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Abstract
Measurements of streaming potentials were carried out on rock glaciers and talus slopes in a test site of the southern 
Swiss Alps. After some theoretical considerations and a brief description of the measurement technique, a method of 
data treatment in high declivity topography is presented. The results of self-potential prospecting measurements are 

generally in accordance with the geomorphological observations. In particular, the groundwater runoff is influenced by 
the occurrence of permafrost, which creates surfaces of water migration partially independent from ground porosity. 
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Introduction
Self-potential (SP) (or spontaneous potential 

measurements) in the study of periglacial environments 

is a recent and not well-developed geophysical method 
in geomorphology, geocryology, and glaciology. Natural 

electrical potentials measurements have been carried out 

to monitor the thawing front movement and to study the 
active layer and permafrost parameters in arctic periglacial 

environments (e.g., Gahé et al. 1988, Fortier et al. 1993), 
for the study of subglacial drainage (e.g., Blake & Clarke 
1999, Kulessa et al. 2003) or for the investigation of 
landslides (e.g., Bogoslowsky & Ogilvy 1977, Gex 1993). 

In alpine periglacial environments, no studies on 

streaming potentials associated with groundwater runoff in 
rock glaciers and talus slopes have been carried out. Rock 

glacier hydrology has been studied with water tracing 
(e.g., Tenthorey 1992, Krainer & Mostler 2002) or thanks 
to borehole logging (e.g., Haeberli 1985, Vonder Mühll 
1992), whereas talus slope hydrology is not well known 
(e.g., Rist & Phillips 2005). 

The present paper presents and discusses results of 

streaming potentials mapping in the Sceru Valley (Fig. 1), 

in the Eastern part of the Blenio Valley (Lepontine Alps 
of the Tessin, southern Switzerland). The objectives are to 
present the measurement technique and a method of data 
treatment in high declivity topography.

Theory and Methods
Macroscopic streaming potential mapping was realized 

from field measurements carried out in 2006 and 2007. The 
method is completed by geomorphological observations 

and mapping, frequency-domain electromagnetic lateral 
mapping and 2D resistivity profiling (Geonics EM-16R 
and EM-31), direct current (DC) resistivity soundings, and 

thermal prospecting (miniature ground temperature data 

loggers and spring temperatures). In this paper, only the 

field measurement technique and the interpretation of large 
geomorphological structures (> 1000 m

2
) are presented.

The streaming potentials
Streaming potentials, or electrofiltration potentials, 

are natural electrical potentials produced by water flow 
through a porous and permeable soil (Reynolds 1997). 
The streaming potentials are directly proportional to 

the selective filtration of ions (electrofiltration) at the 
microscopic scale. Water, acting as an electrolyte, creates 

at the interface mineral-water a positive load flow between 
the immobile part of the electrical double layer (composed 

by the Stern layer—in contact with the mineral and with 
fixed cations, and the Gouy-Chapman diffuse layer—with a 
lower cations concentration) and the free neutral electrolyte 
(Revil et al. 2004). The Helmholtz-Smoluchowski law 
links up the electrofiltration potential (EF) amplitude with 
the electrolyte characteristics:

Figure 1. Geographical location of the study area.
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where  is the resistivity,  the dielectric constant and  

the dynamic viscosity of the electrolyte.  is the electrical 

potential of the double layer (zeta potential) and P is the 

pressure difference between the measurement points of EF.
Ultra-fresh and fresh groundwaters induce the maximum 

electrofiltration fields (Bogoslowsky & Ogilvy 1973). 
Indeed, in presence of much conductive water (with a 
mineral concentration exceeding 5 g/l), the electrolyte short-
circuits the spontaneous electrical current. 

Self-potential variations are also due to the granulometry 

and permeability of the soil. In a homogenous and isotropic 

terrain and where granulometry and permeability are known, 
the streaming potentials reflect the contours of the water 
table. In this case, self-potential mapping and inversion can 

supply information about some characteristics (configuration, 
direction, and intensity) of seepage flow both in horizontal 
and vertical planes (Revil et al. 2004). 

Measurement of streaming potentials
SP is a passive method. The technique applied in this study 

is based on the fact that each value of self-potential measured 

at the ground surface is linked up with one electrode fixed 
at a base station situated outside of the geomorphological 

landforms studied. The potential difference (in mV) is 

measured between the reference electrode and a measurement 
electrode, which is moved along a traverse (Gex 1993, 
Reynolds 1997).

The range of the measured potentials is generally 

comprised between several millivolts (mV) and one volt. 
Because the sign of the zeta potentials could be positive 
or negative according to the earth materials, the sign of the 

difference of voltage measured is an important factor for 

the interpretation of SP anomalies (Reynolds 1997). For 
convention, the self-potential value at the reference electrode 

is zero. SP cartography has been carried out with a distance 
between every measurement of 3 to 5 m. 

The measurement material used in this study was developed 
at the Institute of Geophysics of the University of Lausanne. 
The reference electrode of the model non-polarisable with 
Cu-CuSO4 was realized in PVC and wood. The measurement 
electrode is fixed on a stick one meter long; its thin section 
allows us to drive it into the ground comfortably. It is linked 
up with the reference electrode by an isolated copper wire. A 
spool, fixed on the back of the operator, permits us to unwind 
the copper wire. The measurements are carried out with a 

high impedance (100 M) digital voltmeter. The scale range 

of the voltmeter is comprised between -2000 and 2000 mV. 
A compensator is associated with the voltmeter to settle the 
SP value to the zero at the reference electrode. Finally, the 

voltmeter is provided with a filter that permits us to stabilize 
the measurements when the ground presents perturbations 
to the natural electrical fields. The field data acquisition is 
schematized in Figure 2.

Very Low Frequency-Resistivity (VLF-R) 
The VLF-R technique (see Hoekstra et al. 1975, Hoekstra 

1978, McGrath & Henderson 1985) uses electromagnetic 
energy radiated by a very low frequency (VLF) transmitter. 
In this study the Hauderfehn transmitter (23.4 kHz) located 
in Germany was used. The measurement of the horizontal 
component of the electric field and of the horizontal magnetic 
component perpendicular to the azimuth of the transmitting 

station allows the apparent resistivity of the near surface to 
be determined using the Cagniard (1953) equation:

(2)

where 
a
 is the apparent resistivity (m), f the frequency (Hz), 

E the electric field (mV/km) and H the magnetic field (nT). 
The ratio between H and E gives a phase angle that changes 

according to variations of resistivity with the depth. 
The field data acquisition was carried out using a Geonics 

EM-16R instrument. 

Field Site Characteristics and Data Acquisition
The Sceru Valley (46°27’N, 9°01’E) is an east-facing 

glacial cirque situated between 2000–2787 m a.s.l. The 
morphology and hydrology of the Sceru Valley were studied 
by Scapozza (2008). The morphology is characterized by 
the presence of several rock glaciers with different degree of 
activity, talus slopes, and Lateglacial moraines (Fig. 3).

Permafrost is present in the Piancabella rock glacier and 

in the lower part of the Gana Rossa talus slope (Scapozza 
2008). The hydrology of the southern part of the Sceru Valley 
is influenced by the presence of rock glaciers. Because of 
the high porosity of the blocky surface, no subaerial water 
runoff can be observed (the spring in the lower part of the 
Gana Rossa talus slope is situated one meter below the 
ground surface). 

In 2006 and 2007, 17 SP profiles were carried out on the 
Sceru I rock glacier, 2 on the Piancabella rock glacier, 1 on 

the Gana Rossa talus slope, and 2 on the Sasso di Luzzone 
talus slope/rock glacier complex. In total, about 1300 SP 
measurement points were listed. 

In the talus slopes and the active rock glacier, several 

SP profiles were combined with Geonics EM-16R and/or 
EM-31 mapping along the same traverse.

  

Results and Discussion
Data treatment

In high declivity topography like the alpine periglacial 

Figure 2. Field acquisition of self-potential data. 
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environment, the natural streaming potential linked to the 

slope is important, and its effect on the difference of voltage 

(in mV) measured by self-potential prospecting is very 

high. This perturbation, named “Topographic Effect” (TE), 
has been known to geophysicists for more than 90 years 
(Ernstson & Scherer 1986). The TE presents, for a constant 
electric field, an increasing negative potential linked with the 
elevation in altitude. For these reasons the regional anomaly 

(due to the TE) has to be subtracted from the measured values, 

which gives a final residual anomaly. The TE is calculated 
with a statistical analysis of linear regression between self-
potential data and altitude. In practice, the average of the first 
four values of 11 traverses, measured between 2000–2450 m 
outside of the body of the Sceru I rock glacier, were used to 
calculate the TE, with a correlation between SP and altitude 
of -0.86. The calculated gradient of the TE is -68 mV per 100 
m difference in elevation.

SP data were exposed in the form of potential profiles 
and equipotential maps. For the equipotential maps, a 
geostatistical interpolation of SP data was made with 
ordinary kriging. All the SP data (except for profiles SP-20 
and SP-30) refer to the reference electrode placed outside 

the Sceru Valley (Fig. 4). For profiles SP-20 and SP-30, the 
reference electrode was placed at the Swiss Grid coordinates 
720’215/145’660, at 2460 m a.s.l.

Sceru I relict rock glacier
The SP prospecting of this rock glacier shows an almost 

continuous negative residual anomaly in the northern lobe 

and another negative residual anomaly in the southern lobe. 

A zero millivolt residual anomaly is located between the 
Sceru I rock glacier and the Sasso di Luzzone talus slope/

rock glacier complex situated south of it (Fig. 4).
According to the geoelectrical prospecting (2 DC 

resistivity soundings and one 2D resistivity profile), the bulk 
resistivity structure of the rock glacier seems to be relatively 

homogeneous. Indeed, the ground apparent resistivity is 

comprised between 3–5 km (Scapozza 2008).
The groundwater runoff of two springs with different 

temperatures and electrical conductivities situated at two 
different lobes of the rock glacier could be followed by the 
self-potential prospecting (Figs. 4, 5). The link between 
the negative anomaly and the groundwater runoff is clearly 
evidenced in three SP profiles executed in summer 2006 
(Fig. 5). 

The two continuous anomalies may indicate the presence 
of two locations of preferential saturated groundwater flow. 
The two systems are probably independent, as evidenced 
from the constant difference throughout the year of 

temperature and conductivity of the two springs situated 
at the front of the rock glacier. Following this hypothesis, 
SP measurements would confirm that the two springs are 
alimented with groundwater of different origin (Fig. 4). 

The torrents situated in the northern part of the Sceru Valley 

possibly feed the northern lobe spring (as pointed out by a 

warming of water temperatures), whereas the southern lobe 
spring would be alimented by an important aquifer situated 
into the Sceru I rock glacier. This water may be stored in the 
rock glacier for several months. The relatively high water 
conductivity (compared to the other springs in the valley, 

see Figure 3) and the constant water temperature (between 
2.0°C and 2.2°C) all year long would confirm that the water 
transfer in this rock glacier is very slow, as it was pointed out 
by Tenthorey (1992) in a similar environment. 

Figure 3. Geomorphological map of the Sceru Valley. For further information, see Scapozza (2008).
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The cold water temperature of the southern spring may be 
linked to a process of winter-ascending air circulation (the 
so-called chimney effect), which facilitates the cooling of 
the ground in the lower part of a porous sediment deposit 
(Delaloye & Lambiel 2005).

Piancabella active rock glacier
Prospecting of this landform shows a rise of the SP at the 

foot of the rock glacier front and a low increase of SP values 
all along the rock glacier (Fig. 6). Because of the location of 
the reference electrode (settled to 0) downslope of the rock 
glacier, the rise of the SP at the front can be interpreted as an 

important negative residual anomaly of several hundred mV. 

A VLF-R tomography performed with the 2LayInv 
software (Pirttijärvi 2006) allows us to know approximately 
the active layer depth and the permafrost resistivity. The 

parameters of the profiling inversion are presented in Figure 
6. Maximal VLF-R resistivities are found at the front of the 
rock glacier, and a decrease of the values toward upslope 

can be observed. Between 30–70 m, the decrease in the 
resistivities coincides with a decrease of the active layer 
depth. At 75 m, an important groundwater runoff has been 
perceived beneath the surface. 

Data from the Piancabella active rock glacier show a 
connection between changes in SP, changes in active layer 
properties (particularly, its depth), changes in permafrost 

structure and/or in bulk resistivity structure (as shown by 
the VLF-R tomography). Indeed, the correlation between SP 
and active-layer depth is -0.74, whereas it is -0.85 between 
SP and permafrost resistivity. The correlation between SP 
and altitude (in m) is 0.54, which confirms that SP is partially 
independent from topography.

The permafrost resistivity depends on ground temperature, 

permafrost ice resistivity and content, and unfrozen water 
resistivity and content (Haeberli & Vonder Mühll 1996). 
Thus, it is difficult to separate the effect of change in water 
conductivity on SP from those on bulk resistivity.

The good connection between SP and permafrost resistivity 
probably indicates that there is a constant and continuous 

groundwater flow of constant water electrical conductivity and 
constant temperature throughout the active layer, and that SP 

changes are due to changes in the bulk resistivity structure of 

the rock glacier. This would confirm that the suprapermafrost 
groundwater runoff is supplied by the melt of annual névés at the 
root of the rock glacier and by the addition of incidental rainfall 

(see Tenthorey 1992). It is difficult to know the proportion 
of ice melt in the active layer and/or at the permafrost table, 
which is probable for a rock glacier situated at the lower limit 
of discontinuous permafrost. 

Finally, the negative SP residual anomaly at the foot of the 

rock glacier front evidences an important groundwater runoff. 
This groundwater runoff is probably linked to suprapermafrost 
and intra- and subpermafrost water flow, which concentrates at 
the foot of the rock glacier front (Haeberli 1985). 

Figure 4. SP equipotential map of the Sceru I rock glacier and the Sasso di Luzzone talus slope/rock glacier complex based on summer 2007 
measurements. For topographic names, see Figure 3. 

Figure 5. SP profiles executed across the Sceru I rock glacier. The 
arrows show negative anomalies linked with groundwater runoff. 
For the location of SP profiles, see the Figure 3.
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Gana Rossa talus slope
SP prospecting of the Gana Rossa talus slope (Fig. 7) 

shows two negative residual anomalies in the lower part 
of the landform and an important and well-developed 
positive anomaly between 60–160 m distance. Another 
positive anomaly is present in the upper part of the talus 

slope. VLF-R prospecting shows relatively high apparent 
resistivities (over that 10,000 m) in the lower part and in 
the middle of the talus slope. According to DC-resistivity, 
EM-31 and thermal prospecting (Scapozza 2008), 
permafrost is present only in the lower part of this talus 
slope (Fig. 7).

The streaming potentials are weakly positively correlated 
with altitude (R = 0.54), which contrasts with the theory 
of the TE (see Data treatment). Indeed, a test made in the 

Sasso di Luzzone talus slope (Fig. 3), where permafrost 
is absent, gives a very high negative correlation between 
streaming potentials and altitude (R = -0.97). Some results 
were pointed out by other studies carried out in high 
declivity slopes (e.g., Jackson & Kauahikana 1988).

Comparison between SP measurements and permafrost 
distribution shows, for the lower part of the talus slope, a 
connection between SP residual anomalies and permafrost 
occurrence. A possible hypothesis to explain this SP 
positive residual anomaly is the following: the presence of 
saturated or partially under-saturated permafrost may create 

a relatively impermeable surface of water runoff, which 
may modify the direction of the natural streaming potential 

linked to the slope (which is present between 120–200 
m, as pointed out by the negative correlation between 
streaming potentials and altitude) by the canalization of 

groundwater flow at the base of the active layer. Following 
this hypothesis, the negative SP residual anomaly situated 

at a distance of 25 m may be related to an important water 
infiltration in the porous sediments, supplied by the melt 
of annual névés and by the addition of incidental rainfall. 

Whereas, the negative SP residual anomaly situated at a 

distance of 50 m may be related to the presence of a talik 

that would permit an intrapermafrost groundwater flow. 
The important groundwater runoff in the lower part of 
the talus is also proved by a spring (Fig. 3). Finally, in the 

upper part of the talus slope, the SP variations are probably 

due to the topography of bedrock, which is located only a 
few meters below the slope surface. 

Figure 6. Profile SP-20 (at the top) and VLF-R tomography (below) on the Piancabella rock glacier. The VLF-R profiling inversion was 
performed with the 2LayInv (©University of Oulu) software (Pirttijärvi 2006).

Figure 7. SP profile across the Gana Rossa talus slope.

In conclusion, it is very difficult today to better detail 
the hydrological and glaciological behavior of this talus 

slope without short, medium, and long-term thermal and 
geophysics monitoring at the surface and in boreholes.

Conclusions and Perspectives
The examples discussed show that measurement of 

streaming potential change on periglacial landforms offers 

good possibilities for assessing changes in water content and 
migration. Self-potential measurement could be useful for 

studying, in accordance with other geophysical methods, 
the importance of groundwater runoff generated by water 
infiltration and/or ice melting in permafrost terrains. The 
repetition of the same SP profile ten months later on a 
relict and an active rock glacier gave the same results; this 

confirms that streaming potential monitoring in periglacial 
landforms is possible. Self-potential monitoring associated 

with thermal and Electrical Resistivity Tomography (ERT) 
monitoring could be interesting for quantifying the processes 
correlated with permafrost degradation in high mountain 
environments.
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