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Abstract  

Occupational exposure to airborne engineered nanomaterials (ENMs) poses potential health risks 

to workers at nanotechnology workplaces. It is important to understand the release scenarios of 

nanoparticle aerosols in processes and activities associated with human exposure. The release 

mechanisms, including release rate and physicochemical properties of nanoparticles, determine 

their subsequent transport behaviors as well as biological hazard effects. The number size 

distribution of ENMs aerosols is one of the most important parameters influencing these 

processes. The mechanical stability of nanoparticle agglomerates, in turn, affects their size 

distributions. The deagglomeration potential of these agglomerates determines the possibilities of 

them to deform under external energy inputs, resulting in modified size distribution and number 

concentration which eventually alter their exposure risks. Environmental conditions, such as 

relative humidity, may play a role in the deagglomeration process due to effects such as adhesion 

by capillary condensation of moisture.  

The general goal of this thesis was to assess the release scenarios of ENMs from workplace 

processes and activities. The sub-objectives include: 1. Investigate deagglomeration potential of 

nanoparticles under varied environmental conditions. 2. Investigate nano-objects release from 

ENM polymer composites;  3. Assess real-life ENM releases at workplaces.    

Different laboratory aerosolization systems which featured distinct energy inputs in powder 

aerosolizations were compared. TiO2 nanopowders with distinct surface hydrophicility were 

tested. Scanning mobility particle sizers (SMPS), aerodynamic particle sizers (APS) and optical 

particle counters (OPC) were used to measure particle number concentration and size distribution. 

Transmission electron microscopes (TEM) were employed for morphological analysis of 

airborne particle samples. Aerosol characteristics (size distribution and number concentration) 

differed by different testing methods. The velocities of aerosolization air flow were used to 

estimate energy level in these systems, and the particle modal size were shown to be inversely 

proportional to this parameter. In general, the hydrophilic aerosol particles had larger diameters 

and lower numbers than their hydrophobic counterparts. However, this also depended on the 

testing methods. The air velocity was found to be an effective parameter to rank process energies 

in similar aerosolization systems.  
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A fluidized-bed system for testing deagglomeration potentials of airborne nanoparticle using 

critical orifices (exerting shear forces onto particles by pressure drop) and a humidifier, was 

developed. Its performance was compared to a similar setup from a partner institution. A variety 

of nanopowders with distinct surface coatings were tested. A broad range of energies and 

humidity conditions were used. A SMPS and an OPC were used to measure particle number 

concentration and size distribution. TEMs were employed for morphological analysis of airborne 

particle samples. Mean particle size decreased and number concentration increased when 

pressure drops were applied. Particle number fraction below 100 nm was increased, and those 

above 350 nm were reduced. Opposite observations were made under humid conditions, 

especially for small particles. Moreover, the humidity applied reduced the effects of pressure 

drop. The results suggest that deagglomeration of airborne nanoparticle agglomerates is possible 

under the energy ranges applied in the study. However, humid atmosphere may promote their 

agglomeration and enhance their stabilities, reducing release of nanoparticles into the 

environment. The system can be used for routine test of deagglomeration potentials of ENMs 

and to rank them. Such a ranking would facilitate prioritizing exposure and risk assessments 

based on the concern level of relevant ENMs.   

An automatic drilling setup and a manual sawing setup were established to study nanoparticle 

release from different types of nanocomposites. Drilling speed and bit size were varied in the 

experiments. Particle size and number concentration were measured by a SMPS and diffusion 

size classifier miniatures (DISCmini). Nanofiller distributions in the raw composites and released 

particles were analyzed by scanning electron microscopes (SEM) and TEMs. The drilling tests 

released higher numbers of particles than the sawing did. Faster drilling speeds and larger 

drilling bit increased particle generation. The nanofillers did not alter release behaviors of the 

nanocomposites in the drilling experiments. However, sawing differed in the release levels 

between the composites and the blank samples. Moreover, polymer fumes were generated by the 

sawing heat. Most of the released particles were polymer matrix materials with nanofiller 

protrusions from the surface. The results emphasized the importance of process type and 

parameters in determining composite releases. Secondary emissions such as the polymer fumes 

call for the need of exposure and risk assessments for such scenarios.    
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A systematic literature review of ENM release in different industrial sectors and research 

laboratories was performed. Well defined information search strategies and templates were used 

to collect and store relevant data in this field. Release scenarios, such as aerosol particle size and 

number concentration, were compared for different activities. Availability of the contextual 

information that is relevant for human exposure estimation was assessed. It was found that 

exposure related data are not always available in current literature. Properties of released ENM 

aerosols seem to depend on the type of the activities. High energy processes tend to generate 

higher level of particle concentrations in smaller size ranges. This information derived from the 

review can be useful for determining the concern level of specific industrial processes for risk 

assessments in a tiered approach. For exposure assessment, the availability of exposure-relevant 

data can be improved by following a better data reporting practice.      
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Résumé 

L'exposition professionnelle aux nanomatériaux manufacturés dans l’air présente des risques 

potentiels pour la santé des travailleurs dans les secteurs de la nanotechnologie. Il est important 

de comprendre les scénarios de libération des aérosols de nanoparticules dans les processus et les 

activités associées à l'exposition humaine. Les mécanismes de libération, y compris les taux de 

libération et les propriétés physico-chimiques des nanoparticules, déterminent leurs 

comportements de transport ainsi que les effets biologiques néfastes. La distribution de taille des 

particules d'aérosols est l'un des paramètres les plus importants dans ces processus. La stabilité 

mécanique d’agglomérats de nanoparticules affecte leurs distributions de tailles. Les potentiels 

de désagglomération de ces agglomérats déterminent les possibilités de leur déformation sous 

énergies externes. Cela rend les changements possibles dans leur distribution de taille et de la 

concentration en nombre qui vont finalement modifier leurs risques d'exposition. Les conditions 

environnementales, telles que l'humidité relative, peuvent influencer les processus de 

désagglomération par l'adhérence de condensation capillaire de l'humidité. 

L'objectif général de cette thèse était d'évaluer les scénarios de libération des nanomatériaux 

manufacturés des processus et activités sur le lieu de travail. Les sous-objectifs étaient les 

suivants: 1. Etudier les potentiels de désagglomération des nanoparticules dans des conditions 

environnementales variées. 2. Etudier la libération des nano-objets à partir de nanocomposites 

polymères; 3. Evaluer la libération de nanoparticules sur le lieu de travail dans des situations 

concrètes. 

Nous avons comparé différents systèmes de laboratoire qui présentaient différents niveau 

d’énergie dans l’aérosolisation des poudres. Des nanopoudres de TiO2 avec des hydrophilicités 

de surface distinctes ont été testées. Un spectromètre à mobilité électrique (SMPS), un 

spectromètre à mobilité aérodynamique (APS) et un spectromètre optique (OPC) ont été utilisés 

pour mesurer la concentration de particules et la distribution de taille des particules. La 

microscopie électronique à transmission  (TEM) a été utilisée pour l'analyse morphologique 

d'échantillons de particules dans l’air. Les propriétés des aérosols (distribution de taille et 

concentration en nombre) étaient différentes suivant la méthode employée. Les vitesses des flux 

d'air d’aérosolisation ont été utilisées pour estimer le niveau d'énergie dans ces systèmes, et il a 

été montré que les tailles modales des particules étaient inversement proportionnelles à la vitesse 
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appliquée. En général, les particules hydrophiles ont des diamètres plus grands et des nombres 

inférieurs à ceux des particules hydrophobes. Toutefois, cela dépend aussi des méthodes utilisées. 

La vitesse de l'air peut donc être un paramètre efficace pour le classement de l’énergie des 

procédés pour des systèmes d’aérosolisation similaires. 

Nous avons développé un système laboratoire pour tester les potentiels de désagglomération des 

nanoparticules dans l'air en utilisant des orifices critiques et un humidificateur. Sa performance a 

été comparée à un système similaire dans un institut partenaire. Une variété de nanopoudres 

différentes a été testée. Le niveau d'énergie appliquée et l'humidité ont été modifiés. Le SMPS et 

l’OPC ont été utilisés pour mesurer la concentration de particules et la distribution de la taille. 

Un TEM a été utilisé pour l'analyse morphologique d'échantillons de particules dans l’air. Le 

diamètre moyen des particules a diminué et la concentration en nombre s’est accrue lorsque des 

énergies externes ont été appliquées. Le nombre de particules inférieures à 100 nm a été 

augmenté, et celui au-dessus de 350 nm réduits. Les conditions humides ont faits exactement le 

contraire, en particulier pour les petites particules. En outre, ils ont réduits les effets de la 

différence de pression due à l’orifice. Les résultats suggèrent que la désagglomération 

d'agglomérats de nanoparticules dans l'air est possible dans la gamme d'énergie appliquée. 

Cependant, l'atmosphère humide peut favoriser leur agglomération et améliorer leurs stabilités en 

réduisant la libération de nanoparticules dans l'environnement. Nous proposons d'utiliser notre 

système pour le test de routine des potentiels de désagglomération des nanomatériaux 

manufacturés et de les classer. Un tel classement faciliterait la priorisation de l'exposition et du 

risque encouru en fonction du niveau d’ENM. 

Un système de perçage automatique et un système de sciage manuel ont été développés pour 

étudier la libération de nanoparticules à partir de différents types de nanocomposites. La vitesse 

de perçage et taille de la mèche ont été modifiées dans les expériences. La distribution de taille 

des particules et leur concentration en nombre ont été mesurées par un SMPS et un miniature 

diffusion size classifier (DISCmini). Les distributions de nanoparticules dans les composites et 

les particules libérées ont été analysés par un TEM et un microscope électronique à balayage 

(SEM). Les tests de perçage ont libérés un plus grand nombre de particules que le sciage. Des 

vitesses de perçage plus rapide et les mèches plus grandes ont augmentés la génération de 

particules. Les charges de nanoparticules manufacturées dans les composites ne modifient pas 

leurs comportements de libération dans les expériences de perçage. Toutefois, le sciage 
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différencie les niveaux de libération entre les composites et les échantillons blancs. De plus, les 

vapeurs de polymères ont été générées par la chaleur de sciage. La plupart des particules libérées 

sont des polymères contenant des nanoparticules ou sur leurs surface. Les résultats ont souligné 

l'importance du type de processus et paramètres pour déterminer la libération de nanoparticules 

de composites. Les émissions secondaires telles que les fumées polymères appellent à la 

nécessité d'évaluations de l'exposition et de risque pour de tels scénarios. 

Une revue systématique de la littérature sur le sujet de libérations de nanoparticules dans l'air 

dans les secteurs industriels et laboratoires de recherche a été effectuée. Des stratégies de 

recherche des informations pertinentes et de stockage ont été développées. Les mécanismes de 

libération, tels que la taille de particules d'aérosol et de leur concentration en nombre, ont été 

comparés pour différentes activités. La disponibilité de l'information contextuelle qui est 

pertinente pour l'estimation de l'exposition humaine a été évaluée. Il a été constaté que les 

données relatives à l'exposition ne sont pas toujours disponibles dans la littérature actuelle. Les 

propriétés des aérosols libérés semblent dépendre de la nature des activités. Des procédés à haute 

énergie ont tendance à générer des plus hauts niveaux de concentrations de particules dans les 

gammes de plus petite taille. Les résultats peuvent être utiles pour déterminer la priorité des 

procédés industriels pour l’évaluation les risques associés dans une approche à plusieurs niveaux. 

Pour l'évaluation de l'exposition, la disponibilité de l'information peut être améliorée par le 

développement d’une meilleure méthode de communication des données. 
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摘   要 

        职业性的接触工程纳米材料气溶胶对于在相关工作岗位的工人造具有潜在的健康风险。

对于在人为工业操作及过程中纳米颗粒气溶胶污染物的排放机制理解有待加强。包括排放

率和纳米颗粒的物理化学性质在内的排放机制，决定了它们接下来的传输过程以及生物毒

性。工程纳米材料气溶胶的粒径分布是影响这些过程的最重要的参数之一。其粒径分布又

受到纳米颗粒聚集体力学稳定性的影响。这些聚集体的稳定性决定了它们在外部能量的作

用下是否会解体并且导致粒径分布和浓度的改变，最终影响工人的暴露风险。环境条件，

比如相对湿度，可能影响纳米颗粒聚集体的稳定性。    

        本论文的主要目标在于评估工业操作过程中纳米气溶胶的排放机制。次级目标包括：

1. 研究纳米气溶胶团聚颗粒在不同环境条件下解团聚的可能性。2. 研究在纳米高分子复合

物机械操作中排放的气溶胶污染物。 3. 评估工作场所中纳米气溶胶的排放。  

        实验使用了不同能量水平的纳米粉体雾化系统对具有不同表面性质的二氧化钛纳米粉

体进行测试，并利用扫描电迁移率粒径谱仪（SMPS），空气动力学粒径谱仪（APS），

光学颗粒物粒径谱仪（OPC）和透射电镜（TEM）测量并分析粒子浓度，粒径分布和空

气悬浮物样本的形态。实验发现系统产生的纳米气溶胶性质（粒径分布和浓度）随测试方

法的不同而变化。雾化的能量水平可用气流速度来估测，并且气溶胶粒子平均尺寸和其成

反比。疏水性气溶胶颗粒通常较亲水性颗粒大且浓度更低。实验结果表明在类似的粉体雾

化系统中，雾化过程的能量水平可用气流速度进行有效分级。 

        实验开发出可用于碎化纳米气溶胶颗粒团聚体的流化床系统。系统使用一个临界流孔

对粒子实施剪切作用。此外，系统环境的相对湿度可用一台整合的加湿器控制。此系统的
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性能和合作研究所的一个类似系统作了比较。实验在较大能量和湿度范围下对具有不同表

面性质的纳米粉体气溶胶进行了测试，并利用 SMPS，光学颗粒物粒径谱仪（OPC）和透

射电镜测量并分析气溶胶浓度及粒径分布的改变和空气悬浮粒子的形态。剪切作用导致气

溶胶颗粒的平均尺寸减小，浓度增加。小于 100纳米的粒子浓度增加，大于 350纳米的粒

子浓度降低。但是，相对湿度的增加对其产生了相反的影响，其作用对直径较小的颗粒尤

其显著。此外，相对潮湿的环境还减小了剪切力造成的粒子尺寸改变的程度。实验结果表

明纳米气溶胶颗粒聚集体在一定的外部能量下可被打碎。湿度在这一过程中可促进他们的

团聚和加其强稳定性，并降低浓度。此系统可被用于纳米气溶胶颗粒团聚体稳定性的常规

测试和分级。其结果有助于区分对于不同材料风险评估的优先次序。 

        实验搭建了自动钻孔和手动切割平台用于研究从不同种类高分子纳米复合物中排放出

的空气污染物，并使用钻头速度和尺寸作为实验变量。实验利用 SMPS，便携式扩散粒径

分级谱仪，扫描电镜和透射电镜监测并分析排放颗粒的尺寸，浓度以及形态。在实验中，

钻孔操作相较于切割操作排放出更高浓度的气溶胶污染物。更快的钻头速度和更大的钻头

尺寸提高了排放水平。在钻孔测试中，含有纳米填充物的样本和空白样本的排放水平并无

明显区别。但是，切割实验造成纳米复合物不同的排放机制，并且发现操作产生的热量可

导致高分子挥发物的释放。实验中产生的大部分气溶胶颗粒为高分子基底材料，并且在其

表面可观察到纳米填充物突起。实验结果表明操作种类和条件对于纳米复合物的气溶胶污

染物排放机制具有重要影响。此外，有必要对类似机械操作产生的次级产物（例如高分子

挥发物）进行人体健康风险的评估。   
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        本论文还对工业和科研环境中纳米气溶胶污染物的排放进行了系统的文献综述。综述

评估了文献中有关工人暴露风险背景信息的可用性，并比较了在不同工业操作过程中污染

物的排放机制（气溶胶粒径和浓度）。结果表明文献通常不包括此类背景信息。释放的纳

米颗粒气溶胶的性质取决于操作种类。高能过程更易产生高浓度且平均粒径小的气溶胶颗

粒。此结果有助于对工业过程的污染物排放水平和风险程度进行分级评估。此外，可通过

完善与工人暴露风险相关的背景信息的搜集过程来改进评估质量。 
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1. INTRODUCTION 

1.1 Engineered nanomaterials (ENMs) and their applications 

ENMs are man-made substances with special functional properties related to diameter, shape and 

surface chemistry. When the size of the system is reduced to the nano-range certain phenomena 

become significant, which is not observed in macro-scale structures. For example, the electronic 

properties of solid materials are altered, exhibiting the so called “quantum size effect” [1]. Other 

physicochemical properties of materials, such as mechanical, electrical, optical behaviors and 

chemical reactivity, are also modified compared to those of macroscopic structures. Strength of 

nano-metals are improved by limiting the dislocation motion from decreased grain size [2]. 

Mechanical performance of carbon nanotubes/fibers-polymer composites are greatly enhanced 

by the cross-linking effect of the fillers’ long and hollow structures [3]. The dielectric 

permittivity and resistivity of nanoparticle-polymer composites depends on the filler particle size 

and concentration, which can be attributed to changes in matrix amorphous content, porosity and 

nanoparticle polarizability [4]. Highly dense nanoceramics without large pores in their structures 

become optically transparent [5].  Increase of surface area to volume or to mass ratio enhances 

the catalyst reactivity in chemical reactions [6] .    

Thanks to these advantageous properties, ENMs have been largely used in various technological 

applications as aerosols, colloids or powders. Schmid and Riediker [7, 8] initiated 

comprehensive surveys in Swiss industry on the uses of ENMs, and found that nanoparticles are 

used in various manufacturing sectors such as cosmetics, surface coatings, paints, textiles, 

pharmaceutical products, food and food packaging. TiO2 and ZnO  are extensively used in 

sunscreens to protect the skin from UV damage, by efficiently reflecting light and absorbing the 

UV content [9]. The same principles apply to self-cleaning surfaces made by TiO2 coatings 

which promote photo-catalytic degradation of organic dirt and photo-induced 

superhydrophilicity [10]. Silver nanoparticles can provide anti-microbial properties in food 

packaging and textiles [11, 12].  

1.2 Hazard    

The special physical and chemical properties of ENMs may exert different toxicological effects 

than their bulk counterparts [13]. Smaller diameters of nanoparticles greatly increase their unit 

surface area which may relate to stronger biological interactions per mass unit [14, 15]. The 
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solubility of nanoparticles may also be higher due to their small size profiles or agglomeration 

tendency, which can alter their toxicity profiles [16]. Furthermore, high aspect ratio 

nanomaterials, such as nanotubes and fibers, make it more difficult for human bodies to clear 

them [17, 18]. Particle surface charges were found to modify their biological effects, through 

altered cellular uptakes or cell apoptosis [19-21]. Toxicity of nanoparticles can be characterized 

in different dose metrics, such as mass, number and surface area [22]. The mass concentration 

has been found to be an ineffective indicator for prediction of toxicity. Instead, particle number 

and surface area have been shown to be better predictors for lung responses for different particle 

sizes [23, 24]. Agglomeration level of airborne particles influences the deposition efficiency of 

ENMs in human respiratory tracts, resulting changes in deposited dose per unit mass of exposure. 

[25]. In general, the deposition fraction increases with decreased particle size, and the highest 

value locate in nano-range for the main target which is the alveolar region. Once deposited in 

human lungs, ENMs have been found to be associated with advert effects such as inflammation 

and reactive oxygen species generation [26-29]. In addition to lung cell toxicity, translocation of 

nanoparticles across the air-blood barriers throughout systemic circulation into secondary organs, 

including brain, heart, kidney and liver has been observed [30-35].  

1.3 Exposure 

Potentials of human exposure to ENMs have been investigated for various industrial processing 

and activities. These include production including synthesis phase and product collection [36-38]; 

handling such as weighing, mixing, transferring, sonication [39-43]; spraying [44, 45]; bagging 

and packaging [46-48]; mechanical treatments of nanocomposites [49-51]. The likeliness of 

exposure is low if no or minor release of ENMs at source is detected in the first place, or 

engineering controls and personal protection are well implemented. On the contrary, high release 

of ENMs from a process without effective control measures resulted in significantly increased 

immission potentials for the workers directly involved.  

1.4 Concern-driven risk management approaches 

As the production and uses of ENMs rapidly increase, human risks (worker and consumer) and 

environmental risks of ENMs have been of concern in the scientific community. An European 

Union definition of Manufactured Nanomaterials was brought forward which facilitates risk 

management and governance. The EU definition of ENMs is “any intentionally manufactured 
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material, containing particles, in an unbound state or as an aggregate or as an agglomerate and 

where, for 50 % or more of the particles in the number size distribution, one or more external 

dimensions is in the size range 1 nm to 100 nm.” [52]. The definition is flexible in the number 

size distribution fraction of 50% particles, and takes into account also carbon nanotubes, 

graphene flakes and fullerenes with at least one dimension below 1 nm.   

Human risk assessment for hazardous chemicals and materials is composed of two elements: 

exposure and hazard evaluations [53]. Hazard assessment is to evaluate the nature and severity of 

biological effects associated with ENMs. Occupational exposure assessment determines worker’s 

contact with ENMs in occupational settings, typically via inhalation or skin deposition of 

nanoparticle aerosols. Exposure is possible only when release of ENMs occurs and are 

subsequently transmitted to human receptors. Risk characterizations combine the information 

derived from these two parts to facilitate decision-making in risk managements and 

communications (Figure 1). Once the risks are identified, interventional measures could be 

implemented, including exposure monitoring and controls, workers health surveillance and 

safety trainings.    

 

Figure 1 Elements and their relations in risk assessment 

For hazard assessment, it is almost impossible to test all types of ENMs in all relevant exposure 

scenarios. A prominent characteristic of nanomaterials is that during their entire life cycles stages 

they may change in characteristics, transform and/or interact with the surrounding environments, 

which can cause e.g., agglomeration or aggregation, surface adsorption of environmental 

substances or dissolution. In addition, different forms of nanomaterials, such as powder or liquid 

droplets exposure scenarios may link to distinct forms of nanomaterials. Therefore, priorities 

should be given to certain ENMs of high concern for potential human toxicities taking into 

account realistic exposure scenarios.  

In order to save unnecessary costs and efforts for assessment of low risk scenarios, a concern-

driven approach was especially developed in the EU FP7 MARINA project [54]. This approach 
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has a tiered structure starting from identifying relevant ENMs in the first step to advanced 

toxicological testing in the final phase. In tier 1, ENMs of interest are first identified by 

nanomaterial definition, and then by toxicity-related physicochemical properties as well as by 

their uses and availabilities for human exposure. In tier 2, defined ENMs of initial concern will 

go through basic toxicity testing in four toxicity domains: biokinetics, local effects at the point of 

entry or contact, genotoxicity and short term toxicity (eg. inflammation, cytotoxicity). Tier 3 

aims at specific toxicological testing such as in vivo genotoxicity or carcinogenicity, based on 

the information provided in the first two tiers. For exposure and risk assessment, similar tiered 

approaches have been also used in development of well structured concern-driven strategies. In a 

tiered risk assessment, uncertainties both on the toxicity part and the exposure part are assessed. 

If the remaining uncertainties are high on both, then the next tier would be continued in both 

directions. If only one of these two part has unaddressed uncertainty, then the tier 2 is conducted 

only for that part but not for the other. The assessment proceeds along tiers until uncertainty is 

minimized.       

1.5 Release characterization 

Determining release mechanisms of hazardous substances is an important step in exposure 

assessment. In occupational settings, nanoparticles can be released from different forms of 

materials, namely powder, liquid, and solid matrix that contains nanofillers (e.g., 

nanocomposites). Nanomaterial powders can be aerosolized during handling and generate 

airborne particles that pose inhalation exposure risks. The resulting aerosols may consist of 

primary particles or agglomerates, depending on the process characteristics during the 

aerosolization (e.g., energy input type and level, duration, material quantity), as well as 

agglomeration status of the raw materials and deagglomeration of particles in the airborne state. 

Different types of inter-particle force can be considered, such as van der Waals force [55], 

electrostatic [56] and capillary force from moisture contents [57]. The shear force inducing 

deagglomeration could be from the drag of air current on the agglomerates [58]. Nanoparticles 

can also be released in the form of mist from suspension of low volatile liquids [59], or contained 

in liquid droplets generated in spraying processes [60]. On the other hand, mechanical treatments 

destruct nanocomposite matrix and may detach filler particles during the operations. The types of 

process include drilling, sawing, sanding, abrasion, thermal degradation, UV weathering, and so 
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on. The process parameters and matrix polymer materials were shown to influence the release of 

nanoscale particles [61].           

Release evaluation is linked to exposure assessment in multiple ways. Characterization of 

released nanoparticles provide information on material properties such as size, concentration and 

surface functions, which informs about the hazardous level of released ENMs as well as 

transmission behaviors which is related to subsequent exposure. It also helps to determine the 

necessary degree of precaution if exposure and risk levels are uncertain. Release simulation 

studies use similar conditions (energy type and level, material usage etc.) as those in industrial 

environments, striving to predict release mechanisms and resulted exposure in real-life. In task-

based activities at workplaces, personal exposure may occur in several processes featuring varied 

release scenarios. Thus, the resulting exposure may be considered as mixed effects from different 

processes. Take an example of ENMs synthesis, raw materials preparation, furnace operations, 

product collection and cleaning are all possible activities releasing hazardous nanoparticles. 

Understanding the release, the subsequent transmission and potential transformation mechanisms 

in these processes facilitate a decent and comprehensive exposure assessment. On the other hand, 

a single activity type may trigger different release scenarios, eg. thermal cutting of polymer 

based nanocomposites may release polymer fume by process heat in addition to matrix materials 

or filler particles. [62]. In addition, determination of release potential from various industrial 

processes  and ENMs life cycle stages informs policy makers and safety inspectors about the 

most relevant scenarios that need to be monitored and controlled regarding to worker exposure.  

Overall, release characterizations help to understand what the risks might be and how they can be 

better managed. It is the first step along the risk assessment chain (Figure 1). Release studies 

facilitate safety design at the source by studying parameters that affect release. As a result, 

process or material modification can be envisaged towards a lower release possibility.   

 

2. OBJECTIVES 

2.1 Investigation of the deagglomeration potentials of ENM agglomerates  

Agglomeration and binding strength of aerosol particles influence their transport behavior in the 

air. Deagglomeration has been shown to occur in human respiratory system when agglomerated 
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nanoparticles pass through the larynx, where shear forces are induced on the particles due to 

change of flow direction and speed [63, 64]. Thus, deagglomeration may take place in various 

industrial activities associated with a range of different energy levels. Once this happens, the 

aerosol properties are altered, which modifies the subsequent exposure scenario. Environmental 

condition such as the relative humidity may play a role in this process. The study is to investigate 

how stable the agglomerates are in the air (how strong the primary particles are bound together), 

and how humidity conditions influence the deagglomeration process under external energy 

inputs.     

2.2 Investigation of nanoparticle release mechanisms in nanocomposites processing  

Incorporated nanofiller particles in nanocomposites may be detached under certain conditions 

during mechanical treatments, depending on how external energy is applied, the distribution of 

the fillers in the composite, and destruction level of the matrix. The study aims to determine what 

the material parameters are that influence release characteristics including particle type, size and 

concentration. The second goal is to compare the potential differences of the release scenarios 

from distinct treatment types as well as varied filler types. The derived information is valuable 

for subsequent exposure assessment, in informing about the possibility of release, potential 

properties of released particles and relevance of different treatments.   

2.3 Assessment of real-world situation of ENM releases  

Different industrial treatments and processes feature varied energy applications on ENMs 

suspensions, powders, raw materials or finalized products. This may release nanoparticle 

aerosols with largely differed profiles (number/mass concentration, size distribution etc.) into the 

working environment. The aim of this study is to compare various industrial and laboratory 

activities associated with ENMs in their potentials to release nanoparticles (likeliness, release 

rate), and to see whether release characteristics (release rate, aerosol type, size and concentration) 

can be generalized across different types of treatments (eg. production, intermediate processing 

and manual handling). The results will be useful in informing about the most relevant activity 

types for exposure assessment, as well as about materials profiles for risk assessment.   

3. METHODS 
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We compared different types of aerosolization and deagglomeration methods in their 

performances under varied humidity conditions for nanomaterials with distinct surface properties. 

A range of aerodynamic shears were applied to the ENM particles in studying their stabilities 

during their aerosolization and when they become airborne. Online aerosol monitoring 

equipments were used to measure aerosol properties and offline analysis of particle 

morphologies were performed using electron microscopes. Laboratory setups were developed for 

mechanical treatments on nanocomposites in order to investigate relevant release mechanisms. 

Influences of nanofillers, process type and parameters on release were studied. Lastly we 

performed a systematic literature review on release scenarios in industrial and research 

departments. Well developed search strategies and data processing methods were used to ensure 

a good quality of the review.  

3.1 Aerosolization and deagglomeration testing of nanopowder particles 

In order to investigate the likeliness of deagglomeration for airborne nanoparticles, an 

aerosolization system that generates stable aerosols and an effective way of applying 

deformation energies onto the aerosolized particles are needed. A funnel-based aerosol generator 

was developed and critical orifices were used to apply varied external shear forces onto aerosols 

(see also chapter 4) [65]. The aerosolization method resembled a fluidized bed, using only small 

quantities of materials (min. 200 mg) and was able to generate aerosols with a stable size 

distribution and number concentration over a sufficiently long period for samplings (min. 30 

minutes, max. up to 2 hours, with 250 mg powder). The shear force level was adjusted by tuning 

the pressure drop across the orifice which was controlled by the air flow rate passing through. 

The effectiveness of critical orifices on deagglomerating micro-sized [66] and nano-scale  

particles [67] was shown previously. Conditioned air can be introduced to mix with the main 

aerosol flow before it goes through the orifice, to modify the relative humidity of the 

environment. By comparing the particle mean size and total particle generation rate (normalized 

to total air flow rate) between the shear force conditions and the reference condition (orifice not 

installed), the tendency to deagglomerate was analyzed for different types of material. 

The comparability of aerosol characteristics generated from different aerosolization systems may 

not be straightforward, due to varied working principles of the methods [68]. A better 

understanding of how these parameters influence the aerosolization process is needed. Four 
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aerosol generation and deagglomeration setups, featuring different energy ranges and material 

usages, were used to test common nanomaterials under basic systemic parameters. Particle 

number concentration and size distribution were compared across the systems. The robustness of 

the setups and reproducibility of the results were analyzed. In a further step, the two setups 

incorporating critical orifices were compared for their performances in deagglomeration testing 

under varied humidity. How shear force and humidity conditions affected the deagglomeration 

process of materials with different surface coatings was explored.     

3.2 Automatic drilling and manual sawing treatments on ENM composites 

Potential release of nanoparticle fillers from mechanical treatments of nanocomposites and 

subsequent human exposure have been investigated in various studies [69-74]. However, few 

studies directly compared the possibly different release scenarios from distinct processes, 

especially between drilling and sawing treatments. Automatic drilling and manual sawing setups 

were established to test the difference in nanoparticle release from nanocomposites with three 

different types of nanofillers. Process parameters in the drilling treatment such as drill head 

dimension and drilling speed were varied to study the influences of these factors. The manual 

sawing, on the other hand, featured a relatively lower energy input yet potentially different 

destruction mechanism than the drilling process. Number concentration and mean size of 

released airborne particles were monitored during the treatments. Morphological analysis was 

performed to determine whether nanofiller materials were released.   

3.3 Systematic review of ENMs release and exposure studies 

In addition to simulation studies described previously, real-life data on ENMs release were 

analyzed from existing scientific literature and reports. A systematic review on studies 

addressing release and exposure of airborne nanoparticles from occupational settings in the entire 

life cycle stage of ENMs was conducted. Search terms were determined from frequently used 

keywords, and the literature searches were performed in comprehensive online databases such as 

``Pubmed`` and ``Sciencedirect``. In addition, information was collected from collaborative 

institutes in their ongoing projects or archived literature. Gathered data were stored in 

categorized library containing release- and exposure-specific information. The release data were 

compared across different activities to reveal the degree of process-dependency of ENMs release.    
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4. DEVELOPMENT OF AN AEROSOLIZATION AND DEAGGLOMERATION 

SYSTEM 
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ABSTRACT 

Stability of airborne nanoparticle agglomerates is important for occupational exposure and risk 

assessment in determining particle size distribution of nanomaterials. In this study, we developed 

an integrated method to test the stability of aerosols created using different types of 

nanomaterials. An aerosolization method, that resembles an industrial fluidized bed process, was 

used to aerosolize dry nanopowders. We produced aerosols with stable particle number 

concentrations and size distributions, which was important for the characterization of the 

aerosols’ properties. Next, in order to test their potential for deagglomeration, a critical orifice 

was used to apply a range of shear forces to them. With increasing shear force, the mean particle 

size of tested aerosols became smaller, whereas the total number of particles generated grew. 

Moreover, the fraction of particles in the lower size range increased, and the fraction in the upper 

size range decreased. The reproducibility and repeatability of the results were good. 

Transmission electron microscopy imaging showed that most of the nanoparticles were still 

agglomerated after passing through the orifice. However, primary particle geometry was very 

different. These results are encouraging for the use of our system for routine tests of the 

deagglomeration potential of nanomaterials. Furthermore, the particle concentrations and small 

quantities of raw materials used suggested that our system might also be able to serve as an 

alternative method to test dustiness in existing processes.    

INTRODUCTION 

Increasing numbers of products based on nanotechnology are leading to an increasing potential 

for human exposure to nanomaterials in the workplace. Workers can be exposed to nanoparticles 

during manufacturing processes, use of products, transport, storage or waste treatment [46, 75, 

76]. The inhalation of nanomaterials poses potential health risks [77, 78]. Particle sizes and their 

state of agglomeration determine where they deposit in the lung structure [79] [80]. The size of 

agglomerates may also influence toxicological mechanisms [81]. Furthermore, nanoparticles 

deposited in lungs could by-pass their defense system and enter the circulation system, which 

could adversely affect the cardiovascular system [17, 34]. Information on the particle size 

distributions of nanomaterials is, therefore, important for assessing the deposition and likelihood 

of translocation across biological barriers.  
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The stability of nanomaterial agglomerates is another important material parameter in modeling 

nanomaterial release and associated human exposure, since it influences the particle size 

distribution of aerosols during their transport. Most of the industrially important nanomaterials 

are initially produced in the form of powders. Dust from powders can easily enter the airborne 

phase as single particles, aggregates, or agglomerates. The size of the agglomerates, however, is 

often outside the nano-range and can reach from several hundred nanometers to micrometers in 

diameter [82].  The mechanisms of particle agglomeration, as summarized by Schneider et 

Jensen. [56], include physical interlock (rough surface, entangled surface shapes, or chain-like, 

branched structure), electric forces (Van der Waal, conductive/non-conductive), magnetic forces 

(ferromagnetic, induced magnetic) and soft bridging (sticky surface, liquid film, organic 

functional groups). Previous studies reported that the deagglomeration of such submicron 

clusters is dependent on the energy present in the process from which they are released and the 

turbulence of their transport in the air [83, 84]. Such processes have also been shown to release 

primary particles or smaller, nano-sized agglomerates [85, 86]. 

Agglomeration strength can be studied directly, by measuring the binding force between 

individual particles, or indirectly, by triggering deagglomeration using external forces such as 

impaction or shear.  Binding energy between primary particles was studied using atomic force 

microscopy [87]. In the inertial impaction method, nanoparticle (NP) agglomerates collided with 

a substrate at high velocities [85]. By subsequently analyzing transmission electron microscopy 

(TEM) images of the agglomerates, their degree of fragmentation was determined as a function 

of their impact velocity. The aerosol generation methods in their study included spark discharge 

generation and flame synthesis. For silver NPs, the degree of fragmentation increased as 

collision velocity increased, but decreased with smaller primary particle size. Another 

fragmentation method is the application of shear-forces in the air by forcing the agglomerate 

aerosol through a critical orifice. Originally, this effect was described for micrometer-sized 

particles [66]. Compact particles were effectively separated from each other in the turbulent 

airflow conditions created by a large drop in pressure. A previous study described the 

deagglomeration of nano-sized agglomerates [86]. The overpressure used to create different 

shear forces stayed below or equal to 140 kPa. The mean particle size of the materials tested 

decreased as the overpressure was increased; this was interpreted as deagglomeration.   
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Two key components are needed to investigate the stability of NP aerosols with regards to 

changes in their size and numbers: an aerosolization system, and a means of applying energy to 

the airborne particles so as to test their stability, as described above. Ideally, the aerosolization 

system should be able to produce an aerosol with stable particle concentration and size 

distribution for a reasonably long time. Furthermore, it should only require the use of small 

amounts of material so that even expensive, novel materials can be tested. Different 

aerosolization methods exist, such as the continuous drop method [88], the rotating drum method 

[68, 89], the vortex shaker method [90], the magnetic stirrer setup [86] and the stirred 

fluidization system [91]. These systems can produce different particle number concentrations by 

controlling such experimental parameters as the feed rate, rotation speed, or shaking frequency. 

However, these setups also have some disadvantages. Aerosol stability is a key problem, as the 

few published time-series graphs for these systems attest [90]. Furthermore, the amount of 

material needed for the continuous drop method (500 grams, EN15051), the rotating drum 

method (35 cm
3
, EN15051) [92] and the stirred fluidization method (200 g) makes these tests too 

expensive to be conducted for some nanomaterials. Recently, a modified rotating drum method 

based on a downscaled version of the EN 15051 rotating drum was developed, which uses much 

less powder (6 g) per test [68]. Other aerosolization systems which employs relatively lower 

amount of raw material include the Venturi dustiness testing device [93] and the low-mass 

dustiness tester that simulates the powder falling process [94]. The powder quantities used in 

these two methods are 10 mg and 15 mg, respectively. Finally, the friction in the magnetic stirrer 

setup can create static charges during aerosolization that have the potential to alter an aerosol’s 

state of agglomeration.  

To overcome the shortcomings of the traditional systems to investigate powder aerosolization 

process, we turned to the fluidized bed system—an aerosolization concept commonly used in 

modern powder technology and known for its simple, easily controlled operational 

characteristics [95]. Until now, fluidized bed systems were used mostly with powders composed 

of micrometer-sized particles. In the present study, a process closely based on the fluidized bed 

concept was established to create stable aerosols from nanopowders. An orifice-based approach 

was then used to study the deagglomeration potential of airborne nanomaterials using a wide 

range of air turbulence levels induced by the pressure drop across the critical orifice. Different 
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types of materials were tested to investigate the influence of such characteristics as their 

composition, surface coating, primary particle size, and shape. 

MATERIALS AND METHODS 

 

Fig. 1. Schematic diagram of the test system with magnification of the aerosolization device (left 

part) and the critical orifice (bottom part). 

An integrated system was developed, composed of an aerosolization device, transport tubing, a 

deagglomeration orifice, and a measurement chamber (Fig. 1). A special glass funnel was used to 

activate dry powders. The relatively thick funnel wall (2–3 mm) was designed to resist pressure 

differences of up to 400 kPa. Before the start of the test, the funnel was filled with dry powder 

via the top opening. An airflow is then passed through a nozzle (2.1 mm diameter) at the bottom 

of the funnel to aerosolize the material and create a single-jet fluidized bed by which aerosols are 

carried towards the top of the funnel. Nozzles of different diameters can be used to modify the 

formation of the air jet. During the aerosolization process, the powder accelerates through the 

center of the lower part of the funnel and then flows back down along the wall. The rate of 

airflow is between 0.3–1.0 L/min, which creates air speeds from 1.44 to 4.81 m/s at the bottom 

opening. This airflow generates turbulent movements in the powder and ensures a vigorous 

aerosolization process. In the top part of the funnel, the airflow becomes laminar, with a 

Reynolds number from 7.4 (0.3 L/min) to 24.7 (1.0 L/min). In this laminar flow, particles with a 



 

26 
 

settling velocity lower than the vertical upward airflow velocity will eventually escape the funnel 

through the top opening. The aerodynamic cut-off diameters, calculated for particles made of 

different materials, ranged from 2 to 5 µm, with the airflows 0.3 – 1.0 L/min. The calculations 

were based on the densities of the bulk materials; thus the actual diameters of the particle 

agglomerates emitted would be slightly larger when effective densities and shape are taken into 

account. The particles emitted are subsequently transported along carbon-doped conductive 

tubing (~ 50 cm, Milian S.A.) into a mixing chamber (1 L) and are then diluted with particle-free 

air to adjust the total volume of airflow. Conditioned air, with different relative humidity, can 

also be added to the aerosol flow during this phase, in order to study how humidity influences 

aerosol stability. 

The air from the aerosolization system is guided to the deagglomeration orifice, through which 

the aerosols flow into the measurement chamber. An orifice of 400 µm diameter was used to 

apply shear forces to the particles. The orifice used in the present study features a transition zone 

in which the airflow gradually accelerates and concentrates toward the center. Due to the 

restriction of the orifice, upstream pressure is higher than downstream pressure. Once upstream 

pressure exceeds twice downstream pressure, the system reaches a condition of choked flow 

during which the volumic flow rate cannot be increased, even if the upstream pressure is 

increased. Under this condition, the air velocity at the orifice equals that of sound. In the present 

study, the pressure in the measurement chamber was kept at one atmosphere by a one-way valve 

for the overflow of air that was not used by the measurement devices. The pressure difference 

across the orifice is controlled by managing the upstream pressure. The turbulence level of the 

airflow inside the critical orifice, which can be indicated by the Reynolds number (Re), increases 

as upstream pressure increases (Hinds 1982, 2-41) [58]. Such a turbulent airflow can already 

trigger some deagglomeration of loosely bonded agglomerates. Even larger stress is experienced 

by the aerosol particles when they exit the critical orifice at high velocities, where the turbulent 

movements and drag forces induced as they encounter the surrounding still air cause further 

fragmentation of the agglomerates, as reported by [96] who had studied these processes in a 

system consisting of a transporting tube and an expansion zone with micro-sized TiO2 aerosol 

particles.   
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The number-size distribution of the aerosols in the measurement chamber (12 L) was assessed 

using a scanning mobility particle sizer (SMPS, GRIMM, 11.1–1083.3 nm); set to fast mode, 

each scan takes about 3.5 minutes. The sampling flow rate was set to 0.3 L/min. An optical 

particle counter (OPC, GRIMM, 0.25–32 µm) was also used to characterize large particles. The 

spectrometer scanned once every second and the sampling rate was 1 L/min. Particle 

morphology was assessed by collecting particles, using a mini-sampler (ECOMESURE, Janvry, 

France), directly onto TEM grids (200 mesh, copper, Formvar/Carbon) coated with a thin carbon 

film. The sampling rate was set at 0.3 L/min. Sampling time was 5–15 mins, depending on the 

aerosol particle number concentration.  The TEM grids were subsequently analyzed using a 

transmission electron microscope (TEM, CM100, H.T. 80kV, Philips, Eindhoven, Netherlands). 

The system’s total length of transport tubing was kept as short as possible to avoid particle loss. 

The tube connecting the funnel to the mixing chamber and on to the measurement chamber was 

about 1 m, and the horizontal portion of the tube was less than 50 cm. The SMPS and the 

OPC/mini-sampler tubes were each 1 m long. The tubes’ inner diameter was 6 mm. The airflow 

rates used in the tests were 5 L/min or less. The flow Re number at the maximum flow rate was 

1172.6, indicating a laminar flow process. Under laminar flow conditions, particle penetration 

efficiency under gravitational settling calculated for 5 µm, 1 µm, and 0.1 µm diameter SiO2 

particles are 94%, 99.7%, and 99.9%, respectively (Baron & Willeke 2011, 6-49, 6-50)[97]. For 

small SiO2 particles, the penetration rates under diffusion loss are 90.9%, 96.1%, 98.7%, and 

99.4%, for 10 nm, 20 nm, 50 nm, and 100 nm NPs, respectively (Hinds 1982) [58]. These results 

are very similar for other materials of a variety of densities. 

Our experiments used upstream pressure conditions of 100, 200, 300, and 400 kPa in order to 

apply different shear force levels to the aerosols. A pressure of 100 kPa was used as the reference 

condition, and the critical orifice was not installed. At this pressure, the aerosol passed through a 

normal tube outlet into the measurement chamber. Airflow rates of 0.3–1.0 L/min were used to 

activate the different dry nano-powders in order to achieve similar aerosolization levels as under 

the reference condition pressure. At high pressures, the volumic flow rate was increased to 

maintain a constant level of aerosolization. The dilution flow rate was precisely tuned to achieve 

the required upstream pressure. Prior to tests, filtered clean air (relative humidity < 10%) was 

used to flush the system until the background particle concentration in the measurement chamber 
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was below 10 p/cm
3
 (SMPS). Each test used 250±10 mg of powder. The materials tested are 

listed in Table 1. All the powders were provided by the European Commission’s Joint Research 

Centre in Ispra, Italy, except for SiO2 ΙΙ, which is a commercially available product (AEROSIL 

R974). Particles of ZnO ΙΙ were coated with a layer of triethoxycaprylylsilane; all other powders 

were uncoated. The powders were stored in sealed glass bottles before use. Powder weights were 

measured using an analytical balance (type AL-311, ± 0.1 mg, American Weigh Scales, Inc.) 

placed inside a ventilation hood. In the aerosolization process, the activation flow was increased 

gradually to produce a smooth fluidized bed formation. Dilution flow was introduced 

subsequently. Immediately after the flows were set, the SMPS and OPC were started 

simultaneously to monitor the state of the aerosol. Once the particle number and size in the 

measurement chamber reached a steady state (normally after 30 mins aerosolization), the mini-

sampler’s pump was started in order to collect airborne samples onto the TEM grids. In this 

steady state, 10 readings were taken from SMPS scans and from the OPC to calculate averages. 

A complete test usually lasted 1.5–2 h.  

Table 1. Physical and chemical properties of the tested powders. 

Material Ref. Composition 
Primary 

size, nm 

Surface 

coating 

Surface 

area, m
2
/g 

Crystal structure 

SiO2 Ι NM200 96.5% SiO2 20 Hydrophilic 230 Amorphous 

SiO2 ΙΙ R974 ≥99.8% SiO2 12 Hydrophobic 170±20 Precipitated 

ZnO Ι NM110 > 99% ZnO 42 Uncoated 13 
Zincite (52%) 

/amorphous (48%) 

ZnO ΙΙ NM111 96%–99% ZnO 34 
Triethoxyca- 

prylylsilane 
16 

Zincite (34%) 

/amorphous (66%) 

Ce(IV)O2 Ι NM211 90%–100% CeO2 10 Uncoated 66 Precipitated 

Ce(IV)O2 ΙΙ NM212 99.5% CeO2 33 Uncoated 28 Precipitated 

 

In order to analyze any changes in size distribution in the aerosols, the relative number size 

distributions were calculated from the raw SMPS data. This allowed an easier comparison of size 

spectra with different particle concentration levels. Particle number fractions in different size 

ranges were calculated to quantify the changes in particle diameter. Particle generation rates 

under varied pressure conditions were also compared. Analysis of variance (ANOVA) was 

performed, using Stata software (Stata CorpLP, Texas, USA), to compare the particle size 

distributions obtained under different pressure conditions.   
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RESULTS AND DISCUSSION 

Aerosolization 

      

Fig. 2. Left: evolution of particle numbers during the aerosolization process (SMPS, black curve, 

total number of particles; all curves below are particle numbers in individual size channels). 

Right: overlay of the particle number size distribution in the steady state. 

Firstly, we tested our system’s capacity to create and maintain aerosols with stable size 

distributions and number concentrations over some time. Fig. 2 (left) shows the evolution 

through time of total particle number concentration and the individual size channels during a 

single aerosolization experiment of hydrophobic SiO2 ΙΙ powder at atmospheric pressure 

(without using the critical orifice). Airborne particles were detected as soon as the airflow began. 

The particle number concentration increased gradually at first and then became relatively stable. 

The same pattern applied to the particle number concentration in each individual size channel. 

Fig. 2 (right) shows that the particle number and size distribution did not change significantly 

once the aerosol entered a steady state. During this period, the variation in the geometric mean 

size was within +/- 2%. The steady state lasted 0.5–2 h, depending on the type of material and 

the amount of powder used, and 10 consecutive SMPS scans were selected from this period to 

calculate the average size and number concentrations. The results show that the system managed 

to deliver a stable aerosolization process. This stability allows a correct assessment of mean 

particle sizes from a series of continuous scans, even when the instruments used had relatively 

long scanning periods, such as the SMPS. 

The minimal flow rates required to activate the different types of powders in our experiments 

ranged from 0.3 L/min to 0.5 L/min. To understand the potential influence of the aerosolization 
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flow rate on the particle concentration and size distribution generated, an additional series of 

tests was conducted using a larger range of airflow rates to aerosolize the powders at 

atmospheric pressure. Flow rates were increased step by step, and each step lasted 1 h. A 

constant dilution flow was maintained throughout the test to help stabilize the aerosol generated. 

Fig. 3 (left) shows the evolution of hydrophobic SiO2 ΙΙ particle numbers under six different 

aerosolization flow rates. Higher flow rates generated more particles. Particle concentrations 

reached steady state conditions under all six flow rates. The mode sizes measured from the 

lowest to highest flows were 142.1 nm, 132.8 nm, 129.7 nm, 116.8 nm, 115.6 nm, and 133.8 nm, 

respectively, with an average size of 128.5 nm and 10.4 nm (8%) standard deviation. At the 

highest flow rate, an additional side maximum appeared in the particle size distribution in the 

micrometer size range. The higher flow rate seemed to cause particles with higher settling 

velocity to exit the funnel into the rest of the system, whereas under low flow rate conditions, 

these micron-sized particles are effectively kept back. This phenomenon is also shown on Fig. 3 

(right), which compares relative size-number distributions normalized to the total particle 

number. The shapes of the size distribution spectra were otherwise very similar. These 

experiments suggested that the system was capable of generating very consistent aerosols at 

different flow rates, as long as the flow was kept well below the speed that would cause large 

particles to escape the upper part of the funnel. Within the flow range used in these experiments 

(0.3–0.9 L/min), particle size distributions were robust, allowing a comparison of data from 

different tests.     

     

Fig. 3. Left: 3D representation of the size-number distribution at different air flow rates. Right: 

comparison of relative number concentrations at the same flow rates. 
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The particle number concentrations generated from the tested materials were compared to those 

of similar studies, as shown in Fig. 4. These systems include the standard rotating drum method 

[98], the continuous drop method [99], the modified rotating drum method [68], and the vortex 

shaker method [90, 100]. Lower and upper concentration limits under different experimental 

parameters in these studies were identified. Different testing conditions were employed in these 

systems, such as amount of powder used, total air flow and dilution rate and volumes of the 

different compartments. A comparison of the concentrations obtained for different substances in 

a given system provides a relative ranking of dustiness. By coincidence, many of these systems 

show also similar absolute number concentrations for equal substances tested. In all test systems, 

silica generated high particle number concentrations, followed by cerium oxide, and zinc oxide 

powders. The same pattern was observed using our system. These results suggest that our 

approach may also be useful for doing dustiness testing, in particular if only small quantities of 

novel and costly nanomaterials can be made available for testing purposes. 

 

Fig. 4. Comparison of our particle number concentrations (black bars) with those of other 

aerosolization systems (grey bars), PHI - hydrophilic, PHO - hydrophobic.  

Deagglomeration tests 

Influence of pressure modifications on mean particle size  
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The introduction of different pressure conditions had immediate effects on the geometric mean 

size of the aerosols. The results are shown in Fig. 5 for different materials. Firstly, significant 

reductions in mean particle size were observed for most of the materials tested as pressures 

increased. The exception was type II SiO2 with a hydrophobic surface coating. In contrast, all 

other aerosols, including type I hydrophilic SiO2, showed a drop of 25%–40% in their original 

mean sizes. Secondly, deviations were seen between the same materials with different surface 

coatings or original primary particle sizes: the two types of SiO2 aerosol exhibited almost a 

three-fold difference in mean particle size, as the blue curves show. After testing, the deviation 

still existed. For the two types of Ce(IV)O2, the difference in particle size was smaller but still 

distinguishable. Averagely 25% difference was recorded between this two materials for the four 

pressure condition. In comparison, the two ZnO powders generated similar results whether they 

were coated or uncoated. Thirdly, the effects of the three highest pressures were similar or, in 

other words, the effect became smaller as the pressure rose. This is shown in the graph by the 

flatter slopes between 200–400 kPa.  

 

Theoretically, the drag force that a moving particle experiences from the surrounding air is 

proportional to its diameter, meaning smaller particles experience less resistance. This might 

explain the ineffectiveness of the critical orifice on the hydrophobic SiO2 aerosols and the 

reduced effects of the highest pressures on the other materials. Moreover, smaller agglomerates 

are more likely to be composed of tightly packed primary particles, in comparison to large ones 

that are loosely bonded internally. Hence, it is more difficult to break smaller agglomerates up 

into smaller particles. The deviation in mean particle size for the same types of material can be 

due to different primary particle diameters/shapes, surface areas, and coating types. For example, 

the Ce(IV)O2 and SiO2 aerosols composed of larger-sized primary particles had larger 

agglomerate sizes. The two types of ZnO had similar primary particle diameters and their 

agglomerate sizes are also closely comparable. Additionally, the coating type seemed to 

contribute to the size difference of the SiO2 aerosols. In the experiments, the hydrophilic powder 

was much fluffier than its hydrophobic counterpart. It was also more difficult to aerosolize and 

sometimes required a higher flow rate in order to achieve stable aerosolization. Obvious 

differences in the appearances of the ZnO powders were not observed, however. The 

agglomerate size of different materials was also influenced by their elemental composition, as 
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this determines the Hamaker constant in van der Waals interaction [55]. In summary, these 

results suggest that different nanomaterials have different lower particle or particle aggregate 

size limits below which they tend not to deagglomerate further under normal conditions where 

extreme energy processes are not present. 

 

Fig. 5. Influence of pressure on geometric mean diameter for different materials (data from the 

SMPS). 

Influence of pressure modifications on particle number size distribution  

Following the changes in GMD seen in the aerosols, the number size distribution spectra were 

compared in order to reveal the potential effects on different size ranges, as shown in Fig. 6 (left) 

for ZnO I (uncoated) as an example. The mode size was largely shifted to the smaller size range. 

The particle number fractions in the upper size range decreased, and those in the lower size range 

increased (shown by the zoom-in windows). Furthermore, the variation in the particle fraction in 

each size channel was reduced, as indicated by the shortened error bars. The only exception was 

hydrophobic SiO2 aerosol which did not experience any noticeable change in the mode size. For 

other materials with different surface coatings (results not shown), the same patterns of reduced 

mean particle size and enhanced stability were registered. However, the difference in effect 

between the three highest pressure levels were not obvious, despite using the ANOVA method to 

statistically evaluate the significance of those pressure changes on the size spectra. The results 

were positive for all the materials when comparing the reference and overpressure conditions. 

The effects of pressure over a wider range of sizes based on the data from the optical particle 

counter (OPC) were also compared. Generally, the particle number fraction in the lower end of 
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the size range increased as pressure increased. For aerosols with relatively larger particle sizes, 

such as hydrophilic SiO2, the OPC provided a good size resolution for presenting potential 

modifications.  

   

Fig. 6. Comparison of particle size distribution under different pressure conditions (from SMPS), 

left: 100-400 kPa, right: 100-200 kPa.  

In a similar study [86], the reduction in mean particle size was also observed when pressures up 

to 240 kPa are applied in the critical orifice. However, in their study, the aerosols had larger 

mean sizes both before and after testing, as well as broader spectra resulting from a different 

aerosolization process.  Another recent study investigated deagglomeration of micronized lactose 

particles by using nozzles with different diameters [101]. The greatest reduction in mean particle 

size was from 5.6 µm to 3.2 µm. In comparison, the present study worked with smaller particles 

under higher pressures. These conditions allowed the study of NP behavior in a lower size range 

and their airborne stability within extreme energy processes. 

 

As the different shear forces applied produced similar results, more closely defined pressure 

steps were tested in order to understand the point where effects started. The results for coated 

ZnO II are shown in Fig. 6 (right). It shows the same general pattern of size reduction as pressure 

rises. At 120 kPa, a well-distributed size spectrum with a narrow peak was already created, as the 

red curve shows. With continuously increasing pressures, the peak lowered and moved gradually 

to the left. The particle number fraction below 100 nm continued to grow during this process. 

Results suggested that the critical orifice can already start to affect certain materials at low-shear 
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force levels, indicating their loosely bonded agglomerate structure (see section on morphological 

characterization).  

 Influence of pressure modifications on particle number concentration  

The consequences of pressure increases on particle generation rates are shown in Fig. 7. This 

rate corresponds to the aerosol concentration divided by the total airflow. Particle generation is 

greatly enhanced under higher pressure conditions. The influences of pressure varied across 

different types of material. The two ZnO powders and the type II Ce(IV)O2 showed the most 

significant increases, with 70- to 80-fold increases under the three highest pressures. Type I SiO2 

showed only minor augmentation (about six-fold). The generation rates of the ZnO powders 

under the reference pressure were below 250 units on the graph. The increases in ZnO particle 

numbers corresponded well to the reductions in their mean particle size and fitted with the idea 

that the deagglomeration of larger particles might have been due to external forces. The result 

suggested that potential particle loss in the critical orifice is negligible for the tested powders. 

Chen et al. investigated the particle loss mechanism inside a critical orifice [102] and found that 

this process mainly occurred downstream of the orifice. They attributed this to large turbulence 

in the air stream in that region. However, in their study, the critical orifice exit led into another 

tube, while in our system the critical orifice led directly into the wide measurement chamber. 

Thus particle losses were minimized by the open space after the orifice.   

    

Fig. 7. Particle generation rates for different materials under increasing pressures, left: figure 

used in the published article, right: modified version not included in the publication. 

Influence of pressure modifications on particle number fractions in different size ranges  



 

36 
 

The influences of the pressure modifications on the particle number fractions of the different 

materials were also calculated (see Fig. 8) by grouping the particles into three size ranges: <100 

nm, 100–350 nm, and >350 nm. The 100 nm cut-off represents the diameter of nanoparticles in 

according to the definition of nanoparticles. The aerodynamic behavior of particles changes to 

being mostly influenced by either inertia or Brownian motion at a size of approximately 350 nm. 

Particle numbers in each of the three size ranges were summed and subsequently normalized to 

the total particle number. At elevated pressures, most of the materials showed increased particle 

number fractions in the <100 nm size range. The results seemed to be powder-dependent. The 

two ZnO powders showed a seven-fold change in their particle number fractions, from 2%, to 14% 

under the highest pressure. The two CeO2 powders showed a three- to five-fold increase. In 

contrast, SiO2 aerosols were not much affected. In the >350 nm size range, the particle number 

fractions were reduced under higher pressures. The values were three to five times lower for ZnO 

and CeO2, but for SiO2 particles only a slight reduction of number counts was seen. For the 100–

350 nm size range, most of the materials showed little change in the number fraction except for 

the type I hydrophilic SiO2, which saw an increase in numbers. These modifications in particle 

number fractions suggested that it was mostly the larger agglomerates which broke up into NPs.  
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Fig. 8. Comparison of pressure influences on particle number fractions for different materials 

(from SMPS, 10.8–1083.1 nm). 

Repeatability & Reproducibility 

Replicate tests were conducted under different shear force conditions for all the materials tested 

in order to examine the reproducibility of the results. For any single aerosolization, the absolute 

particle number concentration at steady state could vary by up to several-fold under the same 

experimental conditions. However, the relative number concentrations (normalized to total 

particle number) were highly reproducible. The size distribution spectra, measured in replicate 

tests, overlap tightly. The variations of the mean particle size were within 5% under different 

pressure conditions. The p values obtained in the statistical analysis (ANOVA for geometric 

mean sizes in replicate tests) were 0.522, 0.141, and 0.502 for SiO2 II under 100 kPa, CeO2 II 

under 300 kPa and ZnO I under 400 kPa, respectively. These results indicate that the variations 

in particle concentration in the different experiments did not significantly alter the particle size 

distribution.  

Morphology analysis 
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Figure 9. TEM images of airborne samples for different materials (condition: 100 kPa). Insert: 

10-fold magnification compared to main image. 

The airborne samples collected onto TEM-grids were assessed for primary particle shape and 

agglomerate structure. Figure 9 shows the different agglomerate morphologies of the materials 

tested. The two types of ZnO were composed of rod-like particles. The CeO2 II particles 

appeared as square blocks, whereas the CeO2 I and the two types of SiO2 particles had round 

shapes with smooth edges. The ZnO agglomerates showed porous, loose structures, whereas the 

other two materials showed denser agglomerations of primary particles. The comparison of TEM 

images confirmed that average agglomerate sizes were smaller at higher pressure conditions, as 

shown in Fig. 10. The denser structure of the hydrophobic SiO2 agglomerates shown on the TEM 

images may also explain why the mean particle size for this material remained relatively stable 

despite varied pressure conditions, whereas the porous ZnO agglomerates seemed to rapidly 

collapse under external forces, which is in agreement with observed reductions in particle size 

and increases in particle number. Further studies are needed to assess whether this was because 

of the primary particle shapes or other particle properties.  

 

Fig. 10. Comparison of airborne samples under different pressure conditions. 
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CONCLUSIONS  

In this article, we describe a robust system for the aersolization of nanomaterial powders and the 

subsequent characterization of their agglomerate sizes. We also assess how stable their 

agglomerates are by varying energy with pressure drops affecting the aerosols across a critical 

orifice. The system allows us to create aerosols that are very stable over time, which is important 

for the correct characterization of the aerosols created in this study, but which could also prove 

useful for other purposes where a well-controlled aerosol environment is needed, for example in 

toxicological studies. The comparison of the present study’s particle concentrations with 

published dustiness data for similar powders suggests that the system also has the potential to be 

used as a dustiness testing system requiring only small quantities of powder (200 mg/test in our 

setup). This could prove to be a useful alternative to the standard rotating drum method (CEN 

EN15051) and the continuous drop methods, which both require relatively large amounts of 

powder. Using our system, the pressure drop across the critical orifice, used to test the stability 

of the aerosol, can be finely controlled. The air in our system is accelerated to sonic speed—the 

highest possible speed in such a system. These high levels of shear force correspond to the range 

of energy input that might be expected in most industrial and laboratory processes. The 

reductions in particle size and the increased particle number counts under elevated pressure-drop 

conditions, suggest that some of the NP agglomerates break apart in the air. We propose the use 

of this system for the routine testing of nanomaterials in order to obtain a ranking of their 

deagglomeration potentials. This will be useful for exposure and risk assessments on nanosafety 

issues. Moreover, our system not only enables a study of the influence of environmental 

conditions, such as relative humidity, but also of particles with different surface functionalities.  

Acknowledgements: The authors are grateful for the financial support for this study from the EU 

FP7 project on Managing Risks of Nanomaterials  (grant agreement no: 263215). They also wish 

to thank the University of Lausanne for the use of its Electron Microscopy Facility for TEM 

characterizations.   

*Citations in this article are compiled in the complete reference list at the end of this report.  

 

 



 

40 
 

5. COMPARISON OF DIFFERENT AEROSOLIZATION METHODS  

Publication 2 

Dustiness and Deagglomeration Testing—Interlaboratory Comparison of 

Systems for Nanoparticle Powders 

Yaobo Ding
1
, Burkhard Stahlmecke

2
, Araceli Sánchez Jiménez

3
, Ilse L. Tuinman

4
, 

Heinz Kaminski
2
, Thomas A.J. Kuhlbusch

2
, Martie van Tongeren

3
, Michael 

Riediker
1,5

 

1 
Institute for Work and Health (IST), Universities of Lausanne and Geneva, Route 

de la Corniche 2, 

CH-1066 Epalinges, Switzerland 
2
 Institute of Energy and Environmental Technology (IUTA), Air Quality & 

Sustainable Nanotechnology Unit, Bliersheimer Straße 58-60, 47229, Duisburg, 

Germany 
3 
Centre for Human Exposure Science, Institute of Occupational Medicine (IOM), 

Research Avenue North, Edinburgh EH14 4AP, United Kingdom 
4 
TNO, Lange Kleiweg 137, Rijswijk, The Netherlands 

5 
IOM Singapore, 30 Raffles Place, 17-00 Chevron House, Singapore 048622, 

Singapore 

 

Corresponding author: Michael Riediker; Tel.: +41 21 314 74 53; Fax: +41 21 

314 74 30; E-mail address: Michael.Riediker@alumni.ethz.ch 

 

*Published in Aerosol Science and Technology, 49:12, 1222-1231. 

DOI:10.1080/02786826.2015.1114999  

 

 

 

 

 

https://www.researchgate.net/researcher/53689929_Araceli_Sanchez_Jimenez


 

41 
 

 ABSTRACT 

Different types of aerosolization and deagglomeration testing systems exist for studying the 

properties of nanomaterial powders and their aerosols. However, results are dependent on the 

specific methods used. In order to have well-characterized aerosols, we require a better 

understanding of how system parameters and testing conditions influence the properties of the 

aerosols generated. In the present study, four experimental setups delivering different 

aerosolization energies were used to test the resultant aerosols of two distinct nanomaterials 

(hydrophobic and hydrophilic TiO2). The reproducibility of results within each system was good. 

However, the number concentrations and size distributions of the aerosols created varied across 

the four systems; for number concentrations e.g. from 10
3
 to 10

6
 #/cm

3
. Moreover, distinct 

differences were also observed between the two materials with different surface coatings. The 

paper discusses how system characteristics and other pertinent conditions modify the test results. 

We propose using air velocity as a suitable proxy for estimating energy input levels in 

aerosolization systems. The information derived from this work will be especially useful for 

establishing standard operating procedures for testing nanopowders, as well as for estimating 

their release rates under different energy input conditions, which is relevant for occupational 

exposure.         

 

 

Keywords: aerosolization, dustiness, deagglomeration, nanoparticle, interlaboratory 
 

 

INTRODUCTION  

Engineered nanomaterials in powder form are widely used in modern technologies, such as in 

paint additives [103], catalysts [104], nanocomposites [105], functional ceramics [106], and 

superconducting materials [107]. Particles accidentally aerosolized during production, handling 

and storage of nanopowders in occupational settings may pose exposure risks to workers [38, 42, 

46, 108]. Nanoparticles have been shown to cause adverse health effects in human bodies via 

inhalation and subsequent translocation to secondary organs [17, 34]. Therefore, risks associated 

with exposure to engineered nanomaterials must be managed. A better understanding of how 

nanopowders behave during aerosolization is needed in order to establish proper safety control 

strategies in workplaces.   
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Dustiness, defined as the tendency of a powder material to generate airborne particles under an 

external energy input, has been tested by different systems to simulate powder handling 

processes in occupational settings. These experiments, which characterize airborne particle 

concentrations and size distributions, facilitate possible scenario predictions in exposure 

assessments. European Standard 15051, for measuring the dustiness of bulk materials, describes 

two reference testing procedures: the rotating drum method (EN 15051, part 2) and the 

continuous drop method (EN 15051, part 3) [109]. However, these systems required large 

amounts of test materials which are not suitable for nanomaterials due to their costs and potential 

risks. A downscaled, modified test system has been developed combining continuous drop and a 

significantly smaller rotating drum, and this permits the use of smaller quantities of test materials 

[68]. Systems based on a vortex shaker, also offering the possibility of testing smaller quantities, 

have recently been studied in view of their application for dustiness characterization [90]. 

Furthermore, Boundy et al. (2006) established an air jet dispersion method for testing the 

dustiness of pharmaceutical powders. The basic principle involves injecting powder through an 

orifice into a glass jar for subsequent characterization. It is noteworthy that these dustiness 

testing methods are different from deagglomeration tests, in that quantitative measurements of 

particle release are given (particle numbers or mass per unit nanopowder). Deagglomeration tests 

investigate the stability of nanoparticle agglomerates using different types of aerosolization and 

post-treatments on aerosolized particles subject to a range of energy levels. These tests provide 

qualitative results, but not quantitative ones, on how different forces trigger deagglomeration. 

Critical orifices have been used in these processes as means of applying high levels of shear 

forces [65, 67, 101].  

 

Whether tests based on different aerosolization processes deliver comparable results is, however, 

unknown. Indeed, measurements are influenced by the diverse parameters used in each 

aerosolization system. These include the system’s intrinsic properties (e.g., associated energy 

levels; how that energy is applied, via shear force, impaction aerosolization, or dilution flow 

rates; compartment dimensions), environmental conditions (e.g. relative humidity), material 

characteristics (e.g., quantities tested and dustiness), and types of sampling device. Stronger 

deagglomeration processes may create airborne particles with a smaller mean size whereas less 

vigorous treatments may release larger particle agglomerates. Higher flow rates can dilute 
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aerosols into lower concentrations. Raw material moisture content affects cohesive forces 

binding primary particles in powder agglomerates, and the dust generation rate is inversely 

proportional to this factor [110]. Furthermore, measurement devices which may themselves 

encourage deagglomeration during measurements (such as the Electrical Low Pressure Impactor) 

should be used with caution. Table S1 (Supporting Information, SI) lists examples of the TiO2 

nanopowder aerosol properties measured using different systems. Aerosol concentrations ranged 

from 100 #/cm
3
 using a standard rotating drum method, to 10

6
 #/cm

3
 using the vortex shaker 

method. The mode size of generated aerosols also differed from several hundred nanometers to a 

few microns.  

 

The characterization of airborne nanoparticles generated from powders in occupational exposure 

assessment should, therefore, take into account the specific testing procedures. How different 

process characteristics influence measurements must be better understood. In the above 

aerosolization and deagglomeration methods, there was no common means of estimating 

associated energy levels. It is difficult to directly compare real-life exposure scenarios with the 

testing methods established to date, just as it is to predict aerosol properties resulting from a 

specific process and the subsequent exposure mechanism. A common method for comparing 

energy ranges across different systems is needed. 

 

In the present study, four aerosolization and deagglomeration systems were used to test 

hydrophobic and hydrophilic TiO2 nanopowders. These systems provide relatively low 

(compared to treatments using critical orifices) but easily distinguishable energy input levels. We 

explored how system characteristics and test conditions modified aerosol characteristics such as 

concentration and size distribution. We also assessed if air velocity may be useful for estimating 

energy inputs in aerosolization systems. For this, a basic comparison of the systems presented 

was needed to facilitate ranking them for deagglomeration based on their methods. While some 

of the methods allow testing the stability of airborne agglomerates, in this paper we only 

assessed the deagglomeration occurring during the aerosolization of the powder particles.    

 

MATERIALS AND TEST SETUPS  

Materials  
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Two nanomaterials in powder form were tested: hydrophobic titanium dioxide (NM103) and 

hydrophilic titanium dioxide (NM104) from the repository at the European Commission Joint 

Research Center (JRC–IHCP in Ispra). They had been stored in vials of 500 mg or 100 g 

(depending on the test setup) in an inert atmosphere. Table 1 summarizes the main material 

characteristics [111]. The selection of these two materials as test powders was based on the 

rationale that the different surface coatings allow studying their effects on powder aerosolization 

and deagglomeration processes. The profiles of generated aerosols (size and concentration) are 

expected to differ due to distinct agglomeration levels caused by varied surface properties. 

Moreover, titanium dioxides are widely used in industrial sectors and have raised a high concern 

for human hazard risks [112].          

    

Table 1. Physical and chemical properties of the tested materials 

Name Titanium dioxide (NM103) Titanium dioxide (NM104) 

Composition 89% TiO2, 6.2% Al2O3 89.8% TiO2, 6.2% Al2O3 

Primary particle size (XRD), nm 20 20 

Surface modification Hydrophobic (PHO) Hydrophilic (PHI) 

Specific area, m
2
/g 60 60 

Crystal structure rutile rutile 

Moisture content* 1.61% 2.02% 

*Information from the manufacturer.    

 

Test setups 

Four different systems were used, featuring different types of aerosolization processes using a 

variety of energy inputs, and allowing a comparison of aerosol characteristics (particle number 

and size distribution) under different experimental conditions. Each system was developed or 

installed by one of the four partners and tested for the comparison study, using the above-

described materials. Figure 11 shows schematic diagrams of the four measurement setups.  
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a)                   b) 

           

c)                                                 d) 

                     

Figure 11. Aerosolization systems tested: a) fluidization funnel; b) magnetic stirrer; c) air jet 

aerosolizer; and d) continuous drop. 

2.2.1     System Ι—Fluidization Funnel 

A system based on fluidization was developed for continuous aerosolization of dry powders in 

small quantities (Figure 11a) [65]. Aerosolization is achieved inside a pressure-resistant glass 

funnel. Filtered dry air is blown in from the bottom opening, activating the powder body. The 

aerosol created is diluted by another flow in a mixing chamber. Conditioned air with a different 

relative humidity can be introduced at this point to study its influence. A relative humidity (RH) 

range from 2% to 90% can be controlled. Subsequently, the aerosol is transported into a large 

drum (12 L) from which online measurements and sample collection take place. A critical orifice 

can be installed in the chamber to study the stability of aerosol agglomerates but was not used in 

this study. Details of the sampling equipment are given in Table S2 (SI). To avoid particle losses, 

anti-static conductive tubes are used for particle transport between compartments. The 

measurement chamber is electrically grounded.       
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The system was initially flushed with filtered dry air to create a clean background (< 10 #/cm
3
). 

Powder quantities for each test were 250 ± 10 mg. The aerosolization flow was set at 0.3–0.5 

L/min to maintain constant particle generation. The critical orifice was not installed for this study, 

and aerosol particles passed through a normal tube outlet into the measurement chamber. Particle 

concentration usually became stable after 20 min of aerosolization. Measurements continued for 

at least 30 min after this period. Relative humidity (RH) inside the system was 2 ± 0.2%, and the 

temperature was 20°C. Two replicate tests were performed for each type of material. 

 

2.2.2  System II—Magnetic Stirrer  

A test rig using a magnetic stirrer in a pressurized beaker to activate powder materials is shown 

in Figure 11b [67]. A dry powder is aerosolized under constant carrier flow, and the aerosol 

generated is introduced into a mixing chamber for conditioning their RH (up to 90% RH possible, 

validated up to 70% RH). After conditioning, the aerosol passes a pre-separator (cyclone) to 

remove agglomerates above approximately 1.5 µm (cut-off diameter). Finally, the aerosol is 

introduced into a homogenization chamber (volume 10 L) either via normal tubing (zero 

overpressure) or via an orifice under various differential pressure conditions. The critical orifice 

was not installed in this study, which simulated the basic case of aerosolization for this setup. 

Anti-static conductive materials and tubes are used in the system to minimize particle losses. 

Airborne particles are characterized using online instrumentation sampling from the 

homogenization chamber (see Table S2, SI). Furthermore, they could be sampled on suitable 

substrates by using an electrostatic precipitator for subsequent SEM analysis.  

 

The powder volume tested in each experiment was 20 cm
3
. The background particle 

concentration inside the test system was recorded with a few measurement scans before the 

experiment. The magnetic stirrer’s rotation speed (1000-1250 rpm, stirrer length: 30 mm) inside 

the beaker (250 mL high pressure glass bottle, Schott Duran glass bottle after DIN EN 1595) was 

controlled to produce constant powder agitation. Depending on the powder used, steel balls were 

occasionally used to assist the aerosolization process. The volume flow into the beaker was 0.5–

1.0 L/min. The total flow volume needed by the measurement devices was about 10 L/min, thus 

an additional air flow was passed into the homogenization chamber to provide sufficient 

sampling flow. Sensors for temperature, humidity, and pressure were used to monitor 
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experimental conditions. RH was below 2% in the tests. Measurements took approximately 30–

45 min depending on the powder type. Two replicate tests were conducted for each type of 

material. 

 

2.2.3 System III—Air Jet 

The third system consisted of a commercial aerosolizer (Aero PA100, Model NA002, Particle 

Measuring Systems, United States) (Figure 11c). It generates aerosols from powder materials by 

applying high velocity air jets to the powder surface. A pressurized source of clean, dry air is 

connected and regulated at the input. The flow rate is controlled and monitored by two parallel 

flow meters. After passing through a HEPA filter, the air is driven through a nozzle with three 

small holes to create high velocity jets for aerosolization. Aerosol generation strongly depends 

on the flow rate and how close the jet nozzle is to the powder surface. The aerosol passes 

through a gravitational separator (10 L), where large particle agglomerates are separated from the 

aerosol as a function of particle diameter and density. The aerosol is finally characterized by 

sampling from a measuring chamber. Details of characterization equipment are given in Table 

S2 (SI). 

 

In this experiment, the aerosolization process used a 5 cm nozzle-to-powder distance. The 

aerosolizer was set at a constant 5 L/min flow rate and was applied for 700 seconds. Note that 

although the airflow was continuous, aerosol concentrations transported into the measuring 

chamber were not. Aerosol concentrations first increased, reached a maximum level, and 

subsequently dropped back to zero as the powder was consumed. Each experiment used 500 mg 

of powder. The measuring chamber was ventilated after each run until the particle concentration 

was below 10 #/cm
3
 as measured using a CPC. During all runs, RH in the measuring chamber 

was 26 ± 2% and the temperature was 17 ± 1°C. Two replicate tests were carried out for each 

type of material.  

 

2.2.4 System IV—Continuous Drop 

The continuous drop method, often used as a reference tool for testing the dustiness of dry 

powders, was also used in this study [92]. The aerosolization process is shown in Figure 11d. 
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The powder to be tested is placed in a screw feeder that drops the powder into the drop chamber 

at a constant feed rate. The dropping powder meets an upward air flow of 53 L/min (0.05 m/s) 

introduced from the cylinder chamber floor, creating turbulence in the particle surroundings. The 

aerosol generated is sampled above the drop tube. Relative humidity and temperature are 

adjusted by introducing conditioned air into the system.  

 

The feed rate (2.8 g/min) was adjusted and measured before each experiment. The cyclone and 

drop cylinder were flushed by running clean air through them at 20°C and at 50% RH for 10 

min. Next, the feeder was run continuously for 1 min, before measurements started which lasted 

5 min. Details of characterization equipment are given in Table S2 (SI). Two replicate tests were 

carried out for each type of material.  

 

Characterization Methods 

Scanning mobility particle sizer (SMPS), optical particle counter (OPC) and aerodynamic 

particle sizer (APS) were used to measure particle number concentration and size distribution. 

The instruments used in the different setups are summarized in Table S2 (SI). An inter-

comparison of the SMPS settings used in the test methods is given by Table S3 (SI). It is 

noteworthy that the equivalent diameters determined by these different devices are not the same, 

due to different measurement techniques used. This should be considered when constructing and 

interpreting the size distributions. The SMPS determines the electrical mobility of airborne 

particles. The OPC characterizes particle diameter by their optical properties and the light 

scattering principle. The APS classifies the particles according to the aerodynamic diameter.  

 

Estimation of Energy Input 

Although the four measurement systems shared certain similarities, they differed in several 

aspects, shown in Table 2. For example, aerosolization energies differed significantly between 

systems. As an indirect parameter of energy, the relative velocity between the aerosolization air 

flow and the powder particles was used to compare the different systems’ energy levels. The 

funnel setup used 0.3–0.5 L/min air flow to aerosolize the powder, creating an air velocity of 

1.32–2.20 m/s at the funnel’s bottom hole (2.5 mm in diameter). The rotating magnetic stirrer (a 

solid stick 3 cm long) in the pressurized beaker had a maximum linear velocity of 1.57–1.96 m/s 
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at both ends (assumed to be the aerosolization air flow speed), as calculated based on a speed of 

1,000–1,250 rpm. In the air jet system, the powder was kept 5 cm from the air nozzle delivering 

a 5 L/min flow rate. The air speed measured at 5 cm away from the nozzle (simulating the 

scenario when the flow reaches the powder surface) was 14 m/s. In the continuous drop method, 

particle settling velocity was calculated as the relative speed to air. For particles with a diameter 

of 10 μm, the Stokes’s law applies for determining particle settling velocities [58]. For particles 

with a diameter of 100 μm, with a Reynolds number larger than 1.0, a modified equation is used 

to calculate the settling velocity [58]. Settling velocities were 0.003 m/s and 0.88 m/s for 10 μm 

and 100 μm particles, respectively. Particles smaller than 10 μm have even slower settling 

speeds. 

 

Based on these calculations, Table 2 provides a rough (low, medium, or high) ranking of the 

energy input levels in the aerosolization methods used. Other system characteristics that could 

potentially alter the properties of generated aerosols are also listed.   

Table 2. General comparison of test setups 

System 
Material 

quantity 

Flow rate, 

L/min 

Relative 

humidity 

Aerosolization 

mechanism 

Relative velocity 

(energy level), m/s 

Funnel 250 ± 10 mg 1.5–2 2±0.2% Blowing 1.32–2.20 (medium) 

Stirrer 
20 cm

3 
 

(5–8 g)
 2 < 2% 

Mechanical 

stirring 

0–1.96  

(low-medium) 

Air jet 500 ± 10 mg 5 26 ± 2% Blowing 14 (high) 

Drop 2.8 g/min 53 50% Air friction 0.003–0.88 (low) 

*Energy level can be varied within systems, but only the lowest possible values were used in 

this work.  

 

2.4  Data analysis 

Number concentrations in the size range below 1 µm, as well as the mode diameters in the 

aerosols generated, were compared across the different systems. Broader size distribution 

spectrums were plotted by combining SMPS and OPC (or APS) data (effective density used: air 

jet and drop systems, 1 g/cm3. refractive index used: Funnel, 1.59; Stirrer, 2.56). The data units 

from the optical particle counters were converted into dN/dlogDp [#/cm3], in order to compare 
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size channels with the different widths used in the other devices. Particle size distributions from 

replicate tests were compared to estimate each system’s robustness. Spectrums were normalized 

to the total particle number in the size range considered (dependent on the specific system). This 

allowed a better comparison of the size distributions in different concentrations. The mode 

size(s) of aerosols is also plotted against the velocity of the aerosolization flows in the different 

systems, facilitating the analysis of this parameter’s potential influence on aerosol properties. 

The size distributions of aerosols with different surface coatings are also plotted.  

 

RESULTS AND DISCUSSION 

Particle Number Concentration and Mode Diameter 

       

Figure 2. Comparison of total particle number (34-965 nm) and mode diameter 

A comparison of number concentrations in the aerosols generated from the different systems is 

shown in Figure 2 (left). The SMPS and APS/OPC data were used, and total particle numbers 

were compared for a common same size covered by all the systems. Particle numbers varied 

across a large range, from about 200 #/cm
3 

to 100,000 #/cm
3
. The funnel and drop setups 

produced lower concentrations in the aerosols of both materials compared to the other two 

methods. Hydrophobic powder aerosols showed higher particle concentrations than hydrophilic 

powder aerosols in three methods, but not with the air jet system—it produced higher numbers of 

hydrophilic particles. In all four systems, the differences in particle numbers for the different 

materials were about one order of magnitude.  
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The mode diameter of the aerosols generated is also shown in Figure 2 (right). The results varied 

greatly: from about 100 nm to above 1 µm. The largest mode diameters resulted from the 

continuous drop method; the smallest mode diameter came from the air jet setup. The 

hydrophilic particles usually had a larger mode size than the hydrophobic particles, however the 

diameters for the two materials were similar in the air jet system. It is noteworthy that a second 

mode was observed in the size distribution of the hydrophobic aerosol generated in the drop 

method. This is discussed in the following sections.  

 

Particle number concentrations in experimentally-generated aerosols have a close relationship to 

the system characteristics and testing conditions. The amount of raw materials used indicates 

how many particles are available to be aerosolized. Energy input may affect the level of 

deagglomeration of the powder particles. High energy processes are more likely to thoroughly 

break-up the powder agglomerates, thus generating aerosols with a high particle number 

concentration. Furthermore, the volume flow rate also modifies particle number. For the same 

amount of available particles, a higher flow rate dilutes the aerosol into a lower number per unit 

volume. In order to study deagglomeration processes, it would be key to maintain the airborne 

particle concentration within a range that is above the detection limit of the measurement 

instruments, but also not sufficiently high as to promote immediate secondary effects (e.g., re-

agglomeration in the airborne state). The systems used in this study worked in suitable 

concentration ranges, which allowed a comparison of the deagglomeration effects in the different 

setups.       

 

The system parameters and testing conditions varied between the experiments. The associated 

energy levels were highest for the air jet system, as calculated in the method section, and this 

might be responsible for the high particle generation of the hydrophilic powder, in spite of low 

material consumption (500 mg). On the other hand, for the drop method, although the quantity of 

material used was high (~2.8 g), the particle number was low due to the relatively small energy 

input for aerosolization. In comparison, the stirrer system seemed to somehow balance these 

factors. The funnel setup, with low material use (250 mg) and a moderate aerosolization energy, 

worked in low concentration ranges under the given aerosolization flows. Similarly, the vortex 

shaker method has generated concentrations in 300–2,000 #/cm
3
 range using only 0.25–1 cm

3
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TiO2 powders [100]. The air flow rate was 5–20 times higher in the drop system than in the other 

systems. This may have contributed to the low number concentration observed. In general, the 

high particle concentrations obtained in our experiments were comparable to those for ultrafine 

TiO2 in the combined single drop-rotating drum method (up to 10
6
 #/cm

3
) [68].  

 

Aerosolization time is another factor influencing particle number concentration. This is 

especially true for systems showing decreasing particle generation over time [99]. In the air jet 

experiments, particle concentrations reached maximum values after a few minutes of 

aerosolization. Particle numbers then gradually decreased to background levels. Similar patterns 

have been observed: brief initial bursts, decaying rates during rotation, and then constant rates 

[68]. The difference in the air jet method was that material quantities used were small, thus 

powder was rapidly consumed, and then concentrations dropped to a very low level. In 

comparison, the funnel system was shown to be able to maintain stable concentrations over 

longer time periods (>30 min) [65]. This was also the case for the stirrer system in the present 

work.  

 

Effect of Air Velocity on Aerosol Diameter  

The energy inputs during different aerosolization processes were ranked based on the relative 

velocity of activation air flow as described above. A comparison of the air velocity-aerosol size 

relationship is given in Figure 3. The both mode sizes measured by the SMPS in the drop system 

are included. Particle diameters were shown to be inversely proportional to the velocity of 

aerosolization flows. Higher air speeds generated smaller mode sizes. Particle sizes decreased 

rapidly in the velocity range up to 1 m/s, but size reduction slowed down at higher speeds. 

Similar patterns were seen for both materials. The hydrophilic particles experienced larger 

decreases in mode size as air speed increased than did the hydrophobic particles.     



 

53 
 

      

Figure 3. Influence of aerosolization flow velocity on mode diameter of generated aerosols 

(fitted curves are added to show the general patterns; white dot on left graph represents 

secondary mode diameter for the drop method)  

The mode diameter of aerosol particles was earlier reported to be associated with the energy 

level during powder aerosolization: the size of airborne particle agglomerates was smaller under 

higher shear forces [65, 67]. This was explained by drag from the air current, which acted as a 

major deagglomerating force in these processes. The drag force is proportional to the velocity 

and diameter of the particle [58]:   

   
     

 
            

where: η, air viscosity; v, particle velocity relative to air;  , dynamic shape factor; C, slip 

correction factor. 

The shape factor is constant for a given particle, and it was set equal to 1 for simplicity matters. 

The Cunningham slip effect becomes significant when particle size is below 10 µm. Drag forces 

differ for particle agglomerates with different diameters. The values calculated against particle 

size at the average velocities in the systems tested are shown in Figure 4. For 1 µm particles, 

forces ranged from 0.06–2.05 nN.    
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Figure 4. Drag force–particle size relationship for the various relative velocities in the tests  

The dominant mechanism by which uncharged particles form agglomerates when stored as 

powders is direct contact [113], bonding individual particles by van der Waals (VDW) force. 

This interparticular force can be calculated as below [55] 

     
 

  
                

  

  
           

 

  
        (2) 

where: A, Hamaker constant; D1, diameter of the smaller particle; D2, diameter of the larger 

particle; r, distance between the two particles. 

For two spherical particles of the same diameter (y=1), when x << 1, then approximately 

       
 

  

 

  
            

The contact distances of two primary particles can be viewed as the material’s VDW radius. At 

this distance, separation between the particles reaches an equilibrium where the interfacial 

potential is minimal [114]. For titanium, the value is 0.215 nm [115]. The diameter of primary 

particles in our tests was 20 nm (D1 = D2). The Hamaker constant A for TiO2–TiO2 (rutile) 

interaction in the air is 15.3×10
-20

 J [116]. The result of VDW force interaction was  

 FVDW = 2.64 nN           for r = 0.215 nm, D = 20 nm 

In comparison, the drag forces created in our different test setups were in the range of 2×10
-3

 ~ 2 

nN for particle diameters of 0.1–1 µm (Figure 4). Although the drag comprises small forces, up 

to three orders of magnitude lower than the calculated VDW force, it can still affect the 

deagglomeration process. In a study using numerical simulation to investigate the dispersion of 

TiO2 nanoparticle aggregates under shear flow, it was found that the aggregates started to 

deagglomerate when the ratio of fluid force to the interparticle force was over 0.001[117]. Thus, 

the shear force ingredients created in our experiments may be responsible for the different mode 
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diameters of the aerosols generated. Higher air velocities induce stronger drag on the particle 

agglomerates, which leads to higher deagglomeration efficiencies by overcoming interparticular 

binding forces. As a follow-up, we have carried out further work on quantifying the effects of air 

speed by incorporating critical orifices in two of the systems, which expands on the present study 

into a consideration of a much broader energy range.  

 

Particle Size Distribution       

 
Figure 5. Comparison of full particle number size distributions for the different systems 

Particle number size distributions from the aerosols of different systems, including SMPS and 

OPC (or APS) data, are compared in Figure 5. The peaks in the size distributions were located in 

different size ranges. However, the deviations seemed to be smaller for the hydrophobic aerosols 

than for their hydrophilic counterparts. Comparing the two powders by system, higher peaks 

were generally shown for the hydrophobic particles than for the hydrophilic particles, except for 

the air jet system. The peaks created using the air jet and the funnel methods were sharper; they 

were relatively broader for the other two systems. Two particle size modes were observed for the 

hydrophobic aerosol in the continuous drop system (Figure 5 left): one above 1 µm and another 

around 300 nm (measured by SMPS). Small variations were noted when combining data points 

obtained using different measurement equipments. However, this was only to be expected 

because of their different operating principles.  

 

The varied shapes of the size distribution spectrums can be attributed to the different 

deagglomeration levels in the test setups. At low energy input, powder particles were partially 

deagglomerated, generating aerosols with a large mode size. Using large amounts of materials 
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may alter local interactions between the air flow and the powder particles, which may lead to the 

reduced dispersibility of the powder agglomerates. How agglomerate size in powder fluidizations 

depends on parameters including gas velocity and energy input has been described previously 

[118, 119]. In contrast, higher drag forces created in the air jet system broke agglomerates down 

to the sizes for which associated drags become comparable to the interparticle binding force (as 

discussed in previous sections). Furthermore, the funnel setup—which resembles a fluidized 

bed—features another deagglomeration mechanism: collisions between flowing particles [113, 

120]. These conditions promoted sharper peaks in the size distribution of the aerosols generated.       

The two modes in the particle size spectrum observed in the drop system may be due to the low 

energy input. Indeed, a particle size distribution in powders is usually bimodal [121, 122]. 

Primary particles form submicron and micro-sized agglomerates. Small particles are readily 

aerosolized, but big particles need more energy to be deagglomerated. The mode size measured 

in the 200–300 nm range may be directly due to small, easily aerosolized particles, whereas the 

mode in the 1–2 μm range was the result of particles broken down from larger powder 

agglomerates under low shear forces. Other investigators of TiO2 have observed similar bimodal 

behavior in submicron and micron ranges when using rotating drum methods, as shown in Table 

S1 (SI). Energy input into those systems was considered low, since the rotation speeds used were 

4 rpm [98] and 11 rpm [68]. This process shares some similarities with the drop method, as 

amounts of powder are raised to a certain height and fall back down. Moreover, Dahmann and 

Monz (2011) showed that nanopowders tested in their continuous drop experiments typically had 

bimodal distributions. In comparison, monodispersed size distributions have been more common 

in high energy processes, such as vortex shaker systems [90, 100].  

 

Reproducibility  

The results obtained in replicate tests from different systems are summarized in Table S4 (SI). 

Variations in absolute number concentrations were generally small, but some cases with several-

fold differences were also observed. Overall the results were still within the same order of 

magnitude. Total particle number concentrations were calculated for the size range below 1 μm, 

with the exception of the drop method, which had larger mode sizes for its aerosolized particles. 

The mode diameters from replicate tests were very similar (SD < 8.3%). Figure S1 (SI) 

compares the size distribution spectrums, at relative scales, for hydrophilic TiO2. The particle 
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fractions in certain size ranges varied slightly. A relatively larger difference in peak heights was 

seen using the drop method. In general, the reproducibility of the aerosols generated by the four 

systems was good, facilitating a robust comparison of the different methods.  

 

Effects of Material Surface Coatings  

Relative particle number distributions were compared for the two materials with different surface 

coatings (Figure S2, SI). In general, the mode diameters were larger for the hydrophilic TiO2 

than for hydrophobic. The differences between the two materials were more significant in the 

stirrer (RH ~2%) and the drop systems (RH ~50%) than that in the air jet (RH ~26%) and the 

funnel systems (RH ~2%), even though the RH in the stirrer system was very low. This can 

possibly be explained by the shear forces during aerosolization. The differences were small for 

the two systems with the highest air velocities and significant for the two systems with the lowest 

velocities. In the drop system, a bi-modal size spectrum was observed for the hydrophobic TiO2, 

which exhibited a high particle fraction in 200–300 nm range.   

 

Particles with hydrophilic surfaces absorb water more easily than particles with hydrophobic 

coatings. Both environmental humidity and the raw powder’s moisture content can contribute to 

the formation of water menisci between individual particles. In mid-range RH (40%–70%), it has 

been shown that the pull-off force (maximum attractive force between particles) on a hydrophilic 

surface increased with the increasing humidity [123]. On mica surfaces, this force was several 

times larger in the capillary regime than in the pure VDW regime. This might explain the 

differences in mode sizes and number concentrations between our two aerosols, both in the drop 

system with 50% RH, and in the dry stirrer and funnel systems. However, with higher energy 

inputs, the difference in particle size was smaller, as seen in the air jet system. The drag force 

level created using this method may overcome the additional capillary adhesion from the water 

layer, thus triggering deagglomeration. In this case, the effect of a hydrophilic surface is 

compromised by a sufficiently high shear force.  

 

CONCLUSIONS  

The present study tested TiO2 nanomaterial powders with different surface coatings (one 

hydrophilic and one hydrophobic) using four different aerosolization and deagglomeration 
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systems. These generated stable aerosols for measurement, and the results obtained in each 

system showed good reproducibility. However, significant variations in aerosol properties, such 

as number concentration and size distribution, were observed in the different setups. The 

hydrophilic aerosol of TiO2 tended to have a larger particle size than its hydrophobic counterpart. 

However, processes associated with high energy input levels seem to reduce the influence of 

surface properties on particle size distributions. Finally, the particle size was shown to be 

inversely related to the velocity of the aerosolization air flows. 

 

The test setups used very different air flow rates, raw material quantities, aerosolization 

mechanisms, and associated energy levels. The varied results from the same materials indicate 

that the characterization of nanoparticle release should take into account specific testing 

protocols. The data obtained from each of the different systems offers suggestions as to which 

scenarios they could model most appropriately and how SOPs should be adapted with regard to 

specific tests. For example, the drop method could be used to determine a material’s propensity 

to be aerosolized (dustiness) in low energy processes, thanks to its ability to measure the mass 

fraction of samples that become airborne. In contrast, the three other methods are more useful 

and valuable for the study of agglomerate stability in high energy processes. They are also useful 

for the determination of particle size distributions in powder characterizations.  

 

The relative velocity of aerosolization air flow was used for a rough comparison of system 

energies to study if aerosol properties are affected by this parameter. More precise estimations of 

energy input level would take into account specific aerosolization method (the way external 

energies are applied). This aspect can be further explored in future experiments. In the present 

work, the significant influence of air velocity on aerosol particle diameter indicates that this 

parameter might be a good indicator for the energy levels associated with a variety of industrial 

processes. It is especially applicable to the handling of nanomaterial powders in occupational 

settings, where air velocities can be easily assessed from workers’ operational activities and 

behaviors. For example, air speeds when handling powders in a laboratory can be estimated from 

fume hood flow patterns and other process parameters such as transfer distances, pouring heights, 

or mixing rates. The “micro-environment” surrounding powder particles during filling and 

packaging at manufacturing sites involves air current movements, assessed using local conditions 
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(e.g., ventilation or wind speed) and workers’ operational procedures. The values calculated can 

then be compared with those from laboratory testing methods, in order to predict aerosol 

properties that might result from such scenarios. This is especially useful when field 

measurement data are lacking, but the risk level is considered high and in need of assessment. As 

a further step, this metric could be used to rank the potential for nanoparticle release in different 

industrial activities and processes.    
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Supplemental Information (SI) 

Table S2. Summary of particle numbers and mode size of TiO2 aerosols generated using 

different systems 

Method Particle number, #/cm
3
 Mode size 

Rotating drum* 100–250 356–391 and 835–898 

nm 

Single-drop/rotating drum** 10
3
–10

6
 200nm, 1–2 µm 

Vortex shaker*** 300–2,000 >100 nm 

*[98]. **[68]. ***[100]. 

 

Table S2. List of devices used for aerosol characterizations 

System Equipment Manufacturer/Type Size range 

Funnel Scanning mobility particle sizer (SMPS) GRIMM, 5.403 11.1–1083.3 nm 

Optical particle counter (OPC) GRIMM 0.25–32 μm 

Stirrer Scanning mobility particle sizer (SMPS) TSI, Model 3936 34–1000 nm 

WELAS (OPC) Palas, Model 2100 0.4–9.3 µm 

Air jet Scanning mobility particle sizer (SMPS) NANEUM, NP S500 5.15–971.0 nm 

Aerodynamic particle sizer (APS) TSI, Model 3321 0.523–20.5 µm 

Drop Scanning mobility particle sizer (SMPS) TSI, Model 3936 20.5–523.3 nm 

Aerodynamic particle sizer (APS) TSI, Model 3321 0.523–20.5 µm 

 

 

Table S3. Inter-comparison of the SMPS settings used in the test systems 

 
Sampling/sheath 

flow rate, lpm 

Time per 

scan 
Impactor 

Charge 

correction 

Diffusion 

loss 

correction 

Funnel 0.3/3.0 ≈ 3 min 

Yes 

(d50=1082 

nm) 

Standard 

multiple charge 

correction 

Yes 

Stirrer 0.3/2.0 150 s No 
Manual multiple 

charge correction 
Yes 

Air jet 0.2/3.5 

120 s (60 s 

clearance 

time) 

No 

Not required 

(unipolar corona 

charger) 

No 

Drop 1.0/3.0 120 s Yes No No 
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Table S4. Particle number concentrations and mean diameters in replicate tests 

Materi

al 

Hydrophobic TiO2 Hydrophilic TiO2  

System 
Number, 

#/cm
3
 

Mode size, 

nm 

Number, 

#/cm
3
 

Mode size, 

nm 
    Size range 

Funnel 1,747 191.1 612 271.8 11.1–1,083.3 nm 

5,926 191.1 599 271.8 

Stirrer 891,782 209.1 81,840 710.5 34.0–1000.0 nm 

1,080,532 216.7 67,968  710.5 

Air jet 6,819 103.7 108,976 110.0 5.15–971.0 nm 

7,775 92.2 234,735 110.0 

Drop 4,500 835.0 (241.4) 1,351 1,486.0 0.0205–20.5 µm 

4,841 835.0 (299.6) 869 1,596.0 

 

 

Figure S1. Reproducibility of particle size distribution in replicate tests on hydrophilic TiO2 
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Figure S2. Comparison of size distribution for hydrophobic and hydrophilic TiO2 aerosols  

               

                

 

 

 

*Citations in this article are compiled in the complete reference list at the end of this report. 



 

63 
 

6. DEAGGLOMERATION TESTING OF AIRBORNE NANOPARTICLES  

Publication 3 

Deagglomeration testing of airborne nanoparticle agglomerates – stability analysis 

under varied aerodynamic shear and relative humidity conditions 

Yaobo Ding
 1
, Burkhard Stahlmecke

2
, Heinz Kaminski

2
, Yunhong Jiang 

3
, Thomas A.J. Kuhlbusch

2
, 

Michael Riediker
1,4

 

 
1
Institute for Work and Health (IST), Universities of Lausanne and Geneva, Route de la Corniche 2,  

CH-1066 Epalinges, Switzerland  
2 Institut für Energie- und Umwelttechnik (IUTA), Bliersheimer Straße 58-60, 47229, Duisburg, Germany 
3
 Institute of Particle Science and Engineering, University of Leeds, LS2 9JT Leeds, UK 

4 
SAFENANO, IOM Singapore, 30 Raffles Place, #17-00 Chevron House, Singapore, 048622, Singapore  

 

 

Corresponding author: Michael Riediker; Tel.: +41 21 314 74 53; Fax: +41 21 314 74 30; E-mail 

address: Michael.Riediker@alumni.ethz.ch 

Abstract 

Occupational exposure to nanomaterial aerosols poses potential health risks to workers at 

nanotechnology workplaces. Understanding the mechanical stability of airborne nanoparticles 

under varied environmental conditions is important for estimating aerosol size distribution which 

influences their distribution in the air and also their effects on the human body. In this study, two 

aerosolization and deagglomeration systems were used to investigate the deagglomeration 

potentials of nanopowder aerosols with different surface hydrophilicity under a broad range of 

relative humidity. Critical orifices were employed to apply shear forces induced by pressure drop 

onto airborne agglomerates. The applied pressure drops were associated with decreased mean 

particle size and increased particle numbers. Augmenting humidity increased particle size and 

reduced number concentration. Hydrophilic aerosols were more sensitive to the humidity 

changes than their hydrophobic counterparts, However, the testing systems also had an influence 

on the observations. The results suggest that the applied energies were able to overcome inter-

particle binding force and trigger deagglomeration processes. The humid environment, on the 

other hand, facilitated agglomeration behaviors and reduced deagglomeration. It suggests that 

describing humidity of workplace air may be relevant when assessing human exposure to 

nanomaterial aerosols.   
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Introduction  

Engineered nanomaterials (ENMs) are widely used in various industrial sectors [8]. However, 

human exposure to aerosols of ENM powders have been shown at nanotechnology workplaces, 

in a variety of laboratory activities as well as industrial processes, such as synthesis, handling 

and cleaning [124, 125]. Distinct properties of released airborne ENMs (e.g., number 

concentration and size distribution) were identified in these scenarios; this may be associated 

with process characteristics such as energy input level. Different profiles of aerosol particles 

modify their transport and exposure routes, such as deposition in lungs [25]. Once inhaled, 

ENMs can pose various advert effects in human bodies, such as inflammation [16], generation of 

oxidative stress [126], DNA damage [127], and translocation to secondary organs (thus 

potentially alter their functionalities) [32, 35]. The biological effects of ENM aerosols are closely 

related to their physicochemical characteristics such as particle number, size and surface area and 

functionality [19, 128, 129]. Therefore, health risks of airborne ENMs exist, and it is important 

to understand their properties when released into the environment in order to assess the risk level 

associated as well as for developing efficient methods for release and exposure preventions.         

Understanding the mechanical stability of airborne particle agglomerates is very important for 

correctly estimating their size profiles. Aerosol particles often exist as agglomerates held 

together by different types of inter-particle forces [56]. It is probable that agglomerated particles 

break up into smaller agglomerates or even primary particles, when  subject to larger dispersion 

forces during release, transport or along the exposure routes, and during inhalation through the 

mouth and the throat [63, 64]. Deagglomeration may modify the size distribution of aerosol 

particles, which in turn can lead to their altered biological interaction behaviors. Thus, it is 

beneficial to study the deagglomeration potential of airborne nanoparticles under a range of 

energy inputs and environmental conditions, in simulating broad real-life exposure scenarios.    

 

Aerodynamic deagglomeration processes have been studied using various systems, such as an 

orifice or a nozzle, capillary tubes, stationary plate, mixer disperser, and fluidized bed [130]. 

Aerosol particles are accelerated through an orifice which creates shear flow; this condition 

induces turbulence and shear forces on the particles, and promotes their collisions [65-67, 101]. 

Capillary tubes deagglomerate airborne particles by velocity gradient from sheath flow and by 
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impaction at the tube inlet [131]. Mixer disperser and fluidized bed induce similar turbulent 

conditions resembling above processes [118, 132, 133]. Stationary plates break particles by 

impaction on their surface, in addition to acceleration mechanism from a nozzle [85, 134, 135]. 

These methods feature a range of energy inputs and have been used for achieving different 

aerosol dispersion levels.   

 

Relative humidity (RH) is known to have an influence on aerosol properties. The most prominent 

effect is to facilitate moisture condensation on particle surface or inside agglomerate capillaries, 

enhancing their agglomeration by capillary force [136]. This process modifies the size 

distribution of aerosols, and may change their behaviors in degglomeration processes. Numerous 

studies have investigated RH effects on dispersion of micro-sized pharmaceutical powder 

particles [137-139], however, few studies had looked at deagglomeration behaviors of 

nanoparticles, especially for aerosols created from industrial powders which are associated with 

occupational risks. Due to a different water condensation mechanism for nanoscale particles, 

they may be more sensitive for humidity changes than their macroscopic counterparts [136, 140].   

  

In the present work, we used two aerosolization and deagglomeration systems that are based on 

the orifice method to study the deagglomeration potential of nanopowder aerosols under a range 

of RH conditions. Identically sized titanium dioxide nanopowders with two different surface 

hydrophilicities were tested to study the humidity effects. A broad range of energy inputs were 

applied to the airborne particles in order to provide a comprehensive understanding of the 

deagglomeration process.       

 

Materials and Methods 

Materials 

The tested nanomaterials were obtained from the repository at the European Commission Joint Research 

Center (JRC–IHCP in Ispra): hydrophobic (NM103) and hydrophilic (NM104) nanoscale TiO2. The 

primary particle size is 20 nm (determined by x-ray diffraction), with a specific surface area 60 m
2
/g. The 

crystal structure is rutile.  

Test systems 
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The setups used in this study were previously described in detail [65, 67, 141]. Both methods 

used critical orifices to apply shear force onto aerosol particles, but differed in their approach to 

create the aerosol from a powder. The detailed schematics of the two systems are available in the 

supplemental information (SI, Figure S1).  

The funnel-based aerosol generator [65] uses the fluidized bed system concept, in which a steady 

air flow passes through the bottom opening of a funnel filled with powder and thereby 

continuously activates the dry powder. The aerosol generation can be maintained for long 

periods (> 30 minutes) at stable particle number concentration and size distribution. The aerosol 

is led into a mixing chamber and conditioned to target humidity by mixing the dry aerosolization 

flow (~2% relative humidity) with humid air (RH>90%). The aerosol then passes through a 

critical orifice into a large collection volume from which several sampling lines collect particles 

for characterizations. Devices used to characterize the aerosol in this study included a scanning 

mobility particle sizer (SMPS, GRIMM, particle number size distribution and total count in the 

range of 11.1–1083.3 nm), an optical particle counter (GRIMM, number size distribution and 

counts in the range of 0.25-32 µm), and a mini-sampler (ECOMESURE, Janvry, France) that 

collects airborne particles by impaction directly onto TEM grids (200 mesh, copper, 

Formvar/Carbon). 

The second system is based on aerosolizations by a magnetic stirrer in a pressurized beaker [67]. 

The generated aerosol is then mixed with humidified air. The aerosol is subsequently introduced 

into a cyclone to remove particles above appr. 1.5 µm. The aerosol then passes a critical orifice 

and is subsequently measured by online and offline equipments. Make-up air is added 

beforehand to satisfy the total flow rate needed for characterizations. A SMPS (34-1000 nm, 

electrical mobility, TSI) and a Palas WELAS (0.4-17 µm; optical diameter) are used to measure 

particle number and size distribution. The airborne particles are collected on flat single-

crystalline silicon substrates with an area of 1 x 1 cm, by a Nano Aerosol Sampler (TSI, Model 

No. 3089) with a home-made unipolar charger unit upfront. The samples were subsequently 

analyzed by a high resolution scanning electron microscope (JEOL 7500F). 

The test conditions are listed in Table 1. The RH (±5%) and the pressure drops (±2%) were well 

maintained during the experiments. The pressure drop level is proportional to the total air flow 

volume passing the orifice. During the test, the aerosolization flow was kept constant, in order to 
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avoid changes of aerosol profiles due to different aerosolization levels. Only the dilution flow 

rate was tuned to modify the total flow. The aerosol particles are accelerated in the orifice, and 

the total volumic flow rate determines the air speed (thus basically the particle velocity). The air 

velocity increases with flow rate until a critical condition (choked orifice) is reached when the 

upstream pressure is appr. two times higher than the downstream pressure. This is the 100 kPa 

pressure drop in our study (since the downstream atmosphere was at ambient pressure). The 

particles experience shear stress in the orifice and subsequently strong resistance by the ambient 

air when ejected out of the orifice. The sheath flow and the drag fromy the air molecules are 

mainly responsible for potential deagglomeration. The drag force is proportional to the relative 

velocity between the particle and the medium as well as to particle diameter [58]. Thus, larger 

pressure drops apply higher energy inputs on the particles, leading to potentially more significant 

deagglomeration.   

Table 1 Experimental conditions tested in the two systems 

 Pressure drop, kPa 
 Relative humidity, 

% 

Funnel 0 50 
10

0 
 

 
0 25 50 75 

Stirrer 0 50 
10

0 
150 

 
0 30 50 70 

 

Data analysis 

Particle number size distributions, geometric mean sizes and total numbers under different 

pressure drop and humidity conditions are compared to show the influences of these two 

parameters. The spectra were normalized with respect to total particle number concentrations. 

Furthermore, Particle fraction in three size ranges (<100, 100-350, 350-1000 nm) were compared 

with regard to different conditions. Particle number concentration in individual size channels 

were summed respectively in the three ranges, and divided by the total number. The <100 nm 

fraction represents nanoscale particles. The 100 to 350 nm range represents those small particles 
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that are outside the nanoscale but with aerodynamic behavior still mostly dominated by 

Brownian motion, while the particle fraction >350 nm is dominated mostly by inertia. 

 

Statistical analysis was performed, wherever sufficient number of experimental replicates was 

available, on particle number and mean size obtained under different pressure drop and humidity 

conditions. Analysis of variance (ANOVA) and the comparison of geometric mean sizes 

measured under different conditions were calculated with Stata (Stata CorpLP, Texas, USA). A p 

value below 0.05 was considered significant. Spearman rank correlation (coefficient rs) was used 

to analyze the correlations of changes in mean particle size to test parameters. In addition, 

regression analysis was performed for changes of particle number in individual size channels 

under varied humidity and pressure drop conditions.    

 

Results  

Comparison of systems and powders under basic (non-orifice) test conditions 

 

Figure 1 particle number size distribution of the aerosols generated from the two types of 

nanopowders, left: hydrophobic TiO2, right: hydrophilic TiO2 (no orifice, RH=0%).  

A comparison on the particle size distributions of aerosols generated from the two test setups 

under basic conditions (without orifices, 0% RH) is shown in Figure 1. In general, the size 

spectra from the stirrer system were broader than those from the funnel system. The higher peaks 

created in the stirrer system indicated higher total particle concentrations. The hydrophobic 

powder generated higher aerosol concentrations than the hydrophilic powder did, and also 
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smaller mode diameter. The data measured by the SMPS and by the optical counters were in 

general consistent (demonstrated by the smooth transition on the curves). The two systems 

featured different aerosolization mechanisms, quantity of raw materials used (250 mg v.s. 5-8 g) 

and air flow rate; these may be responsible for the varied aerosol profiles created. Different 

aerosolization means have been shown to result in distinct aerosol properties [88], and this may 

lead to varied deagglomeration behaviors of the aerosol particles.    

Effects of pressure drop and humidity on particle number size distribution

 

Figure 2 Comparison of particle size distributions (a,b: pressure drop effects at 50% RH, stirrer; 

c,d: humidity effects at 100 kPa pressure drop, funnel) 

The influences of pressure drop and humidity on aerosol size distribution are shown in Figure 2. 

The highest pressure drop (100 kPa) and mid-range relative humidity (50%) are taken as 

examples. Higher pressure drops shifted the spetrums to the smaller size range (Figure 2 c,d). 

The effects seemed to be more evident for the hydrophilic particles (NM104) than for the 

hydrophobic ones (NM103), as abnormal behaviors were observed at 150 kPa for the latter 

(Figure 2c). On the other hand, increasing humidity resulted in larger mode sizes for both 

materials (Figure 2 c,d). Moreover, the peaks became higher under humid atmosphere. The 

decreased mode size and higher peaks indicates the deagglomeration events triggered by pressure 

drop. The larger modes suggests that moisture content facilitated agglomeration among particles.  
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Influence of pressure drop and humidity on particle mean size and number concentration  

The changes of mean diameter and total particle concentration under varied pressure drop and 

humidity conditions are shown in Figure 3. In general, particle sizes decreased with increasing 

pressure drop, but the number concentration was less consistently linked to pressure drop The 

particle number experienced significant augmentations up to  15 folds in almost all cases 

compared to the reference condition (Figure 3 e-h), with larger variations in the stirrer system. 

Comparing the two systems, the stirrer resulted in larger mean particle size than the funnel did. 

Pressure influences seemed to be equally significant for both materials. On the other hand, humid 

conditions increased mean particle diameter and greatly decreased particle number. Its influences 

seemed to be more prominent for hydrophilic aerosol particles than for their hydrophobic 

counterparts (Figure 3 i-l). It was noted that at atmospheric pressure the RH condition did not 

significantly modify the particle size of the hydrophobic aerosols created in the funnel system 

(Figure 3i). These findings suggest that the pressure drops created turbulent conditions in the air 

flow, which promoted particle collisions. This facilitated agglomeration by moisture content 

condensate on particles surfaces. The size changes seen in the funnel system may not be as 

obvious as those in the stirrer system, thus statistical analysis was performed for Figure 3 a,b,i,j. 

All the correlations of these size changes in relation to the two variables were statistically 

significant, only except for one condition (hydrophobic TiO2 at 0 kPa, Figure 3i-diamonds). The 

complete results are available in the supplemental information (Table S1).   
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Figure 3 Effects of pressure drop and relative humidity on particle mean diameter and total 

number concentration of hydrophobic (NM103) and hydrophilic (NM104) TiO2 aerosols. Total 

particle number concentrations are in relative scales, compared to the reference conditions (0% 

RH / 0 kPa).       

 

Influence of humidity and pressure drop on aerosol properties  
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Figure 4 Influence of pressure drop and relative humidity on mean particle size. The results show 

the increase (+) or reduce (-) 

How humidity influenced the effects of pressure drop on aerosol profiles is shown in Figure 4. 

For the hydrophobic aerosols, the decrease of particle size with pressure drop was reduced under 

higher humidity (Figure 4a). For the hydrophilic aerosols, the degree of reduction in particle size 

with pressure drop seemed to be independent of humidity (Figure 4b). Comparing to the funnel 

system, the stirrer system induced more significant reductions in particle size (Figure 4c,d). How 

pressure drop influenced the effects of humidity on aerosol profiles is shown in Figure 4 (e-h). 

For the hydrophobic aerosols in the funnel system, the effects of humidity only showed up when 

pressure drops were applied. (Figure 4e). The overall humidity effects became stronger when 

increasing pressure drop. For hydrophilic aerosols, the effects of humidity remained similar 

under different pressure drops (Figure 4f). In the stirrer system, comparing the two materials the 

hydrophilic particles experienced larger changes by humidity than their hydrophobic 

counterparts (Figure 4g,h). The data presented here compare the particle size changes observed 

under the lowest and the highest values of the two variables: 0 - 100 (150) kPa and 0% - 70 

(75)%. A more detailed analysis using the values within these ranges, such as from 0 to 50 kPa 
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or from 50% to 75%, is available in Figure S2 (SI). The analysis shows that for smaller particles 

generated in the funnel system, to achieve the same degree of size reduction, higher pressure 

drop was required for the hydrophilic particles than for the hydrophobic ones; for larger particles 

generated in the stirrer system, most of the effect was already observed in 0-50 kPa pressure drop 

range for both two materials.      

Effects of pressure drop and humidity on particle fractions in different size ranges 

The influences of pressure drop and humidity on particle number fractions are presented jointly 

in 3D in Figure 5. The particle fraction below 100 nm increased significantly with the pressure 

drop but decreased with the relative humidity (inserts a-d). In contrast, number fraction in > 350 

nm size range responded conversely to the pressure drop and humidity (inserts i-l). The particle 

fractions between these two size ranges registered minor increases with pressure drop and 

decreases with humidity (inserts e-h). It is noteworthy that increases induced by pressure drop in 

<100 nm range were more significant at lower humidity, such as 0% or 30% (inserts a-d: red 

dotted curves). Comparing the two materials, the hydrophobic aerosols consisted of up to 40% 

particles below 100 nm (inserts a,c), whereas their hydrophilic counterparts had only 10-25% in 

this size range (inserts b,d). In comparison, the hydrophilic aerosols had much higher fractions 

in >350 nm range (max. 80% v.s. max. 50%). The hydrophobic particless experienced larger 

changes in the size range below 100 nm (comparing inserts a,c to b,d), while the hydrophilic 

ones did so above 350 nm (comparing inserts i,k to j,l). Comparing the two systems, 

hydrophobic aerosols in the stirrer setup were still composed of about 60% particle in >350 nm 

range at the highest pressure drop (insert l, circled), whereas they had only around 20% in the 

funnel setup (insert j, circled). In general, the stirrer system generated large particles in higher 

fractions and nanoscale particles in lower fractions than the funnel did. This may primarily 

contribute to their different responses to the test variables. The results were in line with the 

observations on modifications of the mean particle size by pressure drop and humidity. 
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Figure 5 Effects of pressure drops on particle number fractions in three different size ranges 

(<100 nm, 100-350 nm, >350 nm) for the hydrophobic (NM103) and hydrophilic (NM104) TiO2 

aerosols. 

Particles with different size profiles may respond differently to humidity changes. Influences of 

pressure drop and humidity on particle number in each size channels were analyzed by 

regression analysis, in order to investigate which size ranges were the most sensitive to these two 

variables (Figure 6). The results are presented under exemplary conditions, such as 100 kPa and 

0% RH. As humidity increased, the most reduction in particle number (relative change with 

respect to the total) was seen in the size range below 100 nm, peaking in 40-80 nm. (Figure 6, 

left). The responses decreased for larger particles. For the effect of pressure drop, particle 
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numbers in the size range below 271.8 nm was increased (positive values), while those above 

this size decreased (negative values) (Figure 6, right). The numbers of nano-sized particles and 

of those close to 1 µm were affected the most. Moreover, the most sensitive particle size with 

respect to pressure change was larger under higher humidity (Figure S3, SI). The results suggest 

that the humid conditions tended to reduce nanoscale particles, while its effect was less 

significant for larger particles. For the pressure drop condition, it seemed to facilitate the 

generation of particles around or below 100 nm, however, the moisture content somehow 

prevented this process by acting as a glue as discussed previously.            

      

Figure 6 Changes of particle number in individual size channels (SMPS) by increasing relative 

humidity (left) and by increasing pressure drop (right). Particle size distributions at 0% RH (open 

circles) are also presented for comparison purposes. Only statistically significant values are 

plotted (p<0.05). Error bars represent 95% confident intervals. Data are from the funnel system 

on the hydrophobic TiO2. 

Morphological analysis of airborne nanoparticles 

Morphological analysis of aerosol particles generated in the funnel system is shown in Figure 7. 

The images are presented in micro-scale for overall distribution of particles on the filter, as well 

as in nano-scale to show morphologies of individual agglomerates and primary particles. 

Comparing the two materials, NM104 generated larger agglomerates than NM103 did. The 

agglomerates of the hydrophobic TiO2 were generally smaller than 1 µm, while those of 

hydrophilic TiO2 can reach sizes up to several microns. The primary particles typically had 

spherical or rod-like shapes. The hydrophobic coatings were not visible under the microscope.  
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Figure 7 TEM analysis of particle morphology in the funnel system for the hydrophobic 

(NM103) and hydrophilic (NM104) TiO2 aerosols (conditions: 0 kPa/0%). 

The airborne particle morphologies observed in the stirrer system is shown in Figure 8. The 

results obtained under the lowest and the highest pressure drops and humidity were compared. 

Particle size seemed to be smaller and deposition was denser, when treated by higher pressure 

drop, both at low and high humidity (Figure 8: comparing a to b, c to d). In contrast, higher 

humidity resulted in much lower particle density on the grid, both at low and high pressure drops 

(Figure 8: comparing e to f, g to h). Comparing the two materials, NM104 (hydrophobic) had 

significantly lower particle generation than NM103 (hydrophilic) (Figure 8: comparing d to h). 

The particle agglomerates were densely packed and had irregular shapes. Chain-like structures 

and very larger agglomerates were sometimes observed when treated with no pressure drop 

(Figure 8 a,c,e,f), whereas the highest pressure drop mostly resulted in spherical particle 

agglomerates (Figure 8 b,d,g,h). The microscopic observations on the effects of the two 

variables regarding particle number concentration and mean size were in line with the online 

measurement results.   
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Figure 8 SEM observations on particle morphology in the stirrer system 

 

Discussion 

The increased particle number concentration and decreased mean size, as well as changes in 

fractions for large and nanoscale particles suggest that the rapid transfer through the orifice 

induced by the pressure drop caused a deagglomeration process. Higher speeds induced larger 

drag forces on the particles, being responsible for the reduction of particle size. The air flow 

velocity stops increasing above the critical condition, and this may be responsible for the 

decreased effect of pressure drop at 150 kPa. The degree of drag is not much changed when 

further increasing upstream pressure above choked condition. Moreover, the drag force is 

proportional to particle diameter; this may explain its more significant effects on the aerosols 

with a larger mean size, such as those generated from the hydrophilic powder (NM104) and from 

the stirrer system. The less correlated number concentration can be due to different powder pre-

treatment, such as powder storage [142] or filling into the aerosolizers. The variation of absolute 

particle generation in these two systems can vary up to several folds but will stay usually well 

within the same order of magnitude. Thus most of the changes seen in our study were 

attributable to the modifications of pressure and humidity. These observations are consistent with 

the findings from previous studies using orifices to break nanoparticle agglomerates. Ding and 
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Riediker tested pressure drops up to 300 kPa with different types of materials and found that 

deagglomeration mostly occurred below 100 kPa [65]. Significant deagglomeration took place 

already at minor increases of the upstream pressure (as low as 20 kPa) and the pressure-number 

curves suggested a non-linear dependency of the deagglomeration from the applied shear force. 

This behavior was also seen for the hydrophobic aerosols in our study (Figure 3 a,c: reduced 

effect from 0-50 to 50-100 kPa). Stahlmecke et al. [67] also observed good negative correlations 

between pressure drop (up to 140 kPa) and nano-aerosol mean particle sizes. Sosnowski et al. 

demonstrated deagglomeration of micro-sized pharmaceutical powder particles using a 

converging nozzle [101]. These studies were all conducted in relatively dry environments 

(RH<15%).      

Relative humidity showed an opposing effect by increasing particle size and decreasing particle 

number. This suggests that the air moisture content promoted agglomeration between primary 

particles. In this process, two mechanisms can be considered: 1. A thin layer of water molecules 

condenses on the particle surface with increasing humidity, and particles are subsequently 

bonded upon collisions by the water content on their surface; new agglomerates are created; 2. 

Moisture condenses directly in capillaries inside the particles (capillary condensation), thus 

strengthening the original agglomeration. The capillary force can be related to RH by the 

following equation [136]: 

           
 

  
      

  

where:  , surface tension of the liquid interface; c, factor related to the contact angle; R, radius of 

particle;   , for two identical spheres     = R/2; D, contact distance of two particles; V, volume 

of water meniscus.   

Increasing ambient humidity would lead to formation of larger meniscus volume (V) between 

contacting particles, which in turn results in stronger attractive force. This may explain the 

continuous increase of particle size and reduction of particle number, as well as the less 

significant effects of the pressure drop observed at high RH level. The hydrophilic surfaces 

facilitate faster water condensation with smaller contact angle at the liquid interface, resulting in 

an augmentation of the capillary force; this may be responsible for the different responses of the 
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two tested materials to humidity changes: at high RH, even treated with the largest pressure drop 

the hydrophilic aerosol particles remained still in much larger sizes than their hydrophobic 

counterparts. Capillary force was shown to vary with relative humidity, being monotonic 

increase or decrease, peaking at certain RH, step-wise increase or independent of RH, depending 

on the particle properties such diameter, shape, surface hydrophilicity and roughness. [136, 143].  

Deagglomeration can occur when the dispersion force, which is related to the drag force in our 

case, is comparable to the interparticle binding force. In a simulation study, researchers found 

that nanoparticle aggregates started to deform even when the dispersion force under shear flow 

reached 0.1% of the interparticle force [117]. In our study, the dominant mechanisms for particle 

agglomeration were van der Waals (VDW) force and capillary force. The VDW interaction is 

normally much less significant than the capillary attraction and would be partly screened if 

moisture content is present [140]. Thus, only the capillary force is considered in our study as the 

main interaction mechanism between particles. The exact capillary force range in our study 

would be complex to calculate because of many undefined parameters, however, for a rough 

estimate one could refer to the values given in other studies for similar conditions, such as 10-30 

nN for 30 nm spheres at 0° contact angle, 90-180 nN between a nanoscopic AFM tip and a 

silicon wafer [136], 0-80 nN between a 100 nm spherical particle and a flat surface at 0-100% 

RH [140]. On the other hand, as a driving force for dispersion, the drag is calculated using the 

following equation (Hinds 1982): 

   
     

 
 

where: η, air viscosity; v, relative velocity;  , particle diameter; C, slip correction factor; 

assuming a dynamic shape factor of 1.   

In our work, the maximum flow speed can reach that of the sound (≈340 m/s, 20°C) under 

choked flow condition at 100 kPa pressure drop. This would result in a drag force level up to 50 

nN for 0.1-1 µm particles. This range may provide dispersion forces which are comparable with 

the estimated capillary interaction This suggests that with the energy input range we applied in 

our experiments, deagglomeration can take place not only with dry particles but also under 

humid conditions. This may support our finding that although humidity helped to facilitate 
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agglomeration, the pressure drop still played an observable role in reducing the mean particle 

size at high RH.   

The fact that a low pressure drop showed significant effects for hydrophobic particles indicate 

that the agglomeration force was mostly likely dominated by weaker van der Waals interactions 

between relatively dry particles. For hydrophilic particles, prominent influences were seen only 

when a high pressure drop was reached, which suggests that particle interaction in this case may 

have been strengthened with moisture condensation. The only difference between the two 

materials is their surface hydrophilicity. The stronger pressure effects seen in the stirrer than in 

the funnel maybe be caused by the larger particles generated in the former system; a stronger 

drag is expected for a larger particle diameter. The bigger particles might be also responsible for 

the result that significant pressure drop effects on the hydrophilic particles started at lower values 

in the stirrer system (0-50 kPa) than in the funnel system (50-100 kPa). Drag force is 

proportional to particle size as shown in Figure S5 [58]. As the size increases, the dispersion 

force may become high enough at a certain point, which overcomes the capillary interaction and 

trigger particle deagglomeration. Thus, a lower pressure drop might be able to exert prominent 

effects on the large particles generated from the stirrer. The enhanced humidity effects at higher 

pressure drops for the hydrophobic particles may be due to the fact that more collision events 

triggered by turbulent flow promoted agglomeration by the water content absorbed on particles 

surface (even though the absorption can be weak depending on how hygroscopic the surface is). 

Another possible explanation is that smaller particles generated under higher pressure drops were 

more sensitive to humidity changes [140]. For hydrophilic particles, agglomeration by capillary 

force may already exist due to the moisture content in the raw powders (resulting in different 

aerosol properties from the two materials when tested even in completely dry environment, as 

shown in Figure 1). This may explain their less responsive behaviors to the increasing humidity 

when treated by pressure drop (Figure 4b).   

 

Conclusions 

In this study, we observed significant effects of pressure drop and relative humidity on aerosol 

particle properties. Pressure drops generally decreased particle size, and increased total particle 
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number. Elevating relative humidity generally led to increased particle size and decreased total 

particle number. The humidity influence on the hydrophilic aerosols (NM104) was very evident 

in both systems. In contrast, the two systems differed when testing the hydrophobic material 

(NM103): the effects were significant (though weaker than for NM104) in the funnel system, 

while they were less clear in the stirrer system. This might be due to the different particle size 

spectra generated in the two systems (normally smaller in the funnel system). Humidity 

conditions may affect small particles more than big particles. For particle number counts, the 

effects of pressure drop and humidity were not very clear, which can be attributed to the inter-

test variability of absolute particle number concentrations in the aerosolization tests (up to an 

order of magnitude). The increased number and decreased size suggested particle agglomeration 

under humid conditions and deagglomeration under external energy inputs. The shear force from 

the drag of ambient air induced by critical orifices was responsible for the deagglomeration of 

particles. The bridging effect of absorbed surface water content and resulting capillary forces 

promoted airborne particle agglomeration. Mean particle size increased continuously with 

humidity, which indicates lower deagglomeration levels by the pressure drops, whereas the 

applied shear forces altered aerosols’ responses to humidity, possibly by modifying their size 

profiles.    

The results suggest that aerosol properties, including particle size and surface hydrophilicity, 

play a relevant role for the deagglomeration potentials under varied relative humidity. In 

occupational exposure scenarios, it is possible that aerosolized nanopowder particles can be 

further deagglomerated when the energy input reaches a certain level. Particle deagglomeration 

started to take place at low shear forces, which applies to common nanomaterials handling 

activities in occupational settings. It will be important to know if humidifying workplace 

environments can contribute to reduce numbers of small particles, thereby alleviating workers’ 

exposure risk.  
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Supplemental Information (SI) 

 

Figure S1 Schematic diagrams of the funnel (top) and the stirrer systems (bottom) used for the 

deagglomeration tests 
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Table S1 Correlations of mean particle size with the four RH and the three pressure drop 

conditions shown in  

Figure 3  a,b,i,j.  

 Hydrophobic TiO2 Hydrophilic TiO2  

RH/∆P      rs      p      rs       p 

0 -0.9418 <0.0001 -0.9383 <0.0001 

25% -0.942 <0.0001 -0.6913 0.0004 

50% -0.942 <0.0001 -0.8727 <0.0001 

75% -0.8425 <0.0001 -0.9304 <0.0001 

0 kPa -0.0664 0.7322 0.8638 <0.0001 

50 kpa 0.9684 <0.0001 0.9055 <0.0001 

100 kpa 0.8633 <0.0001 0.9463 <0.0001 

rs: Spearman’s coefficient, positive correlation (+) and negative 

correlation (-), p: statistical significance. 

 

Figure S2 Influence of pressure drop and relative humidity on mean particle size. The results 

show the increase (+) or reduce (-).The effects were much more significant by increasing 

pressure drop from 0 to 50 kPa than from 50 to 100 kPa (a: comparing blue to red rectangles). 

Particle sizes were reduced more by increasing pressure drop from 50 to 100 kPa than from 0 to 

50 kPa (b: comparing blue to red rectangles). The pressure drop effects were the most 

predominant in 0-50 kPa range, for both material types (c,d: comparing blue to red or purple 

rectangles). 
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Figure S3 Comparison of changes in particle number in individual size channels (SMPS) by increasing 

pressure drop (left) and by increasing humidity (right). Only statistically significant values are plotted 

(p<0.05). Error bars represent 95% confident intervals. Data are from the funnel system for the 

hydrophobic (NM103) and hydrophilic (NM104) TiO2 aerosols. 

 

 

Figure S4 SEM observations on particle morphology in the stirrer system. 
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Figure S5 Dependence of aerodynamic drag on particle size at 340 m/s relative velocity. 
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ABSTRACT 

We tested the likelihood of nanomaterial release from composites when treating them with two 

different mechanical processes, automated drilling and manual sawing. Polyurethane (PU) 

polymer discs (1 cm thickness and 11 cm diameter) were created using different nanomaterial 

fillers: multiwall carbon nanotubes (MWCNT), carbon black (CB), silicon dioxide (SiO2), and an 

unfilled PU control. Drilling generated far more submicron range particles than did sawing. In 

the drilling tests, different nanofillers did not result in significantly different particle number 

concentrations or sizes, except for the PU/MWCNT samples, which produced larger particles 

than control samples. Higher drilling speed and larger drill bit size were associated with higher 

particle counts. Differences between composites were observed during sawing: PU/CB released 

higher number concentrations of micro-sized particles compared to reference samples. All the 

nanofiller reinforced composites generated greater numbers of nanoscale particles, among them 

individual nanoparticle agglomerates were observed from treating the PU/SiO2 samples. 

Furthermore, polymer fumes were released due to the process heat. For both drilling and sawing, 

the majority of the aerosolized particles were polymer matrix materials containing nanofillers (or 

protruding from their surface). Results suggest that: 1. processes associated with higher energy 

inputs are more likely to result in higher particle release; 2. nanofillers may alter release 

processes; and 3. other types of released particles, such as the polymer fumes from high-

temperature processes, must also be considered in occupational exposure and risk assessments.      

Keywords: nanoparticle, nanomaterial composite, drilling, sawing, release, occupational 

exposure, risk 

INTRODUCTION 

Engineered nanomaterial (ENM) fillers, such as carbon nanotubes (CNTs), carbon nanofibers, 

carbon black (CB), silicon dioxide (SiO2), titanium dioxide (TiO2), or nanoclay, have all been 

added to different polymer matrices to manufacture nanocomposites with improved material 

properties [144-146]. During research and development, as well as during the industrial 

processing of such materials, filler particles can be released, leading to subsequent human 

exposure [124, 125]. When inhaled, ENMs may cause unwanted toxic effects on humans. In rats, 

multiwall carbon nanotubes (MWCNTs) were shown to have pathogenic effects similar to those 
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of asbestos [147]. SiO2 nanoparticles were found to cause cytotoxicity in human bronchoalveolar 

cells [148]. In mice, lung exposure to CB nanoparticles led to a considerable increase in DNA 

single-strand breakages [15]. To date, nanomaterials are still associated with considerable 

uncertainties related to their hazard and exposure potential [149]. Understanding release and 

characterizing the released particles will help address important knowledge gaps. 

 

It has been proposed that particle release from nanocomposites is affected by various process 

parameters and material properties, such as the type of treatment, environmental conditions (e.g., 

temperature, humidity), matrix properties (e.g., brittleness, degradation potential), and filler type, 

physical form (e.g., fiber length, orientation), content, and dispersion [150-152]. Comparing 

different processes and associated release patterns is especially interesting from an occupational 

hygiene viewpoint. Previous investigations have determined levels of nanoparticle release during 

different mechanical and chemical processes. Dry machining of polymer-alumina-CNT 

composites in a laboratory simulation study led to considerable release of nano-sized and fine 

particles and fibers [61, 153]. A greater release of nanoparticles was also recorded from the 

friction of mechanical shocks and abrasion processes on composite surfaces [154]. By studying 

the mechanical properties and crushing behavior of composites, Sachse et al. demonstrated that 

nano-sized and ultrafine particles were emitted from polymer composites reinforced with nano- 

and microsilica, as well as with nanoclay fillers. However, other studies found no significant 

release from nanocomposites, in comparison to the control materials, and in certain cases the 

generation of airborne particles was even lower. During the thermal cutting of polystyrene (PS) 

foam, over 99% of the filler particles were found to be embedded in submicron aerosol particles 

[62]. An investigation of nanoclay polymer composites during drilling showed that integrating 

nanofillers into the base polymer decreased particle concentrations [155]. During the sanding of 

thermoplastic polyurethane (PU)/CNT composites, no free nanofillers were observed, and it was 

concluded that more than 97 wt% of the filler materials were still embedded in the polymer 

matrix [69]. However, despite the efforts made so far, conclusive predictions about particle 

release, whether from specific nanocomposites or specific processes, remain difficult to make. 

In this study, we drilled and sawed cross-linked PU-based composites reinforced with three types 

of organic and inorganic nanofillers. Drilling is a process associated with high-speed mechanical 

shear forces to produce a hole; sawing is considered a relatively low-speed process with a limited 
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contact area with the material [156]. To the best of our knowledge, there have been few 

investigations comparing particle release scenarios  in these two processes. PU is a matrix 

material rarely studied in release tests. In the present study, release tests for these two processes 

were set up, validated, and used to examine how process parameters influenced the particle 

number concentration, size range, and particle morphology of the aerosols released.     

 

MATERIALS AND METHODS  

Materials 

The materials tested were polymer composites reinforced using different organic or inorganic 

nanomaterial fillers. The base polymer was partially cross-linked PU synthesized using a 

prepolymer process handled by our project partner, Nanocyl. Table 1 lists the four types of 

material tested. Pure PU samples were used as negative controls. The visual appearance of the 

samples, as well as the transmission electron microscope (TEM) characterizations of the 

morphologies and the distribution of the filler particles in the matrix, is shown in the supporting 

information (Figure S1).  

Table 1. Summary of the types of composite materials tested 

Matrix PU PU PU PU 

Filler (control) SiO2 MWCNT CB 

Type and producer Cross-linked 

[157] 

Fumed silica 

(ABCR) 

NC7000 [157] Vulcan XC72 

(Cabot) 
Content (w/w), % 0.09 0.09 0.09 0.09 

*Sample dimensions: 11 cm Ф x 1.0 cm thickness, disc. 

Test setups 

Automatically controlled drilling system 

Drilling tests were done inside a transparent plastic chamber (154 L volume, Figure S2, left) in 

order to separate the drilling process from the outside atmosphere. The sample was fixed to a 

rotatable round plate that allowed the drilling position to be changed between drilling tests. Only 

the drill bit was inside the chamber. The pressure of the bit on the composite material was 

controlled by a spring pulling the sample towards the drill bit (drill force: 17 N). An infrared 
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thermometer with an effective sensing zone of 1 cm
2
 was used to continuously monitor 

temperature changes during drilling. The sampling ports for particle measurements were pointed 

towards the drill hole. A DISCmini (Matter Aerosol, Switzerland) was used for measuring 

particle number concentration and mean diameter in the 10–300 nm size range. In addition, gold 

filters (0.2 um pore size, Ф25 mm, APC) were used to collect airborne particles for subsequent 

analysis using a scanning electron microscope (SEM). The sampling flow rate was 5 L/min. 

Filtered air was used to flush the chamber before each test until the background particle 

concentration was below 200 #/cm
3
 (DISCmini). Five drilling tests were conducted, one after the 

other, for each sample type. In order to clean out the residual particles from the previous drilling 

tests, the chamber was flushed using a 30 L/min air flow for at least 15 min. Each drilling test 

lasted about 1 min. Different drilling speeds and drill bit sizes were used (Table 2).  

Table 2. Drilling test parameters 

  Drilling speed, rpm 

 

 1200 (S3) 1550 (S5) 1880 (S7) 

Drill bit 

size, mm 

4 - All SiO2 

8 MWCNT MWCNT All 

*Entire range of drilling speeds: 900–2,900 rpm from settings (S) 1-10. 

 

Manual sawing setup 

A laboratory glove box (284.9 L volume) was used to enclose the sawing experiment (Figure S2, 

right). Samples were tightly fixed to a wooden support. The saw was operated via the box’s 

rubber gloves. The enclosure was flushed with high flow rates of filtered air (50 L/min) until the 

background particle concentration was below 20 #/L. Sampling ports were placed about 10 cm 

from the cutting position to the side of the main sawing axis. Sampling was done using a 

DISCmini, a filter sample holder (2 L/min inflow) equipped with a gold-coated track-etched 

filter (0.8 μm pore size), a sample collector for transmission electron microscopy (TEM, grid 

sampler, Ecomesure), and an optical particle counter (OPC, 1 L/min inflow, GRIMM). The OPC 

http://www.ecomesure.com/fr/produit/pr%C3%A9leveur-de-nanoparticules-mps
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measures particle number and size distributions from 250 nm to 32 µm. A thermometer 

(Celsimeter
®
, K-thermocouple: -50°C ~ +1000°C, Spirig, Switzerland) was used for measuring 

the temperature of the manual saw’s blade (blade dimension: 300×12.5 mm, HSS-high speed 

steel, technocraft
®
). Four to five cuts were conducted in each test. Sawing began in the center of 

the sample, and the distance between sawing positions during the test was about 2 mm. The 

length of the cut was thus kept approximately the same. The material was not completely sawn 

through in order to avoid touching the wooden support. Each sawing session lasted about 5–7 

min. During this period, the air supply to the enclosure was set at 6 L/min to replace the air 

drawn for sampling needs. After each cut, sampling continued for 10 min. Between cuts, the 

chamber was flushed at a flow rate of 50 L/min filtered air for about 15–20 min to clean out 

residual particles.     

Data analysis 

To estimate the number of particles released per drilling event, we first averaged the peak 

particle concentrations generated after each drilling test. The peak concentration was determined 

from the fitted curve of moving averages over 50 seconds (Figure S3). The total particle release 

from a single drilling event was then estimated by assuming that: a) the chamber was a well-

mixed environment in which homogeneous particle concentrations were present at the end of a 

drilling event; and b) that all released particles in the size range analyzed by the DISCmini were 

still airborne during this peak period of the drilling event. The particle loss during the drilling 

event (ca. 1 min) was not taken into account since the sampling flow rate was low. The total 

number of released particles counted was thus determined by integrating the average 

concentration over the chamber volume. The total number of background particles was 

determined based on average background concentration during the 15–30 min before each test. 

The net release was then calculated by subtracting background particles from the total number of 

released particles. The analysis of variance (ANOVA) of the average number and mean size of 

the particles from different samples was performed using Stata software (Stata CorpLP, Texas, 

USA). P-values <0.05 were considered statistically significant.   

 

RESULTS 
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Release scenarios in the drilling tests  

Influences of types of nanoparticle filler and drilling parameters 

                                    a)                          b)                             c)                            d)                            

                

                                                    e)                           f)                          g)                                                                                                                     

           

Figure 1. Influence of types of nanomaterial filler, drill speed setting (S5 or S7), and bit diameter 

(4 mm or 8 mm) on the net release of particles and their mean diameter (size range: 0–300 nm). 

The statistical analysis: a) p=0.0056 (group), p=0.013 (PU-PU/CNT pair), p>0.1 (other pairs); b) 

p<0.001 (group), p<0.001 (PU-PU/CNT pair), p>0.1 (other pairs).  

The net particle release numbers and particle sizes under the various test conditions are 

compared in Figure 1. The PU/CNT sample released the lowest number of particles compared to 

the other samples, with both the small and big drill bits and at different drilling speeds (Figure 1 

a,c). In general, the number of particles released increased with the larger drill bit size and the 

faster drilling speed (about two orders of magnitude higher). However, the relative order 

between the different types of nanomaterial filler remained unchanged. The SiO2- and CB-

reinforced composites released similar numbers of particles to the blank sample. The total 
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number of particles generated by drilling a single hole through the sample ranged from 4.3×10
7
 

to 2.2×10
9
 #/cm

3
 using the two sets of experimental conditions. The mean diameter of the 

released PU/CNT particles was around 100 nm, which was the largest from among the samples 

(Figure 1b). Particle generation soared from 4.3×10
7
 to 65.2×10

7 
#/cm

3
 (about 15.2 times higher) 

when using the bigger drill bit (Figure 1d). Particle release with a big drill bit continued to 

increase with higher drilling speeds (Figure 1e), and the pattern was similar using a small drill 

bit (Figure 1f). The variations in results were larger (shown by the error bars) when using high 

drilling speeds or the big drill bit. Higher drilling speed resulted in a slightly lower average 

particle sizes (Figure 1g). During the experiment, the local temperature on the drilling sites 

remained below 70°C (Figure S6), and thus below the temperature at which the polymer matrix 

or thermal degradation products can evaporate and recondense into aerosol particles. 

Morphological analysis 

Released airborne particles were collected and analyzed by SEM, as shown in Figure 2. All the 

particles collected had the visual appearance of polymer matrix materials. The diameters of 

pieces of drilled-out material were usually in the order of a few micrometers. Different 

geometries were observed for the various composite types, such as irregular thin flakes for the 

PU/CNT samples or lumps of materials for the other samples. Figure 2 (e–h) shows close-up 

images of the surface morphologies of the three filler samples. Numerous bright spots appeared 

on the PU/CNT and PU/CB composites; their size and apparent higher electron density can be 

attributed to protrusions of nanofiller on the particle surface. For PU/CNT samples, elongated 

features were clearly visible at the surface (Figure 2g); these matched the known diameter and 

length of the specific CNTs used. In contrast, a cluster of hollow structures was observed on the 

PU/SiO2 sample (Figure 2h). Most of the released particles were matrix materials with 

protrusions of nanofiller particles at the surface. The particle coverage on the surface of the 

aerosol filters remained relatively sparse, resulting in a considerable statistical uncertainty from 

the microscope observations. Thus, although no individual primary nanoparticles were observed 

during the drilling experiments, their occurrence cannot be completely excluded.  
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Figure 2. Surface morphologies of particles released in the drilling tests. 

 

Release scenarios in the sawing tests 

Influence of types of nanofiller 

Compared to drilling, sawing resulted in clearly different particle concentrations, in different size 

ranges, for the various tested nanofiller composites, as shown in Figure 3. PU/CNT and the 

PU/SiO2 produced equally high numbers of particles in the 0–300 nm size range (Figure 3a, left). 

PU/CB also generated higher particle numbers than the blank samples, but not as high as the 

other two composites. In comparison, in the 0.25–32 µm size range, the release level for the 

PU/CB sample was considerably higher than for the other three materials (Figure 3a, right). The 

PU/CNT registered minor increases over control materials, and the PU/SiO2 samples remained 

nearly the same. The net particle number was roughly 1–2 orders of magnitude higher for the 

particles in the smaller size range than for those in the larger size range. The size distribution of 
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released particles in the 11–1083 nm size range is shown in Figure 3b. For all the sample types, 

a peak appeared in the 10–30 nm size range. A second mode size, around 100 nm, was recorded 

for the PU/CB and PU/CNT samples, but was not obvious for the PU and PU/SiO2 samples. 

Close to the upper limit of the size spectrum (1 µm), particle numbers rose again. In general, the 

total particle concentrations measured using the SMPS were low (<200 #/cm
3
). The backgrounds 

were very clean and did not show signals in the SMPS scans.    

a)        b) 

       

Figure 3. Influence of type of filler on particle release and size distribution: a) left, data from 

DISCmini (0–300 nm); right, data from the OPC (0.25–32 µm); b) data from the SMPS (10–

1083 nm).  

Morphological analysis 

The collected airborne samples were analyzed using TEM and SEM (Figure 4 shows the 

example of SiO2 containing composite). Large particles of a few microns in diameter (Figure  

4a,b,e) and submicron particles (Figure 4c) were found. Small spherical particles around 100 nm 

or below were also present on the grid (Figure 4a–d: circled areas). A large particle likely to 

contain the structure of filler materials is shown in Figure 4f. After analyzing all TEM grid areas, 

only one particle that resembled a SiO2 particle agglomerate was identified  (Figure 4g,h). The 

diameter of one primary particle was measured using ImageJ software (v1.48S, National Institute 

of Health, USA) and the average value was 19.57 nm. This value corresponded to the 

manufacturer’s information on a primary particle size of 12–20 nm (batch No.AB111363, ABCR, 

Germany); this indicated that SiO2 nanofiller particles were likely to have been released during 
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sawing. In the SEM characterizations, the particle morphologies were often seen as irregular, 

thick lumps, ranging from 1–10 µm. The surfaces of PU/CB samples appeared to be different 

from those of other samples, showing scattered bright spots as was also observed for that 

material in the drilling tests (Figure 4). Individual nanofiller particles were not found in the SEM 

investigations. The particles collected seemed to be materials sawn from the polymer matrix, 

with a visible nanofiller texture on the surface of certain samples. An analysis of the chemical 

composition of the PU/SiO2 sample surface (Figure 4m) identified nanofiller content. In addition, 

a large particle exhibiting a powdered surface and seeming to consist of smaller particles, also 

appeared on the filter (Figure 4n). Chemical analysis confirmed the presence of silicon in this 

particle.  
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Figure 4. TEM and SEM observations of released particles from the sawing tests: a–d, PU; e–h, 

PU/SiO2. 

Particle diameters in the order of 100 nm would be indicative of polymer fumes. This 

phenomenon is known from an aerosol monitoring study on injection molding sites, where 

polymer extrusion temperatures reach 200°C and above [158]. In our tests, each sawing session 
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typically lasted 5–7 min, which was much longer than the drilling process (~50 seconds). The 

blade may heat up due to the repeated sawing action, up to a point where the matrix starts to 

degrade and generate polymer fumes. To test this hypothesis, the blade’s temperature was 

monitored during sawing (Figure S7). The thermocouple sensor was fixed to the blade using a 

metallic tape in order to detect temperature changes during sawing sessions. The temperature 

started to rise as soon as sawing began, and it rapidly (within approximately 1.5 min) reached a 

stable value of about 120°C. The test’s nanocomposite samples were synthesized between 80°C 

and 100 °C, thus it is likely that matrix materials at the sawing line were degraded by the blade’s 

heat and subsequently released polymer fume particles. This may also explain the particle 

diameters below 100 nm, as shown in the number size distribution from the SMPS (Figure 3b).     

DISCUSSION  

Effects of nanofillers  

We observed that nanofiller particles and fibers were present on the surface of released matrix 

materials; this corresponds with earlier reports [49, 71, 159-162]. The protrusion of CNTs was 

attributed to their greater tensile strength; they were pulled out of the fracture interface as the 

matrix is ripped into particles [163]. However, Wohlleben et al. did not observe protruding CNTs 

from sanding fragments; they attributed this to the reflow behavior of the soft TPU matrix (600% 

elongation at break) around the filler particles during destruction [69]. In our tests, the stronger, 

partially cross-linked PU matrix was expected to limit flow processes, which explains why the 

nanofillers were exposed on the particle surfaces. The hollow structures shown on the surface of 

PU/SiO2 (Figure 2) seemed to be cavities left behind by detached SiO2 nanofillers. The cavity 

sizes (100–200 nm) corresponded roughly to the size of the agglomerates observed in the TEM 

characterization of the raw sample cross-sections (Figure S1). The white spots present on PU/CB 

(Figure 2 and Figure 4) particle surfaces were likely to be individual or agglomerated filler 

particles, and this was also suggested by the higher electron density in comparison to the 

surrounding material. 

The very low release level of filler particles in our tests may be due to the low nanofiller content 

in the composites tested (0.09% w/w). Greater releases of nanofiller particles have been reported 

for dental materials that had nanofiller contents of 12–84.5 wt% [164] and 73–84.5 wt% [165]. 

mailto:wendel.wohlleben@basf.com
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Free CNTs were observed when epoxy composites loaded with 4 wt% CNTs were sanded, but 

they were not when samples with lower loadings were sanded; this was attributed to incomplete 

dispersion [163]. The epoxy-alumina-CNT composites in the dry drilling tests contained 1.3%–

2.2% of nanofillers, and airborne clusters of CNTs were released during the treatment [61]. The 

dispersion and agglomeration levels of the nanofiller particles in the matrix also influence the 

possibility that they will detach during mechanical processes. Poor distribution of fillers in 

composites, as well as their agglomeration, can act as failure points during the destruction 

process. Clearly different release scenarios were observed between samples with poor filler 

dispersion and those showing good distribution [154]; this led the authors to suggest that 

agglomerates of CNTs are more likely to be aerosolized and released than individual CNTs 

bound to the matrix.  

The distinct release scenarios from the three types of nanocomposite may be attributable to 

nanofillers’ properties. The interlocking and reinforcement effects of MWCNTs can reduce 

particle generation and increase particle size. The tensile modulus of the carbon nanotubes is 

much larger than that of a PU matrix. Their long, tube-like geometries may help connect 

different parts of the composite and prevent large-scale destruction. The same effect has been 

observed in the dry machining of nanocomposites: fewer airborne particles were generated from 

a CNT-alumina composite than from the base alumina composite alone [61, 73]. Furthermore, 

PU/CNT composites generated larger fragments than the control matrix [69]. A similar 

strengthening effect was also seen during drilling activities after nanoclay fillers were added to a 

PA6 matrix [155]. During the shredding of nanoclay-reinforced resin plaques, fewer 

nanoparticles were produced than with the standard plaques [166]. In these cases, the nanoclay 

fillers may act in the same way as CNTs do to reinforce the matrix materials, thus altering the 

release scenarios for such composites. The higher particle generation from drilling and sawing 

PU/CB composites may be caused by increased brittleness of the matrix. There is evidence of 

embrittlement when carbon black was added to polymer matrices [167-169]. This effect on 

particle release is similar to that caused by different types of matrix (e.g., harder vs. softer 

matrices), and this is discussed in the following sections. The identification of SiO2 filler 

particles after the sawing tests may be in part due to their stronger agglomeration states. 
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Furthermore, the primary particles exhibited a sphere-like morphology. These characteristics 

increased the probability that the embedded particles would escape from the matrix.   

Effects of process characteristics 

The treatment types (drilling and sawing) and test conditions (e.g., tool geometry and speed) also 

influenced the number and size of the particles released. Highly dynamic processes such as 

sanding, drilling, and grinding are more efficient at destroying solid materials than less dynamic 

processes including abrasion, sawing/scratching, and mechanical shock. Furthermore, processes 

treating larger surface areas on samples are likely to detach more materials from the matrix (e.g., 

sanding). Golanski et al. provided evidence that rotating steel brushes and graving tools were 

more efficient at removing CNTs from hard polymer coating surfaces than other abrasion 

processes [154]. Also, metallic rakes were effective at detaching nanoparticles from fabric 

nanomaterials by scratching. In our tests, sawing may be considered to be a mixed process of 

cutting and polishing, which favors the detachment of filler particles in a way resembling the 

above-mentioned processes. The greater numbers of particles released using faster rotation 

speeds and larger drill bits in our tests can be linked to the higher energy levels existing under 

those conditions. Similar results have been seen during solid core drilling of epoxy-based 

composites [61].          

Treatments featuring a significant generation of heat may thermally decompose the polymer 

matrix and release nanoscale fume particles. This phenomenon is often observed in studies 

investigating high-temperature processes. Particle numbers decreased by 99.9% when a 190°C 

thermodenuder was used, which implies that the nanoscale particles released were likely to have 

been volatile, high-melting-point contents that evaporated due to the heat friction caused by 

grinding [159]. A visible smoke plume was generated during the dry drilling of epoxy 

composites [61]. Volatile organic compounds, peaking at 70 nm diameter, were released during 

the thermal cutting of PS and its derivatives [62]. SEM analysis revealed that most of the 

particles were spherical, and liquid particles were also present.  

Matrix effects  

Studies investigating mechanical processes have commonly revealed irregular shapes and 

significant surface roughness on matrix particles [69, 70, 159, 164, 170]. This was attributed to 
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the ductile nature of polymers that stems from the viscoelastic nature of polymer materials and 

their special molecular arrangement [171]. The deformation occurring under external loads 

results in the molecular chains rearranging themselves into new positions and structures [172]. 

As a consequence, there is a tendency for surfaces to become rough, producing lumps, flakes, or 

layers of materials (Figure 2 and Figure 4).  

The nature of the composite matrix material seems to play an important role in the release 

process. In general, harder materials tend to be more brittle, which means they break more easily 

into small pieces under deformation. There is a propensity for crevices and cracks to form in 

brittle materials [173]. The cross-linked PU used in our test is relatively soft compared to the 

materials used in previously reported studies, such as epoxy [61, 153], PA [155], PVC [154], PS 

[62, 159], and inorganics including bricks [174] or cement paste [170]. The dry drilling of Al2O3-

epoxy-CNT composites resulted in 3.9×10
6
 to 1×10

7
 #/cm

3
 particle concentrations in the 5.6–560 

nm range, using a similar set of drilling speeds (725–1355 rpm) and drill bit diameters (1/4" and 

3/8", = 0.64 and 0.95 cm, respectively) to our study [61]. Thermal cutting of PS-based polymer 

foams led to particle release concentrations in the order of 10
6
 #/cm

3
 for submicron particles. In 

comparison, Wohlleben et al. recorded airborne particle numbers below 1000 #/cm
3
 during 

abrasion tests on thermoplastic PU composites (TPU) [69]; this is close to the values seen in our 

tests. The majority of the particles released in these studies were found to be the matrix materials 

containing nanofillers. The relatively low particle number concentrations obtained in our 

experiments were in line with the suggestion made by Wohlleben et al. that matrix rigidity has a 

greater influence on the properties of the released aerosol than the nanofiller materials do. Softer 

matrices are less likely to release filler particles and tend to produce larger fragments; this was 

observed in several other studies [150, 152, 175].  

 

CONCLUSIONS AND OUTLOOK  

In this study, we compared scenarios involving the release of nano-objects resulting from two 

distinct mechanical processes: drilling and sawing. Automatic, machine drilling released greater 

numbers of particles than manual sawing did. Different drilling parameters modified the intensity 

of particle release by up to several orders of magnitude. Different types of nanofiller did not 

substantially influence the results of the release scenarios. The only significant difference was 
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seen with the PU/CNT samples that produced larger aerosol particles due to the interlocking 

effect of the nanotubes. Free particles of the filler material were not observed. Instead, the filler 

particles were visible as protrusions on the surface of cut PU residues. In comparison, the sawing 

tests generated relatively low particle number concentrations. However, the process produced 

intense heat and, consequently, polymer fumes. Furthermore, the PU/CB samples produced 

higher particle number concentrations for micron-sized particles. Individual nanoparticle 

agglomerates were identified from the sawdust of PU/SiO2 samples.  

 

Although it was possible to detect free SiO2-filler particles from the sawing sessions, the 

majority of the released particles were matrix materials containing the nanofiller. It is 

conceivable that the amount of filler, as well as how well it is distributed within the matrix, plays 

an important role in determining the intensity of particle release during such machining. Future 

studies should further characterize the influences of these two variables. To extrapolate to risk 

assessment, the literature emerging on the hazards posed by the aerosols released during very 

similar drilling or sanding setups also indicates that fragments of polymer matrix with 

protrusions of engineered nanomaterials show no more toxicity than fragments of control 

polymer without nanofiller [69, 170, 176, 177]. 

  

The fact that polymer-fume condensates at the nanoscale were identified in our sawing 

experiments highlights the importance of investigating process-determined release. This is of 

direct relevance to risk because at elevated temperatures the products of the thermal 

decomposition of polymers can lead to medical symptoms such as the influenza-like illness 

known as “polymer fume fever” [178-180]. However, even below thermal release thresholds, 

energy-intensive processes such as drilling have a greater potential to release particles. The same 

principle applies to other process parameters in our drilling tests that are associated with higher 

energy inputs—faster speeds and larger tool geometry—resulting in higher shear rates. This is in 

agreement with previous findings [181]. The possibility that nanofiller particle release is process-

dependent cannot be ruled out. Compared to the control samples, the PU/SiO2 samples generated 

far more particle release in the sawing experiments than in the drilling ones. Therefore, 

processing conditions do indeed seem to be the most important factor in determining particle 

release; they should be considered in detail for the laboratory simulation of particle release 
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phenomena. The present study only tested one matrix material, but the literature indicates that 

the matrix properties themselves are very important determinants of release rates—rates that are 

merely modulated by the embedded nanomaterials. These differences are typically less than one 

order of magnitude and have been systematically explored in the present contribution, paving the 

way for a mechanistic understanding of particle release processes. 

 

SUPPORTING INFORMATION 

More details on the characterization of raw materials, experimental setups, data analysis methods 

(determination of average peak concentrations), reproducibility analysis, and drilling and sawing 

temperature monitoring are available on the website (http://pubs.acs.org).  
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SUPPORTING INFORMATION 

Supporting information F-S1. Visual appearance of the four sample types tested and 

transmission electron microscope (TEM) characterizations of the morphology and distribution of 

the filler particles. The added nanomaterials were well distributed in the PU matrix; only smaller 

agglomerates of a few hundred nanometers were visible in the TEM images.      

 

Figure S1. Photo of tested samples (a, PU; b, PU/SiO2; c, PU/CB; d, PU/MWCNT) and TEM 

images of a cross-section of the blank sample and the samples with the three filler types.  

Supporting information F-S2. The drilling and sawing setups.  
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Figure S2. Photos of the two experimental systems used for testing. Left, automated drilling 

system at BASF; right, manual sawing system at IST. 

Supporting information F-S3. Illustration of the method used to determine the average peak 

concentration for calculating net particle release from a single drilling test.  
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Figure S3. Left: peak period considered for determining average particle number concentration; 

the black line is the 50-second moving average. Right: the assumption of a well-mixed chamber 

was used for calculating total particle release throughout the drilling experiment. 

Supporting information F-S4. Evolution of the particle number concentration and diameter 

during one complete drilling test (containing five drilling events). During the test, particle 

concentration started to rise as soon as drilling began. Figure S4 shows the pattern of particle 

number concentrations and the mean geometric diameters. The readings during the events varied 

considerably, with peaks reaching several thousand particles per cm
3
. Maximum concentrations 

of the moving average reached 600–800 #/cm
3
 shortly after drilling ended. The particle number 

concentration decreased gradually to the background level upon flushing. The evolution of the 

mean particle size is shown in Figure S4 (right). Before the first event, only few data points were 

available because particle size is not provided when the particle number concentration is near the 

device’s lower detection limit (100 #/cm
3
). In a pattern similar to the particle number 

concentration, particle size increased rapidly when drilling started and decreased when the 

chamber was flushed.  

 

Figure S4. Peaks in particle number concentrations (left) and mean geometric diameter (right) in 

the 10–300 nm size range during one complete drilling test involving five drilling events, 

numbered 1–5 (data from DISCmini; material, PU/CNT; Ф/drill, 4 mm; drill speed setting, S5). 

Red lines indicate start and stop times of the five drilling events (each of about 45 seconds). 

Supporting information T-S1. Reproducibility of drilling test results. The particle number 

concentration and mean size obtained from replicate tests for the different materials were 

repeatable with standard deviations of <8% (number) and <15% (diameter), as shown in Table 
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S1. Background particle concentrations were usually around 200 #/cm
3
. The average particle 

number concentrations were 500–600 #/cm
3
. The results were significantly statistically different, 

both in number and size, for PU and PU/CNT. For the other two composite types, the release 

scenarios did not differ from that of the PU control sample.     

Replicate Test 

PU PU/CNT PU/SiO2 PU/CB 

N, 

#/cm
3
 

D, nm 
N, 

#/cm
3
 

D, nm 
N, 

#/cm
3
 

D, nm 
N, 

#/cm
3
 

D, nm 

Background 262 - 288 - 186 - 141 - 

Drill 1 743 63.7 626 101.5 649 85.3 581 59.7 

Drill 2 648 54.1 540 97.7 732 65.6 610 53.1 

Drill 3 651 51.1 577 89.7 651 60.9 573 53.8 

Drill 4 640 71.0 501 94.7 656 60.8 558 55.1 

Drill 5 695 52.0 585 100.5 - - 693 58.8 

Mean 675 58.4 566 96.8 680 68.1 603 56.1 

S.D. 38.8 7.7 42.2 4.3 37.4 10.1 48.0 2.7 

S.D., % 5.74% 13.27% 7.46% 4.42% 5.50% 14.78% 7.95% 4.78% 

Table S1. Particle number concentration, N (#/cm
3
), and geometric mean diameter, D (nm), for 

replicate tests (Ф/drill, 4 mm; drill speed setting, S5). All measurements recorded with a 

DISCmini (size range 10–300 nm)  

Supporting information F-S5. Evolution of particle number concentration during a complete 

sawing test (containing 4 sawing events). The OPC covers a broader size range (into microns), 

whereas the DISCmini only counts particles below 300 nm. The peak number concentrations 

were 4000–6000 #/cm
3
, measured using the OPC, corresponding to the sawing event numbers 1–

4 (Figure S5, left). The peak heights decreased gradually as sawing proceeded. This could be due 

to the fact that the distance between the sawing location to the sampling ports became longer as 

the sample was cut from left to right (sampling tubes were on the left side of the sample). 

Immediately after each event, the particle concentration dropped as a filtered air flushed the 
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compartment. The two different slopes visible during this process are due to the different air 

flows introduced: the first, sampling air flow at 6 L/min and the second, stronger, flushing air 

flow at 50 L/min to rapidly clean out any remaining particles. Figure S5 (right) shows the 

repeated pattern of the particle number concentration, in the smaller size range, with regard to 

the start and end points of the sawing events (red dashed lines). The background particle 

concentration was normally below 10 #/cm
3
. Data points were much denser in the 100 #/cm

3
 

range as soon as sawing started, which indicated that the process was releasing small particles.   

   

Figure S5. Evolution of particle number concentration while sawing the PU/CB nano-composite, 

measured using the OPC (left) and DISCmini (right).   

Supporting information T-S2. Reproducibility of the sawing test results. The precise values of 

particle number concentrations measured by the two devices are summarized in Table S2. The 

standard deviation of the results was generally below 20% for the OPC data, whereas it was 

higher (almost up to 40% for the blank) for the DISCmini data. These large deviations may be 

caused by background particle levels very close to the total particle numbers (30–90 #/cm
3
 

compared to 53–167 #/cm
3
). Nevertheless, such variations were to be expected for a manual 

process and are generally considered acceptable.  

 OPC (250 nm to 32 µm) DISCmini (10–300 nm) 

 Blank CNT SiO2 CB Blank CNT SiO2 CB 

Background 1.2 1.4 20.6 20.0 39.7 36.0 89.2 30.1 

Cut 1 405 1715 540 6045 75.9 101.7 151.5 87.3 
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Cut 2 285 1350 510 5600 70.4 99.2 155.2 76.1 

Cut 3 410 1070 615 5310 40.5 86.3 207.0 73.6 

Cut 4 260 1280 405 4735 27.5 85.6 154.6 71.6 

Cut 5 320 1075 - - 54.3 137.0 - - 

Mean 336.0 1298.0 517.5 5422.5 53.7 102.0 167.0 77.1 

S.D. 68.7 236.1 87.0 549.0 20.2 20.9 26.6 7.0 

S.D., % 20.4% 18.2% 16.8% 10.1% 37.6% 20.5% 16.0% 9.1% 

Table S2. Summary of particle number concentration results for different samples during the 

sawing process. The difference in DISCmini mean particle concentrations for the four sample 

types was significant (p=0.000); pairwise differences were significant for PU-PU/MWCNT 

(p=0.012) and for PU-PU/SiO2 (p=0.000), but not for PU-PU/CB (p=0.626).  

Supporting information F-S6. Temperature evolution of drilling site during the experiment.  

 

Figure S6. Evolution of local temperature against drilling time. 

Supporting information F-S7. Temperature changes for the saw blade during the experiment.  
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Figure S7. Evolution of blade temperature during sawing tests on PU samples.
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Abstract  

For exposure and risk assessment in occupational settings involving engineered nanomaterials 

(ENMs), it is important to understand the mechanisms affecting their release and how those 

mechanisms are influenced by factors such as the ENM itself, the matrix material’s properties, 

and process characteristics. The release of ENMs from a source can result in workplace 

emissions and subsequent worker exposure. The latter is dependent on on-site conditions and 

control methods, such as room size and air flow as well as personal protective measures. This 

review summarizes studies providing information on ENM release in occupational settings, 

during different industrial activities and using various nanomaterials. It also assesses the 

contextual information that was collected — such as the amounts of materials handled, protective 

measures, and measurement strategies — in order to understand which release scenarios can 

result in exposure. Similar types of process activities exhibit similar release patterns in terms of 

particle concentrations and size distributions. High-energy processes such as synthesis, spraying, 

and machining are associated with the release of large numbers of predominantly small-sized 

particles. Low-energy processes, including laboratory handling, cleaning, and industrial bagging 

activities, usually resulted in slight or moderate releases of relatively large agglomerates. The 

present analysis suggests that process-based release potential can be ranked, thus helping to 

prioritize release assessments, which is useful for tiered exposure assessment approaches and 

forguiding the implementation of workplace safety strategies. The contextual information 

provided in the literature was often insufficient to directly link release to exposure. The studies 

that did allow an analysis of these links suggested that significant worker exposure might mainly 

occur when engineering safeguards and personal protection strategies were not carried out as 

recommended.  

Keywords: nanoparticles, emission, grouping, occupational exposure, risk assessment 

Introduction 

Engineered nanomaterials (ENMs) possess different physical and chemical properties than their 

bulk counterparts and, because of this, are used in manufacturing processes for a variety of 

applications [8]. However, during their production and use, ENMs may be released into the 

workplace, resulting in workers’ exposure. Understanding release is important for accurately 
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describing the exposure scenarios that are helpful for risk assessment and management [182], 

which are required under regulatory schemes such as REACH in the EU [183].   

Release can be referred to as the detachment of nanomaterials from a body of powder, a 

suspension, or a solid matrix [184]. This can be expressed as a rate describing the amount of 

material released per unit of time. In workplaces, the release of ENMs can occur throughout their 

entire lifecycle — manufacturing, use, and recycling. Release mechanisms depend on the 

physical state of the material (powder, suspension, or solid) and the amount of energy introduced 

by specific processes. For powders, environmental humidity and the moisture content of the raw 

powder have a significant influence on the release level, as suggested by dustiness studies [142]. 

Liquid suspensions containing ENMs can release nanoparticles from the solution’s surface when 

external energies are applied, such as stirring [185], sonication [43, 185], centrifuging, [186] or 

spraying [185, 187]. The release rate from liquids depends on factors such as the ENM 

concentration and its solubility in the solution. Release from solid matrices is mainly caused by 

the mechanical treatment of nanocomposites, including drilling, sawing, and sanding [61, 72, 

188]. Parameters such as the ENM’s concentration and distribution within the composite matrix 

and the process conditions (e.g., treatment type, temperature, or relative humidity) play 

important roles in determining release levels.        

To prevent or reduce ENM releases, it is important to understand the determinants of release 

related to nanomaterials, the matrix in which they are embedded (if at all), and the process and/or 

activity involved. Tsai et al. [42] reported that handling 100 g of nano-alumina powder resulted 

in a much higher released particle concentrations than handling 15 g. High-energy processes, 

such as pouring, generate more particles than less vigorous processes, such as transferring. 

Johnson et al. [43] found that the sonication of functionalized multi-walled carbon nanotubes 

(MWCNTs) in reconstituted water containing natural organic matter resulted in particle 

concentrations three times higher than sonicating raw MWCNTs in the same medium.  

Material that was detached (i.e., released) from a powder body, a liquid, or a solid matrix can be 

emitted depending on the process specifications and on-site control measures in place. Figure 1 

depicts a typical occupational setting from which ENMs could be released, emitted, and 

transported, resulting in exposure to workers. If the release rate cannot be directly calculated 

from a predefined release mechanism, it may still be possible to estimate it from the information 
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on source concentrations, near-field volume flow rates, and the release start point and duration. 

Some of the released particles might be captured by engineering controls (e.g., ventilation or 

enclosure); the escaped portion, which subsequently disperses into working environments, is 

called emission. Transmission describes the process during which emitted aerosols are 

transported to the immediate receptors, which then results in exposure.   

Amongst the metrics used to characterize the release of nanomaterials, particle number and mass 

concentration are the two most widely used parameters for airborne ENMs in occupational 

settings [124], possibly due to the availability of sampling equipment and mature sampling 

procedures. Such data allow the creation of rankings for the release potential of common 

industrial processes and the study of how release is influenced by factors such as the quantity of 

material needed, how it is treated, the energy levels associated, and variable human factors.  

 

Figure 12. Diagram representing various elements and processes in an occupational exposure 

scenario 

In addition to the characterization of the ENMs released, a comprehensive exposure assessment 

should also include the necessary contextual information. Clark et al. [182] pointed out that the 
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level of relevant detailed information in the existing literature on exposure is often insufficient 

for an in-depth understanding of the situation being studied. Parameters such as ventilation type, 

the personal protective equipment (PPE) used, sampling locations, frequency and duration of 

worker activity, and personal sampling data are not always fully described. This information is 

critical to transform upstream release data into downstream exposure estimates. Only sufficiently 

detailed meta-data will allow the development of exposure scenarios that are valid for risk 

assessment purposes and that can be used for establishing health and safety strategies.          

This paper reviews the information on ENM release and exposure in the scientific literature and 

assesses how they inform us about the related human exposure in workplaces. The availability of 

the contextual information needed for exposure and risk assessment was assessed to identify 

potential gaps in data collection and reporting. The characteristics of released ENMs—including 

number concentration, mean size, and morphology—were compared for different processes 

involved in order to facilitate a general grouping and ranking of release potential. Measurement 

strategies, such as the equipment types and sampling locations used in field studies, were 

evaluated to give a better understanding of release and exposure data. Furthermore, production 

capacities and amounts handled were compared across different activities and materials in order 

to identify processes with a possibility of high occupational exposure. Finally, the types and 

efficiencies of engineering controls were summarized in order to describe the overall level of 

protection for workers in nanotechnology workplaces.  

Method  

Literature collection strategies  

We conducted a systematic review of scientific publications describing real-world measurements 

of airborne ENM release and exposure in industry and research laboratories. The goal was to 

cover a wide range of relevant studies on this topic and describe the current information and 

knowledge about ENM release in workplaces.  

The studies examined were collected from multiple literature sources. As a first step, 26 

publications were identified in the NANEX database. The NANEX project’s goal was to build a 

comprehensive library of occupational exposure scenarios for ENMs throughout their entire 

lifecycle [189]; it includes scientific literature and large surveys which generally contain 
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descriptions of the material, the processes and activities, release levels of airborne nanoparticles, 

and subsequent exposure estimates under specific environments. The literature covered scenarios 

related to the production of ENMs at a research-scale, as well as in industrial settings and 

downstream uses. The information available was a very good fit with the context of our review. 

Thus, the list of literature in the NANEX database was used to target relevant publications.    

In a second step, we searched public online databases such as PUBMED and ScienceDirect. 

Keywords were chosen by analyzing the frequency with which they appeared in the titles of the 

selected NANEX publications. The most common words were release, exposure, workplace(s), 

airborne, nanoparticle(s), and characterizations. Combinations of these terms were then used in 

the searches. The names of specific materials were also used—such as titanium dioxide (TiO2), 

carbon nanotubes (CNTs), and silver (Ag)—to ensure the completeness of the search. Articles 

were screened and then retained if they fulfilled the following three conditions: 1) they at least 

partly addressed release associated with airborne ENMs; 2) their measurements were conducted 

in occupational settings (industrial or research facilities); 3) they comprised quantitative 

descriptions of ENM release scenarios, such as particle number or mass concentrations. All the 

collected articles were written in English..  

Additional potentially relevant publications were identified using the related citations function, 

as suggested by the online databases when searching for specific items. This is usually a very 

efficient method for quickly identifying target articles.  

Information processing   

An Excel spreadsheet was used to store the information extracted from the literature. The 

following key sub-categories were included: activity description, contextual information (e.g., 

engineering controls, PPEs, work duration and frequency, room dimensions), information on the 

bulk material, measurement strategy (e.g., equipment types, sampling distance to source, 

location),  and airborne particle characterization (e.g., morphology, chemical composition, 

particle number and mass concentrations, diameter, surface area and functionality). 

The present review specifically assessed the release characteristics of different industrial and 

laboratory processes. This involved evaluating the completeness of the information in activity 

descriptions, especially the process parameters that influence release scenarios. It also looked at 
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whether the information collected would allow a calculation of actual release rates, such as the 

sampling distance to source and ventilation rates. Finally, the review considered whether 

information on a material’s properties and the quantities treated in a specific process were 

sufficiently detailed to inform us about the characteristics of released particles, including 

concentration and size distribution.       

Attention was also given to the description of the general situation of worker exposure to ENMs 

in relation to release at nanotechnology workplaces. Exposure-related background information 

was essential for this purpose. We therefore identified the reported types and efficiencies of 

safety control measures used to limit ENM emission rates into the working environment, as well 

as any PPE that might influence a worker’s level of exposure in the breathing zone. Additional 

data collected included production capacities and the amounts of raw materials handled, the 

frequency and duration of workers’ activities, and ambient conditions such as relative humidity, 

the room volume, and any other information that might help to understand aerosol dispersion 

behaviors.   

To ensure that the information extraction process was carried out in a systematic and repeatable 

manner, one person first coded all the information. Subsets of reference articles were then coded 

by several co-authors with the same coding rules. This control coding resulted in an almost 

perfect match.         

Linking release to exposure: literature analysis 

Literature identified in the review  

The articles collected and reviewed are summarized in Table S1 (Supplementary information, 

SI) by year, type (research or industry), material and activity. The years of publication range 

from 2004 to 2013. This represents the period when nanotechnologies were developing rapidly, 

and there was increased reporting on issues regarding exposure to ENMs. Most of the studies 

focused on exposure assessments reporting contaminant concentrations in workplace air. Thirty 

percent of publications investigated laboratory activities, 60% looked at industrial processes, and 

the remaining 10% investigated both. A large part of this literature focused on exposure to 

carbonaceous materials, followed by various metals and metal oxides. In some cases, the 

information provided failed to indicate the material type. Activity types included synthesis, 
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processing, handling, cleaning, machining, and others, during different phases of ENM 

lifecycles.  

Information availability  

We first assessed which of the elements considered as important for linking release to 

exposure—when developing exposure scenarios—were available in the articles selected. Figure 

13 shows how available each of these elements of information was in the publications reviewed. 

It is divided into three sub-groups: contextual information, measurement strategy, and 

characterizations.  

 

Figure 13. Summary of the percentage of articles providing essential elements of release- and 

exposure-relevant information 

Types of engineering controls were frequently provided as contextual information. In contrast, 

only about half of the articles described the quantity of material being treated, and only about a 

third indicated the PPE used, the volume of the room involved, and the frequency and duration of 

the activity. As part of measurement strategies, at-source and area measurements were normally 

conducted for release and background characterizations. The sampling duration and distance to 

the source were usually given in the description of measurement methods. However, personal 
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breathing-zone data or simulations were only available in less than half of the publications. For 

particle characterizations, most studies provided number- and mass-based concentrations, size 

distributions, and a particle morphology analysis. The chemical compositions of airborne ENM 

samples were less frequently reported. Other physical and chemical properties—such as surface 

area, surface reactivity, and functionality—were less often or rarely characterized. Due to readily 

available equipment and mature, established procedures, the characterization of particle number 

and mass concentrations were relatively easy to carry out. For other metrics, such as surface area 

and coating type, collecting suitable data might have been difficult due to a lack of reliable 

equipment for on-line or off-line analysis of these properties.            

Activities and released materials  

The industrial processes and laboratory activities identified were investigated for their potential 

to release airborne ENMs. They were grouped by the nature of the processes and activities and 

the types of particles identified in them. Figure 14 (left) shows the percentage of publications for 

each category of activity. Collecting and sorting materials during production were the most 

commonly described activities. The most frequently assessed groups of processes are further 

described in Table 1. Figure 14 (right) shows the fractions of release and exposure literature that 

contains each type of nanomaterial listed. In total, 43 materials were identified. CNTs were the 

most frequently investigated, followed by TiO2, Ag, iron oxides, carbon black, carbon fibers, 

aluminum oxide, silicon oxide, and fullerenes. A series of studies also described types of 

unexpectedly released particles, such as plastic materials generated from hot-sealing collection 

bags during packaging [38] and nanoscale particles emitted by forklifts in warehouses [185, 190-

192]. 

Table 1. Types of activities most often described as causing airborne ENM release, together with 

typical examples 

Activity 

type  
Examples from the literature review 

Collecting 

and sorting 

during 

Collecting end-product materials from chemical synthesis [46]; batch collection by 

industrial cyclone [193]; emptying and tipping powder materials from bucket to 

bucket [40]; scooping spilt materials off a table [40]; opening a furnace and 
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ENM 

productions 

transferring materials to vials [185]; manually loading and unloading trays [185]; 

dumping materials into a mixing tank [185]; detaching and removing CNTs from 

growth substrate using a razor blade [39]. 

Physical 

/chemical 

synthesis 

Gas-phase production of metal-based nanoparticles [194]; flame spray pyrolysis 

technique (FSP) [195, 196]; induced coupled plasma with electric atomizer [197]; 

reaction collection [46]; electric arc reaction [198]; hot-wall reaction[38]; 

combustion reaction [75]; chemical vapor deposition [37, 39, 59, 199, 200]. 

Weighing 

/mixing 

Handling nanopowders in an exhaust hood [196]; transferring from storage 

container to a balance [43]; weighing inside a fume hood[201]; mixing nanofibers 

with solvents [201]. 

Machining 

/abrasion 

Wet-sawing nanocomposites [185]; cutting and winding coated substrate during 

electrospinning deposition onto a cellulose substrate [185]; band-sawing 

nanocomposites [73]; cutting composites using a water-cooled, dust-suppressed 

table saw [201]; chopping extrude composites [201]; fettling (removal of excess 

molding materials by sawing) [202].  

Cleaning 

/maintenan

ce   

Cleaning a pyrolysis system [196]; cleaning an enclosure after laser ablation 

synthesis [40]; vacuum cleaning an enclosure in High-Pressure CO Conversion 

[40]; vacuum cleaning after creating and spray-drying slurries [185]; reactor 

cleanout [185]; cleaning/brushing down a plasma torch in a radio-frequency 

induction plasma reactor [185]; cleaning-up spilled materials from dumping 

operations [48] 

Others  Spraying and filtration of CNT solutions [59]; spraying solution onto a bulk 

absorbent [185]; changing a spray dryer drum [185]; spraying a suspension [187]; 

flame-spraying for surface coating and modification [203]; sonicating materials 

with different surface coatings in a hood [185]; sonication in an unventilated 

enclosure [43]; pelletizing and bagging products in a warehouse [204]. 
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Figure 14. Proportions of activity types (left) and materials (right) identified from the literature 

review 

Release or near field/workplace area particle characteristics 

When describing their release scenarios, most studies provided particle number and mass 

concentrations and at least some information about size distribution. Background measurements 

were frequently used as references. Figure 14 (SI) provides an overview of metrics used for 

describing different activities and process types, as well as the measurement results for airborne 

particle concentrations and sizes. Number concentrations were mostly reported in the size range 

below 1 μm, usually obtained by SMPS or FMPS, and often presented as continuous curves 

showing concentration evolution (changes) over time. Mass concentrations were reported in the 

fine (< 4 μm or < 2.5 μm, depending on the convention applied) or respirable particle (<10 μm) 

size ranges. For non-continuous actions, such as handling [59] and cleaning [40], peak ranges 

were frequently used to document the release. Mass concentrations were usually values averaged 

over certain periods of time. Figure 4 ranks the near-source number concentrations by different 

production and handling activities. Correspondingly, particle size information, grouped by 

different processes, is shown in Figure 5.       

Several studies investigated airborne ENM releases from laboratory sonication activities. The 

surface properties of sonicated materials seemed to strongly influence the release process. 

Sonication of raw MWCNTs in de-ionized water resulted in 2,200–2,800 particles/cm
3
 below 1 

um in the air above the water bath, whereas the same procedure done with functionalized 

MWCNTs (hydroxyl group addition) resulted in only about one third of this value [185]. 
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However, another study showed a higher release of functionalized CNTs (158 #/cm
3
) in water 

containing natural organic matter, than normal CNTs (56 #/cm
3
) in the same media [43]. 

Furthermore, sonicating carbon black led to five times more particles being released than 

sonicating fullerenes in de-ionized water. Lee et al. reported that fine particles between 120–300 

nm were released (at 2–3 times the background level) during the ultrasonic dispersion of 

MWCNTs in a fume hood, which was differentiated from fugitive particles (< 100 nm) generated 

by other processes [59].  

Cleaning was an activity often associated with the release of airborne particles in large sizes. 

Cleaning a pyrolysis system prior to operation resulted in a 10-fold increase in the airborne mass 

concentration, but no distinct change in particle numbers [196]. Vacuum cleaning following the 

chemical synthesis of single-walled carbon nanotubes (SWCNTs) led to the release of very large 

microsized agglomerates into the air [108]. In another case, where vacuum cleaners without 

HEPA filters were used to clean up after the creation of titanium slurries during spray drying, 10- 

to 50-fold increases in number concentrations were measured for particles in the 300–1000 nm 

range [185]. In a clean-out activity following the gas-phase condensation manufacture of silver 

nanoparticles, five times more particles were measured in the 500–1000 nm range [185]. 

Similarly, cleaning the filter chamber and cyclone of a radio-frequency induction plasma reactor 

for aluminum production was associated with 15,580 p/cm
3
 of air, with more 

   



 
 

125 
 

Figure 4. Near-source airborne ENM particle concentrations in workplaces, ranked by 

production and handling activities. Horizontal axis numbers refer to the reference list of articles 

in the supplementary information (SI). 

 

Figure 5. Diameter of airborne ENM particles released from production and handling activities 

(modal size or estimation from transmission electron microscopy analysis). Horizontal axis 

numbers refer to the reference list of articles in the supplementary information (SI).   

than ten times more particles in the 300–1000 nm range [185]. Furthermore, sweeping up spilled 

materials from a dumping operation also slightly increased the mass concentration of respirable 

particles [205].   

Industrial packaging and bagging activities often released large ENM particle agglomerates into 

the air. Kuhlbusch et al. reported a four- to eight-fold increase of PM10 mass concentrations, 

mostly for particles larger than 400 nm, during the bagging of carbon black [190]. In another 

study investigating the same material, the number concentration was elevated for particles > 100 

nm [191]. During the removal of fullerenes from a storage tank, airborne particles larger than 

1000 nm were identified [47]: the fullerenes existed mainly as aggregates and agglomerates in 

the air. TiO2 aerosols were found to be released at diameters up to 6.0 μm during packing [192]. 
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Bagging carbon nanofiber end-products released 230–3,130 carbon nanofiber p/cm
3
 of air [205]. 

Area sampling resulted in a 0.5–1.1 mg/m
3
 mass concentration, mainly made up of carbon 

nanofibers.   

Weighing and mixing processes usually resulted in only minor or moderate increases in airborne 

ENM particle concentrations. No significant releases were recorded during the handling of 

synthetic ceramic nanopowders [196], transferring carbonaceous materials [43], or the laboratory 

handling of metal oxides [187]. During the weighing and transfer of different nanomaterials, 

release scenarios varied [43]. Handling raw MWCNTs and fullerenes generated much higher 

particle counts than the background, whereas treating functionalized MWCNTs and carbon back 

generated no significant release. In contrast, handling nanofibers generated particle 

concentrations up to 15,000 p/cm
3
, which was six to twenty times above the background level 

[196].  

Physical and chemical synthesis were associated with potential releases of airborne ENM 

particles in smaller sizes. No significant release was observed in comparison to background 

levels during the experimental-scale production of nanofibers [196], pyrolysis production of 

TiO2 [196], CVD growth of CNTs [39] and MWCNTs [199], and synthesis of Ag by mixing 

sodium citrate with silver nitrate [206]. In contrast, one study showed significant at-source 

releases from the CVD production of CNTs at sizes below 100 nm (probably carbonaceous by-

products) and from 7–200 nm [207]; using higher injection temperatures released more particles 

of reduced diameters (from 20–200 to 7–90 nm). Synthesis of TiO2 generated noticeable particle 

concentrations with a bimodal distribution (< 30 nm and 70–100 nm) [206], whereas induced-

coupled-plasma production of Ag resulted in significant releases in the 20–30 nm range. Flame 

synthesis of metal oxides registered particle emissions in the 112–185 nm and 24–29 nm ranges, 

depending on the materials produced. Process parameters, such as filter-to-flame distance, 

precursor-to-oxygen ratio, and flame numbers appeared to influence the release scenarios [195]. 

For industrial processes, the reaction-collection of carbon black and the electric arc reaction of 

other carbonaceous materials mostly released particles in the 10–100 nm range [46, 198]. Gas-

phase production of metal-based nanoparticles resulted in submicron particle releases at modes 

in the 160–200 nm range [194]. In vapor grown synthesis of carbon nanofibers, the nanofibers 

were found to be the dominant source of elementary carbon, but iron-rich soot-like particles at 20 
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nm were also identified [200]. Combustion reaction processes were shown to emit particles 

smaller than 300 nm [75]. In all these studies, the mass concentrations measured were often low, 

which indicates that mainly small particles were released.  

 

Machining and abrasion of nanocomposites were often shown to release matrix materials with 

embedded ENM fillers. Furthermore, the release mechanisms varied by process type, parameters, 

and matrix as well as the filler materials. Wet-sawing of carbon nanofiber composites showed 

high particle release in terms of mass but not in numbers [185, 208]. A dry process was 

associated with a much lower particle emission than a wet process using the same materials 

[153]. In wet treatments, it is likely that the detected nanoscale particles were primarily water 

droplets. Comparing different materials, alumina fiber/CNT composites showed the least particle 

release, whereas alumina composites resulted in elevated particle generation. The thickness of 

the composite layer also affected particle release. No primary CNT structures or bundles were 

identified in the released particles.   

 

Spraying process mostly led to high levels of airborne particles of very small sizes. In flame-

spray processes used for coating and the surface modification of materials, the highest releases 

(160,000–210,000 p/cm
3
) were seen during the active phases of the process (flame on, precursor 

on) [203]. The particle size distribution showed multiple modes in the 10–454 nm range. 

Changing spray dryer drum also released high airborne concentrations of spray materials [185]. 

One extreme case reported concentrations up to 18,000,000 p/cm
3
 at 54 nm in the personal 

breathing zone [187]. Spraying suspensions and pyro silanization registered high releases in the 

55–99 nm range. 

 

Other sources of nanosized particles were reported for all types of activities. Forklift trucks were 

a common source of ultrafine particles (< 100 nm) in activities such as warehouse bagging and 

packaging of carbonaceous materials [190, 191, 209] and TiO2 pigment [192]. Vacuum cleaners 

were also found to release nanoscale particles [47], especially when no HEPA filter was installed 

[185]. Other combustion sources, such as butane gas heaters [190], gas-fired radiant heaters 

[205], and hot-sealing plastic bags [38], were also found to release very small particles. 

Additionally, a rotary-type oil vacuum pump was identified as a source of 300 nm particles [199]. 
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The studies were able to distinguish these secondary releases of nanoscale particles by 

comparing the aerosol profiles (size and concentration) obtained with and without their potential 

sources. Although toxicological studies focus mostly on ENMs, it might be of equal importance 

to characterize the accidentally released nanoparticles in workplaces.  

In most of the cases, released airborne ENMs were agglomerates or aggregates, often resulting in 

complex particle morphologies, such as loose, porous clusters of metal oxides particles [185], 

densely packed Ag particles [210], entangled CNFs [196, 208] and chain-like structures of CNTs 

[207]. Only one study reported individual Ag vapor condensate particles [211].  

The results from ENM release scenarios seemed to be largely determined by process energy. 

High energy processes such as synthesis, spraying, and machining released large amounts of 

airborne ENM particles in the nanometer range. Low energy processes including laboratory 

handling, packing and bagging on production lines, and cleaning usually resulted in slight or 

moderate increases in ENM particle concentrations in the air. The particles released by these 

processes were often large agglomerates with sizes up to several micrometers. Furthermore, 

release mechanisms were found to be influenced by process parameters, material properties, and 

environmental conditions. These included, for example, material quantities, ambient humidity 

[42], and surface functionality [185] during material handling. Smaller quantities, hydrophilic 

surfaces, and higher humidity seemed to reduce particle concentrations. During sonication, the 

solubility of materials in the liquid media played an important role [43]. More soluble materials 

had lower chances of escaping from the solution and becoming airborne. During physical and 

chemical synthesis, reactor setup and process temperature both affected release levels [195]. 

Dynamic reaction processes and poor filtration resulted in higher ENM particle emissions. 

During the mechanical processing of nanocomposites, the filler type, its distribution in the matrix, 

and the treatment conditions (dry or wet) modified the release scenario [153, 185, 208]. Lower 

filler contents and humid atmospheres helped reduce particle emissions and personal exposure 

during processing.  

Emission rate calculations 

Very few of the studies reviewed estimated ENM release rates for the processes that they 

investigated. Nevertheless, a few scenarios were identified where a rough estimation of release 
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rates might be possible because approximate room size and air exchange information had been 

provided together with the process characteristics and ENM particle concentrations over time. In 

one laboratory study in which only basic mechanical ventilation was used, the rate of room air 

change (or air changes per hour, ACH) and the room’s dimensions were given [153]. In this case, 

the release rate can be estimated by integrating particle concentrations over time and the volume 

flow rate of the air in the room. The average particle concentration in the room can be calculated 

from source or area measurements, taking into account aerosol transport and diffusion 

mechanisms (e.g., near- and far-field models). In another study, investigating a laboratory 

synthesis process, the room’s ACH was known, and the ENM emission rate was estimated from 

the average particle concentration using a one-box model assuming homogeneously mixed room 

air [36]. On the other hand, if natural ventilation is used [48, 192, 197], such as windows and 

doors, the room’s ACH can be estimated from the ambient environmental conditions (e.g., wind 

speed, open surface area) assuming normal conditions as described in technical manuals, such as 

the EPA Exposure Factors Handbook (EPA 2011) or other literature [212, 213].    

Measurement strategy  

The selected studies were also analyzed with regard to the types of measurement devices used, 

their detection limits, and the size range they could give information about for specific scenarios. 

Scanning mobility particle sizers (SMPS) were the most frequently used equipment for 

measuring particle numbers and size distributions below 1 µm. A Nano-SMPS is sometimes used 

to obtain a greater size resolution below 100 nm [40]. Other frequently used devices were: the 

fast mobility particle sizer (FMPS), which was found to be particularly useful in environments 

with rapidly changing particle concentrations [73, 192]; optical devices such as the aerodynamic 

particle sizer (APS, size range up to 32 µm) were used for micro-sized particles [190, 196]; and 

filters were often used to collect airborne samples in order to assess mass concentrations 

gravimetrically [185, 199, 214]. A few studies also assessed the surface area of particles [38, 73, 

209]. Morphological and elemental analyses were mostly done using electron microscopes [37, 

185, 208, 215].         

Sampling locations were assessed in order to understand whether source or near-field 

measurements had been carried out and whether personal breathing zone concentrations—which 

could provide information about particle transmission from sources to receptors—had been 
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measured. The review showed that source sampling had normally been conducted as close as 

possible to the potential emission points. For handling nanopowders under fume hoods, the 

distance was in the centimeter range [42, 187]. For flame and flame-spray production, the 

measurement position was in several tens of centimeters range or at the nearest opening [38, 198, 

203, 216] . For large-scale manufacturing and processing activities, typical sampling locations 

were a few meters away from the suspected emission sources [47, 185, 191, 197, 199, 217]. 

Personal exposure characterization was usually conducted near workers [40, 196], sometimes 

even next to their noses [42], whereas others measured working positions near the assumed 

breathing zone of sitting or standing workers [36, 37, 194, 198, 204]. Filter samplers were mostly 

clipped to workers' collars, and personal nephelometers were attached to their belts [214]. Area 

sampling was used either as a background reference or to estimate the general exposure levels in 

working areas. Background reference levels were collected in production areas away from the 

immediate vicinity of the processes [37, 42, 43, 185, 198], or even outdoors [200]. In order to 

monitor air quality in normal working areas, near field (2.5 m) and far field (7.8 m) 

concentrations were measured [36]. Maintenance areas and conference rooms were sometimes 

monitored as well [200]. 

ENM production capacities and quantities handled 

The quantities of ENMs being handled varied from a few milligrams to many tons per year. 

Table 2 gives an overview on the quantities involved in nanomaterial production and handling in 

research laboratories and in industry. The production of metals and metal oxides in research 

laboratories was mostly in the range of grams to kilograms. For carbonaceous materials (CNTs, 

carbon nanofibers, carbon nanopearls), production was often limited to just a few milligrams. In 

contrast, mass production by industrial manufacturers often ranged from kilograms per batch to 

tons per year. In research environments, the amounts of materials handled were also significantly 

lower than those in large-scale production facilities. The quantities treated were usually in the 

milligram range for activities such as weighing [185] and sonication [43]. For common materials, 

e.g., alumina powder, up to hundreds of grams could be handled for different purposes [42]. In 

industrial settings, normal handling activities such as end-product collection, packaging, and 

bagging of materials were in the same ranges as those seen for the manufacture of these 

nanomaterials. The largest quantities of novel nanomaterials were reported for titanium dioxide 
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powders, which were processed in kilograms per minutes [193] and bagged in 25–800 kg batches 

[192]. Traditional materials subject to huge demand, such as CaCO3 and carbon black, could be 

handled in quantities as much as 60 tons per day [191].    

Table 2. Information on ENM production capacities and amounts handled, from the literature 

Production (laboratory) Production (industry) 
Handling (laboratory)—

weighing/mixing/sonication 

Handling (industry) —collecting, 

spraying, mixing, bagging 

Material Quantity Material Quantity Material Quantity Material Quantity 

        

TiO2 20 g/b [206] Silicon kg/d[38] Alumina 15/100g[42] TiO2 1 kg/min[193] 

M. oxides  6 g/d[36] TiO2 5–10 kg/b 

[185] 

TiO2, CuO, Ag mg/b[185] TiO2    25 kg/800 kg bag[192] 

Selenide g/b[185] Mn/Ag/Co/Fe kg/b[216] Full./MWCNT 4–200 

mg[185] 

CaCO3 22.5 ton/d[191] 

Al kg/b[185] Catalysts 1 kg/d[216] CNTs 4–200 mg[43] Silica-iron kg/b[185] 

Ag  1–5 kg/d[197] Metal oxides 1 kg/d[218] CNMs 100 mg/L[43] SiO2 40 kg/600 kg/b[191] 

MWCNT 1–2 

mg/b[185] 

Ag 1200 kg/b[211]   Fullerene 40 ton/y[47] 

CBF 500 

mg/b[185] 

CBF 10–20 

kg/s[185] 

  CNF 7 kg/bag [48] 

CBNPs* 200 mg/b. 

[185] 

CNF 14.1 

ton/y[200] 

  CB 60 ton/d[191] 

  Silica aerogel 0.5 ton/y[59]     

    *CBF, carbon nanofiber; CBNPs; carbon nanopearls; Full.: fullerenes; CNMs, carbon based 

nanomaterials; b, batch; s, shift; d, day; m, month; y, year  

Ventilation and PPE 

Engineering control systems and PPE play important roles in preventing or reducing personal 

exposure to hazardous substances in workplaces. The engineering controls described in the 

reviewed literature can be broadly grouped into four categories:  

a. Laboratory fume hoods 

b. Local exhaust ventilation (LEV) systems 

c. Process-specific enclosures 

d. General/centralized ventilation and natural ventilation 

Typical PPE includes laboratory clothes, a full-body protection suit, glasses, gloves, and a mask.  
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Laboratory fume hoods were commonly used when handling small quantities of potentially 

hazardous materials for activities such as weighing, mixing, transferring [201], sonication [59], 

and creating solutions [185]. They were also used for experimental-scale physical [198] and 

chemical synthesis [36, 37, 42, 197]. The design and use of laboratory hoods has been greatly 

influenced their effectiveness at removing released particles: constant velocity hoods were found 

to work best during the pouring and transferring of nanopowders, followed by bypass 

(compensating) hoods, and then conventional hood [42].  

LEV systems were often employed in industrial environments for controlling particle 

concentrations at their sources, such as furnaces [214], bagging machines, production lines [187], 

and during reactor cleanout processes [216]. The efficiency of LEV has been described. While 

cleaning up after a gas phase condensation of silver, particle release in the 500–1000 nm size 

range increased by five times. When a LEV system was used, the particle concentration fell to 

the background level [185]. During another cleaning process involving nanoscale metal catalytic 

materials, a properly maintained LEV system was shown to reduce particle mass concentration 

by 75% to 96% (mean: 88%), with a similar efficiency for number concentrations [216]. 

Enclosures of both small and large volumes were seen in fixed installations. These included a 

ventilated chamber for the electrospinning deposition of nanofibers [185], a positive-pressure 

glove box during the synthesis and manipulation of quantum dots [185], and a ventilated 

chamber for spraying a solution, followed by fiberization of absorbent material [185]. Distinct 

differences in particle concentrations were observed inside and outside such enclosures. One 

aerosol enclosure chamber significantly reduced particle concentrations during the collection of 

end products using an industrial cyclone [193]. Enclosing and ventilating the furnace during the 

production of multi-walled carbon nanotubes (MWCNTs) using chemical vapor deposition 

(CVD), minimized workers’ exposure down to non-detectable levels [199]. In a spraying process, 

particle emission was shown to be much lower outside the spray enclosure than inside [185]. 

During flame spraying, average particle number and mass concentrations were 6–46 and 5 times 

lower, respectively, when a protective enclosure was installed [203]. Discussions on the 

efficiency of engineering controls can also be found in other studies [46, 75, 199, 206].    
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Centralized mechanical ventilation and natural ventilation have both been used in large-volume 

workplaces—such as warehouses and manufacturing areas—in order to help reduce particle 

concentrations. Rooftop exhaust fans were often seen above production lines [216] where large-

scale processing activities such as drying [185], milling, spraying and blending [199], bagging, 

and packaging [38, 47] were taking place.  

PPE was commonly used during material synthesis [216] and handling [59], cleaning, and the 

mechanical treatment of nanocomposites [185]. The equipment types included gloves, wrist-to-

elbow cotton arm covers, full-body Tyvek suits, and full-face positive-pressure airline respirators 

[216], skin protection, half masks [59], shoe covers, and particulate respirators [185]. In a study 

of how well 3M FFP2/FFP3 and dräger 680 (FFP3) masks filtered 200 nm metal-based 

nanoparticles resulting from gas-phase production, they retained between 96.66% (FFP2) and 

99.99% (dräger) of the number concentration of particles, respectively, under production 

conditions [194]. 

Limitations of the literature to date and suggestions for improvements 

This review found that ENM release characteristics could be grouped by activity type. Process 

characteristics, such as energy input and system parameters, influenced release levels. The 

information derived from this analysis provides a good qualitative understanding of the release 

mechanisms from different activities and processes. However, quantitative determinations of 

release and exposure remain difficult to achieve. This could be significantly improved by 

collecting and providing sufficient contextual information.    

The literature reviewed in this study contained various types of ENMs in both industrial and 

laboratory settings. This enabled us to establish a preliminary ranking for nanoparticle release 

potentials, which could, for example, be used to define priorities for ENM release and 

occupational exposure assessments. It could also become a guide for the definition of 

precautionary measures. In our review, release levels and characteristics were comparable within 

the different types of defined groups of processes; they seemed to be linked to the energy levels 

associated. Understanding the relationships between specific process parameters and release 

levels—such as system setups, reaction temperatures, environmental humidity, and material 

properties—could help to prevent significant releases through safe-by-design approaches. 
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Morphological analyses showed that most of the ENM particles released were in an 

agglomerated state, which is important to bear in mind for an understanding of their potential 

impacts on human health. However, it is possible that these agglomerates are later broken up into 

smaller or primary nanoparticles. Studies have shown a possibility for the deagglomeration for 

nanoparticle agglomerates in the human respiratory system [63, 64], or when the particles are 

subject to external forces [65, 67, 101]. Therefore, in the future, information about the stability of 

nanoparticle agglomerates may be needed, together with the size information, when 

characterizing human exposure to ENMs and the risks associated.  

Most of the studies assessed focused on the characterization of the released particles’ properties 

close to their source. Only a few of them also provided relevant contextual information for 

estimating short-term and long-term personal exposure. Often, missing information included the 

properties and amounts of raw materials handled; this would provide information about the 

material’s dustiness and the maximum possible release levels in subsequent exposure estimations. 

Furthermore, there was little information available that would allow estimations of exposure 

duration and frequency (e.g., hours/day, days/month, months/year)—data needed to estimate the 

total exposure dose and its effects of accumulating exposure over the long run. Unfortunately, 

information useful for an understanding of release was often missing, for example, information 

on the volume of the workplace, which provides the basis for simulating the potential 

distribution behavior of released aerosol particles. The same information would permit an 

estimation of exposure levels in general working areas, which are not often measured. Clark et al. 

[182] made a detailed discussion of the limitations of data reporting in exposure assessments and 

gave recommendations for future methodological improvements. We also recommend that 

release studies include the collection of exposure-relevant data so that they can have an even 

better impact and contribution to our understanding of exposure to airborne ENMs. 

One significant limitation of the literature to date on airborne ENM release is that it has rarely 

provided either particle release rates or the contextual data that would allow an estimation of 

those rates. Most studies only provided near-source concentrations together with sampling 

distances. Few provided proxies for the near-field flow rate, such as the ventilation rates of local 

exhaust controls. Thus, the particle concentrations reported in this review are merely indicative 

of the release potential of the various processes analyzed: they cannot be interpreted 
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mechanistically as actual release levels. Use of a harmonized data collection strategy in future 

studies may facilitate the assessment of the real release rates of the processes concerned. There is 

also an opportunity to develop better data collection methods in measurement campaigns. For 

example, personal exposure levels (breathing zone) were rarely assessed, though this information 

would allow a validation of models that estimate workers’ exposure doses from the source 

concentration and include physical and contextual parameters. Only a few studies have included 

data collection that has improved our understanding of particle transmission and dispersion in 

real world situations, although this would be useful for constructing particle distribution maps.  

Another important limitation—one that is relevant to regulators and risk managers—is that the 

literature reviewed mainly covered the production and use phases of ENM lifecycles. There was 

very limited information available on the end-of-life treatment of ENMs at the time the literature 

was collected. However, these release and exposure scenarios are also important for making an 

overall risk assessment of ENMs. More recently published studies have started to address this 

data gap. For example, Massari et al. [219] looked at the behavior of TiO2 nanoparticles during 

the incineration of solid paint waste. Reijnders [220] discussed safety issues during the recycling 

of materials containing persistent inorganic and carbon nanoparticles. Such information allows 

the current gaps in knowledge to be filled and will complete the data needed for doing risk 

assessments of ENMs throughout their lifecycles. 

A preliminary ranking of the release potential for airborne ENMs could be used to develop a 

tiered approach to release assessment, resembling the concern-driven approaches used in 

exposure, hazard, and risk assessments [54]. The first step would be a qualitative assessment of 

the concern levels for specific processes from read-across, by assessing the possibilities for 

significant exposure and hazard. The second step could then be a quantitative evaluation (e.g., 

concentration, size, or chemical composition) of field measurements or laboratory simulations. 

The third step could be a systematic and comprehensive characterization of airborne ENM 

release scenarios from a process, using different conditions and parameters. This approach would 

allow the identification of the most critical or at-risk occupational activities in a cost-effective 

manner. 

 



 
 

136 
 

Acknowledgement 

The research leading to these results has received funding from the European Research Council 

under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant 

Agreement n.263215. 

*Citations in this article are compiled in the complete reference list at the end of this report.



 
 

137 
 

Supplementary Information (SI) 

 

Table S3. Types of facilities, particle types and processes described in the review of literature 

from 2004 to 20 

R, research laboratory(ies); I, industrial setting(s) 

CNF, carbon nanofiber; NF, nanofiber; CB, carbon black; Ful., fullerenes; SWCNT, single-walled carbon nanotubes; MWCNT, multi-walled 
carbon nanotubes. Synthesis includes physical or chemical synthesis; handling includes transferring, weighing, mixing, collecting, sorting, and 

sonication; processing includes feeding, finishing, drying, spraying, filtering, packing, and bagging.  

Year  Facility  ENMs Activity type 

2004 [40, 217] R/I [40]; I [217] SWCNT [40]; CB [217] Cleaning/handling [40]; Processing [217] 

2006 [46, 221, 

222] 

I [46, 221, 222] CB [46]; Unknown [221, 222] Synthesis/handling [46]; Other [221, 222] 

2007[201] R [201] CNF [201] Machining/handling[201] 

2008[39, 47, 194, 

198, 199, 216] 

I [47, 194, 198, 

216]; R[[39, 
199] 

CNT [39]; MWCNT [199] ; Carbonaceous [198]; 

Fullerences [47]; Metal-based [194, 216] 

Synthesis [194, 198]; Synthesis/handling 

[39, 199]; Cleaning [216]; Cleaning/handling 
[47] 

2009[36, 37, 42, 

73, 187, 196, 202, 
215, 223] 

R [36, 37, 42, 

73, 187, 196];  
I [202, 215, 223] 

S/M-WCNT [37]; TiO2, NF [196]; Ag [215]; 

Alumina, CNT [73]; Alumina, Ag [42]; ITO, ZnO 
[187]; Lithium titanate [223]; Metal oxides [36]; 

Unknown [202] 

Synthesis [36, 37, 223] 

Synthesis/handing/cleaning [196]; Handling 
[42, 187, 215]; Processing [202]; Machining 

[73] 

2010[43, 48, 59, 
185, 192, 204, 214, 

218] 

R [43];  
I [48, 192, 204, 

214, 218]; 

R/I[59, 185] 

MWCNT, metals [59]; Fullerences, CNT, CB [43, 
204]; CNF [48]; TiO2 [192]; TiO2, Ag [185, 214]; 

Metal oxides [218] 

Synthesis/handling [59]; Handling [43, 192]; 
Cleaning [218]; Cleaning/handling [48]; 

Processing [204, 214]; Machining/cleaning 

[185] 
2011[75, 191, 197, 

200] 

I [75, 191, 200];  

R/I [197] 

CNF [200]; TiO2, Ag [197]; SiO2, CB, CaCO3 [191]; 

Metal oxides [75] 

Synthesis [200]; Synthesis/handling [75, 

197]; Handling [191] 

2012[38, 193, 203] I [38, 193, 203] TiO2 [193]; Silicon [38]; CeO2 [203] Handling [193]; Processing [203]; 

Processing/synthesis [38]; 

2013[224] I [224] Rubber fumes [224] Other [224] 
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Act. Ref. Materials BG, #/cm
3
 Number concentration, #/cm

3
 BG, mg/m

3
 Mass concentration, mg/m

3
 Mean size Morphology 
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[185] Composite materials 700–19,500 4,000 0.015–0.019 0.064–0.221 0.5 x 3 µm Aggl. 

[185] MWCNT 14,700 57,000–157,800 N/A N/A 0.5–1 µm Aggl. 

[201] CNF N/A N/A N/A Surface deposition: 0.39-17.5 ug/cm
2 N/A N/A 

[43] C60 fullerenes 14,922 72,085 N/A N/A ~ 300 nm Aggl. 

[43] MWCNT 14,922 18,782–177,155 N/A N/A ~ 500 nm Aggl. 

[201] CNF 10,000–20,000 10,000–20,000 0.015-0.019 0.03-0.055 (AM), 0.064-0.221 N/A Aggl. 

[42] Alumina, Ag BG substracted 1,575–13,260 (PBZ); 1,131–22,932 N/A N/A 50–100 nm, 200 nm aggl. Aggl. 

[196] Nanofibers 700 15,000 (peaks), 6 to 20 time increase N/A N/A 10 x 1000 nm Aggl. 
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[43] MWCNT, CB 724–1,250 1,450–3,500 N/A N/A 300–500 nm Aggl. 

[59] MWCNT 2,000–3,000 5,276–6,399 N/A 0.0078–0.1609 (P, AM) 120–300 nm N/A 

[185] C60, MWCNT N/A 730, 2200–2800 N/A N/A ~ 200 nm Aggl. 
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[217] CB 1,000–10,000 8,000–100,000 0.01–0.045 (PM10) 0.027–0.34 (PM10) 1 µm, 8 µm, < 100 nm (forklifts) Aggl. 

[191] Nano-CB 22,000 50,000–180,000 0.169±0.116 0.159±0.052 6.1 um Aggl. 

[205] CNF, other particles < 0.5e+5 (0.8–1.15)e+6 (total), 230–3130 (CNFs) < 0.1 0.5–1.1 
15–25 nm (radiant gas heater), 
200–250 nm 

N/A 

[191] CaCO3 4,000 10,000–50,000 0.169±0.116 0.154±0.074 50–250 nm (forklifts), 5.2 µm Aggl. 

[192] TiO2 N/A N/A N/A 0.08–0.8 (AM) 30–60 nm (forklifts), 5.52–7.25 µm N/A 
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[185] Silica-iron  13,300–20,300 79,700 < 0.0003 45.7 (Fe) 200–1000 nm Slight aggl. 

[185] TiO2 33,500 144,800 N/A N/A N/A N/A 

[187] ITO, ZnO 13,020 566,857–8,351,915 (PBZ 18,000,000) N/A N/A 54/99 nm N/A 

[187] ITO, ZnO 13,020 225,000–413,000 N/A 1.37–2.63  Large agglomeration Aggl. 

[203] CeO2 N/A 160,000–210,000; 4,600–9,200(AM) N/A 0.32(0.125-63) <10/51/171/454 nm N/A 
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th

e
r p

ro
c
e
s
s
e
s
 

[187] ITO, ZnO 13,020 638,000 (AM) N/A 1.37–2.63 (PBZ), 0.07 (AM) 55 nm N/A 

[211] Ag 5,000–50,000 >1,000,000 N/A 0.013–0.094 10–100 nm Single 

[193] TiO2 N/A 
22,055–25,771 (no enclosure) / 7,500–10,000 
(enclosure) 

N/A N/A 124.2 nm, 524.4 nm Aggl. 

[185] TiO2 13,000 177,600 N/A N/A N/A N/A 

[191] Fumed silica 3,700 10,000–19,000 0.169±0.116 1.963±1.051 4.6 µm Aggl. 

[199] CNT N/A 172.9–193.6 N/A 0.21–0.43 2–3 µm Sing.& Aggl. 
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Table S2. Release characterizations grouped into different activity type.

Note: size range for number concentration < 1 um; mass concentrations are measured for a wider size range, into microns; mean particle size was taken from the mode sizes in number size distributions or estimated 
from TEM/SEM images. BG, background; Aggl., agglomerate. 

Act. Ref. Materials BG, #/cm
3
 Number concentration, #/cm

3
 BG, mg/m

3
 Mass concentration, mg/m

3
 Mean size Morphology 

C
le

a
n
in

g
 

[185] Silver N/A 6100 < 0.001 1.7–6.7 N/A Aggl. 

[108] SWCNT < 50 1,000–10,000/10,000–100,000 N/A < 0.05  1–5, 100  µm Aggl. 

[216] Ag,Mn,Co 12,146 
18,196–29,063 (no LEV),  
10,556–14,071 (LEV) 

Not detected 0.71–6.7 (no LEV), 0.041–1.7 (LEV)  200 nm, 500–1000 nm Aggl. 

[218] Ag,Cu,Ni,Fe,Mn N/A 1,300–16,000 (BG substracted) N/A 0.016–1.467 (PBZ), 0.17–0.754 0.5–5 µm Aggl. 

[196] TiO2 7,000–20,000 22,000 0.1–0.2 1.7 0.5–1 µm Aggl. 

P
ro

d
u
c
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n
 

[196] TiO2 7,000–20,000 21,000 0.1–0.2 0.4 0.5–1 µm Aggl. 

[196] Specific ENMs 5,500–15,000 62,000 (477,000) N/A N/A 2 µm Aggl. 

[206] TiO2 11,418 45,889 N/A 0.33–4.99 < 30nm, 70–100 nm Aggl. 

[185] Carbon nanofiber 13,600 59,000–279,700 0.012–0.015 0.031–1.839 0.1 x 5 µm Slight aggl. 

[185] MWCNT 6,600 42,400 N/A N/A N/A N/A 

[185] Metals/metal oxides 12,000–14,000 85,900 N/A N/A N/A N/A 

[185] Al 37,700 548,500 < 0.0004 0.246 N/A N/A 

[194] Metals 8,512 59,100 (136,000) 0.052 0.188 (1.34, AM) 160–200 nm N/A 

[36] Metals/metal oxides 2,109 Peaks: 35,494–102,708 0.009 0.463 112–188 nm N/A 

[210] Ag (4.63–7.9)e+6 (6.54–18.92)e+6 N/A N/A 34.6–76.4 nm Aggl. 

[59] CNT/catalyst N/A 5,840–37,350 (75,000) N/A 0.0813 (AM), 0.1063 (PBZ) 20–50 nm Aggl. 

[207] CNT < 2,000 < 2,000(PBZ), (4–10)e+6 N/A N/A 7–90 nm, 20–200 nm Aggl. 

[200] CNF N/A N/A 0.00187 0.0034–0.032 (AM), 0.045–0.08 (PE) 0.2–5 µm Slight aggl. 

[225] Lithium titanium 15,000 20,000–30,000 (AM) < limit of detection 0.026–0.118 (~39% lithium titanium, AM) > 200 nm, a few micrometers Aggl. 

M
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[73] Carbon fiber 4,820 94,000 N/A N/A 165 nm N/A 

[73] CNT/ carbon fiber 4,820 153,000 (PBZ), 294,000 N/A N/A 12 nm, 20 nm,230 nm, 1 µm Aggl. 

[73] Carbon fiber 4,820 319,000 (PBZ), 283,000 N/A N/A 12 nm, 20 nm, 230 nm Aggl. 

[73] MWCNT, Al2O3 fiber 4,820 28,000 (PBZ), 38,000 N/A N/A 12 nm, 25 nm,1–4 µm Aggl. 

[73] Alumina fibers 4,820 88,000 (PBZ), 148,000 N/A N/A 12 nm, 30 nm, 1–2 µm Aggl. 

[20
1] 

Carbon nanofiber 10,000–20,000 10,000–20,000 0.015–0.019 1.094 400 nm Aggl. 
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9. SUMMARY OF RESULTS  

The established aerosolization system was able to generate aerosols with stable particle number 

and size distribution over a sufficiently long period of time needed for sampling purposes. The 

resulting number concentration ranges were comparable to the existing aerosolization and 

dustiness testing methods, when compared for the same materials and suggested the same order 

of dustiness. The shear forces induced by pressure drop over a critical orifice decreased mean 

particle size for nearly all tested nanopowder aerosols, except for the one with the lowest mean 

diameter under the reference condition (i.e. without using the orifice). The particle size 

distribution spectrums were shifted to smaller size ranges when the aerosols were treated with 

pressure drops. The results were highly reproducible. The applied shear force conditions 

significantly increased the particle generation from several folds up to 2-3 orders of magnitude. 

The number fraction of particles below 100 nm were enhanced, and that of large particles (>350 

nm) reduced. The morphological analysis confirmed the reduction of mean size by higher 

pressure drops. Most particles were still in agglomeration states after passing through the orifice. 

The results varied for different types of tested materials with distinct surface properties, primary 

particle sizes and shapes. Agglomerates with hollow structures consisting of non-spherical 

primary particles (e.g., needle-like) registered the most significant size reductions and number 

increases by pressure drop. Moreover, aerosols with the largest mean size seen under the 

reference condition were affected by applied shear forces.      

The comparison of different aerosolization systems for the same materials showed that properties 

of generated nanopowder aerosols varied depending on specific testing methods. The particle 

mode diameters obtained with the four test setups ranged from 0.1 µm to above 1 µm, and the 

number concentrations spanned in the range of 10
3
 – 10

6
 #/cm

3
. The systems were robust in 

producing repeatable results. The aerosolization energies from these systems could be roughly 

ranked by the velocity of the air flow interacting with the powder particles flow (thus degree of 

aerodynamic drag by the air to the particles), and this seemed to be related to the resultant 

aerosol profiles. A comparison of the van der Waals interaction between primary two particles 

with the drag force ranges in the experiments showed the possibility of deagglomeration under 

energy input levels of the used setups. The continuous drop method, which featured the lowest 

energy input only from the drag of surrounding air during the free fall of powder particles, 
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resulted in the largest mode size of aerosols. In comparison, the air jet method using high speed 

flows to active a powder seemed to efficiently break particle agglomerates down to nanoscale. 

The two tested materials with distinct surface hydrophilicity produced aerosols in different 

number concentrations and size distributions. The testing methods also played a role in this 

process. The hydrophobic aerosols (NM103) had similar mode sizes in the four systems, whereas 

the sizes of their hydrophilic counterparts (NM104) differed much more. Comparing the two 

materials using the same aerosolization method, NM103 had a smaller mode diameter but a 

higher particle concentration than NM104. However, it was the contrary for particle number 

when using the air jet system.         

Introduction of varied relative humidity in testing the mechanical stability of airborne 

nanoparticle agglomerates resulted in altered effects of the pressure drop in critical orifices. 

Shear forces under 50-150 kPa pressure drops were found to effectively decrease mean particle 

size of aerosols created from hydrophilic and hydrophobic nanopowders. Accordingly, particle 

number concentration increased under these conditions. However, increasing relative humidity of 

the system environment reduced these effects of pressure drop. For example, 50 kPa condition 

had already a significant influence on total particle number of the aerosols under dry condition. 

When humidity increased, 100 kPa pressure drop was required to have predominant effects. 

Humid atmosphere itself was shown to increase particle diameter and reduce total number when 

pressure drop was not applied. It had more significant influences for the number of small 

particles than for that of large particles. The hydrophilic aerosols were more sensitive to 

humidity changes regardless of the testing methods, but the responses of the hydrophobic 

particles differed depending on test systems.         

The nanoparticle releases from mechanical treatments of nanomaterial composites was found to 

be varied by process type and parameters as well as nanofiller type. Overall, the drilling tests 

released higher numbers of particles than the sawing tests did. In the drilling experiments, faster 

speeds and larger bit size released greater numbers of particles. Samples reinforced by carbon 

nanotubes released less particles but in larger diameters, compared to the blank samples. All 

other composite types did not show a different release level. In the sawing experiments, the 

added nanofillers modified the release scenarios. PU/CB samples released greater numbers of 

micro-sized particles compared to the blank samples. All nanofiller reinforced samples generated 
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higher levels of nanoscale particles. Morphological analysis showed that in both processes the 

majority of particles released were matrix materials with nanofillers embedded or protruded from 

the surface. Only one individual nanoparticle agglomerate was identified from sawing PU/SiO2 

samples. Moreover, nano-sized polymer fumes were released in the sawing tests.      

The review of airborne ENMs releases from industrial as well as research environments suggests 

that properties of released aerosols and resultant exposure can be linked to the process and 

activity type and associated energy level. The same types of activities exhibited similar release 

scenarios. High energy processes, such as mechanical machining, synthesis and spraying 

normally resulted in great generations of small particles. In comparison, low energy processes, 

including manual cleaning, common laboratory handling practices (e.g., mixing, pouring, 

transferring) and industrial bagging and packing are often associated with minor or moderate 

releases. Various engineering controls methods (e.g., ventilation, masks) were developed and 

used to protect worker exposures at nanotechnology workplaces. Although the quality of these 

protective equipments are often satisfactory, it nevertheless requires correct operating procedures 

when using them in order to maximize their performances. The assessment of exposure relevant 

data in the literature suggests that there is still a need to better report this information together 

with the release data. Currently the contextual information necessary for assessing human risks 

in occupational exposure studies are not always available.         

10.  DISCUSSION AND CONCLUSIONS  

Understanding properties of nanomaterial aerosols released from workplace environments is very 

important for assessing their exposure risks to humans. In this work, we combined the review of 

real-life release and exposure scenarios with laboratory release simulations, aiming at achieving 

a mechanistic understanding on nanomaterial release processes and linking it to real-world 

situations. The relationship between process energies and released aerosol properties were 

identified both from reviewing the real life exposure scenarios as well as from laboratory 

experiments on powder aerosolization and deagglomeration and nanocomposite treatments. The 

observations from our literature review as well as from the simulation work were consistent in 

that a higher energy input level, whether obtained from a different process or by varying its 

parameters, is likely to generate a greater release of airborne particles in smaller size ranges. The 

different aerosol profiles created using distinct aerosolization methods in the comparison study 
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indicates that the energy of workplace activities that resemble these laboratories processes 

(common powder handlings) may determine the properties of nanopowder aerosols when they 

are released. After being aerosolized, the airborne particles might experience further 

deagglomeration by external energies applied, as seen in our simulation study using critical 

orifices. In addition to the energy range, the level of deagglomeration may be also dependent of 

the aerosol profiles themselves, seen that larger particles seemed to deagglomerate more easily 

[65]. This was evidenced in comparing two of our deagglomeration systems (the funnel and the 

stirrer). The changes of aerosol properties started at low shear force levels and the effects 

decreased gradually at high forces, which indicates that not only high-energy but also low-energy 

activities (may be the case for majority of the industrial ENMs handlings) have the potential to 

trigger deagglomeration. Nanoparticles released from treating solid materials may also depend 

on process energies, as observed in our study investigating nanocomposites based a common 

polymer matrix (PU) and nanofiller types.    

Although the airborne particle stability and their deagglomeration potentials were studied in a 

broad energy range, it is still difficult to compare these release scenarios with those from specific 

processes in real life. This is mainly due to the lack of a realistic method in estimating the exact 

energy level of an occupational activity. There are studies that investigated the effects of impact 

velocities to powder particle dispersion in drop tests [226]. However, few studies looked at 

aerodynamic shears as a form of energy from workplace processes that are responsible for 

potential changes in aerosol properties. In fact, this type of interaction exist in various processes, 

such as falling, transferring and pouring of powder materials, and turbulence in ambient air 

caused by human or process factors. After generalizing the way of estimating aerosolization 

energies in the different setups used, we propose to use the relative velocity between powder 

particles and aerosolization flow as a potential parameter for assessing energy levels in relevant 

industrial processes. It is relatively easy to be quantified both in real life situations and in 

laboratory simulation studies. It links experimental results to real situations and make them better 

indicative for release and exposure assessments.  

The developed fluidized-bed aerosolization system using laboratory funnels was proven to be a 

robust aerosol generation method, allowing good control of particle number concentration and 

size distribution. Controlling these factors is not only important for correct characterization of 

nanopowder aerosol properties using slow systems such as the SMPS, but could be also useful 
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for other applications where well-controlled aerosol generation are needed, such as in 

nanotoxicological studies. The comparison of its particle concentration ranges with existing 

dustiness data for similar materials indicates that the system may also serve as a dustiness testing 

platform only consuming very small quantities of raw powder (down to 200 mg/test), 

supplementing the standard rotating drum as well as the continuous drop methods which use 

relatively larger amount of materials. We propose to use our system for routine testing of 

nanomaterial deagglomeration potentials. A ranking on this aerosol property would benefit 

occupational exposure and risk assessments in providing more accurate predictions on aerosol 

size changes during their emission, transmission or immission processes. 

The relative humidity, as one of the most common environmental variables in worker exposure 

scenarios, can be controlled to reduce release of potentially hazardous nanoparticles. Our study 

results can be explained by capillary force from water condensation on particle surface and 

inside their capillaries, which seem to be sufficiently strong to counter the dispersion energy 

range incurred in the experiments. The implication for real-life situations, therefore, is that 

increasing moisture content in workplace air will stabilize the size of airborne particles, it may 

even enhance their agglomeration, and thus may be an effective mean to contribute to the control 

of workers’ exposure levels. This might be especially useful for nano-sized particles which are of 

great concern in exposure and risk assessments. Water spraying is a common way in reducing 

airborne particle concentrations [227]. A water-spraying system was used to suppress fugitive 

dust and linear dependence of the dust level to relative humidity was observed [228].  

The difference in aerosol properties obtained from the two types of powders seen under dry 

conditions indicates that the hydrophilic particles may have already absorbed certain level of 

moisture content during storage. This might influence their responses to small humidity gradient 

created in the experiments. Pre-treatments such as thermal drying can be used to eliminate 

moisture content absorbed in raw powder, and this might further enhance the particles’ 

sensitivity to humidity variations.          

The influences of nanofiller and process types as well as matrix materials on nanocomposite 

releases in mechanical processing were also observed in other studies investigating drilling [61, 

70], sawing [72], sanding [51, 188], and abrasion [154, 229]. Process conditions seemed to be 

the most influential factor for determining release. For example, higher-energy treatment seemed 
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to facilitate airborne particle generation. Thus they should be carefully controlled in laboratory 

simulations on release mechanism. The effects of nanofillers on composite release may be also 

process-dependent. The fact that majority of the released particles were mixes of matrix and 

nanofiller materials in micro-size range might raise the concern of their toxicological effects to 

humans. However, current literature indicates that polymer matrix fragments with protrusions of 

ENMs do not exhibit higher toxicity compared to pure polymer particles [69, 170, 176]. 

Nevertheless, we also observed nanoscale polymer fume particles produced by process heat, and 

they may pose unexpected health problems such as the so called “polymer fume fever” [178].  

The information derived from the review on industrial ENMs release can be possibly used to 

rank the release potentials of different workplace activities. The resulted ranking helps determine 

priorities of specific industrial processes for exposure and risk assessments. This is especially 

useful in a tiered assessment strategy which aims at defining the concern level of potential 

relevant processes in its first step. Furthermore, the results can inform policy makers and safety 

officers on activities associated with potentially high level of ENMs exposure, and thus guide 

efforts towards risk prevention in these activities.  

The lack of exposure relevant data in ENMs release studies calls for the need for better data 

reporting practice, as suggested by Clark et al. [182]. This information allows for predicting 

human exposure levels associated with specific processes, as well as uses in future meta-analysis. 

The contextual information can be also used to estimate release rate, facilitating a mechanistic 

understanding on ENMs releases.       

Several aspects of this work can be further improved in the future:  

1. Due to the fact that capillary force level from water condensation in airborne particles is 

influenced by primary particle diameter, surface chemistry, roughness and shape, future studies 

can use different particle profiles to analyze their responses to environmental humidity changes. 

The R.H. level can be further increased up to 90%, to reveal particle behaviors under such 

extreme conditions.   

2. In investigation of nanocomposite release scenarios, only one matrix material was tested. 

However, current literature suggests that polymer matrix is also a very important determinant in 

nanocomposite release level. Systematic comparison of different matrix materials in their effects 

on release mechanisms can be further studies in the future.   
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3. The end-of-life treatments of ENMs and ENMs-enabled products becomes a more and more 

important material life cycle stage for human exposure assessment. These processes may feature 

different conditions from production and use phases of ENMs, such as high temperature in 

incineration and various destruction methods in mechanical disintegration. Researchers have 

started to realize the needs in investigating these activities, and studies have been conducted to 

reveal relevant release mechanisms [219, 230, 231].     
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