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Abstract

The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed

diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with

extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The

Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in

Selaginella. We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative

phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to

augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest

rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide

strong support for a history of haploid nuclear genome size stasis in Selaginella. Our results indicate that Selaginella, similar to other

early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a

rapid transition to a small genome size is only one route to an extremely small genome.
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Introduction

Genome size exhibits an extraordinary amount of variation in

vascular plants. This variation ranges from the extremely small

genomes of Genlisea tuberosa (61.1 Mb; Lentibulariaceae;

[Fleischmann et al. 2014]) to the extremely large genomes

of Paris japonica (150 Gb; Melanthiaceae; [Pellicer et al.

2010]). Substantial genome size variation has also been

found within single genera such as Genlisea (Fleischmann

et al. 2014) and Eleocharis (Zedek et al. 2010), as well as

across populations of a single species such as teosinte in

Central America (Dı́ez et al. 2013) or Arabidopsis thaliana in

Sweden (Long et al. 2013). However, relatively slow rates of

genome size evolution may characterize many ferns

(Nakazato et al. 2008; Barker and Wolf 2010; Barker 2013;

Bomfleur et al. 2014; Clark et al. 2016) and gymnosperms

(Morse et al. 2009; Nystedt et al. 2013).

Genome sizes may increase through two chief mecha-

nisms: polyploidy or transposable element (TE) expansion.

Whole genome duplications (WGDs) are a common source

of genome size variation among closely related species.

Nearly 25% of vascular plant speciation events are associated

with a shift to a higher ploidal level (Wood et al. 2009;

Mayrose et al. 2011; Barker et al. 2015). All seed plants

(Jiao et al. 2011; Li et al. 2015) and flowering plants have

also experienced at least one round of ancient polyploidy

(Schleuter et al. 2004; Cui et al. 2006; Jaillon et al. 2007;

Barker et al. 2008, 2009, 2016; Schmutz et al. 2010; Shi

et al. 2010; D’Hont et al. 2012; Tomato Genome Consortium

2012; Ibarra-Laclette et al. 2013; Jiao et al. 2014; Kagale et al.

2014; Edger et al. 2015). However, most of the observed

variation in vascular plant genome size is attributed to the

differential accumulation of TEs such as long terminal repeat

(LTRs) retrotransposons (SanMiguel et al. 1996; Hill et al.

2005; Neumann et al. 2006; Vitte and Bennetzen 2006;

Hawkins et al. 2009; Schnable et al. 2009; Willing et al.

2015). Rapid bursts of TE activity and proliferation are

common in many plant nuclear genomes (Ungerer et al.

2006; Wicker and Keller 2007; Baucom et al. 2009; Baidouri

and El Panaud 2013), and stress the ongoing evolutionary
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arms-race between the host genome and “parasitic” TEs

(Kato et al. 2003; Slotkin and Martienssen 2007; Hollister

and Gaut 2009; Hollister et al. 2011; Kim and Zilberman

2014).

Expansions in nuclear genome size do not proceed

unchecked (Bennetzen and Kellogg 1997). Instead, genome

size increases are frequently offset by deletion mechanisms.

These include unequal and illegitimate homologous recombi-

nation which can remove portions of repeated LTRs (Devos

et al. 2002; Ma et al. 2004; Hawkins et al. 2009; Lee and Kim

2014), as well as nonhomologous end joining following

double-stranded DNA breaks which can delete large portions

of the genome (Fawcett et al. 2012; Chen et al. 2013). Indeed,

the extremely small genomes of Genlisea spp. and Utricularia

spp. [Lentibulariaceae] result from recent TE deletion from

ancestors with larger genomes (Hu et al. 2011; Ibarra-

Laclette et al. 2013), and the extremely large genomes of

Fritillaria [Liliaceae] reflect an absence of non-coding DNA re-

moval and the slow accumulation of genome size (Kelly et al.

2015). Thus, recent research suggests that extremely small

plant nuclear genomes evolve from the rapid reduction of

TEs, whereas extremely large genomes result from the accu-

mulation of TEs with little deletion (Barker 2013; Nystedt et al.

2013; Kelly et al. 2015).

An alternative hypothesis is that extremely small plant nu-

clear genomes may be ancestral and experienced relatively

little expansion over time. One potential example of this pat-

tern of genome size evolution is the cosmopolitan lycophyte

genus Selaginella (Selaginellaceae). Selaginella is the largest

genus of heterosporous nonseed plants with over 700 spp.

(Jermy 1956, 1990) found in a diversity of ecological niches

ranging from warm humid tropics, arid deserts, alpine moun-

tain tops, and cold dry tundra (Tryon 1955; Valdespino 1993;

Mickel et al. 2004; Arrigo et al. 2013). Besides their unique

phylogenetic position in the evolutionary history of vascular

land plants, Selaginella are also distinguished as the only clade

of vascular land plants that lack a shared WGD event in their

ancient history (Banks et al. 2011; Jiao et al. 2011; Li et al.

2015). Despite a crown group age minimum of ~310 Ma and

deep divergences among extant subgenera of ~250 Ma

(Kenrick and Crane 1997; Korall and Kenrick 2004; Arrigo

et al. 2013), their estimated genome sizes are not only ex-

tremely small (1C DNA = 84–156 Mb; [Obermayer et al. 2002;

Little et al. 2007]) but show incredibly little variation consider-

ing the ample time for genome size expansion and

contraction.

Given the dynamics of extremely small, derived genomes in

angiosperms, we tested whether the small nuclear genomes

of Selaginella result from abrupt reductions or if they have

ancestrally small genomes with little expansion over time. To

address this question, we collected genome size estimates for

31 species of Selaginella. Combined with haploid nuclear

genome size and plastid sequence data for Selaginella and

other vascular plants available in public databases, we used

a comparative phylogenetic approach to analyze the rates of

genome size across>1,160 representative vascular plant spe-

cies. We tested whether Selaginella and other vascular plant

genome sizes evolved stochastically under a Brownian motion

(BM) model or drift around a long-term mean under Ornstein–

Uhlenbeck (OU) models. From the best fitting models, we

compared the estimated rates of genome size evolution

among plant clades to assess the relative rate of Selaginella

genome size evolution. Our assembled data and analyses pro-

vide new insight into the evolutionary dynamics of small vas-

cular plant nuclear genomes.

Materials and Methods

Flow Cytometry

Specimens of 31 Selaginella taxa across the Selaginellaceae

were collected from the field and the University of Arizona

Herbarium (Tucson, AZ). Fresh specimens were air dried for 1

week at 21 �C, then stored in plastic bags in the dark, and

later rehydrated with distilled water for 24–36 h at 21 �C prior

to use. Many Selaginella possess a unique metabolism that

permits desiccation to extremely low water potentials and res-

urrection from metabolic dormancy following the availability

of moisture while keeping their nuclei intact. Herbarium speci-

mens were rehydrated for 12–18 h in PBS buffer with 0.1% v/

v Triton X-100. Voucher specimens for flow cytometry are

deposited at the University of Arizona Herbarium (table 1).

A modified procedure based on Arumuganathan and Earle

(1991) and Little et al. (2007) was used for the nuclei isolation

and staining procedure. In a cold room, ~50 mg of fresh

mature Arabidopsis thaliana “Columbia-0” rosette leaf

tissue, 50 mg of fresh Selaginella shoot tips, or 5 mg of

dried herbarium sample were chopped in chilled 800 ml of

buffer (9.6 mmol/l MgSO4, 48 mmol/l KCl, 4.8 mmol/l

HEPES, 1 mmol/l dithiothreitol, 0.25% v/v Triton X-100, pH

8.0) in a glass plate resting on a ceramic tile in an ice bucket.

The homogenate was filtered through a gauze mesh and then

filtered through a 40-mm nylon mesh. An additional 800 ml of

buffer was added to the chopped tissue and filtered with

gauze and nylon mesh and then combined with the previous

homogenate. Then 400 mg of RNAse solution was added to

each solution followed by 200 ml of a propidium iodide solu-

tion. Samples were then incubated at 37�C for 15 min and

then kept in the dark at 4 �C prior to flow cytometry estima-

tion. This procedure was replicated 3–5 times per taxon on the

same individual.

Prior to flow cytometry estimation samples were mixed

with the standard at a 1:1 ratio (sample:standard).

Measurements of at least 20,000 events were collected with

a FACscan flow cytometer (488 nm laser; BD Biosciences, San

Jose, CA) at the University of Arizona ARL Cytometry Core

Facility (Tucson, AZ). All flow cytometric data were collected

within a 1-h time period. Flow cytometry data were analyzed
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with BD CellQuest Pro acquisition software and the mean

value of each peak was used for further calculations. The in-

ternal standard A. thaliana “Columbia-0” diploid genome size

was assumed to be 0.34 pg/2C which is the median of pub-

lished values (Doležel et al. 1998; Bennett 2003; Schmuths

et al. 2004), and it was also assumed that 1 pg of DNA

equals 9.78�108 bp (Doležel et al. 1998, 2003).

Phylogenetic Comparative Analyses

Genome size data for all available vascular plant taxa were

compiled from the Kew Plant DNA C-values database

(Bennett and Leitch 2012) and those not yet listed in the

database from two phylogenetically important surveys (Bai

et al. 2012; Gorelick et al. 2014), as well as our new estimates

for Selaginella taxa. When multiple haploid genome size

estimates were available, we used the lowest reported cyto-

type and when multiple estimates were reported for the

lowest cytotype we used the mean for further analyses. For

all taxa with an estimated haploid genome size, we searched

the PhyLoTA browser (phylota.net, last accessed May 29,

2015) and GenBank for the rbcL sequence. The intersection

of these two databases resulted in a data set of 1,510 taxa

that had both a 1C DNA genome size estimate and rbcL se-

quence, including 7 previously estimated Selaginella taxa, and

29 new flow cytometry estimates for Selaginella (supplemen-

tary file S1, Supplementary Material online). Sequences were

aligned using MAFFT ver. 7.2 (Katoh and Standley 2013) and

manually inspected and trimmed in JalView 2 (Waterhouse

et al. 2009) to an aligned sequence length of 1,474 bp. A

phylogeny for all taxa was inferred using RAxML ver. 8.1 spe-

cifying a GTR GAMMA substitution model with Physcomitrella

Table 1

New Flow Cytometry Estimates of 1C Haploid Nuclear Genome Size in Selaginella

Taxon Mean Haploid

DNA Content

(pg/1C)

Mean Haploid

DNA Content

(Mb/1C)

Coefficient of

Variation (%)

Voucher

Selaginella arenicola Underw. 0.1 95.96 2.8 ARIZ361220

Selaginella arizonica Maxon 0.09 92.64 2.6 A. Baniaga 604

Selaginella arizonica Maxon 0.09 90.36 3.53 ARIZ357741

Selaginella asprella Maxon 0.1 96.17 5.61 A. Baniaga 617

Selaginella bigelovii Underw. 0.15 146.87 3.66 A. Baniaga 625

Selaginella cinerascens A.A. Eaton 0.13 124.34 4.6 A. Baniaga 664

Selaginella densa Rydb. 0.12 117.8 3.74 ARIZ231165

Selaginella eremophila Maxon 0.09 91.48 1.34 A. Baniaga 622

Selaginella exaltata (Kunze) Spring 0.11 106.53 2.06 ARIZ380655

Selaginella extensa Underw. 0.13 130.37 1.36 ARIZ250761

Selaginella flabellata (L.) Spring 0.12 112.53 2.23 ARIZ224742

Selaginella hansenii Hieron. 0.11 110.5 2.38 ARIZ187140

Selaginella landii Greenm. & N. Pfeiff. 0.11 107.68 1.96 ARIZ007154

Selaginella lepidophylla (Hook. & Grev.) Spring 0.17 166.41 9.86 A. Baniaga 584

Selaginella leucobryoides Maxon 0.12 114.89 2.12 ARIZ210058

Selaginella martensii Spring 0.1 96.63 2.43 ARIZ259786

Selaginella mutica D.C. Eat. ex Underw. 0.13 130.06 2.31 A. Baniaga 595

Selaginella oregana D.C. Eaton 0.13 129.23 0.86 ARIZ393369

Selaginella peruviana (Milde) Hieron. 0.13 123.6 5.07 A. Baniaga 588

Selaginella pilifera A. Braun 0.11 106.48 1.35 ARIZ409958

Selaginella pulcherrima Liebm. 0.12 113.48 2.35 ARIZ292925

Selaginella rupestris (L.) Spring 0.11 109.04 3.83 ARIZ180913

Selaginella rupincola Underw. 0.14 134.23 4.31 A. Baniaga 618

Selaginella selaginoides (L.) P. Beauv. ex Mart. & Schrank 0.08 81.45 2.76 ARIZ32203

Selaginella sellowi Hieron. 0.12 121.66 2.39 ARIZ238573

Selaginella tortipila A. Braun 0.12 121.99 1.7 ARIZ341819

Selaginella underwoodii Hieron. 0.08 82.21 1.24 MD Windham 4148

Selaginella wallacei Hieron. 0.13 125.5 5.47 A. Baniaga 624

Selaginella watsonii Underw. 0.19 182.4 3.3 A. Baniaga 625

Selaginella weatherbiana R.M. Tryon 0.12 118.97 4.87 MD Windham 4147

Selaginella willdenowii (Desv. ex Poir.) Baker 0.09 91.34 3.25 ARIZ146729

Selaginella wrightii Hieron. 0.11 106.17 5.67 A. Baniaga 592

NOTE.—Values reported are means from three to five replicate estimates per taxon. Estimates of precision are provided as the coefficient of variation (CV).
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patens for an outgroup. The RAxML phylogeny was congruent

with published relationships of vascular plant taxa (Wickett

et al. 2014). Using the highest scoring RAxML topology, we

applied 38 age constraints (supplementary file S2,

Supplementary Material online) to calibrate the phylogeny

with the non-parametric dating method PATHd8 (Britton

et al. 2007).

To test for differences in the rate of genome size evolution

between Selaginella and other vascular plant clades, we com-

pared the fit of two BM and four OU models. These models

are used to evaluate hypotheses regarding the evolutionary

rates of continuous traits, such as genome size, while account-

ing for the relationships of the taxa and the time they have

been evolving. They may be used to compare observed differ-

ences across taxa with unique traits or between entire clades.

The major difference between BM and OU is that BM models

a random walk process with an equal probability of moving to

any value in parameter space, while the OU process incorpo-

rates an attractor with a tendency to move back to an opti-

mum value. This framework estimates key parameters of the

model such as the rate of stochastic motion (�2), and in the

OU models the optimum (�) and the strength of attraction

towards that optimum (�) (Hansen 1997; Butler and King

2004; O’Meara et al. 2006; Beaulieu et al. 2012). These

models were implemented in the R package OUwie

(Beaulieu et al. 2012) on 14 vascular plant clades including

Selaginella in a single analysis as well as 24 independent pair-

wise analyses between Selaginella and 24 vascular plant

clades (see Supplementary Material online for pairwise com-

parisons). We used a sample size corrected Akaike Information

Criterion (AICc) to select the best fit model, with the best

supported model having a � AICc> 2. When a � AICc< 2

was found, the simpler model with fewer parameters was

chosen. All genome size data were log10 transformed to

comply with assumptions of BM in which a trait may equally

increase or decrease in the same magnitude given its current

state (O’Meara et al. 2006; Beaulieu et al. 2010). For the OU

rate tests, �0 was dropped from the model and assumed to be

distributed according to a stationary distribution of the OU

process. Confidence intervals for parameter estimates were

obtained from 100 parametric bootstraps implemented in

the R package OUwie (Beaulieu et al. 2012) for the best fit

model in all analyses.

Results

Haploid genome size (1C DNA) was estimated across the

Selaginellaceae for 31 Selaginella taxa for a total of 29 new

genome size estimates (table 1). No significant difference was

observed between flow cytometry estimates from herbarium

specimens and fresh collected specimens. In addition, low var-

iation (CV = 1.94%) was found in our standard of A. thaliana

“Col-0” when we randomly sampled ten replicates across all

dates. The estimated haploid genome size in Selaginellaceae

ranges 2.2-fold from 81.2 Mb in S. selaginoides to 182.4 Mb

in S. watsonii (fig. 1). Within this range several taxa with rel-

atively larger haploid genome sizes include S. helvetica (136.9

Mb), the diploid cytotype of S. kraussiana (156 Mb), as well as

some members of subgenus Tetragonostachys such as S. bige-

lovii (146.8 Mb), S. lepidophylla (166.4 Mb), S. watsonii (182.4

Mb), and the only known tetraploid (Therrien 2004) in the

analysis S. rupincola (134 Mb). Notably, these flow cytometry

estimates are comparable to previously published values. For

example, our estimates of S. flabellata (1C DNA = 0.115 pg)

are nearly identical to those of Bouchard (1976), 1C

DNA = 0.12 pg, who used light microscopy Feulgen staining.

However, our genome size measurement for S. pulcherrima

(1C DNA = 0.116 pg) is ~20% greater than a previous esti-

mate (1C DNA = 0.093 pg; [Little et al. 2007]) (table 1 and

fig. 1).

Across both the single and pairwise rate test comparisons

between Selaginella and other vascular plant clades, the best

fit model was consistently an OU model. This best fit OU

model was either the OUMV or OUMVA model (table 2 and

supplementary file S3, Supplementary Material online). The

OUMV model, which infers a different rate parameter (�2),

and optimum value (�) for Selaginella and other plant clades,

better fit rates of genome size evolution for the single rate test

comparison and a majority (20/24) of the pairwise rate test

comparisons. The OUMVA model, which infers a different

optimum value (�), different stochastic rate parameter (�2),

and different attraction parameter (�), for Selaginella and

other plant clades, better fit rates of genome size evolution

for four (4/24) pairwise rate test comparisons. The inferred

optimum value for Selaginella across both the single and 24

pairwise rate tests ranged from 1C haploid nuclear DNA con-

tent of 111–113 Mb (i.e., 0.113–0.115 pg). Notably, this was

the smallest optimum value for haploid nuclear genome size

among the tested clades (tables 2 and 3).

Over both the single and 24 pairwise rate tests Selaginella

was inferred to have a lower rate of genome size evolution

(�2) than all other vascular plant clades included in the study

(fig. 2 and supplementary file S3, Supplementary Material

online). In the single rate test analysis, gymnosperms had

the second lowest rate of genome size evolution inferred,

and was only 3.1 times faster than Selaginella. The vascular

plant clades Rosales, Fabales, and Solanales, had rates of

genome size evolution that were 10–12 times greater than

Selaginella, but relatively lower compared with other euphyl-

lophyte taxa. In addition, the clades with the highest rates of

genome size evolution were the Asterales, Asparagales,

Poales, and Lamiales (fig. 2).

Discussion

Our analyses find consistent evidence that Selaginella possess

extremely small genomes (1C DNA = 81.2–182.4 Mb) and

have some of the lowest rates of plant nuclear genome size

Small Nuclear Genomes of Selaginella GBE
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evolution. Selaginella were 502.2–603.4 megabases smaller

than the modal angiosperm nuclear genome size of 684.6

megabases (Leitch et al. 1998). This places them in the

lower 0.05–0.12% of vascular plant nuclear genome sizes

FIG. 1.—Chronogram of 1C haploid nuclear genome size across members of the Selaginellaceae. Color shading indicates relative genome size change in

the phylogeny from small (yellow) to large (blue). The estimated haploid nuclear genome size in Selaginellaceae ranges 2.2-fold from 81.2 Mb in

S. selaginoides (yellow) to 182.4Mb in S. watsonii (blue).

Table 2

Top Model Parameter Estimates from the Single OUwie Rate Analysis

Clade OUMV a OUMV p2 OUMV h OUMV h SE

Selaginella 0.03647364 0.000656334 �0.94285954 0.01949149

Monilophytes 0.03647364 0.01043217 0.90984577 0.06124471

Gymnosperms 0.03647364 0.00200809 1.09681094 0.03357669

Asparagales 0.03647364 0.01256434 0.85979987 0.07296574

Arecales 0.03647364 0.007693061 0.43315083 0.08922684

Poales 0.03647364 0.01430594 0.10831398 0.07829409

Fabales 0.03647364 0.00675 �0.05193303 0.04325768

Rosales 0.03647364 0.00653 �0.08601322 0.05287082

Brassicales 0.03647364 0.01002 �0.25069191 0.04577896

Myrtales 0.03647364 0.00805 �0.11469388 0.09157143

Caryophyllales 0.03647364 0.01068326 �0.02380324 0.03871096

Lamiales 0.03647364 0.01433344 0.04439613 0.08218401

Solanales 0.03647364 0.007225038 0.3528727 0.1703527

Asterales 0.03647364 0.01228269 0.3901742 0.1326304

NOTE.—All model parameter estimates are found in Supplementary File S4,
Supplementary Material online.

Table 3

Summary of Alternative Models of Haploid Nuclear Genome Size

Evolution across Vascular Land Plants in a Single Rate Analysis

Model n �lnL AIC j"AICcj

BM1 1163 �356.432 716.8751 535.3402

BMS 1163 �220.997 470.3597 288.8248

OUM 1163 �171.827 374.0727 192.5378

OU1 1163 �296.722 599.4638 417.9289

OUMV 1163 �63.1014 181.5349 0

OUMVA 1163 27249.77 �54418.8 54600.3049

NOTE.—The best supported model based on the corrected Aikake Information
Criterion (AICc) was the OUMV which estimated a separate stasis parameter
(�Þ and stochastic rate of genome size evolution ð�2) for the 14 vascular plant
clades in the analysis. Number of taxa (n) includes Selaginella.
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(Bennett and Leitch 2012). Our phylogenetic comparative

analyses indicate that the small genomes of Selaginella are a

product of low rates of genome size evolution rather than

recent reductions in genome size. Relatively low rates

of genome size evolution have been previously observed in

other lineages of vascular plants such as monilophytes (Barker

and Wolf 2010; Bomfleur et al. 2014; Clark et al. 2016) and

gymnosperms (Morse et al. 2009; Nystedt et al. 2013). Our

analyses indicate that Selaginella nuclear genome sizes evolve

an order of magnitude slower ð�2
Selaginella = 0.00066) than

both of these lineages; ferns (�2
Monilophytes ¼ 0:010Þ

and gymnosperms ð�2
Gymnosperms = 0.002). Notably, our com-

parative ranking of genome size evolution across the vascular

plants support previous analyses that nonflowering plants

have lower rates of genome size evolution than many angio-

sperm lineages (Nakazato et al. 2008; Barker and Wolf 2010;

Leitch and Leitch 2012; Clark et al. 2016). A history of paleo-

polyploidy in ferns (Barker and Yatskievych 2009; Barker and

Wolf 2010; Barker 2013; Vanneste et al. 2015) and gymno-

sperms (Li et al. 2015) has likely contributed to their higher

rates of genome size evolution. In contrast, low rates of

genome size evolution in Selaginella may be an order of

magnitude lower because of the absence of paleopolyploidy

in the Selaginellaceae (Banks et al. 2011).

Unlike the significantly larger nuclear genomes of most

ferns, gymnosperms, and other lycopsids (Bainard et al.

2011; Barker 2013; Lomax et al. 2014), Selaginella have ex-

tremely small genomes and relatively little variation in genome

size. The low size and variation are maintained across deep

divergences among extant Selaginella subgenera dating back

to the Carboniferous and Permian-Triassic boundary (Kenrick

and Crane 1997; Korall and Kenrick 2004; Arrigo et al. 2013).

Our rate analyses are compatible with this pattern and suggest

a process of genome size stasis as evident by the strong sup-

port for OU models and the large attraction parameter

estimates. Across all of our rate analyses, unambiguous sup-

port was found for OU models over BM models. The

Selaginellaceae consistently had a slower rate of genome

size evolution (OUMV) than all other vascular plants. This

result contrasts with other extremely small genomes of vascu-

lar plants. For example, the genomes of Lentibulariaceae rep-

resent relatively recent derived states from ancestors with

larger genome sizes (Leushkin et al. 2013; Fleischmann et al.

2014; Veleba et al. 2014). The Utricularia gibba
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FIG. 2.—Results of OUwie rate comparisons across all 14 vascular plant clades included in our analyses normalized by the stochastic rate (�2) of genome
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[Lentibulariaceae] genome contains not only smaller amounts

of noncoding DNA, but also the presence of solo LTRs which is

suggestive of similar mechanisms of large scale genome size

reduction through TE deletion as found in A. thaliana (Hu et al.

2011; Ibarra-Laclette et al. 2013).

The smaller genome sizes of Selaginella cannot be fully

explained by similar mechanisms. Although the S. moellen-

dorffii genome has slightly smaller introns on an average

and ~15% fewer protein coding genes than A. thaliana, the

S. moellendorffii genome is comprised of a greater proportion

of TEs with LTRs comprising roughly a third of the genome

(Banks et al. 2011). TEs are concentrated in centromeric and

pericentromeric regions in other extremely small plant ge-

nomes (Arabidopsis Genome Initiative 2000; Hu et al. 2011).

In contrast, TEs are evenly distributed throughout Selaginella

genomes (Brandes et al. 1997; Banks et al. 2011). Thus,

Selaginella genomes have a more typical TE distribution in

their genomes suggesting that they have not experienced

recent, sharp reductions in their TE concentrations.

Ultimately changes in genome size reflect genetic variation

introduced by mutation, and the subsequent rates of genome

size evolution observed are driven by the underlying popula-

tion level processes of selection and drift (Lynch and Conery

2003; Lynch 2007). Despite changes in genome size having

phenotypic consequences for both cellular energetics (Lane

and Martin 2010; Lynch and Marinov 2015), and important

functional traits in plants such as minimum generation time,

cell size, stomatal density, stomatal guard cell size, and seed

mass (Bennett 1972; Knight and Ackerly 2002; Knight et al.

2005; Knight and Beaulieu 2008; Beaulieu et al. 2010).

Currently, the relative roles of selection and drift on the

small nuclear genome sizes of Selaginella are not yet clear.

Interestingly, many Selaginella species possess a unique

ability to resurrect from metabolic dormancy following soil

moisture availability, and they have independently evolved

this trait multiple times (Korall and Kenrick 2004; Arrigo

et al. 2013). The lifestyle of some Selaginella taxa is consistent

with other extremely small genomes found in both plant and

animal extremophile taxa. Relevant examples in photosyn-

thetic organisms include the ephemeral pond endemic

Genlisea tuberosa with the smallest measured vascular plant

genome (61.1 Mb; [Rivadavia et al. 2013; Fleischmann et al.

2014]), the desiccation-tolerant grass Oropetium thomaeum

(245 Mb; [VanBuren et al. 2015]), as well as Ostreococcus

tauri a unicellular green alga of oligotrophic waters known

for its extremely rapid growth rates and smallest measured

genome of photosynthetic eukaryotes (12.6 Mb; [Derelle

et al. 2006]). In addition, the smallest known insect

genome, Belgica antarctica (99 Mb), is the only insect species

endemic to Antarctica that survives through a combination of

cold and desiccation tolerance (Kelley et al. 2014). However,

desiccation tolerance is a complex integrated physiological

process and not all desiccation tolerant organisms have ex-

tremely small genomes. For example, the vascular plant Boea

hygrometrica [Gesneriaceae] does not have an extremely small

genome (1.7 Gb; [Xiao et al. 2015]), nor do animals well

known to withstand centuries of desiccation such as tardi-

grades or (78.2–802 Mb; [Garagna et al. 1996]) or bdelloid

rotifers (489 Mb–2.34 Gb; [Welch and Meselson 2003]).

Future research should clarify these peculiar observations.

Among our other results, we find that ferns had higher

than expected rates of genome size evolution. Several flower-

ing plant orders such as the Rosales, Fabales, and Brassicales

had lower rates of genome size evolution than the ferns.

Previous analyses suggested that ferns may have relatively

slow rates of genome size evolution (Barker and Wolf 2010;

Barker 2013; Bomfleur et al. 2014; Schneider et al. 2015; Wolf

et al. 2015; Clark et al. 2016). However, none of these studies

provided a direct comparison of the rates of monilophyte

genome size evolution relative to other vascular plant clades.

It may be that a greater frequency of polyploid speciation

events among ferns (Wood et al. 2009), and a tendency for

ferns to retain DNA following WGD (Nakazato et al. 2008;

Bainard et al. 2011; Clark et al. 2016) explains their higher

rates of genome size evolution.

Our study highlights Selaginella as an important clade of

vascular plants that has not only extremely small genome

sizes, but also the lowest relative rate of genome size evolution

in vascular land plants. Our analyses support the hypothesis

that Selaginella has ancestrally small genomes with few sto-

chastic changes and consistent selection for a smaller genome

size. This stands in contrast to the derived small genomes of

other vascular plants that have close relatives with much larger

genomes. Previous research suggests that ancestral genome

sizes in the flowering plants were small (Soltis et al. 2003), but

the dynamics of polyploidy and TE evolution have led to in-

creases in many lineages. Even in families with consistently

small genome sizes, such as the Brassicaceae, analyses find

evidence of dynamic genome size evolution (Lysak et al.

2009). Unlike all other vascular plant lineages (Barker et al.

2008, 2009; Jiao et al. 2011, 2012; McKain et al. 2012; Jiao

and Paterson 2014; Soltis et al. 2014; Cannon et al. 2015;

Edger et al. 2015; Li et al. 2015), Selaginella genomes have

not duplicated in the past. Future analyses of Selaginella ge-

nomes are needed to understand if they represent a model of

vascular plant genome evolution in the absence of paleopoly-

ploidy. Regardless, our results suggest that there are many

ways to a small genome, and Selaginella provides a unique

example of genome size evolution among vascular plants.

Supplementary Material

Supplementary files S1–S3 are available at Genome Biology

and Evolution online (http://www.gbe.oxfordjournals.org/).
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