobility when compared to controls. 
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28, 29 However, TAR has been shown to have a higher mobility when compared to AA patients. 10, 29, 

30 Intersegment coordination between the shank and foot segments has been compared previously in 

anterior cruciate ligament reconstruction patients. 12 MARP results of their control group (21.2±2.7) 

is somewhat similar to our forefoot-shank results (20.6±3.8), while their patient group produced a 

significantly higher value (25.7±2.3) which is closer to the Unop side of the AA group in this study 

(27.8±10.2). A high MARP can be as a result of altered gait strategies, which could be related to the 

increased loading of the forefoot, reported in AA patients. 10  

However, ROM results show relatively normal motion for the Unop side. Postoperatively, the altered 

coordination strategies could be as a result of an adapted compensatory gait pattern learned during 

the early rehabilitation phase, due to apprehension or to prevent pain.  It has also been found that an 

altered coordination strategy could lead to abnormal loading 19 which in the long term could be 

detrimental to other joints. This information is therefore, important to know when developing over 

through rehabilitation program. Studies have also shown the importance of gait modification 

strategies to reduce gait deviation following surgical corrections. This can be done using real-time 

movement feedback. 31, 32 Continuous gait assessment based on the intersegment coordination using 

wearable sensors could help improve rehabilitation by educating patients about the correct 

coordination strategies. This could help patients break or even prevent compensatory strategies the 

adopted abnormal strategies, which would have an effect, not only on improving joint kinematics, but 

also joint loading, 19 propulsion and, altogether, gait symmetry. 

A notable strength of the study is that the wearable sensors provide freedom to test patients in open 

and more natural environment, instead of only a few restricted numbers of steps as commonly found 

in gait labs. The study also had some limitations, such as, the small subject size; however, studies 

assessing intersegment coordination in joint pathologies and surgical treatment have utilized similar 

number of participants. 12, 33 
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In conclusion, intersegment coordination, in particular, CRP mapping can provide otherwise missing 

information which could be beneficial in understanding and correcting a patients’ compensatory gait 

pattern ultimately improving rehabilitation. This study has also shown that it could be used as a 

parameter in clinical assessment to help quantify the outcome of ankle surgeries. Future research 

should investigate on the reliability of intersegment coordination assessment in improving the 

functional outcome of ankle pathology patients.   
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