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Abstract NMDA receptor (NMDAR)-dependent forms of synaptic plasticity are thought to

underlie the assembly of developing neuronal circuits and to play a crucial role in learning and

memory. It remains unclear how NMDAR might contribute to the wiring of adult-born granule cells

(GCs). Here we demonstrate that nascent GCs lacking NMDARs but rescued from apoptosis by

overexpressing the pro-survival protein Bcl2 were deficient in spine formation. Insufficient

spinogenesis might be a general cause of cell death restricted within the NMDAR-dependent critical

time window for GC survival. NMDAR loss also led to enhanced mushroom spine formation and

synaptic AMPAR activity throughout the development of newborn GCs. Moreover, similar elevated

synapse maturation in the absence of NMDARs was observed in neonate-generated GCs and CA1

pyramidal neurons. Together, these data suggest that NMDAR operates as a molecular monitor for

controlling the activity-dependent establishment and maturation rate of synaptic connections

between newborn neurons and others.

DOI: 10.7554/eLife.07871.001

Introduction
New neurons are continuously generated in the hippocampus of the adult mammalian brain. These

neurons become granule cells (GCs), the principal neurons in the dentate gyrus (DG) of the

hippocampus, and they functionally integrate into the hippocampal circuitry (van Praag et al., 2002;

Toni et al., 2008). This extreme form of structural remodeling, similar to many other forms of

experience-dependent plasticity, requires activation of NMDA receptors (NMDARs) (Platel and

Kelsch, 2013). Blockade of NMDARs rapidly increases the proliferation of neural precursor cells,

whereas stimulation of NMDARs promotes neuronal fate specification (Cameron et al., 1995;

Deisseroth et al., 2004). Moreover, deletion of the NMDAR subunit NR1 reduces the survival rate of

adult-born GCs (Tashiro et al., 2006a). Other than these studies, the role of NMDAR in circuit

assembly during new neuron development has so far received little attention, even though NMDAR

has been primarily known for its involvement in synapse organization and synaptic plasticity

(Constantine-Paton, 1990; Malenka and Nicoll, 1993).

The wiring of new neurons in mature circuits involves a coordinated series of events, from the initial

cell contact to the final maturation of functional synapses. Not only the cells themselves but also the

connections between newly recruited members and their old counterparts are survivors of a selection
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process depending upon neuronal activity patterns. The vast majority of excitatory inputs are received

by small bulbous protrusions residing on the dendrites of glutamatergic neurons, called dendritic

spines. In newborn GCs, dendritic spines first appear around 16 days after neuronal birth. The spine

density increases sharply before cells reach 4 weeks of age and continues to increase at a slower pace

until reaching a plateau at 8 weeks (Zhao et al., 2006). Notably, the NMDAR-dependent survival/

death of adult-born GCs is restricted to the time window of 2–3 weeks after neuronal birth, shortly

after formation of the first dendritic spines (Tashiro et al., 2006a). This temporal overlap suggests

that the survival of newborn GCs may be related to the state of spinogenesis or synaptogenesis.

Indeed, cell death can be induced by non-innervation at the peak of synaptogenesis during embryonic

and postnatal development (Naruse and Keino, 1995). Since activation of NMDARs has been shown

to support new spine formation (Maletic-Savatic et al., 1999; Kwon and Sabatini, 2011), we

hypothesize that NMDAR is required for initial spine gain on dendrites of newborn GCs and that

insufficient spine growth may be the underlying cause of the cell death associated with the genetic

deletion of the NMDAR subunit NR1 in newborn GCs.

There is a positive correlation between spine volume and the number of AMPA (α-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) or, more generally, the synaptic

strength (Matsuzaki et al., 2001), supporting the model that spine outgrowth and enlargement are

tightly coupled to the formation and maturation of glutamatergic synapses (Zito et al., 2009). Subject

to activity-dependent modifications, spines are highly dynamic in their number, shape and size. Long-

term potentiation (LTP) and long-term depression (LTD) at mature synapses, expressed by synaptic

insertion and removal of AMPARs, respectively, are associated with NMDAR-dependent enlargement

and shrinkage of dendritic spines (Yuste and Bonhoeffer, 2001; Matsuzaki et al., 2004; Zhou et al.,

2004). Stimuli that induce LTP or LTD may also result in rapid outgrowth or loss of spines, and these

eLife digest The brain contains billions of cells called neurons. Although most neurons have

already formed by the time we are born, part of the brain called the hippocampus produces new

neurons throughout our life. These new neurons are thought to be important for learning and

forming new memories.

Neurons send signals to each other across connections called synapses. Small protrusions called

spines stick out of the neuron and each tends to have one synapse that receives a signal from another

neuron. Via these connections, the neurons are organized into networks and circuits that control how

different parts of the brain work. Therefore, once new neurons are made, they also need to be

connected to the correct neurons.

The NMDA receptor is found in the surface of neurons, and mutated neurons that lack this

receptor often die shortly after birth. The NMDA receptor is also known to be important for

organizing synapses. Exactly how NMDA receptors help new neurons to survive and integrate into

circuits has not been investigated in detail. Mu, Zhao et al. now address this issue by using mice in

which a gene called NR1, which produces one of the proteins that makes up the NMDA receptor, can

be deleted at specific stages of neuron development.

Analyzing brain slices from the mice showed that deleting NR1 from newly-formed neurons

caused them to die within two or three weeks. When these neurons were forced to survive, they had

fewer spines than normal.

By contrast, deleting NR1 from neurons that has already survived for longer than four weeks did

not alter how many spines the neurons had. Instead, the synapses on the spines worked better. Mu,

Zhao et al. therefore suggest that NMDA receptors have different roles at different stages of a

neuron’s development. Initially, NMDA receptors help the neurons to survive and form spines. The

receptors then help to ensure the spines become the correct size, and enable the neurons to connect

into the right neural circuits by helping to control the strength of synapses.

Mu, Zhao et al. theorize that the mere presence of NMDA receptors suppresses spine maturation.

Furthermore, this inhibitory effect is only released when the NMDA receptor is activated, or when

the NMDA receptor is absent due to the deletion of the NR1 gene. Further studies will be needed to

validate this hypothesis.

DOI: 10.7554/eLife.07871.002
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changes can be prevented by NMDAR blockers (Engert and Bonhoeffer, 1999; Toni et al., 1999;

Nagerl et al., 2004). The structural plasticity of spines is thought to complement functional plasticity

(e.g., LTP and LTD) and play a central role in learning and memory in mature animals (Bourne and

Harris, 2007). In contrast, emerging evidence suggests that, during early postnatal development,

AMPARs can be delivered to spines independently of NMDAR signaling. NMDARs actually restrict

AMPAR trafficking to the postsynaptic density and limit synapse maturation (Ultanir et al., 2007;

Adesnik et al., 2008; Gray et al., 2011). Due to variables in experimental designs, the observed

opposite effects of NMDARs on AMPAR recruitment in developing vs mature neurons need further

examination. Adult-born neurons undergo a long process of maturation resembling embryonic

development (Esposito et al., 2005); however, adult neurogenesis happens in mature circuits that

differ substantially from the developing brain. We aimed to characterize NMDAR functions during

integration of new GCs into the circuit at distinct stages of their development using the tool of single-

cell gene deletion and labeling.

To address the above issues, we performed an analysis of spine morphogenesis in immature NR1

knockout (KO) GCs that either survived naturally or were rescued by the apoptosis regulator Bcl-2.

Both groups of cells were found to be deficient in spine formation. In parallel, we observed an

elevation in mushroom spine density and in synaptic AMPAR activity in the absence of NR1.

Furthermore, NMDAR loss initiated at a later stage of GC development, similar to NR1 KO in fully

mature GCs or CA1 pyramidal neurons, resulted in enhanced functional synapses without affecting

total spine numbers. Thus, NMDAR appears to play two distinct roles during GC development. First, it

promotes the initial spine formation and its presence is required for the survival of immature GCs.

Second, the receptors monitor spine enlargement and the recruitment of AMPAR once spines are

formed. Both aspects of NMDAR function contribute to experience-driven construction of circuits

formed by new neurons, even though NMDAR signaling might make less of a contribution to the

control of overall spine density upon neuronal maturation.

Results

NMDAR loss in newborn GCs leads to decreased spine density and
increased mushroom spine density
To determine the role of NMDAR in circuit assembly of new neurons in the adult brain, we first

examined the morphology of NR1 KO GCs at 4 weeks of age. A retrovirus encoding Cre recombinase

and GFP was developed for inducible knockout of the floxed Grin1 alleles in adult mice (rv GFP-ires-

cre; Figure 1—figure supplement 1). When tested in the ROSA-lacZ reporter mice, rv GFP-ires-cre

induced recombination in 97% of GFP+ cells at 6 days post infection (dpi) and in all GFP+ cells at 14

and 28 dpi. We then injected rv GFP-ires-cre together with a control retroviral vector expressing

mCherry only (rv CAG-mCherry) into the Grin1 floxed mice (Tsien et al., 1996; Tashiro et al., 2006a)

(Figure 1A). To assess NMDAR activity in virus-transduced cells and confirm the cell-specific knockout

of the Grin1 gene via Cre/loxP recombination, we performed perforated whole-cell patch-clamp

recordings at a holding potential of −70 mV and +40 mV to monitor synaptic responses mediated by

AMPA and NMDARs, respectively. In control adult-born GCs (mcherry+GFP−) at 28 dpi, both AMPA

and NMDA currents could be readily evoked by perforant path stimulation (Figure 1B). In contrast,

there was only a DNQX-sensitive AMPA component in age-matched GFP+ neurons infected by rv

GFP-ires-cre (Figure 1B), suggesting that Cre-mediated recombination successfully removed the

floxed Grin1 gene fragment from the mouse genomic DNA.

Because the fluorescent signal produced by rv CAG-mCherry labeling was not sufficient for optimal

image acquisition and analysis of dendritic spines, we then injected the control CAG-GFP or GFP-ires-

cre retrovirus into Grin1f/f mice to compare the morphology of NR1 wild-type (WT) and KO cells. There

was no obvious difference in overall cell morphology between NR1 KO and WT cells (Figure 1C,D).

Dendritic tracing with the ICL TRACE (http://synapses.clm.utexas.edu/tools/trace/trace.stm) showed

that WT and KO cells were similar in both dendritic length (WT: 601.8 ± 36.6, n = 47 frames, KO: 515.1

± 29.3, n = 38 frames, p = 0.08) and branching points (WT: 5.92 ± 0.33, KO: 5.68 ± 0.37, p = 0.64).

These data indicate that gross development of dendrites does not require NMDARs. However,

detailed analyses of the dendritic segments in the outer third of the molecular layer revealed

significant differences between WT and KO cells (Figure 1E). According to the criteria described by

Harris and Yuste (Harris et al., 1992; Parnass et al., 2000), all dendritic protrusions were classified
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into four categories: filopodia, stubby, thin and mushroom spines. Briefly, ‘stubby’ were neckless

spines whose head diameters were about equal to their lengths. Spines were defined as ‘filopodia’ if

they were long, thin and did not have a head. In contrast, ‘thin’ spines had long, thin necks and

obvious heads. ‘Mushroom’ spines were similar to ‘thin’ spines in shape, but with larger heads (see

‘Materials and methods’). As shown in Figure 1F, total spine density was significantly decreased in

NR1 KO cells (WT: 2.14 ± 0.08, n = 59 frames, KO: 1.53 ± 0.09, n = 37 frames, p < 0.0001).

Surprisingly, the percentage of mushroom type relative to total spine numbers was drastically

enhanced, whereas the other spine types remained unchanged (p < 0.0001; Figure 1G). In line with

this observation, mushroom spine density was increased by more than twofold in NR1 KO cells (WT:

0.026 ± 0.004, KO: 0.064 ± 0.010, p = 0.0001; Figure 1H). A cumulative probability graph of the size

of all measured spines showed that the spine head area in NR1 KO cells was bigger than that in

control cells (p < 0.0001, Kolmogorov–Smirnov test; Figure 1I).

Figure 1. NR1 KO cells display decreased spine growth but enhanced spine maturation and AMPAR activity at 4 weeks of age. (A) Co-injection of rv CAG-

mcherry (red) and CAG-GFP-ires-cre (green) for the simultaneous labeling of wild-type (WT) and NR1 KO newborn granule cells (GCs). (B) Left: mCherry+
newborn GCs respond to perforant path stimulation in the absence (upper panel) and presence (lower panel) of the AMPAR antagonist DNQX. Right: GFP+
Cre-expressing newborn GCs respond to perforant path stimulation in the absence (upper panel) but not in the presence (lower panel) of DNQX. (C, D)

Representative images of WT (C) and NR1 KO (D) newborn GCs at 4 weeks of age. (E) Representative images of dendritic processes of newborn WT (GFP)

and NR1 KO (cre) GCs in the outer molecular layer. (F) Total spine density is decreased in NR1 KO newborn GCs. (G) Comparison of the percentage of

each spine type relative to total spine numbers in adult-born WT and NR1 KO GCs. (H) Mushroom spine density is increased in NR1 KO newborn GCs.

(I) Cumulative plot of spine size in NR1 WT and KO GCs. (J) Representative traces of AMPAR-mediated miniature excitatory postsynaptic currents

(mEPSCs) in mCherry+ WT and GFP+ NR1 KO newborn GCs. (K, L) Quantitative analysis of mEPSCs by amplitude (K) and frequency (L).

DOI: 10.7554/eLife.07871.003

The following figure supplement is available for figure 1:

Figure supplement 1. Retrovirus rv CAG GFP-ires-cre was delivered to the dentate gyrus (DG) of ROSA-lacZ mice and the recombination efficiency was

examined by the expression of β-gal (red) in Cre-expressing cells (GFP+, green).
DOI: 10.7554/eLife.07871.004
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The size of the spine head has been positively correlated with synaptic AMPAR level (Matsuzaki

et al., 2001). Since NR1 KO cells displayed increased mushroom spines, we postulated that NMDAR

KO cells might have more synaptic AMPAR activity. Therefore, we measured AMPAR-mediated

miniature excitatory postsynaptic currents (mEPSCs). While mEPSCs were infrequent in mCherry+GFP−
NR1 WT cells, they were evident in GFP+ NR1 KO cells (Figure 1J). Both the amplitude and frequency

of mEPSCs were significantly increased in neurons lacking NR1 as compared to control cells (WT: n = 5

cells, KO: n = 6 cells, p < 0.001, Kolmogorov–Smirnov test; Figure 1K,L). These data confirmed that

NR1 KO cells had enhanced functional glutamatergic synapses. Utilizing serial immuno-electron

microscopy for GFP, we consistently observed that GFP+ dendritic spines were associated with GFP−
axon terminals containing presynaptic vesicles (Figure 2A), verifying that newborn NR1-null GCs

could form normal synapses. We also noted that all stubby, thin and mushroom spines were

asymmetric and presumably excitatory (Figure 2A). While the axo-dendritic synapses located on

dendritic shafts had a typical morphology of symmetric or GABAergic synapses (Figure 2A), they

could be initially excitatory in newly born GCs due to the high intracellular chloride concentration

(Ge et al., 2006). Total head volumes of randomly selected spines averaged 0.035 ± 0.005 μm3

(n = 130 spines) and 0.078 ± 0.014 μm3 (n = 74 spines) in WT and NR1 KO GCs, respectively, indicating

a significant difference between these two groups (p = 0.0008; Figure 2B). Furthermore, we found

that this difference was mainly due to increased volume of big or mushroom spines in NR1 KO

neurons, whereas the volumes of small spines (presumably filopodia or thin) were roughly the same

across groups. These results suggest that changes in the amount of depolarization-induced Ca2+ influx

Figure 2. Electron microscopic description of dendritic spines. (A) Electron micrograph illustrating dendrites of

newborn NR1 KO neurons. Panels show examples of symmetric axo-dendritic synapses (left panels, arrows),

filopodia (middle left panels), thin spines (middle right panels) and mushroom spines (right panel). Darkly

immunolabeled GFP+ dendritic spines are each contacted by GFP− axon terminals (asterisks) containing numerous

presynaptic vesicles. Scale bars: 1 μm. (B) Comparison of total spine volumes in NR1 KO and WT cells.

DOI: 10.7554/eLife.07871.005
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may affect the survival of nascent neurons, although the role of a possible re-distribution of Ca2+ entry

through different spine categories cannot be excluded.

NMDAR is required for spine growth in newborn GCs
Given that most NR1 KO GCs die before reaching 4 weeks of age (Tashiro et al., 2006a), it is

questionable whether the observed abnormal spine morphogenesis in the few surviving NR1 KO cells

represents a general phenomenon in NR1-null neurons. To clarify this issue, we engineered a new

retroviral vector expressing a fusion protein of the pro-survival gene Bcl2 and GFP in addition to Cre

recombinase (rv GFPBcl2-ires-cre; Figure 3—figure supplement 1) to prevent NR1 KO cells from

dying. The logic behind this set of experiments is: NR1 deletion in new GCs results in certain defects

that eventually lead to cell death. Since Bcl2 is an important anti-apoptotic protein (Tsujimoto et al.,

1984; Cleary et al., 1986), it may suppress apoptosis and drive NR1 KO cells to survive even though

they have deficiencies. Therefore, neurons rescued by Bcl2 expression should exhibit features distinct

from those surviving normally, and these differences presumably reflect defects caused by NR1 loss.

We first tested the virus efficiency of cell death regulation in WT C57Bl/6 mice. In line with prior

studies (Dayer et al., 2003; Tashiro et al., 2006b), within 28 dpi of rv CAG-GFP, we found a

significant decrease in the quantity of GFP+ GCs in C57Bl/6 mice (GFP, relative cell number to that of

14 dpi, 14 dpi: 1.00 ± 0.11, n = 5 mice, 28 dpi: 0.30 ± 0.22, n = 4 mice, p = 0.019; Figure 3A). In

contrast, GCs infected by rv GFPBcl2-ires-cre did not die (GFPBcl2icre, 14 dpi: 1.00 ± 0.29, n = 6 mice,

28 dpi: 1.00 ± 0.14, n = 6 mice; Figure 3A). More importantly, the dramatic death of new neurons

observed in Grin1f/f mice injected with rv GFP-ires-cre was not found in Grin1-floxed animals injected

with rv GFPBcl2-ires-cre (GFPicre, 7 dpi: 1.00 ± 0.37, n = 5 mice, 21 dpi: 0.05 ± 0.03, n = 5 mice,

p = 0.032; GFPBcl2icre, 7 dpi: 1.00 ± 0.31, n = 5 mice, 21 dpi: 1.31 ± 0.39, n = 5 mice, p = 0.5;

Figure 3B), suggesting that the expression of Bcl2 did prevent the death of NR1 KO cells.

Next we assessed the morphology of NR1 KO cells that were rescued by Bcl2 expression. Because

the fluorescent signal from GFPBcl2 fusion protein was not strong enough for morphological analyses,

rv GFPBcl2-ires-cre was injected together with rv CAG-GFP. In this case, we identified rv GFPBcl2-ires-

cre targeted cells by Cre immunostaining and imaged Cre+GFP+ cells when the newborn cells were 4

weeks old (Figure 3C). GFP-labeled GCs from animals injected with pure rv CAG-GFP or rv GFP-ires-

cre were imaged in parallel for control purposes. In C57Bl/6 mice, Bcl2-expressing cells displayed

decreased dendritic length (GFP: 378.2 ± 32.0, n = 58 frames, cre: 351.5 ± 45.6, n = 33 frames, Bcl2:

283.8 ± 22.0, n = 93 frames, p = 0.013 Bcl2 vs GFP; Figure 3D). The number of dendritic branching

points was not significantly different between the samples (GFP: 5.2 ± 0.3, cre: 4.9 ± 1.5, Bcl2: 4.4 ±
0.2, p = 0.056 Bcl2 vs GFP, Figure 3E). Similarly, in Grin1f/f mice, Bcl2-expressing cells displayed a

significant decrease in dendritic length (GFP: 342.4 ± 32.9, n = 55 frames, cre: 302.7 ± 22.8, n = 85

frames, Bcl2: 256.0 ± 18.0, n = 133 frames, p = 0.014 Bcl2 vs GFP; Figure 3F) but not in branching

points (GFP: 5.4 ± 0.4, cre: 5.1 ± 0.3, Bcl2: 4.7 ± 0.3, p = 0.14 Bcl2 vs GFP, Figure 3G). Since NR1 KO

neurons did not display impairment of dendrite length and complexity (Figure 1C,D), we infer from

these data that Bcl2 expression promoted survival of a mixed population of nascent GCs, including

both WT and NR1 KO cells.

Detailed analyses of the dendritic processes in the outer molecular layer showed that Bcl2-

expressing cells in C57Bl/6 mice had much lower total spine density (GFP: 2.13 ± 0.11, n = 28 frames,

cre: 2.22 ± 0.11, n = 17 frames, Bcl2: 1.39 ± 0.14, n = 31 frames, p = 0.0001 Bcl2 vs GFP; Figure 3H,I).

A closer examination of the data identified a unique population of dendritic branches with low spine

density (<1.5 spines/μm) in the Bcl2-expressing group but not in samples expressing GFP or Cre

alone, although the cumulative fractions of spine counts in these groups were not statistically

different (p > 0.1, Kolmogorov–Smirnov test; Figure 3J). However, neither the mushroom spine

density (GFP: 0.015 ± 0.006, cre: 0.013 ± 0.004, Bcl2: 0.017 ± 0.006) nor the percentage of mushroom

spines (GFP: 0.80 ± 0.27, cre: 1.06 ± 0.30, Bcl2: 1.08 ± 0.34) relative to total number of protrusions

showed any difference between samples in C57Bl/6 mice (Figure 3K,L). These results suggest that WT

adult-born GCs selected for death had fewer spines, specifically fewer thin spines (p < 0.05;

Figure 3L), as compared to those destined for survival. In Grin1f/f mice, deletion of NMDAR

in newborn GCs led to a decrease in total spine density, and the spine density was even lower in

Bcl2-rescued cells (GFP: 1.96 ± 0.06, n = 68 frames, cre: 1.47 ± 0.11, n = 35 frames, Bcl2: 1.06 ± 0.08,

n = 45 frames, p = 0.0054 cre vs Bcl2; Figure 3M,N), whereas the cumulative distribution of total
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Figure 3. NR1 KO cells rescued by expression of the pro-survival gene Bcl2 had an unusually low spine density. (A) Bcl2 expression was able to rescue

newborn GCs from naturally occurring cell death in C57Bl/6 mice. (B) Bcl2 expression was able to rescue NR1 KO newborn GCs from cell death. (C) For

morphological analysis of GFPBcl2-ires-cre-targeted cells, rv GFPBcl2-ires-cre was co-injected with rv GFP. Bcl2-ires-cre-targeted cells were identified by

immunohistochemistry using an antibody against the cre recombinase. The arrow and asterisk show GCs transfected by both rv GFPBcl2-ires-cre and rv

GFP. Insets on the right side represent GFP− (green) and Cre-expressing (red) GCs, respectively. (D–G) Analysis of dendritic growth of newborn GCs at 28

dpi. Bcl2-rescued newborn GCs had a decreased total dendritic length in both C57Bl/6 and Grin1f/f mice (D, F), whereas branching points were not

changed (E, G). (H) Representative images of dendritic processes in the outer molecular layer of newborn GCs at 28 dpi in C57Bl/6 mice labeled by rv GFP,

GFP-ires-cre and GFPBcl2-ires-cre. (I, J) Total spine density was similar in GFP and GFP-ires-cre targeted newborn GCs but significantly decreased in

GFPBcl2-ires-cre targeted newborn GCs. (K) The density of mushroom spines did not change significantly in newborn GCs targeted by the three

retroviruses. (L) Comparison of the percentage of each spine type relative to total spine numbers in new GCs of C57Bl/6 mice infected by the three

retroviruses. (M) Representative images of dendritic processes in the outer molecular layer of newborn GCs at 28 dpi in Grin1f/f mice labeled by rv GFP,

GFP-ires-cre and GFPBcl2-ires-cre. (N, O) Total spine density was significantly lower in surviving NR1 KO cells (Cre) and further decreased in Bcl2-rescued

cells. (P) Mushroom spine density was increased in NR1 KO cells (Cre) but not in Bcl2-rescued cells. (Q) Comparison of the percentage of each spine type

relative to total spine numbers in new GCs of Grin1f/f mice infected by the three retroviruses. Scale bars: 20 μm (C) and 2 μm (H, M).

DOI: 10.7554/eLife.07871.006

The following figure supplement is available for figure 3:

Figure supplement 1. GCs infected by rv GFP Bcl2-ires-cre in ROSA-lacZ reporter mice.

DOI: 10.7554/eLife.07871.007
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spine density did not exhibit significant differences between each pair (p > 0.09, Kolmogorov–

Smirnov test; Figure 3O). We noted that, in comparison with WT GFP-expressing cells, Bcl2-

expressing GCs did not show dramatically increased density (GFP: 0.028 ± 0.004, cre: 0.053 ± 0.011,

Bcl2: 0.032 ± 0.007, p = 0.0092 cre vs GFP) or percentage (GFP: 1.40 ± 0.21, cre: 4.76 ± 0.66, Bcl2:

2.13 ± 0.39, p < 0.0001 cre vs GFP) of mushroom-like spines as naturally surviving NMDAR KO cells

(Figure 3P–Q). However, Bcl2-rescued group displayed a strong trend of mushroom spine

enhancement in Grin1f/f mice (Bcl2 vs GFP: p = 0.08, Figure 3Q), but not in WT mice (Bcl2 vs GFP:

p = 0.5, Figure 3L), suggesting that NR1 KO GCs accounted for a portion of neurons rescued by Bcl2

and they had more mushroom spines than those dying of reasons other than genetic ablation of

NMDARs. Taken together, these data support that NMDAR was critical for spine outgrowth and that

newborn GCs destined to die without the protection of Bcl2 were defective in spine formation.

Mushroom spine density is increased in mature neurons upon deletion
of NR1
Since Bcl2-rescued GCs exhibited a total spine reduction, but not a mushroom spine enhancement

(Figure 3H–Q), it seems unlikely that the increases in spine volume and AMPA currents associated

with NMDAR loss (Figure 1I–L) simply represent a homeostatic change in response to the decrease of

total synaptic drive. However, two scenarios may explain the increase in mushroom spines found in

surviving NR1 KO cells (Figure 1). The alteration of spine head diameter could be a direct

consequence of NMDAR loss. Alternatively, the survival selection was biased towards neurons that

happened to bear lots of mushroom spines or mature synapses. To test these possibilities, we

developed a cre-ER retrovirus in which the expression of GFP and the inducible Cre recombinase

creERt2 was bridged by the 2A sequence from Picornavirus (Szymczak et al., 2004) (rv CGS-creER;

Figure 4—figure supplement 1) to induce NMDAR deletion in newborn GCs after their critical time

window for survival. We injected rv CGS-creER or control rv CAG-GFP into Grin1f/f and Grin1f/+ mice,

respectively, and injected oil or tamoxifen (180 mg/kg, daily for 4 days) into the animals at 28 dpi.

Mouse brains were collected at 56 dpi (28 days after the induction with tamoxifen) for morphological

analyses. We first quantified GFP+ cell number from Grin1f/f mice injected with rv CGS-creER and

found no significant difference between oil and tamoxifen treatment (oil: 84 ± 48, n = 4 mice, tamo:

117 ± 15, n = 4 mice, p = 0.54; Figure 4A–C). Therefore, NMDAR activity was not required for the

survival of newborn GCs that were 4 weeks old or older. Although there was no statistically significant

decrease in total spine density in NMDAR KO cells (oil/creER: 2.20 ± 0.10, n = 20 frames, tamo/creER:

1.91 ± 0.12, n = 14 frames, tamo/GFP: 2.29 ± 0.11, n = 21 frames; Figure 4D,E), there appeared to be

a strong trend of increased mushroom spine density (oil/creER: 0.133 ± 0.016, tamo/creER: 0.188 ±
0.027, tamo/GFP: 0.131 ± 0.015, p = 0.054 comparing tamo/creER with tamo/GFP; Figure 4D,F). In

particular, the percentage of mushroom-shaped spines was markedly increased by 62% (oil/creER:

6.38 ± 0.91, tamo/creER: 10.35 ± 1.68, tamo/GFP: 6.17 ± 0.92, p = 0.024 comparing tamo/creER with

tamo/GFP; Figure 4G). These data indicate that enhanced spine maturation was unlikely to be a

compensatory effect from the stress of NMDAR-dependent cell survival.

Since NR1 KO newborn GCs display increased mushroom spine density at both immature and

relatively mature stages during GC development, we next examined whether NMDARs functioned

similarly in GCs generated during embryonic development. To delete NR1 in mature GCs, we

engineered a lentivirus CAG-GFP-ires-cre (lv GFP-ires-cre; Figure 5—figure supplement 1) and

injected the lv GFP-ires-cre virus or a control lv GFP virus into 8-week-old Grin1f/+ andGrin1f/f mice. Lv-

transduced GCs were analyzed at 28 dpi. A brief visual inspection of the sections revealed no obvious

difference in the number of lv GFP-ires-cre-transduced cells in f/+ and f/f cells, consistent with the

previous observation that NMDAR was not required for the survival of mature GCs (Figure 5A,B).

Electrophysiological recordings showed that Cre-targeted cells did not respond to perforant path

stimulation in the presence of the AMPAR blocker DNQX, confirming that Cre-expressing cells had no

functional NMDARs (Figure 5C,D). There was no difference in total spine density between WT and

NMDAR KO cells (Grin1f/+ GFP: 2.97 ± 0.14, n = 29 frames, Grin1f/+ cre: 3.09 ± 0.18, n = 28 frames,

Grin1f/f GFP: 3.15 ± 0.10, n = 71 frames, Grin1f/f cre: 2.97 ± 0.08, n = 75 frames; Figure 5E,F).

However, mature NMDAR KO GCs displayed significantly more mushroom spines than any other

group (Grin1f/+ 0.128 ± 0.018, Grin1f/+ cre: 0.089 ± 0.013, Grin1f/f GFP: 0.117 ± 0.009, Grin1f/f cre:

0.193 ± 0.010, p < 0.0001; Figure 5G). Correspondingly, both the amplitude and the frequency of
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AMPAR-mediated mEPSCs were increased in NMDAR KO mature cells (WT: n = 7 cells, KO: n = 6

cells, p < 0.01, Kolmogorov–Smirnov test; Figure 5H–K). These data demonstrated that spine

maturation and synaptic AMPAR activity were enhanced in mature GCs in the absence of NMDAR.

Although adult-born GCs only constitute a small population of GCs in the DG and most lentivirus-

labeled cells should be mature GCs, we could not completely rule out the possibility that our

conclusions about NMDAR-dependent inhibition on spine maturation and AMPAR activity in mature

GCs might be confounded by the small population of newborn cells possibly included in our analyses.

To resolve this concern, and also to determine whether NMDAR-mediated inhibition of spine

maturation was specific to GCs, we examined lv GFP-ires-cre-targeted CA1 pyramidal cells in Grin1f/f

mice at 28 dpi (Figure 6A,B). Since no neurogenesis occurs in the CA1 area, the pyramidal cells we

examined in this area should be exclusively mature cells. Images of the apical and basal dendrites of

CA1 pyramidal cells were obtained from stratum lacunosum-moleculare and stratum oriens,

respectively, and were analyzed separately. NMDAR KO pyramidal cells displayed a decreased total

spine density in the apical dendrites but not the basal dendrites (apical GFP: 2.63 ± 0.12, n = 38

frames, cre: 2.12 ± 0.17, n = 15 frames, p = 0.023, basal GFP: 2.59 ± 0.11, n = 28 frames, cre: 2.44 ±
0.15, n = 15 frames, p = 0.44; Figure 6C). Hippocampal CA1 pyramidal neurons have distinct

compartments with differential inputs, plasticity characteristics and mechanisms crucial for integrative

function (Spruston, 2008). It is possible that NMDAR subunit composition, distribution and

associated signaling pathways are different in apical and basal domains. Therefore, the spine

turnover rate may be low and not sufficient to amount to a visible difference in total spine number in

basal but not apical dendritic branches. For example, 96% of spines in the adult mouse visual cortex

remained stable through weeks of live imaging (Grutzendler et al., 2002). Consistent with the data in

lentivirus-transduced GCs, mushroom spine density was significantly higher in both apical and basal

Figure 4. Using inducible cre to bypass the critical NMDAR-dependent cell survival. (A, B) Representative images of newborn GCs in Grin1f/f mice that

were infused with rv CAG GFP-t2A-creER and treated with oil (A) or tamoxifen (B). (C) Deletion of the Grin1 gene initiated in 4-week-old newborn GCs did

not affect cell survival. (D) Representative images of dendritic processes in the outer molecular layer of rv GFP-t2A-creER-targeted newborn GCs treated

with oil and tamoxifen, and of rv GFP-targeted newborn GCs treated with tamoxifen. (E–G) Quantification of total spine density (E), mushroom spine

density (F) and mushroom spine percentage (G) in rv GFP-t2A-creER- and rv GFP-targeted newborn GCs (*p < 0.05). Scale bars: 50 μm (A, B) and 5 μm (D).

DOI: 10.7554/eLife.07871.008

The following figure supplement is available for figure 4:

Figure supplement 1. The recombination efficiency of rv CAG GFP-t2A-creER was tested in the ROSA-lacZ mice.

DOI: 10.7554/eLife.07871.009
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dendrites of NMDAR KO pyramidal cells (apical GFP: 0.105 ± 0.012, cre: 0.192 ± 0.034, p = 0.0037,

basal GFP: 0.050 ± 0.012, cre: 0.125 ± 0.030, p = 0.0077; Figure 6D). Therefore, spine maturation was

also enhanced in CA1 pyramidal cells in the absence of NMDAR.

Discussion
Using retro- and lentiviral vectors that encode the Cre recombinase, we deleted the Grin1 gene in

newborn GCs or mature neurons (GCs and CA1 pyramidal cells) to examine the impact of NMDAR

Figure 5. The effect of NR1 KO in mature GCs. (A, B) Representative images of mature GCs in Grin1f/+ (A) and Grin1f/f (B) mice targeted by lv CAG-GFP-

ires-cre. (C, D) Electrophysiological recordings of mature GCs in lv CAG-GFP-ires-cre-targeted mice. GFP− and GFP+ cells represent NR1 WT and KO

GCs, respectively. (E) Representative images of dendritic processes in the outer molecular layer of GFP+ cells targeted by lv CAG-GFP and GFP-ires-cre.

(F) NR1 KO mature GCs display similar total spine density as wild type GCs. (G) Mushroom spine density was increased in NR1 KO mature GCs (*p <
0.0001). (H, I) Sample traces of AMPAR-mediated mEPSCs in GFP− and GFP+ mature GCs in Grin1f/f mice targeted by lv CAG GFP-ires-cre. (J, K)

Cumulative plots of mEPSC amplitude (J) and frequency (K) confirmed that AMPAR-mediated activity was enhanced in NR1 KO mature GCs. Scale bars:

100 μm (A, B) and 5 μm (E).

DOI: 10.7554/eLife.07871.010

The following figure supplement is available for figure 5:

Figure supplement 1. The recombination efficiency of lv CAG GFP-ires-cre was tested in ROSA-lacZ reporter mice 4 weeks after virus delivery.

DOI: 10.7554/eLife.07871.011
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loss on spine morphology. We found that NMDAR activity was required for initial spinogenesis and

that a low level of spine density correlated with a defect in cell survival during the 3–4 weeks after new

GCs were born, although NMDAR signaling did not appear to have a major impact on total spine

numbers in mature neurons, whether they were neonate- or adult-generated. However, NMDAR was

not critical for the maturation of dendritic spines once spines were formed. On the contrary, the

density of mushroom spines was increased in NR1 KO GCs, accompanied by increased synaptic

AMPAR activity. The latter phenomenon was observed not only in newborn GCs but also in mature

GCs and CA1 pyramidal cells. Taken together, our data suggest that NMDARs serve to regulate the

genesis of dendritic spines in developing neurons. Furthermore, NMDARs restrict synapse maturation

and control spine morphology after spines have been formed, independently of the developmental

stage.

We reported previously that NMDAR was required for the survival of newborn GCs in the adult

mouse hippocampus (Tashiro et al., 2006a). Through detailed analyses, we found that NMDAR KO

newborn GCs that were forced to survive with the expression of the pro-survival gene Bcl2 had

Figure 6. Mushroom spine density was increased in CA1 pyramidal cells in response to NR1 deletion in adult mice.

(A) Representative image of CA1 pyramidal cells labeled by lv GFP-ires-cre. Dotted boxes indicate typical apical and

basal dendrite segments for spine analysis. (B) Representative images of apical (A) and basal (B) dendrites in wild

type and NR1 KO CA1 pyramidal cells. (C) Total spine density was decreased in the apical but not basal dendrites in

CA1 pyramidal cells in response to NR1 deletion (*p < 0.05). (D) Mushroom spine density was increased in both

apical and basal dendrites in NR1 KO pyramidal cells (*p < 0.01). Scale bars: 50 μm (A) and 2 μm (B).

DOI: 10.7554/eLife.07871.012
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defects in spine growth and synaptogenesis. Because the time window of initial spine growth and

synapse formation correlated with that of NMDAR-dependent cell survival, we deduced from these

observations that the failure of synapse formation may be the underlying mechanism of cell death in

NMDAR KO newborn GCs. In addition, we analyzed newborn GCs forced to survive through Bcl2

expression in WT mice and found that the overall population had lower total spine density compared

to the cells that were selected to survive under natural conditions. This finding suggests that natural

death of WT adult-born GCs might also be a result of the failure of spine formation in certain cell

populations. Both voluntary exercise and enriched environment (EE) housing increased cell survival

(van Praag et al., 1999; Tashiro et al., 2007;Muotri et al., 2009; Zhao et al., 2014). However, unlike

the forced survival through Bcl2 expression, increased survival of GCs through physical exercise or EE

did not lower the average spine density of newborn GCs (Zhao et al., 2014), suggesting that exercise

and EE likely promote cell survival through enhancing spine formation in newborn GCs.

Many of the functional properties of NMDARs are highly sensitive to their subunit composition. Early

expression of NR2A in organotypic hippocampal slices reduces the number of synapses and the volume

and dynamics of spines, whereas overexpression of NR2B increases spine motility, indicating that the

ratio of NR2B over NR2A controls spine motility and synaptogenesis (Gambrill and Barria, 2011).

Furthermore, overexpression of NR3A reduces spine density over time by increasing spine elimination

and decreasing spine stability (Kehoe et al., 2014). In adult-born GCs, there is a switch in synaptic

NMDAR subunit composition from predominantly NR2B to NR2A during their development (Ge et al.,

2007). Although the expression pattern of NR3A is unclear in nascent GCs, it is reasonable to speculate

that NMDAR may be required for spine stabilization in addition to spine formation, depending on

developmentally regulated synaptic expression of NMDARs containing a specific type of subunit.

Alternatively, NMDARs are located not only at synapses but also at extrasynaptic sites. The roles played

by extrasynaptic NMDARs are generally still elusive. It has been shown that filopodia-like protrusions or

spines appear de novo after exogenous glutamate application or LTP induction (Engert and

Bonhoeffer, 1999; Maletic-Savatic et al., 1999), raising a possibility that extrasynaptic NMDARs

participate in the regulation of new spine formation. Given that newborn GCs display high levels of

NMDARs before the formation of glutamatergic synapses (Schmidt-Salzmann et al., 2014), it is possible

that the distinct roles of NMDARs during different stages of GC development may be attributed to

different locations of NMDARs. Further study is needed to find out whether NMDAR location or subunit

composition, or both, could be the determining factor of NMDAR’s functional diversity.

NR1 deletion leads to decreased numbers of total spines and increased mushroom spines in

developing cortical neurons (Ultanir et al., 2007). Here we revealed a very similar impact of NR1 loss

on neurons born in the adult hippocampus and have provided additional evidence that adult

neurogenesis follows a pattern resembling early development. However, the observation that

NMDAR KO newborn GCs, irrespective of their age, displayed higher mushroom spine density and

more synaptic AMPAR activity was unexpected. It contradicted the notion that NMDAR activity is

required for spine enlargement and AMPAR recruitment (Matsuzaki et al., 2004; Wang and

Kriegstein, 2008) and cannot be interpreted simply by differences between developing and mature

synapses as previously speculated (Ultanir et al., 2007). Several possible mechanisms could account

for enhanced spine maturation in the absence of NMDAR. First, the surviving cell population could be

selected to survive because those cells have more mushroom spines or functional synapses. This

possibility was ruled out because we observed a similar phenomenon in newborn GCs when NR1 was

deleted at a later stage, after the NMDAR-dependent critical time window for cell survival.

Furthermore, mature GCs and CA1 pyramidal cells also displayed increased mushroom spine density

and synaptic activity in the absence of NMDAR, supporting our conclusion that enhanced synapse

maturation is not a compensatory effect of NMDAR-dependent cell survival in newborn GCs.

Alternatively, elevated mushroom spines could be potentially explained by a synaptic scaling

mechanism, namely, NR1 KO cells might increase AMPAR activity in compensation for the loss of

NMDAR activity. Indeed, we observed that AMPAR activity was significantly enhanced in both

frequency and amplitude in the absence of the functional NMDAR. However, it has been reported that

NMDAR activity itself is required for synaptic scaling (Turrigiano et al., 1998; Wang et al., 2011).

Therefore, it is unlikely that enhanced spine maturation was a result of synaptic scaling. In an effort to

resolve the discrepancy between our current observation and the traditional notion that NMDAR

activity is required for AMPAR recruitment and spine enlargement, we tried to compare the systems

used in our studies and others. Among the many differences between study systems, we found that
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one difference could potentially account for the different observations. In studies that indicated an

inhibitory role for NMDAR on spine maturation and AMPAR recruitment, NMDAR activity was lost due

to the deletion of the Grin1 gene (Ultanir et al., 2007; Adesnik et al., 2008), whereas in studies that

supported NMDAR-dependent spine enlargement and AMPAR recruitment, NMDAR activity was

blocked by antagonists (Engert and Bonhoeffer, 1999; Maletic-Savatic et al., 1999; Zhu et al.,

2000). It was previously pointed out that a genetic approach might offer certain advantages over

pharmacological manipulations (Ultanir et al., 2007). Here we propose that NMDAR in its inactive

form inhibits spine maturation and AMPAR recruitment. The activation of NMDAR by binding of the

neurotransmitter glutamate reverses its inhibitory function and allows the recruitment of AMPAR and

spine enlargement. When NMDAR activity was blocked by antagonists, NMDAR was kept in its

inactive state and thus prevented spine enlargement and AMPAR recruitment. However, when

NMDAR was absent due to the loss of its essential subunit NR1, there was no longer inhibition from

the inactive NMDAR, which resulted in uncontrolled spine enlargement and AMPAR recruitment. This

hypothesis is in line with the critical role of NMDAR in LTP and reconciles the discrepancies observed

when different methods were used to modulate NMDAR activity. Another possibility—not mutually

exclusive—is that lack of NMDARs triggers expression of calcium-permeable AMPARs in newborn

neurons and these receptors confer upon dendritic spines the ability to potentiate and to grow in the

absence of NMDARs; this hypothesis awaits experimental clarification.

Experience constructs the neural network in the form of activity-dependent spine morphogenesis,

which is central to memory formation and other adaptive changes of the brain. Although the current

study has been mainly focused on newborn neurons in the adult brain, our findings suggest that the

major neuronal activity detector, NMDAR, regulates the connectivity of specific neurons by common

mechanisms in developing and mature nervous systems, including facilitation of new spine formation

and control of the pace of existing spine maturation. By preventing precocious synapse maturation,

NMDAR participates in ‘neoteny’, or the extension of the immature state of the brain, which is critical

for subsequent and more complete maturation.

Materials and methods

Mice
Grin1 floxed mice (Tsien et al., 1996) and the ROSA-lacZ reporter mice (B6;129S4-Gt(ROSA)

26Sortm1sho) were maintained as homozygous in the Salk mouse facility. For some of the experiments,

Grin1f/f mice were bred to Grin1f/+ mice so that littermate Grin1f/+ mice were used as controls. Mice

aged 5–7 weeks were used to examine the role of NR1 in newborn GCs, and those 8 weeks old or

older were used to examine the role of NR1 in mature neurons. C57Bl/6 female mice, 6 weeks old,

were used to test the retrovirus GFPBcl2-ires-cre. The animal protocols were all approved by the Salk

Institutional Animal Care and Use Committee.

Viruses
To examine stage-specific roles of the NMDAR, we developed four new cre-expressing viruses. Firstly,

retrovirus CAG-GFP ires cre (rv GFP-ires-cre) was constructed for the purpose of gene deletion and

the simultaneous visualization of the newborn cell morphology (Figure 1—figure supplement 1, 28

dpi). In the rv GFP-ires-cre vector, the Cre cDNA was placed after the internal ribosomal entry site to

minimize the expression of Cre and potentially reduce cre-associated vector recombination in

bacteria. When tested in the ROSA-lacZ reporter mice, rv GFP-ires-cre induced recombination in 97%

of GFP+ cells at 6 dpi and in all GFP+ cells at 14 and 28 dpi. Secondly, a retrovirus CAG-GFPBcl2-ires-

cre (rv GFPBcl2-ires-cre) was constructed so that the Cre-targeted cells also expressed the fusion

protein of GFP and Bcl2 (Figure 3—figure supplement 1, 14 dpi). This virus allowed the deletion of

the Grin1 gene in newborn GCs and the expression of the pro-survival protein Bcl2 in the same cells so

that NR1 KO cells would be prevented from going through apoptosis. The recombination efficiency

of rv GFPBcl2-ires-cre was 100% at 7 dpi. Thirdly, an inducible retrovirus CAG-GFP-t2A-creER

(rv GFP-t2A-creER) was generated so that deletion of the Grin1 gene could be initiated at the desired

age to bypass NR1-depedent cell survival (Figure 4—figure supplement 1, induction at 14 dpi). To

test the recombination efficiency of rv GFP-t2A-creER virus in vivo, we gave tamoxifen (180 mg/kg,

daily for 4–5 days) to virus-injected ROSA26-lacZ reporter mice starting from 14 and 28 days after

virus injection. At 14 dpi, we observed 16% background recombination with oil control and 85%

Mu et al. eLife 2015;4:e07871. DOI: 10.7554/eLife.07871 13 of 18

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.07871


recombination in GFP+ cells. At 28 dpi,

recombination efficiency was 97%. Lastly, a Cre-

expressing lentivirus CAG-GFP-ires-cre was

developed for deletion of the Grin1 gene in both

mature and newborn cells to examine the func-

tion of NR1 in mature neurons (Figure 5—figure

supplement 1, lv GFP-ires-cre, 29 dpi). Because

mature cells greatly outnumbered immature

cells, the Cre-targeted cells largely represented

mature cells. The recombination efficiency of the

lv CAG-ires-cre in ROSA reporter mice was 85%

at 29 dpi. Recombinant retroviruses and lentiviruses were prepared in 293T cells as described before

(Zhao et al., 2006; Tashiro et al., 2006b).

Immunohistochemistry and cell quantification
Mouse brain sections of 40 μM thickness were prepared with a sliding microtome as described in detail

(Zhao et al., 2006). Brain sections of one-in-six series were selected for DAPI staining. GFP+ cells in the GC

layer were visualized and counted manually with a Nikon E800 microscope (Melville, NY, United States).

The total number of labeled GFP+ cells per DG was then estimated by multiplying the number by 6.

Confocal imaging and spine analysis
All images were acquired through the Bio-Rad R2100 confocal system (Berkeley, CA, United States) or

the Zeiss 710/780 confocal system (Germany). Images of the whole cell morphology of GFP+ cells were

taken with a 40× objective (Bio-Rad R2100) or a 25× W objective (Zeiss 710/780). GFP+ cells with at least

one dendritic process terminating at the outer molecular layer were randomly picked for imaging (every

nth cell depending on the labeling efficiency). If the number of labeled cells from the one-in-six series was

too low to allow for 5–10 cells to be imaged, more sections were sampled to obtain enough cells from an

individual mouse or until all sections were used. For spine analyses, dendritic processes of GFP+ cells

in the outer molecular layer were imaged with a 60× oil objective (NA 1.4, Nikon, on Bio-Rad R2100) or

with a 63× oil objective (NA 1.4, Zeiss, on Zeiss 710). The raw confocal image files were subjected to

10 iterations of deconvolution (AutoDeblur, AutoQuant, Troy, NY, United States). Dendrite measuring

and spine analyses have been described in detail before (Zhao et al., 2006). The categorization of

dendritic spine shape was based on qualitative criteria (Harris et al., 1992; Parnass et al., 2000). For

classification of mushroom spines, major and minor axes of each spine head were measured with

NeuronStudio program. A spine was judged to be of mushroom type if the head area (estimated with the

function ¼ × π × Dmajor × Dminor) was ≥0.4 μm2. The absolute numbers of each spine type for the NR1 KO

experiment (Figure 1G) and the Bcl2 rescue experiment (Figure 3L,Q) are summarized in Tables 1–3.

Electrophysiology
Electrophysiological recordings of NR1 WT and KO cells were performed using a protocol that was

described in detail in a previous study (Mu et al., 2011). Specifically, mice injected with retrovirus- or

lentivirus-expressing GFP-ires-cre were anesthetized by isoflurane inhalation. Mouse brains were

immediately removed and placed in ice-cold dissection buffer (in mM choline chloride 110, KCl 2.5,

NaH2PO4 1.3, NaHCO3 25.0, CaCl2 0.5, MgCl2 7, glucose 20, Na-ascorbate 1.3, and Na-pyruvate 0.6).

Horizontal slices (200 μm thick) were prepared using

a Leica VT1000S vibrotome (Germany) and in-

cubated for at least 1 hr at room temperature

before recording in standard ACSF (in mM NaCl

125, KCl 2.5, NaH2PO4 1.3, NaHCO3 25, CaCl2 2,

MgCl2 1.3, Na-ascorbate 1.3, Na-pyruvate 0.6, and

glucose 10) that was saturated with 95% O2 and 5%

CO2. Whole-cell perforated patch recordings were

obtained from GCs visualized using an upright

microscope (BX51WI; Olympus) with infrared

differential interference contrast optics (Japan).

Table 1. Total number of spines evaluated in

Figure 1G

Spine classes WT KO

Stubby 742 391

Mushroom 44 97

Thin 3884 1643

Filopodia 202 121

DOI: 10.7554/eLife.07871.013

Table 2. Total number of spines evaluated in

Figure 3L

Spine classes GFP cre Bcl2

Stubby 306 164 248

Mushroom 23 12 24

Thin 2545 1635 1835

Filopodia 65 59 104

DOI: 10.7554/eLife.07871.014
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The Cre-targeted cells were visually identified by

their green fluorescence. The following drugs were

used for blocking certain activities: 50–100 μM
picrotoxin to block GABAergic synaptic transmis-

sion, 10 μM DNQX to block AMPAR-mediated

activity, 25 μM APV to clock NMDAR-mediated

activity and 1 μM TTX to block action potentials. All

experiments were performed at room temperature.

A bipolar tungsten electrode was used for extracel-

lular stimulation of the perforant path, and GCs

were held at −70 mV in voltage-clamp mode unless

stated otherwise.

Electron microscopy and image analysis
Tissue processing for electron microscopy was performed as described previously (Toni et al., 2008).

Briefly, mice were transcardially perfused with 4% paraformaldehyde and brains were cut coronally at a

thickness of 50 μm. Sections were cryoprotected, briefly freeze-thawed four times in liquid nitrogen and

treated with 0.3% hydrogen peroxide. After a block with 0.5% bovine serum albumin, slices were

incubated 40 hr with rat anti-GFP antibody (1:500, Chemicon) at 4˚C on a shaker. After washing, sections

were incubated for 5 hr at 5˚C in biotinylated secondary antibody (goat anti-rabbit, Fac fragment, 1:500,

Chemicon). Sections were then incubated in avidin biotin peroxidase complex (ABC Elite, Vector

laboratories), followed by 3,3′-diaminobenzidine tetrachloride for 10–20 min to obtain a dark residue in

labeled cells. Sections were next postfixed in 2.5% glutaraldehyde, followed by 1% osmium tetroxide,

dehydrated in ascending concentrations of ethanol and then acetone, and finally embedded in Epoxy

resin. Sections of a thickness of 50 nm were contrasted with uranyl acetate followed by lead citrate and

observed on a Philips CM10 electron microscope (Hillsboro, OR, United States), at a magnification of

13,500×. Synapses were defined by the presence of at least three presynaptic vesicles within 50 nm of

the presynaptic membrane, a clearly defined synaptic cleft and a postsynaptic density. Spines were

serially sectioned and the surface area of each segment was measured on every image. Volumes were

obtained by multiplying the surface area, the section thickness and the number of sections.

Statistical analysis
All data were presented as mean ± standard error. Statistic comparisons were done using unpaired two-

tailed t-test, except that the Kolmogorov–Smirnov test was used for data analyses on AMPAR mEPSCs.
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