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SUMMARY 
 

Squamous cell carcinomas (SCCs) represent the most frequent human 

solid tumors and a major cause of cancer mortality. These highly heterogeneous 

tumors arise from closely interconnected epithelial cell populations with intrinsic 

self-renewal potential inversely related to the stratified differentiation program. 

SCCs can also originate from simple or pseudo-stratified epithelia through 

activation of quiescent cells and/or a switch in cell fate determination. Here, we 

focus on specific determinants implicated in development of this disease by 

recent large-scale genomic, genetic and epigenetic studies and complementary 

functional analysis. This evidence indicates that SCCs from various body sites, 

while clinically treated as separate entities, have common determinants, pointing 

to a unified perspective of the disease and potential new avenues for prevention 

and treatment. 
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INTRODUCTION 
 

Squamous cell carcinomas (SCCs) are, individually and in aggregate, among the 

most common forms of human cancer (Cancer Facts and Figures 2015, 

American Cancer Society) (Figure 1). Development of these tumors is linked 

closely to genomic perturbations, genetic mutations and/or altered expression of 

key molecules involved in various stages of squamous cell lineage commitment 

and/or terminal differentiation. Alterations of underlying stromal cells also play an 

important role in development of these tumors and recent evidence indicates that 

they may even be a primary determinant, besides promoting escape from 

immune surveillance and resistance to chemotherapy (reviewed in (Dotto, 2014; 

Junttila and de Sauvage, 2013)).  

 Stratified epithelial cells giving rise to SCCs are found across the entire 

surface of the external tegument as well as the nasal cavity, oropharynx, 

esophagus, and anogenital region. In addition, squamous metaplasia occurs in 

the respiratory tree and urinary tract as a reactive response to a variety of 

noxious conditions (e.g. cigarette-smoking) (Ishizumi et al., 2010). Induction of 

squamous differentiation in this context could have a protective role, increasing 

tissue resilience and, as discussed below, cell survival. However, if metaplasia 

persists, there is an enhanced opportunity for dysplasia and cancer risk. 

Interestingly, an inverse process of intestinal metaplasia, i.e. formation of an 

intestinal-resembling epithelium at the distal esophagus and gastro-esophageal 

junction as a result of acid and bile reflux and chronic inflammation, is associated 
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with an elevated risk of adenocarcinoma rather than squamous carcinoma 

(Rustgi and El-Serag, 2015). Although rare, SCC can be also found in atypical 

tissues, such as the thyroid (Tunio et al., 2012), prostate (Malik et al., 2011) and 

breast (Grabowski et al., 2009); however, the origin of these tumors has not yet 

been identified.  

A distinguishing feature of SCCs is their high degree of cellular 

heterogeneity, with cell populations at various stages of differentiation, which are 

able to reverse lineage commitment to proliferative stages as well as enter into 

quiescent, slow-cycling growth phases. These features make them particularly 

difficult to target with monotherapeutic approaches (Elkabets et al., 2015).  

Differentiation therapy has been proposed to exhaust cancer-initiating cell 

populations by forcing them into terminal differentiation (Brooks et al., 2014; Cruz 

and Matushansky, 2012). However, countering the promise of this approach is 

the risk that it could rather enhance cell survival and resistance to 

chemotherapeutic agents and contribute to pro-oncogenic immune evasion (Cruz 

and Matushansky, 2012; Facompre et al., 2012). Exploring the crosstalk of 

pathways at the intersection of squamous cell renewal, terminal differentiation, 

stromal alterations and immune surveillance is thus of major importance for 

future preventive and therapeutic approaches against SCC. 

The classification of SCCs commonly follows the anatomical divisions of 

clinical medicine where, for example, head and neck SCCs are treated 

separately from those of the anogenital region. However, it is becoming 

increasingly clear that SCCs share important properties, as revealed by a 
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commonality of genomic, genetic and epigenetic alterations and a similar impact 

of the underlying mesenchyme. This opens up new and exciting avenues for a 

unified perspective on the biology of SCCs and translation into common and 

novel therapeutic approaches to these widespread and poorly controlled cancers. 

 

ETIOLOGY OF SCCs 
 

 The basement membrane marks the histological delineation between 

stratified epithelia and underlying mesenchymal compartment. The basal layer 

comprises relatively round, proliferative cells that have a high 

nuclear/cytoplasmic ratio. This ratio reverses with each successive layer, where 

cells flatten out into the non-dividing terminally differentiated “squames” after 

which squamous epithelium is named. Tight regulation of this proliferation-

differentiation gradient is needed to maintain the barrier function and is disrupted 

by stress in the form of infection, carcinogens, drugs and radiation. Key 

carcinogenic insults leading to SCC development differ in relation to the 

protective function of the epithelia from which they originate, but others are 

shared (Hussain et al., 2001) (Table 1). 

 

- Ultraviolet light:  Ultraviolet A and B radiation (UVA and UVB) are irrefutable 

carcinogens to human skin (Armstrong and Kricker, 2001; Narayanan et al., 

2010). UVB (280-315 nm) causes direct DNA damage, with a typical, but not 

exclusive, signature of CT substitutions, resulting from covalent cyclobutane 

dimer formation between adjacent pyrimidine rings. UVA (315-400 nm) exposure 



 6 

is also mutagenic through more indirect mechanisms involving production of 

reactive oxygen species (ROS) (Bachelor and Bowden, 2004) and 8-oxo-guanine 

(8-oxo-7, 8-dihydro-7′-deoxyguanosine) formation, which results in G-T 

transversions during replication. UVA causes additional multiple effects, including 

chromosomal aberrations and widespread alterations in cellular proteins and 

lipids (Ridley et al., 2009; Wischermann et al., 2008). Besides cancer cells of 

origin, the pro-tumorigenic effects of UV exposure are likely due to its impact on 

the surrounding tissue environment, with induction of inflammation and immune 

suppression (Narayanan et al., 2010; Ridley et al., 2009). 

  

 Cutaneous SCCs (CSCCs) are typically indolent tumors, rarely yielding 

metastasis (<5%), late in the course of the disease. Nevertheless, the massive 

incidence of CSCCs as the second most frequent type of human malignancy 

worldwide makes this cancer type a major health concern, accounting for 20% of 

all skin cancer-related deaths. Additionally, multiple and recurrent CSCCs are a 

major cause of death for the many organ transplant recipient patients under 

treatment with calcineurin inhibitors for immunosuppression (Euvrard et al., 

1995). The specifically increased risk of CSCCs as opposed to other SCCs in 

internal organs points to a synergy between carcinogenic UV light exposure and 

calcineurin inhibition that deserves further exploration (Dotto, 2011; Dziunycz et 

al., 2014).  

 

- Cigarette-Smoking: Lung SCC (LSCC) is classed as a non-small-cell lung 
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cancer: a group particularly resistant to chemotherapy, with 97% of cases 

attributable to smoking (Herbst et al., 2008). A strong association has also been 

found between smoking and tumors classed anatomically as “head and neck” 

SCC (HNSCC). HNSCCs are the sixth most common malignancy worldwide 

(Leemans et al., 2011) and can be divided both histologically (Woolgar and 

Triantafyllou, 2011) and on the basis of global transcriptional analysis with 

etiology specific profiles (Chung et al., 2006; Chung et al., 2004; Martin et al., 

2014). Smoking is also a critical risk factor in esophageal SCC (ESCC) (Rustgi, 

NEJM 2014).   

 Since the 1950’s, studies have identified over 7000 chemicals in 

cigarettes, at least 40 of which have known carcinogenic properties (DeMarini, 

2004). Despite this diversity, smoking has a relatively predictable mutagenic 

signature, preferentially acting on guanine base pairs and creating GT 

substitutions (Alexandrov et al., 2013). Importantly, many polyaromatic 

hydrocarbons and cigarette smoke components are inactive and require 

metabolic activation for causing genotoxic damage. Surface epithelial tissues are 

commonly replete with antigen-internalizing and -presenting dendritic cells. 

Independently of their role in the immune system, these cells have been shown 

to play an essential role in activation of the hydrocarbon 7,12-

dimethylbenz[a]anthracene (DMBA) in a skin mouse model of squamous 

carcinogenesis (Modi et al., 2012). Carcinogenic conversion of smoke 

components into mutagenic agents can also occur by liver detoxification 

enzymes.  
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- Alcohol:  Similarly to many smoking related carcinogens, ethanol is only 

carcinogenic as a first-pass metabolite, resulting in the formation of 

acetyaldehdye-DNA adducts, (Brooks and Zakhari, 2014). While readily 

demonstrated in a variety of assays systems, the mutagenic impact of ethanol in 

patients is more debatable, the situation being complicated by the low acute 

toxicity of this substance and the resulting excessive doses that are usually 

employed for testing (Phillips and Jenkinson, 2001). Like smoking, the pro-

carcinogenic consequences of alcohol exposure likely involve widespread tissue 

alterations and chronic inflammation (Franke et al., 2005). As a systemic 

carcinogen, it is unsurprisingly linked to a wide range of cancers and there is 

synergy between alcohol and cigarette-smoking in the pathogenesis of various 

types of SCC, specifically HNSCC (Herbst et al., 2008) and ESCC (Rustgi and 

El-Serag, 2015).  

 ESCC has a particularly poor prognosis, with 5-year survival rates rarely 

exceeding 20% (Figure 1). ESCC stands as the 8th most commonly diagnosed 

cancer in the world and the 6th leading cause of cancer-related mortality (Rustgi 

and El-Serag, 2015). ESCC is especially frequent in males (>4:1), and has 

especially high incidence in north central China (in 25% or more of adults above 

age 35), central Asia, the eastern part of the African continent and parts of South 

America (Taylor et al., 2013). This geographic bias has been linked to differences 

in various dietary and lifestyle habits as well as genetic polymorphisms, rather 

than alcohol/tobacco consumption (Taylor et al., 2013).  
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- Infectious agents: Pathogens create pro-oncogenic environments in two major 

ways: 1) expression of pathogen-derived oncogenes and/or inactivation of host 

tumor suppressor genes; 2) chronic inflammation and reduced 

immunosurveillance. 

The first mechanism of infectious oncogenesis is exemplified by human 

papilloma viruses (HPVs), which produce the E6 and E7 oncoproteins upon 

integration into the genome of the host keratinocytes (Doorbar et al., 2015; 

Egawa et al., 2015). The cell cycle is then perturbed by functional inactivation of 

the key tumor suppressor proteins p53 and p105-Rb by E6 and E7, respectively. 

Through this mechanism, HPV is held responsible for a staggering 96% of 

cervical SCC (CvSCC) (Doorbar, 2006) and has gained recognition as an 

important cause of HNSCC (Leemans et al., 2011). A significant association with 

ESCC has also been reported (Ludmir et al., 2015).  

Generally, HPV-positive HNSCC has a better clinical prognosis than its 

HPV-negative counterpart. The reasons for this remain to be understood but may 

be due to their different genetic causes, where HPV-related cancers tend to 

retain wild type TP53, while HPV-negative tumors are very frequently associated 

with pro-oncogenic gain-of-function mutations in TP53 and other genes (Cancer 

Genome Atlas, 2015). Most likely, disparities in tumor behavior are also linked to 

different patient populations, where HPV-positive cancers develop in younger 

generally healthy individuals, while the HPV-negative form affects older people 

with a history of alcohol and/or tobacco abuse (which are in turn associated with 
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poor health-seeking behavior) (Leemans et al., 2011).  

Epstein-Barr virus (EBV) is another DNA tumor virus, of the herpes family, 

associated with nasopharyngeal carcinoma (NPC), which is endemic in certain 

regions of China, specifically the southwestern area. It is not clear why EBV 

infection is specifically associated with NPC. A possibility is that the nasopharynx 

is rich in lymphocytes, which can act as a reservoir for viral spread to neighboring 

epithelial cells. NPC is distinguished into two histological subtypes: keratinizing 

(WHO1) and non-keratinizing squamous cell carcinoma (WHO2/3). The latter, 

which accounts for 80% of cases, is universally associated with latent EBV 

infection, exclusively in tumor cells and not surrounding lymphoid infiltrates (Shah 

and Young, 2009). Moreover, EBV infection has been associated with ESCC 

(Jenkins et al., 1996).  

EBV-induced oncogenesis results from a multistep process involving a 

number of genetic and epigenetic (methylation) changes in the host genome 

(including CDKN2A inactivation and CCNDD1 amplification) coupled with 

persistent EBV infection. Several viral nuclear proteins are involved in 

establishment of latency (EBNA2, EBNA3A, 3B, 3C, and leader protein or LP), 

which control transcription of viral and host genes via interactions with the key 

effector of canonical Notch signaling, RBPJκ (Raab-Traub, 2012). In established 

NPC, these viral proteins are not detected, and two other EBV latent genes with 

well demonstrated transforming properties are instead expressed (Kempkes and 

Robertson, 2015). One codes for LMP1 (Latent membrane protein 1), which 

functions as an activated TNF family member and can activate multiple 
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pathways, including MAPK/JNK, PI3K/AKT and NF-κB. The other EBV 

transforming gene codes for LMP2A (latent membrane protein 2A), a 6 trans-

membrane domains protein with a long cytoplasmic C-terminus tail and adaptor 

/scaffold function, which in epithelial cells can activate the PI3K/AKT and β-

CATENIN signaling pathways.  In addition to these protein-coding genes, recent 

evidence indicates that latency-associated EBV miRNAs are also implicated in 

NPC development (Cai et al., 2015). 

The trematode Schistosoma haematobium (S. haematobium) is an 

exemplary case of parasite-induced inflammation and cancer, specifically bladder 

SCC (BSCC) (Odegaard and Hsieh, 2014). Following S. haematobium infection 

of the urinary tract, primary tumors usually develop in the bladder wall, within the 

fibrotic granuloma tissue that forms around the parasitic eggs (Odegaard and 

Hsieh, 2014). Chronic inflammation is thought to cause metaplasia of the 

transitional urothelium into squamous tissue before an accumulation of 

oncogenic mutations that culminate in uncontrolled cell growth. Although much 

information exists on the oncogenic effects of the inflammatory host reaction to 

S. haematobium, it is important to note that the parasites are also directly 

carcinogenic (Botelho et al., 2011). In fact, parasitic sterols secreted by the S. 

haematobium egg sac are metabolized by P450 enzymes, generating catechol-

estrogens that readily undergo oxidation and conversion into highly reactive 

quinine and quinone metabolites (Botelho et al., 2011). These compounds are 

able to react directly with DNA or indirectly, via generation of ROS. Besides the 

strong association with S. haematobium infection, BSCC development is linked 
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to other agents (e.g. cigarette-smoking, aniline dyes) that result in the 

concentration of carcinogens in the urine. 

 

GENETIC LANDSCAPE OF SCC DEVELOPMENT 
 

 In concert with amplification and deletion of specific chromosomal regions, 

mutational analysis of selected candidate genes has been recently supplanted by 

whole exome sequencing of many tumor types coupled with expression profiles. 

Together with mutations in protein encoding sequences, more recent whole 

genome analysis has highlighted the existence of mutations in gene regulatory 

regions and the post-transcriptional potential of epigenetic alterations and non-

coding RNAs (Mathelier et al., 2015). In this context, activation of transposable 

elements and transposition can be also involved (Helman et al., 2014; Tubio et 

al., 2014).  

 An important finding is that a large fraction of gene mutations found in 

tumors are already present in normal tissues (Martincorena et al., 2015) 

(Tomasetti et al., 2013), so that accumulation and combination of these 

mutations may be more important than their individual occurrence (Tomasetti and 

Vogelstein, 2015). As an alternative to clonal selection, a “Big Bang” mode of 

cancer development is also possible, whereby clinically detectable tumors result 

from expansion of a single cell population with genetically dominant alterations 

intermingled with “private” (i.e. non dominant) changes occurring within non-

selected but still co-expanded sub-clones (Sottoriva et al., 2015).  This would 

explain the high level of inter-tumor heterogeneity and the indication that “some 
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tumors appear born to be bad” from the beginning (Sottoriva et al., 2015). The 

fact that different cancer driver mutations of the same genes, like TP53, HRAS or 

NOTCH1, can be found in separate parts of the same SCCs (South et al., 2014) 

points to possible convergent selection. However, the presence of clones with 

multiple mutations of these genes also in normal epithelium suggests that may 

have a more passenger than driver function and/or act in concert with other 

determinants of carcinogenesis. Most notable among these are changes in the 

surrounding stromal tissue, which, as we recently reviewed (Dotto, 2014), can 

occur at various levels and play a primary role not only in progression of the 

disease but also initiation. 

 For mutational analysis of tumors, significance of the observed 

frequencies needs to be adjusted on the basis of levels of gene mutations in 

normal matching tissues (Gonzalez-Perez et al., 2013; Lawrence et al., 2013; 

Schroeder et al., 2014). This is of special importance for SCCs, given their high 

accumulative gene mutation frequency. For example, in studies of LSCCs 

(Hammerman et al., 2012) and CvSCCs (Ojesina et al., 2014) researchers found 

a total of 8.1 and 4.2 mutations per megabase, respectively. A 5-15-fold higher 

mutation rate was found in CSCC (>50-60 mutations per megabase, with a 

median of 1200 mutations per tumor) to be compared with a 10-fold lower 

mutation rate in normal sun-exposed skin (Pickering et al., 2014; South et al., 

2014), in concert with a high rate of gene mutations, chromosomal instability is 

another feature of SCC. In fact, one study in HNSCC estimated that copy number 

alterations (CNAs) affecting discrete chromosomal regions and polyploidy 
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account for up to 70% of tumors (Pickering et al., 2013). In another, focused on 

CSCC and associated precursor lesions, UV hotspot mutations in the 

kinetochore KNSTRN gene were reported to cause disruption of chromatid 

cohesion and aneuploidy (Lee et al., 2014). 

 Integrated analysis of genomic, epigenetic and gene expression 

alterations point to significant similarities between SCCs from various body sites, 

such as HNSCC, LSCC, ESCC and CSCC (Hoadley et al., 2014; Pickering et al., 

2013; Pickering et al., 2014) (Table 2). However, mutations of certain genes 

appear to be more frequent or potentially specific to a given SCC.  For example, 

AJUBA inactivating mutations are found in HNSCC, CSCC and ESCC, but not in 

LSCC and CvSCC (Table 2). A complex interplay between environmental risk 

factors, host genetic predisposition and tumor cell genomics/genetics/epigenetics 

may nurture certain mutations preferentially. It is important to note, however, that 

reported presence and frequencies of gene alterations can vary even within 

studies of the same SCC type, due to confounding geographic/ethnic differences 

of patient populations, stages and grades of tumors, depth of nucleotide 

sequencing analysis, number of tumor samples, and degree of normal/tumor cell 

admixture in the studied samples.  

The broad spectrum of gene alterations identified in SCCs may be 

grouped into two categories: one, with a likely cancer driver function in a variety 

of cancer types, and the other, affecting genes with a preferential or selective 

role in SCCs in a mutation gene network centered around squamous cell fate 

decisions and/or the squamous terminal differentiation program. By analysis of 
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large data sets of tumors, specific gene mutations that are mutually exclusive 

with others can be identified, even if statistical significance of negative 

associations is limited to very few cases (Figures 2 and 3).  Given the many 

altered genes, by either deletions/amplifications or point mutations, only a 

representative number will be discussed on the basis on this logic, referring to a 

more complete list of frequently mutated genes and/or other alterations in Table 

2. 

 

CELL CYCLE REGULATORY GENES 
 

- TP53 and CDKN2A/RB1 genes: TP53 mutations are the most frequently 

identified somatic mutations in SCCs from all body sites (Table 2). Missense “hot 

spots” mutations are very common, which result in dominant negative and/or 

gain-of-function properties through three possible mechanisms (Freed-Pastor 

and Prives, 2012; Muller and Vousden, 2014). The first relates to the tetramer 

complex formation of p53 and its ability to interact, in either wild type or mutated 

forms, with the two other family members, p63 and p73, affecting their function. 

The second involves modulation of gene expression by mutant p53 mediated by 

its association with other transcriptional factors. The third results from altered 

DNA binding specificity of mutant p53.  As a result, a whole range of deregulated 

genes has been identified with pro-survival, pro-invasive and pro-tumorigenic 

functions (Freed-Pastor 2012; Muller 2014). The different impact on 

tumorigenesis of missense versus loss of function TP53 mutations is best 

appreciated in mouse models, with “knock-in” missense mutations resulting in a 
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shift towards epithelial-derived cancers (see, for instance, (Lang et al., 2004; 

Olive et al., 2004)). 

 Suppression of p105-Rb activity by loss-of-function mutations of the CDK 

inhibitor CDKN2A is also very common in SCCs, while mutations of the RB1 

gene itself have been found less frequently except in ESCC (Song et al., 2014). 

Interestingly, putative cancer driver mutations in many genes including TP53 are 

already frequent in normal photo-exposed skin, with the notable exception 

CDKN2A mutations, suggesting that these may be a critical trigger of cancer 

development (Martincorena et al., 2015). 

As mentioned, the incidence of TP53 and CDKN2A/RB1 mutations is 

much reduced in HNSCCs and CvSCCs linked with HPV infection. Here, 

expression of viral E6 and E7 has been shown to inhibit the p53 and p105-Rb 

proteins, thus rendering direct genetic mutation dispensable (Cancer Genome 

Atlas, 2015; Ojesina et al., 2014).  

 

- CCDN1 and MYC: The genes coding for Cyclin D1 and c-Myc are also 

commonly amplified in SCCs (Figures 2 and 3) and amplification of these genes, 

like TP53 and CDKN2A mutations, are frequent in HPV (-) HNSCCs but rare or 

absent in their HPV (+) counterparts (Cancer Genome Atlas, 2015). FBXW7 

codes for a component of the SCF ubiquitin E3 ligase complex involved in 

degradation of a number of key cell regulatory molecules including c-Myc, cyclin 

E and Notch1 (Welcker and Clurman, 2008). Loss-of-function mutations in 

FBXW7 are especially frequent in CvSCC (Ojesina et al., 2014), but occur also in 
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SCCs from other body sites (Table 2). An important target of FBXW7 in HNSCCs 

is the anti-apoptotic Mcl-1 protein, which has been implicated in increased cancer 

cell survival and as a possible therapeutic target (He et al., 2013).  

 

TYROSINE KINASE RECEPTORS 
 

- Epidermal growth factor receptor (EGFR): SCCs are also linked to frequent 

amplification and, in some cases, mutations of tyrosine kinase receptor genes 

(Figures 2 and 3; Table 2). The frequent amplification of EGFR and closely 

related ERBB2 can contribute to elevated receptor activity in HNSCCs and 

ESCCs (Li et al., 2014). Interestingly, in a recent comprehensive study of 

HNSCCs, EGFR amplification was found in 15% of the (HPV-) tumors but in 

none of their (HPV+) counterparts (Cancer Genome Atlas, 2015). As EGFR is a 

redundant receptor to multiple ligands, it is particularly attractive target for 

chemotherapy by either small molecule inhibitors (Robinson and Sandler, 2013) 

or blocking antibodies (Pirker, 2015). Favorable response to small molecule 

inhibitors is observed in the case of activating EGFR mutations, such as 

frequently occurring in lung adenocarcinomas but not squamous carcinomas. By 

contrast, some beneficial effects are elicited by treatment with anti-EGFR 

antibodies even in the absence of EGFR mutations, through mechanisms that 

are still poorly understood (Pirker, 2015). Resistance to antibody treatment can 

occur through a number of mechanisms, including AKT activation, suggesting 

that combinatorial therapies with PI3K inhibitors have conceptual merit (Brand et 

al., 2011; Iida et al., 2013). Another pathway of resistance to anti-EGFR therapy 
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is via increased activity of another tyrosine kinase receptor, c-MET (Burtness et 

al., 2013). C-MET is engaged by the hepatocyte growth factor (HGF) ligand, and 

its phosphorylation triggers a variety of signaling pathways, similarly to EGFR. 

While MET may be amplified in small subsets of HNSCC, ESCC and LSCC, 

mutations are not prevalent. Regardless, dual anti-EGFR and c-MET therapy 

holds promise for therapeutic intervention (Burtness et al., 2013; Liao et al., 

2012). 

 

- Fibroblast growth factor receptors (FGFRs): The FGFR1 and, to a lesser 

extent, FGFR2 and FGFR3 are also frequently amplified in SCC from various 

body sites and, in HNSCCs, amplification of these genes occurs mostly in tumors 

without EGFR, CCND1 or MYC amplification (Figure 2).  As is the case for these 

other genes, even FGFR1,2  gene amplification occurs selectively in (HPV-) 

tumors (Cancer Genome Atlas, 2015). Unlike EGFR, at least in LSCCs, 

amplification of FGFR genes can be accompanied by activating mutations 

mapping to the extracellular or intracellular regions of the receptors (Liao et al., 

2012), making these molecules possible therapeutic targets (Liao et al., 2013; 

Liao et al., 2012). Importantly, FGFR1, FGFR2 and FGFR3 gene fusions have 

also been identified in various cancer types, including HNSCCs and LSCCs 

(Wang et al., 2014; Wu et al., 2013). The resulting protein products have 

heterogeneous oligomerization domains fused to an intact FGFR tyrosine kinase 

region and exhibit elevated susceptibility to pharmacologic inhibition both in vitro 

and in vivo, offering a window of therapeutic opportunity (Dienstmann et al., 
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2014). 

 While FGFR gene activation is mostly viewed as pro-oncogenic, activating 

FGFR3 mutations were the most frequent genetic alteration found in expanding 

clones of keratinocytes in photo-aged but otherwise normal human skin 

(Martincorena et al., 2015). This raises the possibility that activation of this 

receptor may confer upon these cells a selective advantage without conferring a 

tumorigenic phenotype (Martincorena et al., 2015). Consistent with this view, 

activating FGFR3 mutations are also found in >40% of seborrheic keratosis, very 

common keratinocyte-derived tumors of the skin that do not, or very rarely, 

progress into malignancy (Hafner et al., 2006; Logie et al., 2005). Furthermore, 

functional FGFR3 activation in these cells can trigger differentiation, in parallel 

with increased proliferation (Mandinova et al., 2009).   

 

RAS/MAPK AND PI3K SIGNALING 
 
- RAS: Downstream of tyrosine kinases, small RAS GTPases provide a key 

signaling node notoriously hard to target, even if better understanding of their 

membrane association is opening new perspectives (Cox et al., 2015). Mutations 

of HRAS are found with variable frequencies in SCCs from various body sites, a 

likely reflection of the fact that activation of the pathway at other levels, such as 

tyrosine kinase receptors, can also occur. In this context, it is interesting to note 

that, in a comprehensive study of HNSCC, HRAS mutations were selectively 

found in HPV-negative tumors (Cancer Genome Atlas, 2015) and that no HRAS 

mutations were detected in a previous study of cervical cancer, the other major 
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SCC type associated with HPV infection (Ojesina et al., 2014). This may be 

explained by the fact that, besides E6 and E7, expression of the HPV E5 protein 

has been connected previously with transformation through activation of surface 

TK receptors (DiMaio and Mattoon, 2001).  

 An elevated incidence of HRAS mutations (>20%), with a lower frequency 

of KRAS and NRAS mutations, was reported in two genomic studies of 

cutaneous SCCs, which may reflect the fact that overall gene mutation 

frequencies in these tumors are substantially higher than in SCCs of internal 

organs (Pickering et al., 2014; South et al., 2014). Importantly, an even greater 

frequency of HRAS mutations (>40%) was found in the cutaneous SCCs and 

keratoacanthomas that develop in melanoma patients treated with the B-RAF 

inhibitor vemurafenib (South et al., 2014; Su et al., 2012). The underlying 

reasons remain to be fully elucidated but could involve paradoxical activation of 

MAPK signaling and accelerated growth of HRAS harboring lesions (Arnault et 

al., 2012; Su et al., 2012) and/or more complex mechanisms that can be 

counteracted by combined treatment with B-RAF and MEK inhibitors (Robert et 

al., 2015) and/or inhibitors of COX-2 (Escuin-Ordinas et al., 2014). 

 

- PI3K: As in many other tumor types, the PI3K/AKT signaling pathway is 

frequently affected by gene amplification and/or mutations, consistent with its key 

role in cell survival. The 3q26/28 chromosomal region, encompassing PIK3CA, 

as well as the TP63 and SOX2 cell lineage genes discussed below, is frequently 

amplified in various SCCs (Hoadley et al., 2014) (Figures 2 and 3). Activating 
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mutations of the PIK3CA gene are also a frequent finding in various SCCs 

(Figures 2 and 3; Table 2), with loss of PTEN as an alternative possible 

mechanism for deregulated AKT signaling and consequently increased cell 

survival (Liao et al., 2012). A dual role of specific AKT isoforms in squamous 

differentiation is also to be noted with possibly important therapeutic implications 

(Naeem et al., 2015; Okano et al., 2000; Saoncella et al., 2014). 

 

GENES INVOLVED IN SQUAMOUS CELL FATE DETERMINATION 
 
- TP63: The basal cell compartment in most squamous tissues is believed to 

harbor stem cells or progenitor cells. Such cells are characterized by elevated 

expression of TP63, a member of the TP53 gene family (Crum and McKeon, 

2010).  TP63 codes for two main isoforms TAp63 and Np63 (lacking an N-

terminal transactivation domain), each of which gains additional diversity through 

alternative splicing (sub-isoforms). This gene is critical for epithelial 

development in mice and humans (Crum and McKeon, 2010). The transition from 

the simple epithelium to the stratified epithelium occurs at different 

developmental times around mid-gestation. In the developing skin, where this 

process has been studied in great detail, TP63 plays a key role in the 

maintenance of stem cell populations and/or the transition from simple to 

stratified and glandular epithelia (Crum and McKeon, 2010). In this context, it has 

been implicated in the switch from a horizontal to vertical plane of epithelial cell 

division that accompanies stratification (Knoblich, 2010; Lechler and Fuchs, 

2005).  
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 TP63 has also been shown to play a key role in the balance between 

epithelial/keratinocyte proliferation in antagonism with p53 and Notch signaling 

(Dotto, 2009). However, the role of p63 in SCC has been the subject of debate, 

with divergent conclusions. Aggregate evidence suggests that p63 plays a 

positive tumor promoting function in the initial stages, but suppressive at later 

stages (Missero and Antonini, 2014). This protein is used as a diagnostic marker 

of squamous versus adenocarcinoma forms of lung and esophageal cancer 

(Crum and McKeon, 2010), and it is very frequently overexpressed in SCCs of 

various body sites. In fact, amplification of the TP63 locus is a strikingly common 

occurrence in this kind of tumors, cervical carcinoma included, while TP63 

amplification is rarely found in other tumor types with the exception of uterine CS 

(Figures 2 and 3). TP63 and SOX2 have adjacent chromosomal localization and 

are frequently co-amplified with cooperative effects on control of diverse genomic 

loci (Watanabe et al., 2014).  

 TP63 missense mutations of uncertain significance have been found only 

in a small minority of SCCs (specifically HNSCCs), while they are a frequent 

occurrence in melanomas, consistent with a proposed role of TP63 in malignant 

progression of this tumor type (Matin et al., 2013). A direct p63 target of likely 

relevance in the context of SCC development is FGFR2, with increased FGFR 

signaling promoting cancer development (Ferone et al., 2012; Ramsey et al., 

2013). In other settings, specifically breast cancer, loss of p63 function has been 

associated with increased invasion and metastatic spread through a number of 

possible mechanisms (Adorno et al., 2009; Hu et al., 2008; Piccolo et al., 2013). 
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TP63 is also likely to play an important role in early tissue alterations preceding 

cancer development. In fact, its inappropriate and increased expression has 

been linked to squamous metaplasia in both tracheal and esophageal epithelium 

(Daniely et al., 2004).  

 

- SOX2: SOX2 codes for a member of the Sox family of transcription factors with 

a key role in pluripotency of embryonic stem cells and reprogramming of cell fate, 

stem cell potential and cancer (Weina and Utikal, 2014). It is also essential to 

embryonic development of the esophagus and its separation from the trachea 

and the emergence of a stratified squamous epithelium (Que et al., 2007). In the 

lung, SOX2 appears to be selectively involved in cancer development along the 

squamous lineage, as amplifications of the gene occur at a staggering frequency 

(>50%) in LSCCs (Bass et al., 2009), while, in adenocarcinoma, another cell 

lineage determinant gene, NKX2-1, is amplified instead (Weir et al., 2007). SOX2 

amplification is also critical in ESCC and LSCC (Bass et al., 2009) and is 

frequent in HNSCC (Schrock et al., 2014) (Figures 2 and 3). TP63, SOX2 and 

PIK3CA reside in the 3q chromosomal region and co-amplification of these 

genes together with FGFR1 has been recently reported in LSCCs, pointing to a 

possibly important level of cross-activation (Toschi et al., 2014).  

 In LSCCs, SOX2 and PRKCI are also frequently co-amplified, with 

phosphorylation of SOX2 by protein kinase C iota, the PRKCI gene product, 

enhancing Hedgehog ligand production and consequently increased cancer stem 

cell potential (Justilien et al., 2014). In skin SCCs, the SOX2 gene is rarely 
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amplified, but SOX2 appears to be selectively expressed in cancer stem cell 

populations and be required for skin SCC development, with TP63 as one of its 

direct transcriptional targets (Boumahdi et al., 2014). SOX2 and p63 have also 

been found to physically interact and converge on a large number of common 

gene targets with pro-oncogenic potential like ETV4, in ESCC and LSCC cell 

lines (Watanabe et al., 2014). The activity of SOX2 extends to control of 

NOTCH1 and NOTCH2 expression, with interplay between the two cell 

regulatory networks playing a possibly important role in determining cells of origin 

and subtype of KRAS-induced lung tumors (Xu et al., 2014b).  

 

- NRF2: The interplay between production of reactive oxygen species (ROS) and 

metabolism plays an important role in the balance between stem cell renewal 

and commitment to differentiation (Bigarella et al., 2014). The NRF2 transcription 

factor is a key regulator of enzymes involved in the protective response against 

ROS and in compound metabolism (Schafer and Werner, 2015). Activating 

mutations of NFE2L2, coding for NRF2, are a frequent event in SCCs of various 

types, mutually exclusive with putative loss-of-function mutations of the NRF2-

inactivating KEAP1 gene (Liao et al., 2012).  

 Recent evidence indicates that self-renewal of basal epithelial stem cells 

of the large airways is controlled by dynamic variations in ROS levels through 

NRF2-dependent activation of Notch signaling (Paul et al., 2014) with possibly 

important implications for cancer development. More directly, in the skin, NRF2 

function has been linked to heterogeneity of SCC stem cell populations, with 
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association and stabilization of NRF2 by p21CDKN1A resulting in enhanced ROS 

protection and resistance to chemotherapeutic agents (Oshimori et al., 2015). 

Such mechanism may also contribute to the enhanced resistance to these 

agents in keratinocytes with NOTCH1 activation in which CDKN1A expression is 

induced (Mandinova et al., 2008). 

 Reflecting this complexity of biological functions, pharmacological NRF2 

activation exerts significant chemopreventive effects in both experimental and 

clinical settings (Schafer and Werner, 2015), while NRF2 inhibitory compounds 

have promising therapeutic potential for diminishing survival of tumor cells (Liao 

et al., 2012).  

 

SQUAMOUS DIFFERENTIATION NETWORK 

 

- NOTCH: Notch signalling is a key developmental pathway and form of direct 

cell-cell communication that is used to synchronize behaviour of closely 

connected cells (Kopan and Ilagan, 2009). Of the major developmental signalling 

pathways, Notch is the only one with an established direct role in the switch 

between proliferation and differentiation of keratinocytes (Dotto, 2008; Lefort and 

Dotto, 2004). It is also involved in maintenance of normal skin structure and 

function, through control of the permeability barrier function (Demehri et al., 

2009a; Demehri et al., 2009b; Dumortier et al., 2010). This pathway appears to 

play an equally important regulatory role in the oral (Papagerakis et al., 2014), 
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esophageal (Croagh et al., 2014) and bronchial epithelia (Garcia Campelo et al., 

2011). 

Of the four family members expressed in mammalian cells, NOTCH1 

plays an especially important role in promoting keratinocyte differentiation and 

tumor suppression (Dotto, 2008). This gene is a direct target of p53 in 

keratinocytes and its down-modulation in keratinocyte-derived tumors and SCCs 

– with resulting defects in differentiation - can be explained by mutation of TP53 

(Lefort et al., 2007; Yugawa et al., 2007), down-modulation of TP53 expression 

by increased EGFR activation (Kolev et al., 2008) or pharmacological inhibition of 

calcineurin activity via increased ATF3 expression (Wu et al., 2010). In cervical 

carcinoma cells, NOTCH1 down-regulation is required for sustained HPV E6 

expression and consequently compromised p53 function (de Wilde et al., 2008; 

Talora et al., 2005; Talora et al., 2002). In this context, however, a positive role of 

the Notch pathway in enhancing cancer stem potential has also been proposed 

(Bajaj et al., 2011). This may be amenable to substantially different roles of this 

pathway in distinct cell populations of the same lineage and/or a pro-survival 

function of Notch shared across cell types (Dotto, 2008). In ESCC cells, 

compromised NOTCH1 expression, resulting from concomitant loss of TP53 and 

KLF5 transcription, was linked to malignant progression (Yang et al., 2011), and 

in primary esophageal keratinocytes Notch activation induces senescence 

through a p16INK4a-dependent mechanism (Kagawa et al., 2014).  

Together with reduced expression, inactivating mutations of NOTCH1 

have been found with elevated frequency in HNSCC, LSCC, ESCC and CSCC 



 27 

(Figures 2-4; Table 2), consistent with a role in tumor suppression. However, as 

discussed in the context of CvSCCs, this may be an over-simplification, 

consistent with the identification of activating NOTCH1 mutations in a subset of 

HNSCCs (Sun et al., 2014). Transcriptome analysis of tumors for signs of Notch 

activity is difficult to interpret. In fact, “canonical” Notch targets of the Hes/Hey 

families function as transcriptional repressors of their own expression (Iso et al., 

2003), so their observed up- or down-regulation can be variously interpreted as 

Notch activation or suppression. More importantly, SCCs are highly 

heterogeneous tumors and augmentation or suppression of Notch activity needs 

to be interpreted in the context of specific cell types (growing versus 

differentiating tumor cells, intermingled stromal cells of various types, infiltrating 

inflammatory cells). 

Like NOTCH1, NOTCH2 and NOTCH3 are also frequently mutated in 

SCCs, with both missense substitutions and nonsense and frameshift alterations 

(Table 2, Figure 4). While NOTCH2 does not play an essential role in 

keratinocyte differentiation and tumor suppression, combined loss of NOTCH1 

and NOTCH2 has more significant consequences than loss of NOTCH1 alone 

(Pan et al., 2004), pointing to a complementary function of the two receptors. 

Loss of NOTCH3, individually or in combination with NOTCH1 and/or NOTCH2, 

results in no phenotype in mouse skin (Pan et al., 2004). The specific role that 

this receptor may play in human stratified epithelia and cancer has only started to 

be addressed, with the finding that loss of NOTCH3 in the esophageal epithelium 

disrupts normal stratification and differentiation (Ohashi et al., 2010). 
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- Fat1: A distinguishing feature of squamous epithelia is their tight cell-cell 

junction organization and packing, with polarization along the basal-apical axis 

but also along the main body axis. Mutations in genes encoding classical 

adherens junctions and desmosomal proteins, like DSG1-4, occur in SCCs of 

various types but with relatively low frequencies. By contrast, frequently mutated 

is FAT1 (Figures 2 and 3; Table 2), belonging to the cadherin superfamily, whose 

ortholog in Drosophila plays a well demonstrated tumor suppressing function as 

well as a key role in planar cell polarity (Sadeqzadeh et al., 2014). In mammals, 

four FAT family members have been identified, of which FAT4 is the most closely 

related to the Drosophila gene, while the others, FAT1 included, exert both 

synergistic and antagonistic functions (Saburi et al., 2012). Recent studies, 

focused mostly on FAT1, point to a complex interplay with other major pathways 

like ß-catenin and HIPPO signalling (Sadeqzadeh et al., 2014). However, this 

field is still in its infancy and the role that these molecules, as well as other planar 

cell polarity components, play in squamous cell differentiation and cancer 

remains to be elucidated. 

 

EPIGENETIC REGULATORS 
 
      Epigenetic regulators, specifically enzymes involved in DNA methylation 

and histone modification, are attractive drug targets, as epigenetic alterations are 

potentially reversible and can critically regulate the balance between cancer stem 

cell renewal and commitment to differentiation (Campbell and Tummino, 2014). 
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The overall mutation incidence of this family of genes in SCCs is >50%. 

Frequently mutated genes in SCCs from various body sites include EZH2, EP300, 

MLL2, MLL3, NSD1, MED1, DDX3, and SYNE1 (Table 2). Earlier studies 

showed that p300 (coded by EP300) is essential for cell cycle withdrawal of 

terminally differentiating keratinocytes (Missero et al., 1995), with subsequent 

work implicating p300 in a large variety of transcriptional regulatory mechanisms 

involved in this process (Wang et al., 2013). Another epigenetic regulator 

specifically implicated in squamous differentiation is EZH2, a key component of 

the Polycomb repressive complex 2 with histone methyltransferase activity and 

serves as a drug target (McCabe and Creasy, 2014). EZH2, which is frequently 

mutated in cancer (Yamaguchi and Hung, 2014), controls proliferative potential of 

self-renewing keratinocyte populations by repressing the INK4A-INK4B locus and 

preventing the recruitment of AP1 transcriptional factors to terminal differentiation 

marker genes (Ezhkova et al., 2009).  Sustained EZH2 activity is required for 

survival of keratinocytes cancer stem cell populations (Adhikary et al., 2015), and 

in both skin and lung bronchial epithelium increased EZH2 expression has been 

associated with malignant SCC progression (Behrens et al., 2013; Xie et al., 

2014). EZH2 is also a mediator of the negative effects that increased levels of 

HOTAIR have on E-cadherin expression in HNSCC cells, with consequently 

enhanced malignant progression (Wu et al., 2015).   

 The mixed lineage leukemia (MLL) genes (MLL2 and MLL3: KMT2D and 

KMT2C, respectively) encode H3K4 methyltransferases. MLL translocations 

result in MLL fusion proteins that play a causative role in acute myelogenous 
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leukemia (Krivtsov and Armstrong, 2007). Truncating or missense mutations in 

these genes have also been described in a variety of tumors, including most 

SCCs, especially CvSCC (Figures 2 and 3; Table 2). The specific consequences 

of these mutations in SCC development remain to be established. MED1, coding 

for a component of the transcriptional coactivator complex Mediator (MED) with 

an essential role in keratinocyte differentiation (Oda et al., 2012), is also 

frequently mutated in SCCs. The impact of mutations in this and other chromatin 

modifying genes in SCC development remains an interesting topic for future 

studies. 

 Besides mutations of these genes, additional evidence points to a key role 

of epigenetic modifications in SCC development. Super enhancer and 

transcriptional profiling of stem cell populations isolated from keratinocyte-

derived SCCs revealed that the Ets2 transcription factor is a key regulator of 

epigenetic changes associated with malignant behavior, acting upstream of other 

transcription factors like Elk3 and AP1 family members and in possible 

antagonism with polycomb silencing (Yang et al., 2015) . While ETS2 and related 

family members are rarely mutated in SCCs, these transcription factors are under 

positive RAS/MAPK control, providing a possible link between activation of this 

pathway and chromatin alterations.  

 

FUTURE DIRECTIONS: A UNIFIED APPROACH TO RESEARCH, 

DETECTION, PREVENTION AND THERAPY 
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 SCCs have been anatomically separated for convenient clinical 

management, which is not without historical merit. However, as discussed in this 

review, their etiologies and molecular properties point to a landscape with sundry 

similarities. As depicted in Figure 5, an essential commonality that distinguishes 

SCCs from all other cancer types are genetic alterations of specific determinants 

of squamous differentiation, most notably NOTCH, TP63 and SOX2 genes, and 

their interplay with general regulators of the cancer process such as p53 as well 

as cyclin D1, the latter downstream of EGFR and RAS activation. Furthermore, 

growth/differentiation of epithelial cells is tightly linked to cell adhesion, and 

altered expression and/or mutations in cell adhesion genes like CDH1, CTNND1 

and DSG1-3 (coding for E-cadherin, p120-catenin and desmogleins, 

respectively) and integrin receptor genes play a critical role in various aspects of 

SCC behavior (Janes and Watt, 2006; Jeanes et al., 2008). 

 SCCs viewed in this unified fashion may merit standardized approaches to 

research efforts in prevention, diagnosis, prognosis and therapy. For instance, 

inducers of terminal cell differentiation could be beneficial to exhaust cancer stem 

cell populations harnessed by a common type of molecular mechanisms. 

Conversely, as squamous differentiation results in increased cell survival, 

inhibitors of the differentiation process when this is activated could be beneficial 

in combination with conventional pro-apoptotic chemotherapeutic agents or drugs 

against recently identified targets (such as PI3K and AKT inhibitors). 

Consideration of common properties across SCCs as they relate to epigenetics, 

genomics, genetics and transcriptomes may serve as a foundation for individual 
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and combinatorial therapeutics, as well as understanding the mechanistic basis 

of treatment resistance. 

 A unified view of SCCs also prompts attentive consideration of reported 

differences in response to specific treatments depending on body sites. Some of 

these differences may indeed reflect specific frequencies of gene mutations, 

various cells of origin and/or intermediate steps, such as squamous dysplasia in 

the lung. However, other reported differences may be the result of independent 

clinical trials being carried out for various SCCs, different criteria, and patients’ 

staging. A case of relevance is the response of patients with advanced LSCC to 

second-line treatment with erlotinib (a reversible EGFR tyrosine kinase inhibitor) 

and, with greater efficacy, afatinib (an irreversible ErbB family blocker) (Soria et 

al., 2015). While advanced stage HNSCC was initially reported not to respond to 

erlotinib, this perspective has changed (Gross et al., 2014), and a favorable 

response of HNSCC patients to afatinib has now been observed (Machiels et al., 

2015). 

A unified view of SCC is also likely to extend to two emerging and 

interconnected areas of general importance for cancer management, one 

involving stromal alterations and the other the immune system. Several lines of 

evidence indicate that changes in stromal tissue can play a primary role not only 

in progression of the disease but also initiation (Dotto, 2014). Convergent 

pathways are involved, including Notch/CSL (Hu et al., 2012) (Procopio et al., 

2015), TGF-ß (Bhowmick et al., 2004) (Goudie et al., 2011) and SHH/Gli 

signaling (Junttila and de Sauvage, 2013). Collectively, stromal alterations in 
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these and other pathways make an attractive target for preventive and 

therapeutic approaches against SCC development. (Dotto, 2014; Junttila and de 

Sauvage, 2013). 

 Neoadjuvant chemotherapy and radiation are mainstays of early stages of 

SCC treatment. Adjuvant chemotherapy is also often pursued after surgery. 

Newer and rapidly emerging therapeutics are kinase inhibitors and 

immunotherapy, the latter of which involves immune checkpoint inhibitors 

(Sharma and Allison, 2015). The number of somatic genetic mutations in cancers 

may be critical in exploiting the balance between immune surveillance and 

immunosuppression, and hence, in immunotherapy. SCCs in various body sites 

are among the cancer types with the highest percentage of somatic genetic 

mutations (Alexandrov et al., 2013), and mutations of HLA genes in these tumors 

suggest a possible stratification of patients for their predicted response to 

immunomodulatory agents (Liao et al., 2012). An important concept is that 

genetic alterations of tumors can impact the immune microenvironment, opening 

some novel windows of opportunity for treatment around STK11 (LKB1)/AMPK 

signaling (Xu et al., 2014a). Additionally, immature myeloid cells have been 

demonstrated to be important in ESCC and represent a population of cells for 

therapeutic targeting (Karakasheva et al., 2015; Waldron et al., 2013). 

 Overall, by viewing SCCs at various body sites as a cohesive theme, new 

insights can be gained. However, more consistency is needed between studies 

of various types, standardizing major confounders such as geographic/ethnic 

differences of patient populations, stages and grades of tumors, degree of 
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normal/tumor cell admixture, intrinsic tumor cell heterogeneity and the 

contribution of stromal components.  
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LEGENDS 

 

Table 1. Environmental risk factors for SCC 

 

Table 2.  Common genetic mutations by function in SCC   

 
 

Figure 1.  Incidence and mortality for major SCC types  

*   Non-melanoma skin cancer (NMSC) comprises SCC and basal cell cancer 

and incidence is challenging to estimate as these cases are not required to 

be reported to US or worldwide cancer registries.  A study in 2006 noted 3.5 

million NMSC cases among 2.2 million people in the United States. 

**  Non-small cell lung cancers (NSCLC) comprise about 85% of all lung cancers, 

and are divided further into SCC, adenocarcinoma and large cell cancer. 

Thus, lung SCCs represent a significant component of the NSCLCs. 

*** Head/neck cancers are almost exclusively SCC. They are classified further as 

follows:  oral cavity (including tongue and mouth), oropharynx (including 

tonsil and oropharynx) and other HNC (including larynx and poorly-specified 

tumors of the lip/oral cavity/pharynx) 

****In the US there is a higher proportion of esophageal adenocarcinomas than 

SCC, this proportion is reversed for worldwide statistics. 

 

Statistics calculated from: Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, 

Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. GLOBOCAN 2012 



 49 

v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 

[Internet]. Lyon, France: International Agency for Research on Cancer; 2013. 

Available from: http://globocan.iarc.fr, accessed on 27/09/2015. 

 

Figure 2.  Pattern of frequently altered genes (>5% frequency) in HNSCC. 

The results shown here are based upon data generated by the cBioPortal 

for Cancer Genomics (http://www.cbioportal.org/index.do) (Cerami et al., 

2012; Gao et al., 2013), and represent the genes relevant to this review 

with >5% alteration frequency. The dataset included all tumor samples 

with sequencing and CNA data (n=279). Mutually exclusive alterations 

were found for 94 gene pairs, only 2 of which statistically significant:  TP53 

- EP300 (p = 0.01) and KMT2D – NFE2L2 (p = 0.038).  

 

Figure 3.  Pattern of frequently altered genes (>5% frequency) in LSCC. The 

results shown here are based upon data generated by the cBioPortal for 

Cancer Genomics (http://www.cbioportal.org/index.do) (Cerami et al., 

2012; Gao et al., 2013), and represent the genes relevant to this review 

with >5% alteration frequency. The dataset included all tumor samples 

with sequencing and CNA data (n=178).  Mutually exclusive alterations 

were found for 90 gene pairs, only 1 of which statistically significant: TP53 

– KMT2C (p = 0.017). 

 

http://www.cbioportal.org/index.do
http://www.cbioportal.org/index.do
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Figure 4.  Specific pattern and mapping of Notch1, Notch2 and Notch3 

mutations in HNSCCs. The results shown here are based upon data 

generated by the cBioPortal for Cancer 

Genomics (http://www.cbioportal.org/index.do) (Cerami et al., 2012; Gao 

et al., 2013). 

 

Figure 5 Model of potential interactions of epigenetic and genetic 

alterations in SCC development.  

           Schematic of potential interactions amongst epigenetic and genetic 

alterations that may contribute, directly and indirectly, to SCC initiation and 

progression. Proteins with commonly accepted tumor promoting and 

suppressing functions are highlighted in red and blue respectively, while a 

protein involved in epigenetic regulation, p300, is highlighted in green. 

 

http://www.cbioportal.org/index.do
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Skin 

UV exposure 
 

 
 

Immunosuppressive therapies 
Calcineurin inhibitors 

A history of skin cancer 
 

Infection 
HPV 

 
 
 
 
 
 

Lung 

Cigarette 
History of smoking (quantity, type and duration) 

 
Radon gas 
Asbestos (especially among smokers) 
Metals 

 
Organic solvents 
Radiation 
Air pollution (e.g. diesel exhaust) 
Miscellaneous: 

cturing, paving, roofing, 
painting, 
  and chimney sweeping 
Infection 

Mycobacterium tuberculosis 
 
 
 
 

Head/Neck and Esophageal 

Cigarette 
 

Alcohol 
 

Nutritional deficiencies 
 

Infection 
HPV 
EBV 

 
 

Cervical 

Infection 
HPV 

Miscellaneous: 
Exacerbated by immunosuppressed state, 
cigarette-smoking, high number of childbirths, 
long-term oral contraceptive use 

 

Table 1



 

1) Pickering et al., 2013; South et al., 2014; Wang et al., 2011 2)  Agrawal et al., 2011; Cancer Genome Atlas, 
2015; Lechner et al., 2013; Pickering et al., 2013; Seiwert et al., 2015; Stransky et al., 2011; Hedberg et al., 
2016 3) Muller et al., 2015; Ojesina et al., 2014); 4) Gao et al., 2014; Lin et al., 2014; Song et al., 2014; Zhang 
et al., 2015 5) Hammerman et al., 2012; Hoadley et al., 2014; Kim et al., 2014 6) Mixed SCC: 30% HNSCC, 25% 
LSCC, 10% CSCC, 10% CvSCC; Schwaederle et al., 2015. 7) Genes not described in the text: DDR2, Discoidin 
Domain Receptor Tyrosine Kinase 2; AJUBA, Ajuba LIM protein; KMT2D (MLL2), Lysine (K)-Specific 
Methyltransferase 2D; KMT2C (MLL3), Lysine (K)-Specific Methyltransferase 2C; NSD1, Nuclear Receptor 
Binding SET Domain Protein 1; DDX3, DEAD (Asp-Glu-Ala-Asp) Box Helicase 3, X-Linked; SYNE1, Spectrin 
Repeat Containing, Nuclear Envelope 1; CUL3, Cullin 3; CASP8, Caspase 8, Apoptosis-Related Cysteine 
Peptidase.  
 
 
 

Relative frequency of mutation (%) 

Genes 
CSCC1 HNSCC2 

(HPV 
mixed) 

HNSCC2 

(HPV-) 
HNSCC2 

(HPV+) 
CvSCC3 

 
ESCC4 LSCC5 Mixed 

SCC6 

Cell cycle control         

TP53 61-95 72 47-100 3-5 5 82-93 72-91 65 

RB1  5 1-4 5-6 4 7-9 4-15 6 

CDKN2A 33-44 49 9-86   4-20 3-44 24 

CCND1  26 22-45 3  33 12 16 

MYC  13 6-14 3   5 6 

FBXW7  6 5-20 4-5 15-16 3-5 4-6 7 

Mitogenesis / RAS signaling         

EGFR  13 15 6-12  6 4-8 8 

FGFR1  10 10   1 7-17 4 

FGFR2  1 2   1 3  

FGFR3   3 2 11-14   2-4  

DDR27  3 3-6 6   3  

HRAS 16-23 3 3-9 6-9   3 7 

KRAS 13-14 1  6-10 4  3 6 

NRAS 5 3     1  

AJUBA7 18 7 7   2-7   

MAPK1  3   8  2  

PIK3CA 10 35 5-34 22-56 14-20 5-9 9-48 29 

PTEN  3 5-12 6-20  1 8-11 7 

BRAF 18 3 1    5  

Squamous cell differentiation         

TP63  22 8-19 28 4  29  

SOX2  21 5 15   42 18 

NOTCH1 59-73 21 15 6-17  9-13 8-15 12 

NOTCH2 51-63 10 8-9  20 4 8  

NOTCH3  5 3  4 2-6 6  

FAT1 44 29 14-32 3  4-11 19  

Chromatin / transcription / gene expression control 

EZH2  2 3 18  1 3  

EP300  7   16 3-10 4  

KMT2D (MLL2)7  69 17 10-18 10-18  4-19 20-24  

KMT2C (MLL3)7  39 10  10  3-6 17  

NSD17   11 10   2 8  

MED1   3 5  4 1 4  

DDX37   2 4  4  1  

SYNE17   17 10-22 9  7-10 29  

Cell survival         

NFE2L2  12 1-14 4  5-10 15-18  

KEAP1  4 5   3 12-16  

CUL37  5 2   1 7  

CASP87 23 11 10-11 3 12 1 1-4  

Table 2
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