Serveur Académique Lausannois SERVAL serval.unil.ch

Author Manuscript

Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Published in final edited form as:

Title: Unifying niche shift studies: insights from biological invasions.

Authors: Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C

Journal: Trends in ecology & amp; evolution

Year: 2014 May

Volume: 29

Issue: 5

Pages: 260-9

DOI: 10.1016/j.tree.2014.02.009

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

UNIL | Université de Lausanne Faculté de biologie et de médecine

1 Reviews for Trends in Ecology & Evolution 2 Unifying niche shift studies: insights from biological invasions 3 4 5 Antoine Guisan¹, Blaise Petitpierre¹, Olivier Broennimann¹, Curtis Daehler² & Christoph 6 Kueffer³ 7 8 ¹ Department of Ecology & Evolution, University of Lausanne, 1015 Lausanne, 9 Switzerland 10 ² 3Department of Botany, University of Hawaii at Manoa, 3190 Maile Way, Honolulu, HI 11 96822, USA 12 ³ Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092 Zürich, 13 Switzerland 14 15 Corresponding author: Antoine Guisan (antoine.guisan@unil.ch) 16 17 *Current word/refs counts:* 18 Abstract 120 words 19 Text: 3649 words 20 59 references 21 4 figures (one in box 2) 22 2 tables (one small in box 3) 23 4 boxes 24 A Glossary Box 25

Abstract

Assessing whether the climatic niche of a species may change between different geographic areas or time periods has become increasingly important in the context of ongoing global change. However, approaches and findings have remained largely controversial so far, calling for a unification of methods. Here, we build on a review of empirical studies of invasion to formalize a unifying framework that decomposes niche change into unfilling, stability and expansion situations, taking both a pooled-range and range-specific perspective on the niche, while accounting for climatic availability and climatic analogy. This framework provides new insights into the nature of climate niche shifts and our ability to anticipate invasions, and may help guiding the design of experiments for assessing causes of niche changes.

Niche shifts during invasions: setting the scene

How climate determines the distribution of species is a classic question in ecology, closely tied to Hutchinson's (1957) concept of the environmental niche, and still a major research topic (Soberón & Nakamura, 2009; Peterson *et al.*, 2011). Although, for some species, it has become possible to determine the fundamental climatic niche based on physiological information and a mechanistic understanding (e.g. (Kearney & Porter, 2009)), for most species only the realized climate niche can realistically be estimated through empirical studies (Guisan & Thuiller, 2005). With global change, it has become increasingly important not only to describe species' climate niches but also to understand whether these can change rapidly (niche shifts) or not (niche conservatism) between different geographic areas or time periods (Peterson, 2011) (Fig. 1). The primary approach to investigating climatic niches in space and time has been to analyse climatic conditions across a species' distributional ranges and/or over time (Pearman *et al.*, 2008a).

As already understood by Charles Elton (1958), biological invasions offer a unique

opportunity to study how species colonize new environments (Sax et al., 2007;

Richardson & Pysek, 2008; Kueffer et al., 2013), and whether they retain their climatic

58 niche in a new range (Pearman et al., 2008a). Addressing this question has proved 59 important in recent years as a test of our capacity to use climate matching to assess 60 invasion risks by exotic species at transnational scales (Venette et al., 2010; Guisan et al., 2013), in particular when using ecological niche models (ENMs), which rely heavily on 61 62 climatic niche conservation between native and exotic ranges (Pearman et al., 2008a; 63 Colwell & Rangel, 2009; Peterson, 2011). Do a majority of species retain their native 64 climatic niche when introduced elsewhere? The answer to this question is fundamental 65 because it informs both theoretical and applied ecology, but approaches have diverged 66 and findings have remained largely controversial so far (Table S1, supplementary 67 material) (Pearman et al., 2008a; Peterson, 2011). 68 Evidence exists both for and against climatic niche conservatism during invasions. A 69 recent large-scale survey of 50 Holarctic terrestrial plant invaders concluded that 70 climatic niche shifts are rare overall between the native and invaded ranges, and 71 therefore models can usefully predict invasion in the exotic range (Petitpierre et al., 72 2012).) The same conclusions were reached for birds (Strubbe et al., 2013) and other 73 groups (see (Peterson, 2011); Table S1, suppl. mat.). But the assumption of niche 74 conservatism was also challenged by evidence of climatic niches shifting during 75 invasions (e.g. (Broennimann et al., 2007; Fitzpatrick et al., 2007; Rödder & Lötters, 76 2009; Medley, 2010; Lauzeral et al., 2011); Table S1), potentially hampering predictions 77 in the new range. Contrasting evidence of niche dynamics during invasions, and 78 particularly of the frequency of niche shifts (i.e. of centroid and/or limits; see Fig. 1) 79 among various taxonomic groups, thus coexist in the literature (about 50% shifts/42% 80 no-shifts and 8% no-conclusion in Table S1). This contrasting evidence may, however, 81 correspond to different types of niche changes, biological and/or methodological study 82 contexts, data types, species characteristics or methods being used (Peterson & 83 Nakazawa, 2008; Mandle et al., 2010; Peterson, 2011; Soberon & Peterson, 2011; 84 Broennimann et al., 2012) (Table S1), which confounding effects prevent sound 85 interpretation of the possible mechanisms behind niche changes. Unification of the 86 analytic context and metrics used, and a well-balanced comparison across different 87 species, taxonomic groups, environmental spaces and geographic areas (Pearman et al., 88 2008a; Kueffer et al., 2013), may contribute to reconcile conflicting evidence in 89 observational studies of biological invasions requires.

Here, we build on a review of niche changes reported in empirical invasion studies (Table S1) to formalize a new framework that unifies the analytical context (Box 1, Figs 1 and 2), clarifies the role of the niche-biotope duality (Box 2) (Colwell & Rangel, 2009; Soberón & Nakamura, 2009), and helps to identify potential factors influencing niche change between ranges. The central idea of this framework is to decompose a niche comparison between native and exotic ranges into its three basic components: niche unfilling, niche stability and niche expansion (Box 3, Fig. 2) (Petitpierre *et al.*, 2012). We present these elements and discuss them along with the importance of taking into account the available environment, distinguishing analog from non-analog climatic conditions between ranges (Box 4), and accounting for niche factors and niche dynamics at finer resolution. We conclude with recommendations on using the proposed framework for future niche change studies.

Niche changes and associated metrics

Which niche is measured from field observations?

The realized climatic niche quantified from field observations is determined by biotic constraints on the fundamental eco-physiological niche, population dynamics (e.g. source-sink dynamics) and dispersal limitations (i.e. accessibility; Box 2) (Pulliam, 2000; Soberon, 2007; Barve et al., 2011), but it is also constrained by the availability of the environment in the areas (Box 4) at the timescale considered in the study (i.e. some conditions can be available at one time in one area, but not earlier or later) (Jackson & Overpeck, 2000; Mandle et al., 2010). A change in this realized niche can thus result from adaptive evolution occurring in the colonized range (Sax et al., 2007; Alexander & Edwards, 2010) or from changes in biotic interactions, dispersal limitations, or from pre-adaptation to conditions not (anymore) available in the initial range at the time of the study but available in the colonized range (Pearman et al., 2008a). Hereafter, we consider a niche shift as any change of the realized niche, i.e. the niche as measured by climatic characteristics at sites of species occurrence in the field. It thus includes implicitly any potential change of the fundamental niche, although with such empirical data, a change caused by evolution of physiological tolerance cannot be differentiated from a change due to other factors (Broennimann et al., 2007; Soberon & Peterson, 2011).

123 Two main approaches have been used so far to compare niches between ranges, based 124 on direct observations or on model predictions (Broennimann et al., 2012) (Fig. 3, Table 125 S1, suppl. mat.). The first approach uses observations directly and compares the 126 difference in environmental attributes of the sites where the species occurs between the 127 native and exotic ranges in environmental space. This comparison can be done either 128 through univariate (e.g. (Lauzeral et al., 2011)) or multivariate tests (e.g. in a reduced PCA space (Broennimann et al., 2007); Fig. 3a). Such a direct approach does not rely on 129 130 any underlying model that relates the occurrences to the environment. The approach 131 can be considerably improved by calculating smooth densities of species occurrences in 132 a gridded environmental space, as a way to avoid unrealistic 'holes' in a niche due to low 133 sampling effort (Broennimann et al., 2012) (see also (Guisan et al., 2012; Webber et al., 134 2012)). The second approach relies instead on the outcomes of ecological niche models 135 (ENMs (Peterson et al., 2011); also called species distribution models, SDMs (Guisan & 136 Thuiller, 2005)), and compares the overlap of reciprocal predictions of geographic 137 distributions (i.e. predicting the invaded distribution with the model fitted in the native 138 range, and vice-versa), usually comparing in the exotic range the two predictions by the 139 models fitted in each range (Fitzpatrick et al., 2007; Warren et al., 2008; Warren et al., 140 2010) (Fig. 3b). Specialized software has been developed for niche comparisons based on the ENM approach (ENMTool (Warren et al., 2010)). Comparative analyses with 141 142 virtual species, for which distributions and niche overlap are known, showed that the 143 first approach (ordination) quantified niche overlap overall more accurately than the 144 second (ENM) (Broennimann et al., 2012); however, the ordination approach provides a 145 mathematically less formalized representation of the niche and is less able to optimize 146 the weighting of the different environmental factors based on their relevance for a 147 species' ecology. The ENM approach is particularly useful to assess ENM transferability 148 between ranges (Randin et al., 2006). Thus, although both approaches have strengths 149 and weaknesses (Broennimann et al., 2012), comparisons of niche change results 150 between studies (meta-analyses) should include preferentially those based on 151 ordinations, and at least make clear which approach was used (see Table S1). 152 Different components of niche change: centroid shift, overlap, expansion and unfilling

Two main approaches to quantifying niche changes

153 From either of these approaches, different niche change metrics can be calculated, at 154 two levels of analyses – pooled ranges and range-specific (Box 3). The most commonly 155 used metrics so far measure either a shift of the niche centroid, C (mean position; e.g. 156 using Euclidean distance (Broennimann et al., 2007)), or a change in the overlap, 0, 157 between the two niches (e.g. using Schoener's D (Warren et al., 2008) or minimum 158 convex polygons (Gallagher et al., 2010)), and they are usually calculated in relation to 159 the entire realized niche between two ranges (i.e. pooled; Box 3). However, a niche 160 change detected in one of these two ways can result from multiple situations (Fig. 1): 161 (i) a change of the niche envelope (overlap \neq 1) due to symmetric niche expansion or 162 contraction (hereafter called 'unfilling' in the case of invasions, because it corresponds 163 to a part of the native niche that was not filled) in climatic space, thus not shifting the 164 niche centroid (Fig. 1a); a species may expand both to warmer and colder conditions in a 165 way that the average temperature-related niche position remains stable as it is observed 166 for common spotted knapweeed invading North America (Centaurea stoebe, Fig. S1a, 167 suppl. mat.); 168 (ii) a change of the niche centroid with displacement of the niche envelope (Fig. 1b-d) 169 due to niche unfilling (e.g. black cherry tree invading Europe, *Prunus serotina*, Fig. S1b) 170 and/or expansion (e.g. desert false indigo invading Europe, Amorpha fruticosa, Fig. S1c) 171 in the invaded range; or 172 (iii) a change of the niche centroid only, without niche expansion or unfilling, due to a 173 change of the density of occurrences within the same niche envelop in climatic space 174 (Fig. 1e). The latter case can result from changes in competition, limited dispersal or 175 availability of environmental conditions in the exotic range that reduce the density of 176 species occurrences in some part of the niche space (Soberon & Peterson, 2011), 177 changing the position of the centroid with only a weak impact on the niche limits, as 178 shown for pinweed invading North America (Erodium cicutarium, Fig. S1d). Thus, a shift 179 of the niche centroid between the native and the exotic range (Fig. 1b-e) can provide a 180 first indication that a niche change occurred, but it is not sufficient to interpret its exact 181 nature. And, reciprocally, an absence of a shift of the niche centroid does not mean that 182 no niche shift occurred. 183 New indices were thus required to decompose niche comparisons to reveal two distinct 184 components of niche changes: expansion and unfilling (Box 3, Fig. S1) (Petitpierre et al.,

non-overlapping with the exotic niche, and expansion (E) refers to the proportion of the exotic niche non-overlapping with the native niche. These indices, as just defined, measure changes that are relative to one of the ranges (native or exotic), but they can also be measured with regard to the entire species distribution, where native and exotic ranges are pooled (Box 3). The pooled versions of E and U (Ep and Up in Box 3) thus inform us about the species niche dynamic at the global scale of the study, but convey less information about our ability to predict species invasions from the native range (Box 3). E and U (and equivalently E_p and U_p) are recently published indices (Petitpierre et al., 2012) that can easily be calculated from the same two main approaches previously described (Broennimann et al., 2012), but provide much more information than simple overlap or centroid changes. Studies that found overall niche conservatism for invaders relied consistently on such complete set of niche change metrics (Table S1, suppl. mat.). Later, we will refer to the whole set of niche change metrics as the COUE scheme (Box 3). Dealing with available and non-analog climates between ranges The availability of climatic conditions in geographic space matters when quantifying niche changes between ranges. Due to the niche-biotope duality (i.e. the correspondence between environmental and geographic spaces; Box 2), some conditions common in the exotic range may be rare in the native range (or the converse; Box 4) so that, without correction, one may detect niche shifts (measured with centroid change or overlap of percentile envelops) only because these conditions are more or less available in one range than in the other (Soberón & Nakamura, 2009; Soberon & Peterson, 2011). Accounting for environmental availability is thus necessary and has been done so far in two ways. First, niche change metrics can be corrected by the distribution of the available environment, either by comparing the overlap between native and exotic niches with the overlap between native and exotic ranges (Mandle et al., 2010), or by transforming species densities in the environmental space into species "occupancies" (i.e. the ratio of density of species to the density of available environment (Broennimann et al., 2012); see also (Dormann et al., 2010)). Second, niche metrics can be calculated only within the most common environments shared between native and exotic ranges

2012). *Unfilling* (U) most commonly corresponds to the proportion of the native niche

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

(say within the shared portion of the 75th percentiles encompassing the prevailing

conditions in each range (Petitpierre et al., 2012)). Removal of rare climates is however likely to have a strong impact on the results (with either approach) when the two ranges show important differences in climate availability. In this case we advise comparing analyses across a range of percentiles (say 75, 80, 85, 90, 95 and 100%) in order to see how the quantification of niche change can be affected by various levels of trimming (see suppl. online mat. in (Petitpierre et al., 2012)) and to understand the implications (specific to each case study) for the interpretation of niche changes. An extreme case of climate non-availability is when climate conditions exist only in one of the two ranges (Box 4) (Williams & Jackson, 2007). These non-analog climates represent a severe problem when calculating niche change metrics, because no insight on the biology of the species in these non-analog climates can be learned from a comparison between ranges. This is because colonization of portions of environmental space not present in the native range cannot be considered unambiguously as resulting from niche evolution in the exotic range, and the interpretation of these situations thus remains speculative (Mandle et al., 2010; Soberon & Peterson, 2011). A scientifically more rigorous approach to assess niche expansion, therefore, is to restrict the analyses to the shared, analog climatic conditions between the native and exotic ranges (e.g. (Petitpierre et al., 2012)), and to provide measures of expansion in non-analog situations separately (Guisan et al., 2012). Studies that restricted their analyses to analog environments found niche conservatism to be dominant among invader species (Table S1, suppl. mat.). Complementary experimental approaches would then be needed to determine whether, for instance, expansions in non-analog conditions may represent a change of the fundamental niche (Pearman et al., 2008a). This issue is particularly important because non-analog climates not only occur across space but will also occur over time due to climate change (Williams & Jackson, 2007). This is also the reason why projections of ecological models in non-analogous climates are considered unreliable (Fitzpatrick & Hargrove, 2009; Mandle et al., 2010). Still, colonization of non-analog climates in the exotic range may represent relevant situations to consider from a management perspective, calling for separate ENM projections in both analog and nonanalog climates in the invaded range (through fitting ENMs with pooled data from the native and exotic range (Broennimann & Guisan, 2008)).

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249 What other factors could affect the quantification of climatic niche changes? 250 Range unfilling in the native range 251 Geographic range unfilling (not to be confused with niche unfilling) – i.e. when a species 252 does not occupy all the geographic locations that have suitable conditions within its 253 climatic niche – can occur in the native range as a result of non-equilibrium situations, 254 such as ongoing post-glacial recolonization during the Holocene (Normand et al., 2011), 255 and can potentially affect the quantification of niche change. This problem is also known 256 as the 'accessible area' issue (Barve et al., 2011). But geographic range unfilling does not 257 necessarily lead to niche unfilling in environmental space. For instance, it was shown 258 that range unfilling can nonetheless translate into complete climatic niche filling for 259 some tree species in Europe (Randin *et al.*, 2013). Range unfilling particularly affects 260 niche quantification if the climates present in the unfilled geographic space are rare 261 and/or not well represented - or even absent - in other parts of the range. However, 262 published analyses generally calculate range filling based on a geographic projection of 263 the realized niche at the time of the study (e.g. (Normand et al., 2011)), and thus these 264 documented cases of range unfilling cannot translate into niche unfilling. But range 265 unfilling measured in other ways - e.g. field common garden experiments located 266 beyond a species' current geographic and climatic range (Alexander et al., 2012; 267 Alexander, 2013; Hargreaves et al., 2014) - may reveal niche unfilling. 268 Biased or incomplete sampling of species distributions 269 Another issue relates to the type and quality of species distribution data. Although it is 270 important to cover an entire species' niche to assess niche change without bias, its 271 complete native and exotic distribution ranges need not necessarily be considered. 272 Because of the niche-biotope duality (Colwell & Rangel, 2009; Soberón & Nakamura, 273 2009) (Box 2), the climatic niche of a species might well be fully captured even if only a 274 part of its geographical distribution is sampled. However, and similarly to the issue of 275 range unfilling, when geographic truncation leads to environmental truncation (Raes, 276 2012), niche change studies based on both ordinations and ENMs (Fig. 3) should be 277 considered with care, because their conclusions will only be applicable to the climate 278 space investigated and within analog climatic combinations between the two ranges. In 279 these situations, approaches based on ecological niche models (ENMs (Guisan & 280 Thuiller, 2005; Peterson et al., 2011); Fig. 3) may be less reliable for spatial predictions,

as they rely heavily on fitted species-environment response curves that could be biased (Thuiller et al., 2004; Raes, 2012). In addition to environmental truncation, bias or errors in the geographic sampling of the distribution of a species may also bias measures of niche change. For instance, coarse atlas distribution data may portray a species in areas where it does not exist, while occurrence data (e.g. from herbaria) may under-represent or omit areas where the species occurs, both possibly affecting niche quantification. Beyond macroclimate: microclimate and non-climatic factors Climate is often seen as the main factor driving species distributions at large scales (Guisan & Thuiller, 2005), and most global-scale studies of niche changes in native (Pearman et al., 2008b; Crisp et al., 2009; Maiorano et al., 2012) and exotic species (Broennimann et al., 2007; Gallagher et al., 2010; Medley, 2010; Lauzeral et al., 2011; Petitpierre et al., 2012) looked at changes in macroclimate (i.e. the coarse and largescale climate that usually determines biomes). This primary role of macroclimate does not prevent finer climatic characteristics or other abiotic factors from affecting species distributions, such as the restriction to specialized habitats (e.g. mountain microclimates, stream banks or particular soil types) that must generally be characterized at a finer spatial grain (e.g. 1 km x 1 km) than that typically used in macroclimatic studies. Niche changes may be particularly observed in non-climatic components (such as soils) of a species' niche. For instance, Bertrand et al. (2012) showed that a shift of the climatic niche centroid can be observed when soil variables are included in the analyses. When shaping the distribution in the native range, these micro-scale factors could thus result in the detection of apparent macroclimatic niche expansion in the exotic range for two reasons: (i) part of the native macroclimate might not be occupied by the species due to spatial correlation with factors that hinder its occurrence (Bertrand et al., 2012); or (ii) a species might occur under conditions in the native range that, within the coarse cells of macro-climatic maps, are scattered and marginal (and thus smoothed and hindered in niche analyses based on mean values within coarse cells), but are dominant in the exotic range and thus only revealed there in the niche quantification, causing an apparent niche shift. However, these factors will only modify measures of macroclimatic niche change if: (i) their geographic distribution matches a restricted portion of the climatic niche in the

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

native or exotic range, and (ii) this restricted portion is the one that shows niche change. In this regard, studies at a finer resolution (e.g. microclimate) and/or including non-climatic factors would be useful for a more detailed understanding of niche dynamics in invaded ranges. But to be complementary to the strict macroclimatic niche studies conducted so far, findings based on macroclimate alone should be presented and compared to findings when microclimatic and non-climatic components are added (as for analog/non-analog climates), so that their relative effect can be properly assessed (e.g. (Bertrand *et al.*, 2012)).

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

313

314

315

316

317

318

319

320

Toward a unifying framework: conclusion and remaining challenges

There has recently been a great diversity of studies examining climate niche change in exotic species (Table S1, suppl. mat.), some reporting dramatic niche changes (Broennimann et al., 2007; Fitzpatrick et al., 2007; Gallagher et al., 2010; Medley, 2010). However, how many shifts occur in analog versus in non-analog climates, and whether these only occur in specific taxonomic groups or habitats, remains to be investigated. Among 36 studies including ca. 180 species, about 50% of the species showed overall a niche shift, with a higher prevalence among plants than animals, and a majority of the studies reporting niche shifts included only one or a few species (Table S1). It might therefore be that studies reporting a shift (rather than no shift) were preferentially published, especially considering that the only two studies that concluded overall niche conservatism among a large number of invader species used an ordination approach, relied on the most complete set of niche change metrics, and accounted for environmental availability (Table S1 in supplementary material). Therefore, conclusions on niche shifts likely depend strongly on the organisms, methods and data used, and generalization about the frequency and drivers of niche shifts can only be based on a standardized and rigorous approach for quantifying niche shifts within each group. This could ultimately allow concluding if there are identifiable trends among niche shifts, or if niche changes are very idiosyncratic (i.e. species specific). In order to promote such standardization in future studies, we recommend: - Using at least ordination, rather than only ENM, approaches to quantify climatic niche changes (see (Broennimann et al., 2012));

344	-Using as much as possible, within a same taxonomic group, the same set of variables
345	used in previous studies on the same group, so that proper comparisons can be ensured;
346	this does not prevent additionally testing niche changes with other sets of variables, if
347	thought to be more meaningful to picture species' niches in the group considered;
348	- Disentangling all possible situations of niche change through measures of niche
349	\underline{u} nfilling and \underline{e} xpansion in complement to \underline{c} entroid shift and \underline{o} verlap metrics, at the two
350	possible analytical levels (COUE scheme; Box 3);
351	- Correcting these niche change metrics to account for the density of occurrences and
352	the available environment in both ranges (or time periods);
353	- Assessing whether niche metrics change when excluding rare climates along a range of
354	percentiles, and when considering analog and non-analog environments separately; this
355	will ensure retaining all the necessary information for further interpretation and
356	comparison of results from different studies.
357	We suggest three important remaining challenges for studies of realized niche changes
358	during biological invasions:
359	1) Assessing climatic niche changes at finer scales and in combination with other non-
360	climatic factors, such as differences in soils (Bertrand et al., 2012), biota, and
361	disturbances between the native and exotic range. High-resolution data are becoming
362	increasingly available and standardized to be comparable across large spatial areas.
363	They constitute avenues to provide complementary answers to questions on
364	macroclimate niche changes, and to improve our ability to predict and anticipate
365	invasions.
366	2) Assessing invasions in non-analog environments has been poorly addressed so far. As
367	these situation cannot be predicted from the native range with static approaches, and
368	thus their interpretations remain speculative, they require mechanistic approaches (e.g. $$
369	(Kearney & Porter, 2009)) or experiments (see below). It is however a promising field of
370	investigation that may deliver invaluable insights on colonization processes in non-
371	analog situations while also improving assessments of biodiversity under future climate $% \left(1\right) =\left(1\right) \left(1\right) $
372	changes (Williams & Jackson, 2007). Retrospective studies that examine the details of
373	invasion success and failure into particular non-analog climates, relative to the native

374	climatic niche, could inform us of possible predictors of invasion into non-analog			
375	climates (e.g. for niche-based spatial predictions) (Guisan et al., 2012).			
376	3) Although correlative niche shift studies of exotic species may guide experimental			
377	studies (Kueffer et al., 2013), a dual approach has been rare so far (but see (Hill et al.,			
378	2013)). Experimental studies on populations found in geographic areas where niche			
379	expansion occurred in the exotic range are needed to rigorously identify the related			
380	ecological or evolutionary causes, e.g. through rapid evolution (Sax et al., 2007;			
381	Alexander, 2013), increased phenotypic plasticity (Hahn et al., 2012) or biotic			
382	interactions (e.g. enemy-release) (Alexander & Edwards, 2010). Similarly, information			
383	about unfilling can help identify interesting model systems (Kueffer et al., 2013) for			
384	studying why some habitats and landscapes are more resistant to invasions, e.g. due to			
385	dispersal limitations (Barve et al., 2011) or abiotic or biotic resistance (Richardson,			
386	2011).			
387	We expect that systematic use of this framework will substantially advance			
388	generalization about niche change, not only in invasion studies (including pests and			
389	diseases) but also in studies of niche conservatism between disjoint distributions (e.g.			
390	artic-alpine) (Pellissier et al., 2013) or across time in response to global change			
391	(Maiorano <i>et al.</i> , 2012).			
392				
393	Acknowledgements			
394	We would like to acknowledge useful comments by Christophe Randin, Anibal Pauchard			
395	and Heinz Müller-Schärer. AG and CK led the study and all co-authors contributed to the			
396	review writing. AG, OB, and BP developed the figures. BP, CK and CD prepared table S1			
397	(suppl. mat.). AG, OB and BP received support at the earlier stages of the study from the			
398	Swiss National Center of Competences in Research 'Plant Survival' (granted by the Swiss			
399	National Science Foundation), CK received partly support from USDA NRI grant no.			
400	2006-35320-17360 to CD.			
401				
402	References			
403 404	Ackerly, D.D. (2003) Community assembly, niche conservatism, and adaptive evolution			
405 406	in changing environments. <i>International Journal of Plant Sciences</i> , 164 , S165-S184.			

407 408 409	rapid evolution in a non-native plant. <i>Proceedings of the Royal Society B</i> , 280 , 1446.
410 411	Alexander, J.M. & Edwards, P.J. (2010) Limits to the niche and range margins of alien species. <i>Oikos</i> , 119 , 1377-1386.
412 413 414	Alexander, J.M., van Kleunen, M., Ghezzi, R. & Edwards, P.J. (2012) Different genetic clines in response to temperature across the native and introduced ranges of a global plant invader. <i>Journal of Ecology</i> , 100 , 771-781.
415 416	Araujo, M.B. & Guisan, A. (2006) Five (or so) challenges for species distribution modelling. <i>Journal of Biogeography</i> , 33 , 1677-1688.
417 418 419 420	Barve, N., Barve, V., Jimenez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberon, J. & Villalobos, F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. <i>Ecological Modelling</i> , 222 , 1810-1819.
421 422 423 424	Bertrand, R., Perez, V. & Gegout, J.C. (2012) Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of Quercus pubescens in France. <i>Global Change Biology</i> , 18 , 2648-2660.
425 426	Broennimann, O. & Guisan, A. (2008) Predicting current and future biological invasions: both native and invaded ranges matter. <i>Biology Letters</i> , 4 , 585-589.
427 428 429	Broennimann, O., Treier, U.A., Muller-Scharer, H., Thuiller, W., Peterson, A.T. & Guisan, A. (2007) Evidence of climatic niche shift during biological invasion. <i>Ecology Letters</i> , 10 , 701-709.
430 431 432 433	Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.J., Randin, C., Zimmermann, N.E., Graham, C.H. & Guisan, A. (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. <i>Global Ecology and Biogeography</i> , 21 , 481-497.
434 435 436	Colwell, R.K. & Rangel, T.F. (2009) Hutchinson's duality: The once and future niche. Proceedings of the National Academy of Sciences of the United States of America, 106 , 19651-19658.
437 438 439	Crisp, M.D., Arroyo, M.T.K., Cook, L.G., Gandolfo, M.A., Jordan, G.J., McGlone, M.S., Weston, P.H., Westoby, M., Wilf, P. & Linder, H.P. (2009) Phylogenetic biome conservatism on a global scale. <i>Nature</i> , 458 , 754-756.
440 441	Dormann, C.F., Gruber, B., Winter, M. & Hermann, D. (2010) Evolution of climatic niches in European mammals? <i>Biology Letters</i> , 6 , 229-232.
442 443	Elith, J., Kearney, M. & Phillips, S. (2010) The art of modelling range-shifting species. <i>Methods in Ecology and Evolution</i> , 1 , 330-342.
444	Flton (S (1958) The ecology of invasions by animals and plants Methyen London

445 446 447	Fitzpatrick, M.C. & Hargrove, W.W. (2009) The projection of species distribution models and the problem of non-analog climate. <i>Biodiversity and Conservation</i> , 18 , 2255-2261.
448 449 450	Fitzpatrick, M.C., Weltzin, J.F., Sanders, N.J. & Dunn, R.R. (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? <i>Global Ecology and Biogeography</i> , 16 , 24-33.
451 452 453	Gallagher, R.V., Beaumont, L.J., Hughes, L. & Leishman, M.R. (2010) Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. <i>Journal of Ecology</i> , 98 , 790-799.
454 455	Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. <i>Ecology Letters</i> , 8 , 993-1009.
456 457 458	Guisan, A., Petitpierre, B., Broennimann, O., Kueffer, C., Randin, C. & Daehler, C. (2012) Response to comment on "Climatic niche shifts are rare among terrestrial plant invaders". <i>Science</i> , 338 , 193.
459 460 461 462 463 464	Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., Regan, T.J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz, M.W., Wintle, B.A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M.R., Possingham, H.P. & Buckley, Y.M. (2013) Predicting species distributions for conservation decisions. <i>Ecology Letters</i> , 16 , 1424-1435.
465 466 467	Hahn, M.A., van Kleunen, M. & Müller-Schärer, H. (2012) Increased phenotypic plasticity to climate may have boosted the invasion success of polyploid Centaurea stoebe. <i>PLoS ONE</i> , 7 , e50284.
468 469	Hargreaves, A.L., Samis, K.E. & Eckert, C.G. (2014) <i>The American Naturalist</i> , 183 , 157-173.
470 471 472	Hill, M.P., Chown, S.L. & Hoffmann, A.A. (2013) A predicted niche shift corresponds with increased thermal resistance in an invasive mite, Halotydeus destructor. <i>Global Ecology & Biogeography</i> , 22 , 942-951.
473 474 475	Hutchinson, G.E. (1957) Population Studies - Animal Ecology and Demography - Concluding Remarks. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 22 , 415-427.
476 477	Jackson, S.T. & Overpeck, J.T. (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. <i>Paleobiology</i> , 26 , 194-220.
478 479	Kearney, M. & Porter, W. (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. <i>Ecology Letters</i> , 12 , 334-350.
480 481 482	Kueffer, C., Pyšek, P. & Richardson, D.M. (2013) Integrative invasion science: model systems, multi-site studies, focused meta-analysis, and invasion syndromes. <i>New Phytologist</i> , 200 , 615-633.

483 484 485	Lauzeral, C., Leprieur, F., Beauchard, O., Duron, Q., Oberdorff, T. & Brosse, S. (2011) Identifying climatic niche shifts using coarse-grained occurrence data: a test with non-native freshwater fish. <i>Global Ecology and Biogeography</i> , 20 , 407-414.
486 487 488 489 490 491	Maiorano, L., Cheddadi, R., Zimmerman, N.E., Pellissier, L., Petitpierre, B., Pottier, J., Laborde, H., Hurdu, B.I., Pearman, P.B., Psomas, A., Singarayer, J.S., Broennimann, O., Vittoz, P., Dubuis, A., Edwards, M.E., Binney, H.A. & Guisan, A. (2012) Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. <i>Global Ecology & Biogeography</i> , in press
492 493 494	Mandle, L., Warren, D.L., Hoffmann, M.H., Peterson, A.T., Schmitt, J. & von Wettberg, E.J. (2010) Conclusions about Niche Expansion in Introduced Impatiens walleriana Populations Depend on Method of Analysis. <i>Plos One</i> , 5
495 496 497	Medley, K.A. (2010) Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. <i>Global Ecology and Biogeography</i> , 19 , 122-133.
498 499 500	Normand, S., Ricklefs, R.E., Skov, F., Bladt, J., Tackenberg, O. & Svenning, J.C. (2011) Postglacial migration supplements climate in determining plant species ranges in Europe. <i>Proceedings of the Royal Society B-Biological Sciences</i> , 278 , 3644-3653.
501 502	Pearman, P.B., Guisan, A., Broennimann, O. & Randin, C.F. (2008a) Niche dynamics in space and time. <i>Trends in Ecology & Evolution</i> , 23 , 149-158.
503 504 505	Pearman, P.B., Randin, C.F., Broennimann, O., Vittoz, P., van der Knaap, W.O., Engler, R., Le Lay, G., Zimmermann, N.E. & Guisan, A. (2008b) Prediction of plant species distributions across six millennia. <i>Ecology Letters</i> , 11 , 357-369.
506 507 508 509	Pellissier, L., Bråthen, K.A., Vittoz, P., Yoccoz, N.G., Dubuis, A., Meier, E.S., Zimmermann, N.E., Randin, C.F., Thuiller, W., Garraud, L., Van Es, J. & Guisan, A. (2013) Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species. <i>Global Ecology and Biogeography</i> , 22 , 933-941.
510 511	Peterson, A.T. (2011) Ecological niche conservatism: a time-structured review of evidence. <i>Journal of Biogeography</i> , 38 , 817-827.
512 513 514	Peterson, A.T. & Nakazawa, Y. (2008) Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. <i>Global Ecology and Biogeography</i> , 17 , 135-144.
515 516 517	Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martinez-Meyer, E., Nakamura, M. & Araujo, M.B. (2011) <i>Ecological niches and geographic distributions</i> . Princeton University Press, Princeton, USA.
518 519 520	Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. (2012) Climatic niche shifts are rare among terrestrial plant invaders. <i>Science</i> , 335 , 1344-1348.

521 522	Pulliam, H.R. (2000) On the relationship between niche and distribution. <i>Ecology Letters</i> , 3 , 349-361.
523 524	Raes, N. (2012) Partial versus Full Species Distribution Models. <i>Natureza & Conservação</i> , 10 , 127-138.
525 526 527	Randin, C.F., Dirnbock, T., Dullinger, S., Zimmermann, N.E., Zappa, M. & Guisan, A. (2006) Are niche-based species distribution models transferable in space? <i>Journal of Biogeography</i> , 33 , 1689-1703.
528 529 530	Randin, C.F., Paulsen, J., Vitasse, Y., Kollas, C., Wohlgemuth, T., Zimmermann, N.E. & Korner, C. (2013) Do the elevational limits of deciduous tree species match their thermal latitudinal limits? <i>Global Ecology and Biogeography</i> , 22 , 913-923.
531 532	Richardson, D.M. (ed.^eds) (2011) Fifty years of invasion ecology: the legacy of Charles Elton. Blackwell Publishing, Oxford.
533 534	Richardson, D.M. & Pysek, P. (2008) Fifty years of invasion ecology - the legacy of Charles Elton. <i>Diversity and Distributions</i> , 14 , 161-168.
535 536 537	Rödder, D. & Lötters, S. (2009) Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). <i>Global Ecology and Biogeography</i> , 18 , 674-687.
538 539	Sax, D.F., Early, R. & Bellemare, J. (2013) Niche syndromes, species extinction risks, and management under climate change. <i>Trends in Ecology & Evolution</i> , 28 , 517-523.
540 541 542 543	Sax, D.F., Stachowicz, J.J., Brown, J.H., Bruno, J.F., Dawson, M.N., Gaines, S.D., Grosberg, R.K., HastingS, A., Holt, R.D., Mayfield, M.M., O'Connor, M.I. & Rice, W.R. (2007) Ecological and evolutionary insights from species invasions. <i>Trends in Ecology & Evolution</i> , 22 , 465-471.
544 545	Soberon, J. (2007) Grinnellian and Eltonian niches and geographic distributions of species. <i>Ecology Letters</i> , 10 , 1115-1123.
546 547	Soberon, J. & Peterson, A.T. (2011) Ecological niche shifts and environmental space anisotropy: a cautionary note. <i>Revista Mexicana de Biodiversidad</i> , 82 , 1348-1355.
548 549 550	Soberón, J. & Nakamura, M. (2009) Niches and distributional areas: concepts, methods, and assumptions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 106 , 19644–19650.
551 552 553	Strubbe, D., Broennimann, O., Chiron, F. & Matthysen, E. (2013) Niche conservatism in non-native birds in Europe: niche unfilling rather than niche expansion. <i>Global Ecology and Biogeography</i> , 22 , 962-970.
554 555 556	Thuiller, W., Brotons, L., Araujo, M.B. & Lavorel, S. (2004) Effects of restricting environmental range of data to project current and future species distributions. <i>Ecography</i> , 27 , 165-172.

557	Venette, R.C., Kriticos, D.J., Magarey, R.D., Koch, F.H., Baker, R.H.A., Worner, S.P.,			
558	Raboteaux, N.N.G., McKenney, D.W., Dobesberger, E.J., Yemshanov, D., De Barro,			
559	P.J., Hutchison, W.D., Fowler, G., Kalaris, T.M. & Pedlar, J. (2010) Pest risk maps			
560	for invasive alien species: a roadmap for improvement. <i>Bioscience</i> , 60 , 349-362.			
561	Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental Niche Equivalency Versus			
562	Conservatism: Quantitative Approaches to Niche Evolution. <i>Evolution</i> , 62 , 2868-			
563	2883.			
564	Warren, D.L., Glor, R.E. & Turelli, M. (2010) ENMTools: a toolbox for comparative studies			
565	of environmental niche models. <i>Ecography</i> , 33 , 607-611.			
566	Webber, B.L., Le Maître, D.C. & Kriticos, D.J. (2012) Comments on "Climatic niche shifts			
567	are rare among terrestrial plant invaders". Science, 338, 193.			
568	Williams, J.W. & Jackson, S.T. (2007) Novel climates, no-analog communities, and			
569	ecological surprises. Frontiers in Ecology and the Environment, 5 , 475-482.			
570	Willis, K.J. & McElwain, J.C. (2002) <i>The evolution of plants</i> . Oxford University Press.			
571				
572				

573 574 **Boxes** 575 **Glossary box** 576 *Analog climate*: A combination of climate factors found in one area or time period that is 577 within the envelop of climatic conditions found in a different area or time period used 578 for comparison (Williams & Jackson, 2007). Contrary: 'non-analog climate'. 579 *Accessible range:* The geographic locations within a given area that are accessible to a 580 species given its current distribution and the timescale considered in the study. It is thus 581 conditional upon spatial configuration and the species' dispersal ability (Soberon, 2007; 582 Barve *et al.*, 2011). 583 *Available environment*: the set of environmental conditions that exist in a given area 584 (Jackson & Overpeck, 2000) (Box 3). Synonyms: 'realized environment' (whole range, 585 not species-specific), 'background environment'. 586 *Ecological niche model* (ENM; also called species distribution or habitat suitability 587 models): multivariate models fitting the niche of species by relating distribution 588 observations with environmental variables measured at the same sites, and projected 589 over a whole study area (see (Guisan & Thuiller, 2005; Peterson et al., 2011)). 590 *Exotic niche*: The niche measured based on a species' distribution in the exotic range. 591 Synonyms: 'naturalized niche', 'adventive niche', 'invaded niche' or 'invasive niche' (for 592 invasive species). 593 *Exotic range:* The geographic range where a species is not native. Synonyms: 594 'naturalized range', 'adventive range', 'invaded range' (for invasive species) 595 Exotic species: A species present in a region where it is not native, mostly due to human 596 actions that enabled it to overcome biogeographical barriers (Richardson, 2011). 597 Synonyms: 'alien species', 'non-native species', 'non-indigenous species', 'introduced 598 species'. 599 Fundamental niche: The envelope of environmental (abiotic) conditions allowing 600 populations to sustain themselves in an n-dimensional environmental space. It depicts 601 the eco-physiological requirements of species (Soberon, 2007). Synonyms: 602 'Physiological niche'.

603 *Native niche:* The niche measured in the native range. 604 *Native range:* The complete geographic area where an exotic species is native. 605 *Niche-biotope duality:* The reciprocal correspondence between the niche conditions in 606 multidimensional environmental space and the physical locations that a species actually 607 occupies in geographical space (derived from (Colwell & Rangel, 2009)). 608 *Niche centroid*: the mean niche position in n-dimensional environmental space. 609 *Niche conservatism:* The tendency for species to retain their niche in space and time. 610 Synonyms: 'niche stability'. 611 *Niche envelope:* The envelope of conditions in multivariate environmental space defining 612 a species' niche. The boundary of the envelope can be defined in many different ways 613 (e.g. percentiles; see (Broennimann et al., 2012)). 614 *Niche expansion*: Proportion of the exotic niche non-overlapping with the native niche. 615 *Niche overlap*: the intersection of two niches in n-dimensional environmental space. 616 *Niche shift*: A change in the centroid (see above) or limits of the niche envelop in 617 environmental space. Synonyms: niche change. 618 *Niche stability*: Proportion of the exotic niche overlapping with the native niche 619 *Niche unfilling*: Proportion of the native niche non-overlapping with the exotic niche. 620 *Non-analog climate:* See 'analog' climate. 621 *Ordination*: statistical approach used to represent the arrangement of a series of objects 622 described by multiple descriptor variables into a reduced multidimensional space which 623 axes represent combinations of the initial variables (see PCA). 624 *PCA:* Principal component analysis, a classical ordination approach (see above). 625 Potential niche: The intersection between the fundamental niche and the realized 626 environment (see (Jackson & Overpeck, 2000; Soberón & Nakamura, 2009)). 627 Rare climate: Climatic conditions poorly represented overall within an area during a 628 given time period. 629 Realized niche: The environmental (abiotic) niche of a species as quantified from field

observations, i.e. the fundamental niche modulated by biotic exclusions, population

631 dynamics (such as source-sink dynamics) and dispersal limitations (Soberon, 2007; 632 Colwell & Rangel, 2009). Synonyms: 'Ecological niche'. 633 Schoener's D: The most common measure of niche overlap (see (Warren et al., 2008; 634 Broennimann et al., 2012)). 635 636 Box 1: The analytical context for quantifying niche shifts 637 Assessing niche change between ranges is generally done by considering a species 638 native in one area (its native range) and invading another (or several other) 639 biogeographically separated area (the exotic range; e.g. (Petitpierre et al., 2012)). This 640 context could similarly apply to the same species in two (or more) time periods (e.g. 641 (Maiorano *et al.*, 2012)). Regions large enough to include the entire (or large parts of) 642 the native and exotic species' geographic distributions are usually considered for 643 comparison. The choice of these areas will strongly condition the niche-biotope duality 644 (Box 2), and thus the available environments (Fig. 2, Box 3), and ultimately the 645 quantification of niche changes (Soberón & Nakamura, 2009; Soberon & Peterson, 646 2011). Optimally, the studied ranges should encompass the species' complete 647 geographic distribution in the native and introduced ranges that could potentially be 648 reached by a species given its dispersal ability, i.e. the accessible areas (Barve et al., 649 2011). In practice we recommend defining areas with ecological relevance, such as 650 biomes or ecoregions, and using species data (atlas or occurrences) well representing 651 the focal species' range. The full multi-dimensional set of environmental conditions 652 observed in one area/time period is the realized environment (Box 3; Box 2) (Jackson & 653 Overpeck, 2000; Ackerly, 2003) and the envelop of conditions where the species is 654 observed represents its realized environmental niche (Box 2) (Araujo & Guisan, 2006; 655 Soberón & Nakamura, 2009). 656 657 Box 2: Hutchinson's niche-biotope duality 658 It is important to recall the niche (environmental space) versus biotope (geographic 659 space) duality framework described by G.E. Hutchinson (see (Colwell & Rangel, 2009), 660 Glossary). This duality means that there is no direct match between the topology of the 661 niche space and the geographic distribution of a species (see figure below). The same 662 combination of climate factors (colors in panel a of the figure) can occur in one or

several localities in geographic space (same colors in panel b), and locations close in environmental space can be far apart geographically and vice versa (Soberón & Nakamura, 2009). For instance, in South America, the cities of Quito and Guayaquil are close to each other but climatically far away, whereas Guayaquil and Rio are geographically far but climatically close (see figure below). Interpretation of niches and distributions of species thus requires careful screening of both spaces jointly (see figure a,c vs. b,d), with special attention to issues of dispersal limitations, biotic interactions and available environmental conditions (Colwell & Rangel, 2009). Blank areas in panel c of the figure below represent environments that are not available within the geographic range considered (here South America). The intersection of the available environment and the fundamental (i.e. physiological) limits of a species define its potential niche (Jackson & Overpeck, 2000; Soberón & Nakamura, 2009). Parts of this potential niche can be unoccupied by the species because of dispersal limitations (i.e. red areas in panels c and d) or exclusion by biotic interactions (i.e. green parts in panels c and d). As the potential niche rests on the hypothetical quantification of the fundamental niche (see (Sax et al., 2013)), whereas we focus mainly on the realized niche here, we do not expand further on this concept. For a full theoretical development of the concepts and definitions of niches and distributional areas, with formal abbreviations, see Soberon & Nakamura (2009) and Peterson et al. (2011).

663

664

665

666

667

668

669

670

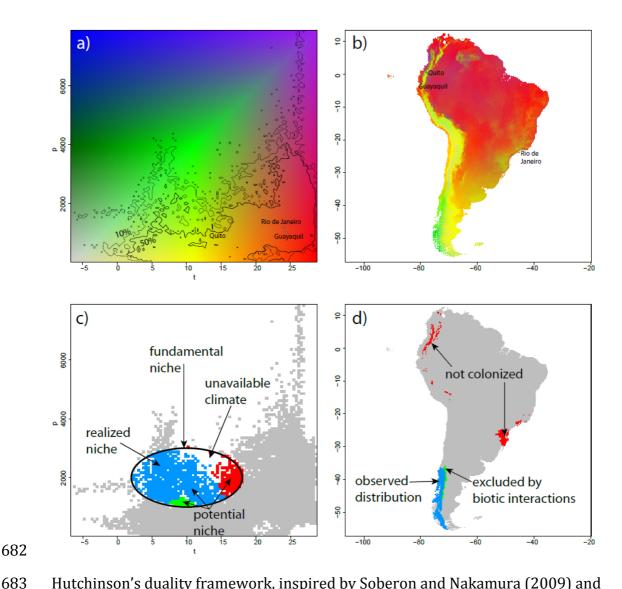
671

672

673

674

675


676

677

678

679

680

Hutchinson's duality framework, inspired by Soberon and Nakamura (2009) and Soberon & Peterson (2011). The fundamental niche ellipse pictured in panel c) is theoretical (artificially created) and could not be derived from field observations.

Box 3: Metrics to quantify and decompose niche changes – The COUE scheme

The niche space of an exotic species can be classified into three categories: niche space occurring only in the exotic range (i.e. expansion, ϵ), in both exotic and native range (i.e. stability, σ) and only in the native range (i.e. unfilling, υ). Niche comparisons can then be made at two levels: (i) relative to the entire niche of the species, pooled from the two ranges (pooled ranges approach); or (ii) relative to the native or exotic ranges separately (range-specific approach). The table below presents a unified terminology (COUE, an acronym based on its main components, centroid shift, overlap, unfilling and

expansion, as defined below) for niche comparisons and related metrics of niche changes.

699

697

698

Niche change	Absolute	Metric	
component	component	Pooled ranges	Range-specific
Centroid shift		С	
Expansion	3	Ep	Е
Stability	σ	S _p (≈ 0)	S_n , S_e
Unfilling	υ	U_p	U

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

Centroid shift measures the change in mean niche position (and thus mean intensity) in the pooled ranges space, and thus no range-specific counterpart exists here. At the pooled-range level, niche stability (S_p) measures the proportion of niche assessed from the pooled native and exotic occurrences (possibly transformed into ENM predictions or densities in the environmental space, Fig. 3) present in both native and exotic ranges. This is similar to the niche overlap (0) assessed through Schoener's D or Hellinger's I (see (Warren et al., 2008; Broennimann et al., 2012)). The non-overlapping parts of the two niches $(1 - S_p)$ can then be decomposed into global ratios of expansion (E_p) and unfilling (U_p) based on the pooled ranges. Decomposing niche changes relative to the pooled species distribution informs about the magnitude of niche changes at the global scale (i.e. relative to the entire realized niche of the species), but may not be informative about niche changes specific to either exotic or native ranges (as used e.g. in (Petitpierre et al., 2012)). For example, the exotic niche can be very small relative to the entire pooled niche but entirely located in environments different from the native niche, in which case E_p would be very small although the entire invaded niche is distinct from the native niche and would hardly be predictable from the native range data. It is however possible to quantify a ratio of expansion (E) and unfilling (U) relatively to the exotic or native niches only, i.e. at the range-specific level. These inform us about the relative importance of changes in each exotic and native niche. In turn, niche stability can be assessed from the perspective of native or invaded niches separately, depending on whether it complements the relative expansion or relative unfilling ratios ($S_n = 1 - U$; S_e = 1 - E, respectively).

723

724

725 Box 4: The available climate and the analog/non-analog issue 726 The available environment is a subset of all possible environmental combinations (Box 727 2). The existence of non-available environments constrains niche shape and size 728 (Jackson & Overpeck, 2000). For instance, places with very warm summer temperature 729 (say >40°C) and very cold winter temperature (say <-20°C) do not currently exist on 730 Earth (see Figure 1 in (Jackson & Overpeck, 2000)). When comparing the available 731 environment in two areas, some habitats in one area (or time period) may be much 732 more frequent or rare than in the other area (or time period), or some specific 733 conditions found in one range may be totally absent from the other range. For instance, 734 some very dry conditions of Western North America are not found in Western Europe 735 (Broennimann et al., 2007) and tropical conditions of the Tertiary in Europe are not 736 observed anymore (Willis & McElwain, 2002). Conditions similar in two ranges or two 737 time periods are called 'analog' and those differing 'non-analog' (Williams & Jackson, 738 2007; Fitzpatrick & Hargrove, 2009) (or 'non-overlapping backgrounds' in (Soberon & 739 Peterson, 2011)). Non-analog environments in an invaded range, or in the future, 740 typically represent situations outside the range of values considered to quantify the 741 native niche and not experienced by the species before invasion, and therefore lead to 742 difficulty in interpreting niche shifts (Petitpierre et al., 2012) and predicting species 743 distributions (Fitzpatrick & Hargrove, 2009). Tools are available to define areas in the 744 exotic range with climates analog to the native range. The simplest approach is to define 745 a bounding box that encloses all the conditions present in the native range (e.g. BIOCLIM; Busby 1991). Any pixel in the exotic range outside of the bounding box range 746 747 can be considered non-analogous. A more refined approach is the MESS analysis 748 (Multivariate Environmental Similarity Surfaces) (Elith et al., 2010), an index of 749 similarity reporting the closeness of a point described by a set of climate attributes (e.g. 750 a pixel in the exotic range) to the distribution of these attributes within a population of

752

751

reference points (e.g. the native range).

754755756 Figure captions

757

758

759

760

761

762

763

764

765

Figure 1: Theoretical scenarios of realized niche changes in space (e.g. following invasions) or time (e.g. under climate change). Change of: (i) the niche envelop (expansion or contraction) without change of the niche centroid, due to symetric niche change, i.e. in two opposite (a) or all directions in climatic space; (ii) the niche centroid with expansion (b, c) or displacement (d) of part of or the whole niche envelop, or (iii) the niche centroid only, due to a change of the density of occurrences within the same niche envelop in climatic space (e). The latter case would result in stability (no change) in figure 2. Observed changes are likely to be combinations of these cases.

766

767

768

769

770

771

772

773

774

775

776

777

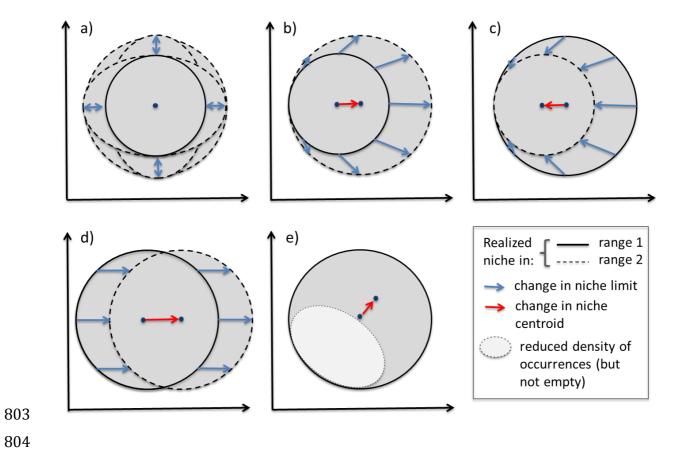
778

779

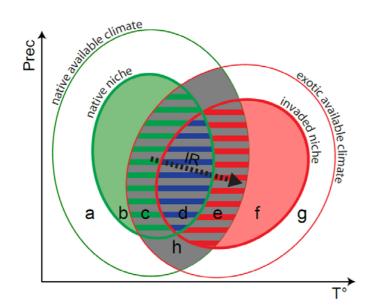
780

781

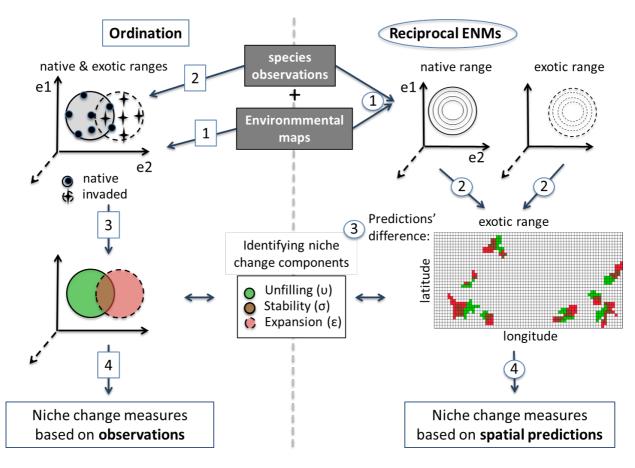
782


783

784


Figure 2: Schematic 2-dimensional representation of the indices of niche change (unfilling, stability and expansion) presented in (2012) (see definitions in Box 3). Solid thin lines show the density of available environments (Box 4) in the native range (in green) and in the invaded range (in red). The gray area shows the most frequent environments common to both ranges (i.e. analog environments). The green and red thick lines show respectively the native and the invaded niches. Niche unfilling (U), stability (S_e) and expansion (E) are shown respectively with green, blue and red hatched surfaces inside analog environments. The definition of a niche shift using the change of niche centroid only (inertia ratio, IR) is shown with a thick dotted arrow. In this context, the lower-case letters represent similar features in both graphs: a. available conditions in the native range, outside of the native niche and non-analog to the invaded range.. b. Conditions inside of the native niche but non-analog to the invaded range. c. Unfilling, i.e. conditions inside of the native niche but outside the invaded niche, possibly due to recent introduction combined with ongoing dispersal of the exotic species, which should at term fill these conditions. d. Niche stability, i.e. conditions filled in both native and invaded range. e. Niche expansion, i.e. conditions inside the invaded niche but outside the native one, due to ecological or evolutionary change in the invaded range. f. Conditions inside of the invasive niche but non-analog to the native range. g. Available

785 conditions in the invaded range but outside of the invasive niche and non-analog to the 786 native range. h. Analog conditions between the native and invaded ranges. 787 788 **Figure 3**: The two approaches commonly used to quantify niche changes between 789 ranges (Box 1). Ordination is based on the observations directly, whereas ENM is based 790 on predictions (see (Broennimann et al., 2012), and Box 1). Steps for ordination are 791 (square numbers): 1. Definition of the reduced multidimensional environmental space; 792 2. Plot of the observations from each range in this space; 3. Comparison of the niche 793 defined from observations in each range; 4. Calculation of the niche change metrics (see 794 Box 3). Steps for ENMs are: 1. Fit of ENMs by relating field observations to 795 environmental variables; 2. Projections of the ENMs in geographic space; 3. Compute 796 difference in the projections; 4. Calculation of the niche change metrics (see Box 3). See 797 main text for discussion of the respective strengths and weaknesses of the two 798 approaches. 799


802 Figure 1

809 Figure 2

Figure 3

