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Abstract 

Background: Primary CD4+ T cells and cell lines differ in their permissiveness to HIV infection. Impaired innate 
immunity may contribute to this different phenotype.

Findings: We used transcriptome profiling of 1503 innate immunity genes in primary CD4+ T cells and permissive 
cell lines. Two clusters of differentially expressed genes were identified: a set of 249 genes that were highly expressed 
in primary cells and minimally expressed in cell lines and a set of 110 genes with the opposite pattern. Specific to HIV, 
HEK293T, Jurkat, SupT1 and CEM cell lines displayed unique patterns of downregulation of genes involved in viral 
sensing and restriction. Activation of primary CD4+ T cells resulted in reversal of the pattern of expression of those 
sets of innate immunity genes. Functional analysis of prototypical innate immunity pathways of permissive cell lines 
confirmed impaired responses identified in transcriptome analyses.

Conclusion: Integrity of innate immunity genes and pathways needs to be considered in designing gain/loss func-
tional genomic screens of viral infection.

Keywords: Innate immunity, HIV, Cell lines, TCR activation, RNA-Seq

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
 The success of viral replication depends on the ability of 
a virus to exploit host cell components and evade host 
cell defense and is thus affected by the specific cellular 
environment [1–3]. In the past decades, studies on HIV 
have often used established T cell lines to investigate the 
molecular mechanisms of viral replication and virus-host 
interactions because of ease of infection. In contrast, rest-
ing primary CD4+ T cells are difficult to infect and need 
to be activated through T-Cell Receptor (TCR) stimulation 
in order to enhance their susceptibility to HIV infection 
[4, 5]. Despite stimulation, infection efficiency of primary 
cells rarely reaches the level observed in T cell lines, sug-
gesting that the cellular environment is different. Many 
transformed cell lines show global or narrow defects in 
the Interferon (IFN) response, including deficits in sign-
aling (eg., JAK1, [6, 7]) and in expression of transcrip-
tion factors (eg., ISGF3 and STAT1, [8–12]). A reduced 

responsiveness to IFN due to defects in the type I IFN 
pathway is also a common hallmark among malignant cells 
[13]. There is ample evidence of innate immunity defects 
in cell lines used in HIV research. For example, HEK293T 
do not express detectable levels of STING [14] or TLRs 
[15]. A link between antiviral defense and cell prolif-
eration has been proposed for HEK293T and HeLa cells. 
Here, immune defects in the cGas-STING pathway may 
be explained by the constitutive expression of viral onco-
proteins that interfere with the innate immune response 
while at the same time supporting cell transformation [16]. 
Although still responsive to IFN-α in terms of general ISG 
expression, Jurkat cells are unable to induce the expression 
of specific antiviral genes [17]. SupT1 and other cell lines 
exhibit a diversity of patterns in response to interferon 
[18]. Limited response to IFN-α and high permissiveness 
to HIV infection led to the identification of MX2 in CEM 
cells [19]. Thus, lack of integrity of the IFN pathway or the 
failure to induce antiviral factors is thought to underlie the 
ease of propagation of numerous viruses in cell lines [17].

We aimed at characterizing the transcriptional land-
scape of innate immunity genes in cell lines used in HIV 
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research, to contrast them with primary CD4+ T cells, 
and to validate some of the defects in functional assays. 
The emerging picture is that of a diversity of patterns 
of downregulation that support the concept of innate 
immunity defects underlying the high permissiveness of 
commonly used cell lines to HIV.

Findings
Innate immunity gene expression in primary cells and in 
HIV‑permissive cell lines
To investigate the impact of innate immunity on HIV 
permissiveness, we analyzed the transcriptional state of 
1503 innate immunity genes (previously defined in [20]; 
Additional file 1: Table S1) by whole transcriptome pro-
filing of resting primary CD4+ T lymphocytes isolated 
from two different healthy blood donors on one hand, 
and the panel of four human cell lines on the other hand: 
3 lymphoblastic T cell lines—SupT1, Jurkat and CEM- 
and the human embryonic kidney (HEK) 293T cell line 
(Methods). For cell lines, transcriptome of uninfected 
cells as well as cells infected with a competent or heat-
inactivated VSV-G pseudotyped HIV vector were inves-
tigated. Of these, expression of 1473 innate immunity 
genes was detected in at least one sample and further 
analyzed. Cluster analysis of relative expression values 
grouped cell types according to their co-expression pro-
files in innate immunity genes (Fig. 1), recapitulating the 
principal component analysis on the whole transcrip-
tome and in line with previous studies [21] showing that 
cell identity was the major determinant compared to the 
influence of HIV infection (Additional file 2: Figure S1).

To identify innate immunity genes associated with HIV 
permissiveness at the cellular level, we focused on genes 
that were differentially expressed in resting CD4+ T cells 
compared to cell lines. Two clusters corresponding to such 
criteria were identified. First, a cluster of 249 innate immu-
nity genes that were highly expressed in primary cells and 
lowly expressed or absent in cell lines (Fig.  1, dark blue 
cluster, 204 of them with a fold change higher than 2, Ben-
jamini–Hochberg adjusted p value <0.01, Methods). This 
set included Toll-like receptors (TLRs), NOD-like recep-
tors (NLRs), sialic acid binding Ig-like lectin (SIGLEC) 
and C-type lectin (CLEC) family members, interleukins 
and their receptors (ILs and ILRs), chemokine ligands and 
receptors (CCLs, CXCLs and CCRs), caspases, comple-
ment components, MAP-kinases, transcription factors and 
regulators (Interferon -IFN- regulatory factors -IRFs, JAK/
STATs, FOS and JUN) among others (Additional file  3: 
Table S2). The second cluster included 110 innate immu-
nity genes (Fig. 1, cyan cluster, 101 genes with a fold change 
higher than 2, Benjamini–Hochberg adjusted p value 
<0.01) with low expression in resting CD4+ T cells and 
high expression in cell lines. This cluster contained genes 

acting as suppressors of the innate immune response (e.g. 
TYRO3, BIRC5), inhibitors of transcription factors (NKI-
RAS2 -inhibitor of NFKB- and PIAS4 -inhibitor of acti-
vated STAT4) and transcriptional repressors (HES4, CSDA, 
RCOR1) (Additional file  3: Table S2). Of note, excluding 
samples infected with HIV or exposed to heat-inactivated 
HIV from the analysis led to a highly similar clustering of 
genes (Spearman correlation of gene distances between the 
two clusterings of 0.96, p value <2.2e−16, Additional file 4: 
Figure S2), reproducing the same two clusters.

Effect of CD4+ T cell activation on relevant innate 
immunity genes
We then inspected the impact of cell activation on the 
249- and 110-gene clusters. Activated CD4+ T cells 
displayed an intermediate phenotype (Additional files 
5, 6: Figures S3, S4). For the 249-gene cluster, median 
expression levels at 8 and 24 h (m = 2.08 and 2.26 log10 
reads per kilobase, respectively) of TCR activation were 
between those of primary resting CD4+ T cells (m = 2.71 
log10 reads per kilobase) and cell lines (m =  0.74–1.16 
log10 reads per kilobase; Fig. 2a). For the 110-gene cluster, 
median expression levels at 8 and 24 h (m = 3.21 and 3.26 
log10 reads per kilobase, respectively) of TCR activation 
were closer to those of cell lines (m =  3.36–3.37 log10 
reads per kilobase; Fig. 2b) than to primary resting CD4+ 
T cells (m = 2.76 log10 reads per kilobase) (Fig. 2b). The 
distributions of the expression levels of activated CD4+ T 
cells and cell lines were in all cases significantly different 
from those of the resting CD4+ T cells (Wilcoxon rank 
sum test, Bonferroni p-adjusted <1E−3).

Transcriptional and functional defects in innate immunity 
pathways in cell lines
Transcriptional profiling pointed to expression defects in 
innate immunity genes suggesting impaired intracellular 
defense in cell lines. To tackle this possibility, we charac-
terized transcriptional patterns along the signaling cascade 
(receptors, signal transduction, transcription factors or 
effectors). Analysis of the toll-like receptor (TLR) path-
ways showed that most receptors -including TLR7, TLR8 
and TLR9- are minimally expressed in permissive cell 
lines and in activated CD4+ T cells (Additional file 7: Fig-
ure S5). However, downstream of the receptors, the signal 
transduction cascades appeared intact in terms of expres-
sion levels of their constituent genes. Differences between 
resting CD4+ T cells and cell lines were again identified 
at the level of expression of transcription factors (FOS and 
IRF5) and effectors (inflammatory cytokines and co-stim-
ulatory molecules), with activated CD4+ T cells displaying 
intermediate phenotypes consistent with the results pre-
sented in Figs. 2, 3a and Additional file 5: Figure S3. Similar 
patterns were found in the IFN-gamma-signaling pathway 
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Fig. 1 Differences between resting primary CD4+ T cells and laboratory cell lines in innate immunity. a Laboratory cell lines revealed differential 
permissiveness to HIV infection. Cells were infected using a VSV-G pseudotyped HIV virus. Viral infection success was assessed by FACS analysis of 
the expression of the virally encoded GFP reporter gene, and ranged from ~7 to 53 % according to the cell line infected. b Heatmap of expression 
values of innate immunity genes in resting CD4+ T cells and laboratory cell lines. The figure shows the expression values of 1473 innate immunity 
genes in resting CD4+ T cells from two donors (CD4_J3 and CD4_J4), and four human laboratory cell lines HEK293T, Jurkat, SupT1 and CEM. Cell 
lines were evaluated in 3 conditions: uninfected mock (Mock), heat-inactivated HIV vector (hiLV) and HIV vector-infected (LV). Complete hierarchical 
clustering of genes and cell samples was based on Pearson correlation of variance-stabilized read counts (Methods). Color scale indicated in the leg-
end corresponds to z-scores of RPKM distributions per gene, ranging from green (low) to red (high) expression. Two prominent clusters of genes are 
highlighted: 249 genes with a high expression in resting CD4+ T cells and a low relative expression in all laboratory cell lines (dark blue square) and 
110 genes with a low relative expression in resting CD4+ T cells and a high relative expression in all laboratory cell lines (cyan square). The genes 
within each of these two clusters are listed in Additional file 3: Table S2
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(Additional file  8: Figure S6) and the TNF-alpha signal-
ing pathway (Additional file  9: Figure S7). Here, genes 
involved in the signaling cascade appeared well expressed 
across cell types. However, transcriptional differences are 
observed for genes triggering the signaling (IFN-gamma, 
TNF-alpha and TNFRSF18) and effector genes (e.g. IFN-
stimulated genes in the case of IFN-gamma pathway and 
IL6 or BIRC3 in the TNF-alpha pathway).

We used functional assays to evaluate the consequences 
of diminished expression of genes involved in those 
selected pathways applying specific stimuli and record-
ing the corresponding read-outs, i.e. expression of spe-
cific effectors or activation of STAT1 (Fig. 3; Additional 
file 10: Table S3). Consistent with the absence or reduced 
expression of TLR7 and TLR8 in permissive cell lines 
(Fig. 3a), stimulation of the TLR pathway with R848 failed 
to increase IL6 mRNA as measured by RT-qPCR, and in 
contrast to resting CD4+ T cells. As expected from the 
transcriptional integrity of the core STAT-dependent 
signaling of the IFN-gamma pathway, the addition of 
IFN-gamma to both resting CD4+ T cells and cell lines 
resulted in the successful phosphorylation of STAT1 
(Additional file 11: Figure S8) and increased expression of 
IRF1 mRNA (Fig. 3b; Additional file 10: Table S3). IFN-
gamma stimulation failed to result in detectable expres-
sion of IL1B mRNA in cell lines, consistent with low 

expression levels of key components in this cascade (e.g. 
IRF4; Additional file 8: Figure S6). In the case of the TNF-
alpha signaling pathway, the integrity of the signaling cas-
cade in cell lines at the transcriptional level was coherent 
with the detection of BIRC3 by RT-qPCR upon addition 
of TNF-alpha (Fig. 3b; Additional file 10: Table S3). How-
ever, only SupT1 cells displayed an increase of IL6.

Expression of genes involved in HIV sensing and restriction
Finally, we assessed the transcriptional pattern for 
paradigmatic genes involved in antiretroviral defense 
(APOBEC3G, TRIM5, BST2, MX2, GBP5, and SAMHD1) 
and signaling (JAK, STAT1, IFI16 and STING/TMEM173) 
relevant to HIV biology (Fig.  4). Primary CD4+ T cells 
transcribed all those genes (expression levels ranging 
from 2.64 to 3.94 log10 reads per kilobase). In contrast, 
a diversity of patterns of reduced gene expression were 
observed across the cell lines: 293T (downregulation of 
STING, JAK3, IFI16, APOBEC3G, GBP5, BST2, MX2, 
and to a lesser extent other genes), SupT1 (downregula-
tion of JAK3, APOBEC3G, GBP5, BST2, SAMHD1, and 
to a lesser extent other genes), Jurkat (downregulation 
of GBP5, SAMHD1, MX2, and to a lesser extent other 
genes), and CEM (downregulation of SAMHD1 and to a 
lesser extent other genes). Globally, transcriptional data 
parallels protein expression levels and function across 

Fig. 2 Activation of primary CD4+ T cells produces an intermediate expression phenotype in clusters of innate immunity genes differentiating 
resting CD4+ T cells from permissive cell lines. Distribution of expression levels of the 249 (a) and 110 (b) gene clusters represented as violin plots. 
Seven distributions are shown summarizing the average expression values in resting CD4+ T cells (dark red), activated CD4+ T cells at 8 h (red) and 
24 h (orange) after TCR activation, and four human laboratory cell lines HEK293T (pink), Jurkat (light violet), SupT1 (magenta) and CEM (dark violet). 
Lines within the plots represent the median of such distributions. All distributions are significantly different from the resting CD4+ T cells in both 
panels (Wilcoxon rank sum test, Bonferroni p.adjusted <1E−3). Expression values on the y-axis represent the log10 transformation of the number of 
library size-normalized reads per kilobase of exonic sequence averaged within cell type (Methods)
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cell lines (www.proteinatlas.org and [19, 22–28]). Upon 
activation of primary CD4+ T cells, we observed a strong 
down-regulation of MX2 and to a lesser extent TRIM5. 
These results suggest a pattern of focal defects in cell 
lines and in specific pathways that is consistent with the 
observations from the global analysis of innate immunity 
genes and pathways presented in the sections above.

Conclusion
The innate immune response differs according to the 
cell type or cell state, such as activated vs resting CD4+ 
T cells, and this may in turn affect the outcome of viral 
infection [5, 29, 30]. Activated CD4+ T cells are more 
permissive to HIV infection in part because of reduced 
innate immune responses. This favors productive infec-
tion and virus-induced cell death by apoptosis. In con-
trast, resting CD4+ T cells are more resistant to HIV-1 
infection, thanks to expression of innate immune defenses 
(SAMHD1-mediated impaired reverse transcription, 
IFI16-mediated viral nucleic acid sensing and signaling), 
leading to abortive infection and to cell death induced by 

pyroptosis (although this is not observed in  vitro upon 
cell-free virus infection). Changes in expression of innate 
immunity signaling and effector molecules impact the 
model of cell death induced by HIV-1 infection, whether 
triggered by apoptosis or pyroptosis [29]. Therefore, the 
cell lines used to investigate viral infection may only par-
tially reflect physiological innate immune responses.

Overall, our results show that permissive laboratory 
cell lines have transcriptional and functional defects 
in components of key innate immunity signaling path-
ways resulting in reduced activation or absence of effec-
tor gene expression upon specific stimulation. Such 
defects may contribute to the success of viral infection 
in cell lines compared to primary cells. This study sup-
ports the call for caution when investigating the interac-
tion between viral and innate immunity factors using cell 
lines. Furthermore, it provides criteria for the choice of 
gain or loss of function screenings of viral infection; i.e., 
in the absence of expression of a target innate immunity 
factor, the best screen may be over-expression rather 
than knockdown.

Fig. 3 Defects in 3 selected innate immunity pathways in cell lines. a The figure represents a simplified view of the TLR7/TLR8, IFN-gamma and TNF-
alpha signaling pathways. Boxes representing genes display the transcriptional levels detected in RNA-seq libraries of resting CD4+ T cells, the four 
human laboratory cell lines HEK293T, Jurkat, SupT1 and CEM -mock (MO), heat-inactivated (HI) and HIV-infected (HIV)- and 4 samples corresponding 
to Activated CD4+ T cells at 8 and 24 h after TCR activation. Inset describes the order of the libraries as well as the color-code scale of expression lev-
els (log10 transformation of the number of library size-normalized reads per kilobase of exonic sequence) ranging from 0 (green) to ≥2.8 (red; lower 
limit of the 9th-decile of expression values). The expression levels indicated for IFNG and TNF convey the basal expression level before adding the 
stimuli. b Experimental validation of the functional integrity of the selected innate immunity pathways. The table reports the stimuli applied and the 
functional read-out measured 24 h after stimulation. A positive sign indicates positive detection of functional read-outs (transcript levels by RT-qPCR 
or phosphorylation of STAT1 by Western blot analysis). NT not tested, nd not detected

http://www.proteinatlas.org
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Methods
Cell samples
Primary CD4+ T cells
Peripheral Blood Mononuclear Cells (PBMCs) from two 
different healthy blood donors were purified by Ficoll 
gradient separation followed by primary CD4+ T cell 
isolation using negative selection and magnetic separa-
tion (human CD4+ T Cell Isolation kit II; Miltenyi Bio-
tec) as previously described [21] and directly used for 
total RNA extraction.

Activated CD4+ T cells
Activated CD4+ T cell data were from Mohammadi 
et  al [21]. Briefly, primary CD4+ T cells isolated from 
a healthy blood donor were activated using CD3/CD28 
co-stimulation in presence of IL-2 (mimicking T-Cell 

Receptor (TCR) stimulation). For this, anti-CD3 anti-
bodies (10  μg) were plated in 1  ml PBS per well of a 
6-well plate and incubated for 1–2 h at 37 °C. Wells were 
washed once with 3 ml of PBS and filled with 106 cells/
ml of primary CD4+ T cells supplemented with 1 μg/ml 
anti-CD28 antibodies in R-10 culture medium contain-
ing 100 U/ml human recombinant IL-2 (R&D Systems). 
Three days post-stimulation, activated CD4+ T cells 
(106 cells) were infected or not with 5 μg p24 equivalent 
of HIVeGFP/VSV-G particles in presence of 2.5  μg/ml 
polybrene and in 300  μl final volume by spinoculation 
(1500  g, 25  °c, 2  h). Cells were left to return to a rest-
ing state by co-culture on a feeder cell layer for 10 weeks. 
Mock or infected resting CD4+ T cells were re-activated 
by TCR stimulation for 8 and 24  h before total RNA 
extraction.

Fig. 4 Heatmap of expression values of paradigmatic genes involved in antiretroviral defense and signaling relevant to HIV biology. The figure 
shows the expression values of antiretroviral genes (APOBEC3G, TRIM5, BST2, MX2, GBP5, and SAMHD1) and signaling genes (JAK, STAT1, IFI16 and 
STING/TMEM173) in RNA-seq libraries of resting CD4+ T cells, cell lines HEK293T, Jurkat, SupT1 and CEM -mock (Mock), heat-inactivated (hiLV) and 
HIV-infected (LV)- and activated CD4+ T cells at 8 and 24 h after TCR activation (Methods). The color-code scale in the inset represents the expression 
levels (log10 transformation of the number of library size-normalized reads per kilobase of exonic sequence), ranging from green (low) to red (high) 
expression. Complete hierarchical clustering of genes was based on Pearson correlation of the expression levels. Complete hierarchical clustering of 
samples was kept as assessed in Additional file 6: Figure S4. JAK1, JAK2, TMEM173 and GBP5 had a fold change higher than 2 between resting CD4+ 
T cells and permissive cell lines (Benjamini–Hochberg adjusted p value <0.01, Methods)
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Cell lines
Three T lymphoblastic cell lines, SupT1, Jurkat and CEM 
cells were cultured in RPMI 1640 (Invitrogen) supple-
mented with 10  % FCS and 50  μg/ml gentamicin (R-10 
culture medium). Human embryonic kidney (HEK) 293T 
cells were cultured in Dulbecco’s Modified Eagle Medium 
(DMEM; Invitrogen) supplemented with 10 % heat-inac-
tivated fetal calf serum (FCS) and 50  μg/ml gentamicin 
(D-10 culture medium).

Cell lines were infected or not by HIVeGFP/VSV-G 
for 24  h before total RNA extraction. Briefly HEK293T 
cells (200,000 cells) were plated in 12-well plates in 2 ml 
culture medium and let adhere over night before infec-
tion by spinoculation (1500 g, 25 °C, 3 h) with 1 μg p24 
equivalent of HIVeGFP/VSV-G particles in presence 
of 20  μg/ml polybrene. SupT1, Jurkat and CEM T cell 
lines (106 cells) were infected with 3  μg p24 equivalent 
of HIVeGFP/VSV-G particles in presence of 5  μg/ml 
polybrene and in 400  μl final volume by spinoculation 
(1500 g, 25  °c, 2 h). As controls, mock infection as well 
as infection using HIVeGFP/VSV-G heat-inactivated at 
56 °C for 60 min were performed in parallel.

HIV‑based vector production
HEK293T cells were co-transfected with 15  μg pNL4-
3ΔEnv-GFP (NIH AIDS Research and Reference Reagent 
program, Cat. #11100; [31]) and 5 μg pMD.G [32], using 
the calcium phosphate method (Invitrogen) to generate 
HIVeGFP/VSV-G particles as described previously [3]. 
HIV titer was measured by p24 ELISA (Abbott).

RNA seq and bioinformatic analyses
Cell lines infected with HIV-based vector, or mock 
infected, were collected for RNA extraction (Illustra 
RNAspin mini isolation kit; GE Healthcare) and subse-
quent mRNA-Seq transcriptome analysis as described 
previously [21]. mRNA-Seq library preparation was 
done with TruSeq RNA sample prep kit (Illumina) start-
ing with capture of polyA-containing transcripts, fol-
lowed by cluster generation (TruSeq cluster generation 
kit, Illumina) and high-throughput sequencing on Illu-
mina HiSeq2000 at the Genomics Technology Facility, 
University of Lausanne. Single read 100 base pairs were 
performed in all libraries except for primary CD4+ T 
cells (samples CD4J3 and CD4J4) that were paired-end 
100 base pairs. Sequencing data were bioinformatically 
analyzed as if they were single-end. The 100  bp single-
end reads were trimmed and filtered before alignment as 
described in [21]. RNA-Seq data for activated cells (TCR-
stimulated for 8 and 24 h) were from Mohammadi et al. 
(PLoS Pathogens 2014). Filtered reads were aligned to 
the human reference genome with RUM aligner (version 
v2.0.4; [33]) using the Ensembl gene GRCh37 release 70 

annotation file concatenated to the HIV vector sequence 
used for infection. The number of reads per gene was 
quantified with HTSeq-count v.0.6.1 [34] with parameters 
mode = union and type = exon. We obtained an average 
library size of 77,999,650 uniquely mapped reads. When 
indicated in downstream analysis, log-transformation 
of gene expression values was performed as the log10 
of the number of library size-normalized reads per kilo-
base of exonic sequence. A pseudo-count of 1 was added 
prior to the log10 transformation to avoid NA’s: log10(R
PKM*77999650/1,000,000+1); RPKM: Reads per Kilobase 
per Million mapped Reads. Variance stabilization trans-
formation was performed with R package DESeq [35] 
with parameters method “blind” for the computation of 
the empirical dispersion and fitType =  “local” for fitting 
a dispersion-mean relation. The per-gene raw read-counts 
matrix and the RPKM matrix are provided as Addi-
tional files 12 and 13: Tables S4 and S5, respectively (see 
also Additional file  14: Table S6). Differential expression 
analysis between primary cells and cell lines used DESeq2 
package [36]. An R script with all statistical analyses per-
formed necessary to reproduce results and figures is pro-
vided as Additional file 15: File S1. Versions of R-packages 
used are detailed in Additional file 16: File S2.

Perimeter of innate immunity genes
A representative list of 1503 human innate immunity 
genes compiled as described in [20] was used (Addi-
tional file  1: Table S1). The list represents the union of 
four resources: (1) genes annotated with the term “innate 
immunity response” (GO:0045087) in the Gene Ontol-
ogy project (http://www.geneontology.org/) [37]; (2) 
innate immunity genes manually annotated in the Innat-
eDB database (http://www.innatedb.ca) [38]; (3) IFN-
stimulated genes from the ISG database [39] identified 
through expression analyses, and (4) a list of IFN-stim-
ulated genes used for extensive functional analyses in the 
context of viral infection, including HIV [40].1473 of the 
1503 innate immunity genes were found expressed in at 
least one of the resting CD4+ T cell samples or labora-
tory cell lines analyzed.

Functional analyses
Functional analysis of innate immunity pathway
SupT1, Jurkat and CEM T cells lines (106 cells) were seeded 
in 12-well plates in 1 ml R-10 culture medium in presence 
of two concentrations of compound. Functional analy-
ses used 1 and 10 μg/ml R848 (ligand of TLR7/8), 0.1 and 
1 μM CpG oligodeoxynucleotide (ligand of TLR9), 10 and 
100 U/ml IFN-γ, 5 and 25 ng/ml TNF, and 1 and 10 μg/ml 
MDP (ligand of NOD2). Mock treatment was used as neg-
ative control. After 1, 4 and 24 h of incubation, cells were 
collected for downstream analyses: total RNA extraction 

http://www.geneontology.org/
http://www.innatedb.ca
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(Illustra RNAspin mini isolation kit; GE Healthcare) and 
gene expression analysis by RT-qPCR, or for cell lysis and 
immunoblot analysis. Primary resting CD4+ T cells (106 
cells) isolated from two healthy blood donors were tested 
similarly in R-10 culture medium only (negative control), 
in presence of 10 μg/ml R848, 100 and 1000 U/ml IFN-γ, 
or TCR stimulation (anti-CD3/anti-CD28/IL2) for 24  h 
(Additional files 17 and 18: File S3 and S4).

Gene expression analysis
RNA (200 ng) was reverse transcribed using High-Capac-
ity cDNA Reverse Transcription (Life Technologies) 
according to manufacturer’s instructions in a total volume 
of 20 μl. Eight genes representative of the selective path-
ways were assessed in duplicate by qPCR using 2 μl cDNA, 
and commercially available Gene Expression Assays 
with FAM-MGB probes (Applied Biosystems) following 
manufacturer’s recommendations: IL1B (Hs01555410_
m1), IRF1 (Hs00971960_m1), IFNB1 (Hs01077958_s1), 
IL12B (Hs01011518_m1), IL6 (Hs00985639_m1), CASP1 
(Hs00236158_m1), IL18 (Hs01038788_m1) and BIRC3 
(Hs00985031_g1). PIGS mRNA with a VIC-MGB probe 
(Hs00264209_m1) was used as endogenous control. qPCR 
was carried out in a StepOnePlus (Applied Biosystems) 
using the following cycling conditions: 2′ at 50  °C, 10′ at 
95  °C, 40 cycles of 15″ at 95  °C and 1’ at 60  °C. Calcula-
tions were ΔΔCT =  (CT gene −  CT PIGS)compound −  (CT 
gene – CT PIGS)mock. Log2 fold change of RT-qPCR data 
of compound over mock treated samples corresponds to 
the −ΔΔCT.

Immunoblot analysis
Cells (106) were lysed in RIPA buffer (50  mM Tris-HCl 
[pH 8.0], 150 mM NaCl, 2 mM EDTA, 1 % NP-40, 0.1 % 
SDS, 0.5  % sodium deoxycholate) supplemented with 
protease inhibitors (Complete Mini; Roche) and phos-
phatase inhibitors (PhosStop; Roche) for 45′ at 4 °C. Cell 
lysates were centrifuged and clean supernatants were fur-
ther used for protein quantification (BCA Protein Assay 
kit; Pierce) following manufacturer’s instructions. Whole 
cell lysates (10 μg total proteins) were separated by SDS-
polyacrylamide gel electrophoresis and transferred to a 
nitrocellulose membrane. Total phospho-Stat1 (Mouse 
anti-P-Y701 Stat1, 1:1000, #612132, BD Biosciences) and 
Stat1 (Rabbit anti-Stat1 antibody, 1:1000, #9172, Pri-
mary Cell Signaling Technology) were detected using 
standard procedures with Tris-Buffered Saline (TBS)-
0.2  % Tween-5  % BSA and PBS-0.2  % Tween-5  % milk 
as blocking buffers for Phospho-Stat1 and Stat1 respec-
tively. Secondary antibodies were rabbit anti-mouse-HRP 
(1:5000, #P0260, DAKO) and swine anti-rabbit-HRP 
(1:1000, #P02117, DAKO) respectively. Membrane strip-
ping was performed according to Blot Restore Membrane 

Rejuvination kit (Millipore) followed by tubulin detection 
(Mouse anti-tubulin, 1:10,000, #T5168, Sigma). Detec-
tion was finalized using ECL chemiluminescence detec-
tion (LiteAblot; Euroclone).

Additional files

Additional file 1: Table S1. List of 1503 innate immunity genes used in 
this study.

Additional file 2: Figure S1. Principal component analysis of RNA-Seq 
libraries. The figure shows the first two principal axes of the whole 
transcriptome Principal Component Analysis (PCA) analysis of resting 
CD4+ T cells (dark red) from two donors and four human laboratory cell 
lines HEK293T (pink), Jurkat (light violet), SupT1 (magenta) and CEM (dark 
violet). Cell lines were evaluated in 3 conditions: uninfected mock (circles), 
infected with a heat-inactivated HIV vector (squares) and HIV-infected 
(triangles). The percentage of variance explained by each axis is indicated. 
PCA was performed on the variance-stabilized transformation of read 
counts as described in Methods. The first principal axis (PCA1) of the PCA 
of the RNA-Seq libraries separated samples according to their permis-
siveness to HIV infection, from primary resting CD4+ T cells to permissive 
cell lines. The second principal axis distinguished lymphoblastic versus 
non-lymphoblastic cell lineages (PC2). Although HIV infection is known to 
modify the cellular transcriptome [3] it does not appear as a main factor 
of the distribution on the PCA space. Indeed, libraries of the same cell line, 
either in infected or uninfected conditions, clustered together, showing 
that main transcriptional differences are driven by cell type and not by 
infection state consistent with previous studies [21].

Additional file 3: Table S2. Description of the genes in the 249 and 
110 clusters. A. List of 249 innate immunity genes that were had high 
expression in primary cells and low or absent expression in cell lines. B. 
List of 110 innate immunity genes that with low expression in resting 
CD4+ T cells and high expression in cell lines. The DESeq2 results of the 
differential expression analysis between primary CD4+ T cells and cell 
lines are indicated.

Additional file 4: Figure S2. Heatmap of expression values of innate 
immunity genes in resting CD4+ T cells, and laboratory cell lines in a 
uninfected state. The figure shows the expression values of 1473 innate 
immunity genes in the samples shown in Figure 1 excluding samples 
heat-inactivated (HI) and HIV-infected (HIV). Complete hierarchical 
clustering of genes and cell samples was based on Pearson correlation 
of variance-stabilized read counts (Methods). Color scale indicated in the 
legend corresponds to z-scores of RPKM distributions per gene, ranging 
from green (low) to red (high) expression. The genes belonging to the 249 
genes and 110 genes clusters detected in Figure 1 are indicated in the left 
side of the heatmap as stripes colored in dark blue and cyan respectively.

Additional file 5: Figure S3. Principal component analysis of RNA-Seq 
libraries including activated CD4+ T cells. The figure shows the first two 
principal axes of the whole transcriptome Principal Component Analysis 
(PCA) analysis of the 13 samples shown in Supplemental Figure 1 plus 
4 samples corresponding to Activated CD4+ T cells at 8h (red) and 24h 
(orange) after TCR activation. The percentage of variance explained by 
each axis is indicated. PCA was performed on the variance-stabilized 
transformation of read counts as described in Methods. As in Supplemen-
tal Figure 1, the first principal axis (PC1) of the PCA separated samples 
according to their permissiveness to HIV infection. Thus, activated CD4+ 
T cells mapped in an intermediate position along PC1, between primary 
resting CD4+ T cells and permissive cell lines.

Additional file 6: Figure S4. Heatmap of expression values of innate 
immunity genes in resting CD4+ T cells, activated CD4+ T cells and 
laboratory cell lines. The figure shows the expression values of 1473 innate 
immunity genes in the 13 samples shown in Figure 1 plus 4 samples 
corresponding to Activated CD4+ T cells at 8 and 24h after TCR activation. 
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