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Despite the crucial role of the brain in the control of the human lower
urinary tract, little is known about the supraspinal mechanisms regulat-
ing micturition. To investigate the central regulatory mechanisms acti-
vated during micturition initiation and actual micturition, we used an
alternating sequence of micturition imitation/imagination, micturition
initiation, and actual micturition in 22 healthy males undergoing
functional magnetic resonance imaging. Subjects able to micturate
(voiders) showed the most prominent supraspinal activity during the
final phase of micturition initiation whereas actual micturition was as-
sociated with significantly less such activity. Initiation of micturition in
voiders induced significant activity in the brainstem (periaqueductal
gray, pons), insula, thalamus, prefrontal cortex, parietal operculum and
cingulate cortex with significant functional connectivity between the
forebrain and parietal operculum. Subjects unable to micturate (nonvoi-
ders) showed less robust activation during initiation of micturition,
with activity in the forebrain and brainstem particularly lacking. Our
findings suggest that micturition is controlled by a specific supraspinal
network which is essential for the voluntary initiation of micturition.
Once this network triggers the bulbospinal micturition reflex via brain-
stem centers, micturition continues automatically without further su-
praspinal input. Unsuccessful micturition is characterized by a failure
to activate the periaqueductal gray and pons during initiation.

Keywords: functional magnetic resonance imaging, lower urinary tract,
micturition, pontine micturition center, supraspinal control

Introduction

The human lower urinary tract (LUT) is controlled by a
complex supraspinal network which permits the voluntary
regulation of LUT function, that is, to decide where and when
to empty the bladder (Fowler et al. 2008). Loss or impairment
of such supraspinal control frequently results in LUT dysfunc-
tions and symptoms which can significantly reduce quality of
life, including impairments in sexuality, emotional well-being,
and productivity at home and work (Coyne, Sexton, Kopp
et al. 2011; Coyne, Sexton, Thompson et al. 2011). Despite this
substantial clinical and social importance (Coyne et al. 2009;
Fowler, Panicker et al. 2010; Fowler, Dalton et al. 2010; Irwin
et al. 2011) and the critical role the brain plays in the control of
micturition and urinary continence (Blok and Holstege 1999),
little is known about the supraspinal processes and inter-
actions that are involved in micturition events.

Authors working with animals have described neurons in
the dorsolateral part of the pontine tegmentum, termed the
“pontine micturition center” (PMC) responsible for synergic
micturition—a sequence beginning with relaxation of the
bladder neck and external urethral sphincter (EUS) and fol-
lowed by detrusor contraction. (Barrington 1925; Loewy et al.
1979; Blok and Holstege 1996, 1999; de Groat 2006). Other
animal studies suggest that micturition is regulated by a spino-
bulbospinal reflex circuitry with the PMC as the initiator of the
efferent reflex arc (Blok and Holstege 1996; de Groat 2006).
The PMC, via one long, descending pathway to the sacral
spinal cord, controls both the relaxation of the EUS and the
contraction of the detrusor, although micturition in healthy
humans relies on this reflex circuitry only during early infancy.
During brain maturation and social education this reflex is
gradually put under suprapontine control (de Groat 2002; de
Groat and Wickens 2013).

Recent functional neuroimaging studies have investigated su-
praspinal LUT control during bladder filling and pelvic floor con-
tractions but little is known about the supraspinal areas and
dynamic processes involved in micturition and the voluntary
switch-over from urine storage to micturition (Fowler and Grif-
fiths 2010). These are important aspects because it is this volun-
tary switch that is often impaired in patients with LUT symptoms.

In this study, we investigate supraspinal activity in healthy
males during micturition initiation and actual micturition using
a series of experimental challenges during blood oxygen level-
dependent (BOLD) functional magnetic resonance imaging
(fMRI). We were particularly interested in the dynamics of any
supraspinal activity and the functional connectivity between
activated areas during the switch from storage to micturition.

Our hypotheses were 3-fold:

1. Initiation of micturition requires more cognitive control
compared with actual micturition, with the latter consid-
ered a spinobulbospinal reflex which, once initiated, con-
tinues without the need for further supraspinal input.

2. Initiation of micturition requires, in addition to brainstem
regions including the periaqueductal gray (PAG) and pons,
the recruitment of interoceptive areas (e.g., the insula, thal-
amus, and cingulate cortex), areas for maintaining cogni-
tive control (e.g., the prefrontal cortex [PFC]), and for
integrating somatosensory and sensorimotor information
(e.g., the parietal operculum [OP]).
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3. Supraspinal centers will be functionally more strongly
connected during the initiation phase compared with
actual micturition, as the former requires orchestrated
neural integration in contrast to the reflex-dominated exe-
cution of the latter.

This is a prospective, single center fMRI study. Ethical approv-
al was obtained from the local ethics committee. All participat-
ing subjects provided written, informed consent.

Materials and Methods
Right-handed males between the ages of 18–45 years were eligible for
inclusion. Exclusion criteria included any urological symptoms, regular
medications, known psychological or neurological disorders or contra-
indication for MRI (e.g., ferromagnetic implants, claustrophobia, cardiac
pacemakers). Men meeting the exclusion criterion of pre-existing uro-
logical symptoms were identified through a detailed urological history
and evaluation using the International Prostate Symptom Score (IPSS).

Forty-five to 60 min before entering the scanner, all subjects re-
ceived 20 mg oral furosemide and were advised to drink water until a
persistent desire to void developed. Meanwhile, the scanning proced-
ure and instructions were explained to the subjects. A condom catheter
was attached to the penis of each subject and connected to a draining
tube with an integrated custom-made flow detector calibrated to deter-
mine the onset and end of each micturition. The flow detector con-
sisted of 2 copper wires inserted horizontally, 2 mm apart into the
draining tube at the outflow of the condom catheter. Both wires were
connected via isolated cables to an ohmmeter outside the scanner
room. The ohmmeter reliably recorded the change in impedance
between the 2 copper wires caused by the commencement or cessation
of urine flow.

Prior to scanning, bladder volume and the level of desire to void
were measured using abdominal ultrasound and a visual analog scale
(VAS, ranging from 0 = no desire to void at all to 10 = strongest urge to
void), respectively.

All fMRI measurements were performed in the supine position
using a Philips Achieva 3.0 Tesla MR scanner (Philips Medical Systems,
Best, the Netherlands) with an 8-channel head coil.

An anatomical scan was acquired for each subject using a 3D,
T1-weighted gradient echo sequence (time echo [TE]/time repetition
[TR] = 2.3/20 ms, field of view [FOV] = 220 × 220 mm2, matrix = 256 ×
256, slices = 180, slice thickness = 0.75 mm).

Following automatized, whole-brain shimming, functional, BOLD-
sensitive images were acquired using a single-shot gradient echo EPI
pulse sequence (TE/TR = 35/3000 ms, flip angle = 82°, FOV = 220 ×
220 mm2, matrix = 128 × 128, slices = 39, slice thickness = 3 mm). Sen-
sitivity encoding (Boujraf et al. 2009) with a reduction factor of 2 was
used to minimize the influence of susceptibility artefacts and to maxi-
mize the possible number of slices acquired within one TR.

The functional experiment consisted of 2 blocks presented in a
random order during a 300 s scanning session (Fig. 1 and Table 1).
Block (1) comprised 2 conditions: REST (visual fixation) and IMITATE
(subjects visually imagine starting micturition). Block (2) comprised
4 conditions: REST (visual fixation), INITIATE (subjects should start
micturition), URINATE (actual micturition, urine is flowing), and STOP
(interruption of micturition). The onset of each of the conditions REST,
IMITATE, INITIATE, and STOP were defined as the moment the par-
ticular visual cues for the respective conditions were presented, while
the onset of URINATE was determined by the actual onset of mictur-
ition, that is, urine flow was detected by the flow detector (Table 1).
The duration of the INITIATE condition was limited to a maximum of
60 s. If micturition could not be initiated during this time, URINATE
and STOP were skipped and the next block followed.

The 2 blocks were repeatedly presented in a random order. Each
block was repeated at least 8 times and thereafter as many times as pos-
sible, with the number of repeats largely dependent on the duration of
the INITIATE condition of block (2) (Fig. 1 and Table 1).

During subsequent fMRI analysis, the INITIATE condition was split
into an early (INITIATE-E) and a late (INITIATE-L) phase (Table 1) to
examine the dynamics of supraspinal activity during INITIATE and to
distinguish between the early and late phases of this process.

On completion of scanning, all subjects again rated their desire to
void using the VAS. Bladder volume was assessed using abdominal
ultrasound and uroflowmetry was performed.

Data analysis, including preprocessing of the imaging data, was per-
formed with SPM5 (Wellcome Trust Centre for Neuroimaging, London,
UK). The first 4 scans were removed to allow for longitudinal magnet-
ization equilibrium. For the preprocessing, the following steps were

Figure 1. The scan paradigm consisted of 2 randomly alternating blocks. Block (1) comprised 2 conditions: REST (visual fixation) and IMITATE (subjects visually imagine starting
micturition). Block (2) comprised 4 conditions: REST (visual fixation), INITIATE (subjects should start micturition), URINATE (actual micturition, urine is flowing), and STOP
(=interruption of micturition). The experimental onsets for REST, IMITATE, INITIATE, and STOP were defined by the visual cues presented for each condition, while the onset for
URINATE was determined by the actual onset of micturition, when urine flow was first detected by the flow detector. If micturition could not be started during the INITIATE
condition, which was limited to a maximum duration of 60 s, URINATE and STOP were skipped and the next block followed immediately, starting with REST. Each block was
randomly repeated at least 8 times and as often as possible depending on the duration of the INITIATE condition. The conditions highlighted in gray, that is, URINATE and STOP, were
only applicable when actual micturition could be initiated. In nonvoiders, the INITIATE condition was always followed by the REST condition of the subsequent block. SDV, strong
desire to void. *REST conditions following INITIATE (in the case of inability to initiate actual micturition) or IMITATE had a duration of 18 s. REST conditions following STOP had a
duration of 15 s.
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applied: realignment, normalization to the Montreal Neurological Insti-
tute (MNI) template, temporal filtering (128 s), and spatial smoothing
(8 mm). A strict head-motion exclusion threshold (translation: <1.5
mm total displacement, rotation: <1°) resulted in the exclusion of one
subject. For the rest of the subjects, results did not substantially differ
whether motion regressors were included in the general linear model
(GLM) or not. The design matrix of the GLM for the first-level analysis
consisted of the following 5 event-related contrast vectors, used to dis-
tinguish supraspinal activity before, during, and after micturition
(Table 1): IMITATE (modeling duration: 2 TRs = 6 s), early INITIATE
(INITIATE-E, initiation onset; modeling duration: one TR = 3 s), late
INITIATE (INITIATE-L, modeling duration: one TR = 3 s before mictur-
ition), URINATE (modeling duration: one TR = 3 s, voiders only), and
STOP (modeling duration: one TR = 3 s following URINATE, voiders
only). The reason for the rather short URINATE condition relied on the
intention to prevent too much urine loss during a single micturition
that may have resulted in a significant decline in bladder volume, a
subsequent decreased desire to void and inability to micturate multiple
times.

Next, a second-level random effects group analysis was performed
to account for between-subject variability. Within-group results are
shown at a voxel-threshold of P < 0.001 using the false discovery rate
(FDR) correction (Genovese et al. 2002) or, if they did not survive this
threshold, at an uncorrected voxel-threshold of P < 0.01 with a strict
cluster threshold correction of P < 0.01 (cluster extend: k > 106 voxels)
to correct for multiple comparisons using widely accepted Monte Carlo
simulations (Slotnick et al. 2003). Between-group differences were
reported at an uncorrected voxel-threshold level of P < 0.05 with an
additional cluster threshold correction of P < 0.01 (cluster extend:
k = 515 voxel).

For group activations in somatosensory regions, Brodmann areas
(BA) were identified using the probability maps in the anatomy
toolbox for SPM5 (Eickhoff et al. 2005).

Functional connectivity (FC) analyses between areas activated
during initiation of micturition and during actual micturition (voiders
only) were performed using the CONN functional connectivity toolbox
for SPM (v13i, http://www.nitrc.org/projects/conn/). White matter,
cerebrospinal fluid (CSF), and the 6 motion parameters were used as
covariates of no interest. Only the white matter and CSF signals were
removed to avoid any bias introduced through removing the global
signal (i.e., gray matter) (Behzadi et al. 2007; Murphy et al. 2009).
This approach allows for the “normalization” of the distribution of
voxel-to-voxel connectivity values as effectively as would inclusion of
the global signal as a covariate of no interest, but without the potential
problems of the latter method. Although we did not record respiration
and cardiac responses, it has been demonstrated that nonneuronal

physiological noise (e.g., cardiac and respiratory signal) can successfully
be removed by the CompCor algorithm (Behzadi et al. 2007), as imple-
mented in the CONN toolbox. Bivariate correlations were calculated as a
measure of the strength of functional connectivity, using cross-
correlations of BOLD-signal time series between regions of interest
(ROIs). For each individual, fMRI time-series were extracted from each
ROI using MarsBaR (Brett et al. 2002; http://marsbar.sourceforge.net/)
after the fMRI time-series had been spatially smoothed, temporally fil-
tered (0.01–0.1 Hz), normalized, and motion-corrected. The signal of a
given ROI was then averaged to 4-mm-diameter spheres. ROIs were
taken from functional activation peaks during the INITIATE-L condition
(Table 3). Statistical analyses for this ROI–ROI approach were performed
for 1) INITIATE (INITIATE-E + INITIATE-L, P < 0.05 corrected for mul-
tiple comparisons using the FDR correction), 2) URINATE, and 3) for
the between-condition contrast “INITIATE–URINATE” (P < 0.001, uncor-
rected). For analysis 1), time series of both INITIATE-E and INITIATE-L
were concatenated (i.e., trial duration was 6 s) to increase the number of
time points, thereby increasing the robustness of the statistical analysis.

Results

Twenty-two right-handed, healthy male volunteers with no
pre-existing urological symptoms and a mean age of 26.4 ± 6.2
years were included (Table 2). The mean IPSS score was
3.1 ± 2.3 and all subjects had an IPSS score≤ 7 (Table 2).

Prior to scanning, the mean desire to void on the VAS and
the mean bladder volume of all subjects was 7.1 ± 1.3 and
572.8 ± 251.0 mL, respectively.

During scanning, 15 subjects were able to micturate
(voiders) with a mean frequency of 9.9 ± 4.3 (range: 4–15) and
a mean total volume of 355 ± 107 mL (range: 165–535 mL)
(Table 2). The mean time needed to start micturition (i.e., the
duration of the INITIATE condition) was 19.9 ± 8.3 s (Table 2).
Seven subjects were not able to micturate (nonvoiders).

After scanning, voiders had a mean desire to void of
4.9 ± 2.1 and a mean bladder volume of 915 ± 363 mL
(Table 2). Nonvoiders had a mean desire to void of 7.7 ± 1.1
and a mean bladder volume of 1005 ± 347 mL (Table 2). The
maximum and average flow rate on uroflowmetry was
28.8 ± 9.9 mL/s and 15.8 ± 5.8 mL/s in voiders and 29.4 ± 10.1
mL/s and 16.3 ± 5.2 mL/s in nonvoiders, respectively (Table 2).

Table 1
Overview of the different functional conditions used in this study

Condition
name

Condition description Condition
duration

No. of repetitions of
each condition

Visual cue indicating each condition Event-related contrast vectors for the GLM
design matrix of the first-level analysis

REST Visual fixation 15–18 s* min. 16× Not modeled

IMITATE Subjects visually imagine
starting to micturate

6 s min. 8× IMITATE, 6 s

INITIATE Subjects attempt to initiate
micturition

Variable, max.
60 s

min. 8×
INITIATE early, 3 s

INITIATE late, 3 s

URINATE Actual micturition; urine is
flowing

3 s As often as possible No cue presented; start of URINATE condition was determined
by start of urine flow detected by the flow detector

URINATE, 3 s

STOP Stop micturition 3 s Only following
successful URINATE STOP, 3 s

Notes: The conditions URINATE and STOP, were only applicable if micturition could be initiated. In nonvoiders, the INITIATE condition was always followed by the REST condition of the subsequent block.
*REST conditions following INITIATE (in the case of inability to initiate micturition) or IMITATE had a duration of 18 s. REST conditions following STOP had a duration of 15 s.
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Table 2
Demographic and urodynamic data of subjects

Subject Age (years) IPSS Number of
successful
micturitions during
fMRI experiment

Total voided
volume (mL)
during fMRI
experiment

Mean time (s)
required to start
micturition during
fMRI experiment

Desire to void (VAS
0–10) prior to fMRI
experiment

Bladder volume
(mL) prior to fMRI
experiment

Desire to void [VAS
0–10] after fMRI
experiment

Bladder volume (mL)
after fMRI experiment

Qmax (mL/s) on
uroflowmetry after
fMRI experiment

Qave (mL/s) on
uroflowmetry after
fMRI experiment

V NV V NV V NV V only V only V only V NV V NV V NV V NV V NV V NV

1 1 31 41 0 1 15 425 10.6 5.2 6.6 290 900 1.9 6.3 354 1180 26.9 10.4 15.7 6.5
2 2 35 28 2 1 15 355 9.8 8.5 6.5 640 700 6.9 8.6 1080 1109 38.8 22.9 18.8 11.3
3 3 24 33 4 1 13 305 25.5 6.7 5.1 510 515 4.2 6.2 812 954 22.2 40.9 13.8 21.7
4 4 20 25 4 3 13 345 16.3 8.2 7.9 630 740 4.6 9.0 892 1425 35.1 42.2 20.7 21.3
5 5 32 18 4 3 10 400 29.6 7.4 7.6 600 231 8.6 9.0 1229 1354 13.2 32.8 8.9 17.3
6 6 22 18 4 7 12 255 19.5 8.0 5.3 448 200 3.7 6.9 1139 445 23.3 27.1 9.3 16.1
7 7 26 27 7 2 8 165 20.3 9.9 8.3 1091 411 6.4 7.9 1091 568 23.7 29.7 8.7 20.2
8 21 1 15 195 34.6 8.4 796 6.7 849 34.5 20.9
9 31 7 7 445 14.9 6.9 523 6.2 1236 42.1 25.3
10 29 7 15 535 10.3 5.8 160 2.9 269 13.7 7.8
11 21 3 6 490 20.1 5.3 310 1.6 360 43.3 19.9
12 21 5 5 420 16.8 7.0 880 7.2 1244 21.7 10.9
13 33 1 4 280 36.3 6.6 429 4.2 1502 31.2 16.5
14 21 1 5 430 14.7 7.2 818 3.2 737 40.4 24.7
15* 23 0 6 280 18.6 8.2 779 5.9 937 21.3 15.3
Mean 26.0 27.1 3.3 2.6 9.9 355 19.9 7.3 6.8 594 528 4.9 7.7 915 1005 28.8 29.4 15.8 16.3
± SD 5.3 7.5 2.5 2.0 4.3 107 8.3 1.3 1.2 251 246 2.1 1.1 363 347 9.9 10.1 5.8 5.2
t-test P= 0.435 P= 0.384 n/a n/a n/a P= 0.990 P= 0.782 P= 0.084 P= 0.877 P= 0.814 P= 0.732

Note: Demographic and urodynamic data of the 22 male volunteers, 15 voiders (V) and 7 nonvoiders (NV).
IPSS, International Prostate Symptom Score; fMRI, functional magnetic resonance imaging; VAS, visual analog scale; Qmax, maximum flow rate, Qave, average flow rate.
*Subject 15 of the voiders group was excluded from the final fMRI analysis due to significant head motion during the experiment.
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There were no differences between voiders and nonvoiders
with respect to age, IPSS, desire to void before and after scan-
ning, bladder volume before and after scanning or maximum
and average flow rate (all P values > 0.05, unpaired t-tests)
(Table 2).

One of the voiders had to be excluded from fMRI data ana-
lysis due to significant head movement in the scanner. The fol-
lowing fMRI results were therefore generated from 14 voiders
and 7 nonvoiders.

Activation Patterns
During IMITATE, both groups of subjects showed activity (P <
0.01) in the middle frontal gyrus (MFG), temporal, and cerebel-
lar areas (Table 3). Activity in the inferior frontal gyrus (IFG)
was only detected in voiders while activity in the insular cortex
and supramarginal gyrus (SMG) was only detected in nonvoi-
ders. Statistical comparison of voiders with nonvoiders did not
yield significant differences.

During INITIATE-E, voiders demonstrated significant activity
(P < 0.01) in the IFG bilaterally, the right insula, and the PAG

(Table 3, Fig. 2). Nonvoiders demonstrated significant activity
(P < 0.01) only in the cerebellum (Table 3 and Fig. 2). Compari-
son of both groups did not yield any significant differences.

During INITIATE-L, voiders demonstrated significant BOLD-
signal increase (P < 0.001, FDR corrected) in OP 1 and OP 4
(Eickhoff et al. 2010) and MFG bilaterally, left cerebellum, left
thalamus (ventral posterolateral nucleus), left middle temporal
gyrus (MTG), left precentral gyrus (PreCG), right posterior cin-
gulate cortex (PCC), right precuneus, and the right pons
(Table 3 and Fig. 2). In contrast, nonvoiders had significant
BOLD-signal increases (P < 0.01) in the superior temporal
gyrus (STG) and inferior parietal lobe (IPL) bilaterally, left OP
4, left parahippocampal gyrus (PHG), left anterior midcingu-
late cortex (aMCC), right posterior midcingulate cortex
(pMCC), right PCC, right superior frontal gyrus (SFG), right
MTG, and right SMG (Table 3 and Fig. 2). Overall, the level of
significance for BOLD-signal increases during INITIATE-L in
voiders (P = 0.001) was higher than in nonvoiders (P = 0.01)
and also higher than during IMITATE, INITIATE-E, and
URINATE in voiders (Table 3 and Fig. 2).

Table 3
Locations of supraspinal peak activation during the different micturition-related conditions

Voiders (n= 14) Nonvoiders (n= 7)

Region BA HEM t-value MNI coordinates (mm) Region BA HEM t-value MNI coordinates (mm)

x y z x y z

IMITATE
P < 0.01 cluster-corrected, k > 106
IFG 46 LH 4.13 −48 45 3 CT n/a LH 3.98 −36 −75 −30
MFG 10 LH 4.66 −45 48 −9 MTG 21 RH 6.18 57 −51 3
STG (temporopolar) 38 LH 5.00 −54 12 −9 STG (temporopolar) 38 RH 4.61 57 15 −6
CT n/a LH 4.64 −36 −57 −36 SMG 40 RH 4.56 51 −48 30
CT n/a RH 4.39 42 −57 −33 MFG 47 RH 4.5 48 45 −9
STG (temporopolar) 38 RH 3.89 57 12 −6 Insula 13 RH 4.31 38 15 9

INITIATE-E
P < 0.01 cluster-corrected, k> 106
IFG 45 LH 3.00 −33 24 3 Cerebellum n/a LH 3.36 −18 −36 −24
brainstem/PAG n/a LH 2.90 −6 −15 −6
IFG 45 RH 3.39 63 18 18
Insula (anterior) 13 RH 3.31 36 18 9

INITIATE-L
P < 0.001 (FDR corrected), cluster-corrected, k > 106 P < 0.01 cluster-corrected, k > 106
PoCG (OP 1) 40 LH 6.67 −57 −27 18 PoCG (OP 4) 43 LH 4.85 −63 −12 18
CT n/a LH 5.15 −42 −51 −39 PHG 30 LH 3.34 −18 −51 0
Thalamus (VPL) n/a LH 4.77 −18 −18 6 aMCC (ROI 6) 24 LH 3.34 −6 9 27
MTG 37 LH 5.37 −51 −63 3 IPL 40 LH 4.43 −41 −36 48
MFG 9 LH 5.29 −30 30 36 STG 22 LH 4.59 −57 0 0
PreCG 6 LH 4.8 −57 6 14 pMCC (ROI 8) 6 RH 3.24 3 −12 51
MFG 47 RH 7.29 48 45 −6 STG (temporopolar) 38 RH 5.95 48 12 −18
PoCG (OP 4) 40 RH 7.18 63 −18 18 PCC (ROI 12) 30 RH 3.68 24 −60 6
PCC (ROI 10) 31 RH 5.51 12 −30 42 SFG 10 RH 5.54 36 54 24
Pons (PMC) n/a RH 5.48 6 −30 −24 SFG 9 RH 4.35 18 54 24
Precuneus 7 RH 4.59 15 −72 48 MTG 21 RH 4.48 63 −51 3

IPL 40 RH 5.01 63 −39 24
SMG 40 RH 4.59 54 −48 18

URINATE
P < 0.01 cluster-corrected, k > 106
CT n/a RH 3.47 30 −57 −45

STOP
P < 0.01 cluster-corrected, k > 106
ACC 32 LH 4.99 −12 42 6
Cerebellum n/a LH 3.57 −3 −42 −9
PAG n/a RH 3.57 3 −27 −15

Notes: The supraspinal foci of BOLD-signal increase during the different conditions compared with RESTwithin both groups, (voiders and nonvoiders). In voiders all 5 conditions (IMITATE, INITIATE-E,
INITIATE-L, URINATE, and STOP) were applicable, whereas in nonvoiders only 3 conditions (IMITATE, INITIATE-E, and INITIATE-L) were applicable.
The specifications relating to ROI (region of interest) determination in cingulate cortex areas is based on the study of Torta and Cauda (2011).
ACC, anterior cingulate cortex; aMCC, anterior midcingulate cortex; BA, Brodmann area; CT, cerebellar tonsil; HEM, hemisphere; IFG, inferior frontal gyrus; LH, left hemisphere; IPL, inferior parietal lobe; MFG,
middle frontal gyrus; MNI, Montreal Neurological Institute; MTG, middle temporal gyrus; OP, parietal operculum; PAG, periaqueductal gray; PCC, posterior cingulate cortex; PHG, parahippocampal gyrus; PMC,
pontine micturition center; pMCC, posterior midcingulate cortex; PoCG, postcentral gyrus; PreCG, precentral gyrus; RH, right hemisphere; SMG, supramarginal gyrus; STG, superior temporal gyrus; VPL,
ventral posterolateral nucleus.
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The contrast of voiders versus nonvoiders showed voider-
specific BOLD-signal increases in the right PCC and pMCC,
right OP 1 and OP 4, right PAG, left cerebellum, and pons
(Table 4 and Fig. 3). The contrast nonvoiders versus voiders
did not yield significant differences.

During URINATE, voiders demonstrated significant activity
(P < 0.01) only in the cerebellum (Table 3 and Fig. 2).

Interrupting micturition (STOP condition) in voiders de-
monstrated significant activation in the PAG, anterior cingulate
cortex (ACC), and cerebellum (Table 3 and Fig. 2).

BOLD-Signal Changes in the Pons
In voiders, BOLD signal response in the pons (6, −30, −24)
for each condition showed the strongest increase during
the INITIATE-L condition (Fig. 4a). BOLD responses during

IMITATE and URINATE were negative and around zero, re-
spectively (Fig. 4a).

Fitted BOLD-signal responses of individual voiders plotted
over the entire measurement demonstrated BOLD signal peaks
only during INITIATE-L, which correlated with the number of
successful micturitions (Fig. 4b,c). Nonvoiders generally did
not show modulated BOLD responses in the pons during
INITIATE-L.

Functional Connectivity Analysis
The findings of the FC analysis are summarized in Figure 5.
Voiders showed a strong positive coupling (red lines) between
almost all areas activated during INITIATE (except for the left
MFG) at a high statistical threshold (P < 0.05, FDR corrected,
Fig. 5A), including cortical (e.g., right MFG), and sub-cortical

Figure 2. Rendered brain displaying BOLD-signal peaks during different conditions (IMITATE, INITIATE-E, INITIATE-L, URINATE, and STOP) compared with REST in subjects who were
able (voiders) and those unable (nonvoiders) to void during scanning. ACC, anterior cingulate cortex; LH, left hemisphere; RH, right hemisphere; IFG, inferior frontal gyrus; PAG,
periaqueductal gray; PoCG, postcentral gyrus; OP, parietal operculum; aMCC, anterior midcingulate cortex; pMCC, posterior midcingulate cortex.
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(e.g., PMC) regions. In contrast, these areas were only moder-
ately strongly connected during URINATE (PCC—precuneus,
OP4, and MTG; OP1—OP4, MTG). The between-condition
contrast “INITIATE–URINATE” (P < 0.001, uncorrected) re-
vealed a stronger inter-regional coupling during the initiation
of micturition between the OP1/OP4 areas and the MFG, thal-
amus, and MTG (OP 1 only). The only coupling during urin-
ation that was stronger than during initiation (blue line) was
that between the left MFG and the cerebellar tonsil (CT).

Discussion

The results of this study have afforded several novel insights
into the control of micturition. Firstly, in voiders, supraspinal ac-
tivity, including in the pons, is most prominent just before mic-
turition and subsides once actual micturition has started.
Secondly, initiation of micturition in voiders induces significant
activity in the brainstem, insula, thalamus, PFC, OP, and
cingulate cortex. Thirdly, inter-regional coupling is significantly
stronger during initiation of micturition than during actual mic-
turition, especially between the OP, MFG, and thalamus.

In addition, we observed that nonvoiders demonstrate
reduced supraspinal activity in both the aforementioned cor-
tical network and in brainstem regions, that is, the pons and
PAG, compared with voiders.

The Supraspinal Cycle of Micturition and the
Bulbospinal Micturition Reflex
In accordance with our first hypothesis, we observed stronger
supraspinal activations during initiation than during actual
micturition. This finding can be explained by the increased
neuronal recruitment and cognitive effort necessary to initiate
micturition. Voluntary control of micturition including its initi-
ation usually requires 4 elements; 1) conscious bladder sensa-
tion, 2) assessment and integration of environmental,
emotional, and social aspects, that is, it is safe, appropriate,
and comfortable to micturate, 3) release of the bulbospinal
micturition reflex, and 4) adequate sensorimotor function to
relax the EUS and pelvic floor muscles (Holstege 2005; Fowler
et al. 2008; de Groat and Wickens 2013). In line with these
notions, the supraspinal activity we observed included struc-
tures involved in 1) interoception, that is, the right anterior
insula, PAG, ventral posterior thalamic nucleus (Craig 2002),
2) decision-making, social judgment, and emotional/motiv-
ational processing, that is, the IFG, MFG, and the cingulate
cortex (Rolls and Grabenhorst 2008; Torta and Cauda 2011),
3) execution of the bulbospinal micturition reflex, that is, the
pons (de Groat and Wickens 2013), and 4) sensorimotor
control, that is, the precentral gyrus, OP, cingulate cortex, and
cerebellum (Eickhoff et al. 2010; Torta and Cauda 2011; Manto
and Oulad Ben Taib 2013).

In contrast to initiation, micturition itself was associated
with little supraspinal activity, with significant activity only
present in the cerebellum. This observation is in keeping with
the reflex-like nature of the micturition process which, once re-
leased by supraspinal centers, continues at a spinal level
without requiring further supraspinal input. Brain-lesioning
and electrophysiological studies in cats have revealed that the
micturition is reflex-like mediated by a spinobulbospinal cir-
cuitry, the ascending limb of which projects from the sacral
spinal cord to the pons, which thereupon sends excitatory
signals via the descending limb back to the sacral spinal cord,
resulting in micturition (de Groat and Wickens 2013). In this
context, it is noteworthy that the localization of peak pontine
activation in voiders corresponds well to the dorsomedial
pontine activation described as the PMC in previous PET
studies of micturition (Table 5). This supports the hypothesis
that neurons in the dorsomedial pons of humans have a facili-
tatory function with respect to micturition similar to that de-
scribed in cats and other vertebrates (Blok and Holstege 1996,
1999).

Our results are, in many aspects, comparable to those of a
recent fMRI study investigating the brain switching circuits

Table 4
Differences in supraspinal peak activation between voiders and nonvoiders

Voiders versus nonvoiders

Region BA HEM t-value MNI coordinates (mm)

x y z

INITIATE-L
P < 0.05 cluster corrected, k > 515
Cerebellum (culmen) n/a LH 2.99 −3 −54 −9
Pons (PMC) n/a LH 3.13 −6 −27 −21
Pons (PMC) n/a 3.12 0 −27 −27
pMCC (ROI 8) 24 RH 4.25 18 −9 42
PCC (ROI 10) 31 RH 3.72 21 −36 36
PoCG (OP1) 2 RH 2.20 41 −21 30
PAG n/a RH 2.21 9 −26 −5
PoCG (OP 4) 3 RH 2.4 60 −15 21

Notes: A comparison of the supraspinal foci of BOLD-signal increase in voiders and nonvoiders.
During INITIATE-L, BOLD-signal increases were significantly higher at the indicated locations in
voiders compared with nonvoiders. The other conditions, IMITATE and INITIATE-E, did not reveal
significant differences between voiders and nonvoiders.
The specifications relating to ROI (region of interest) determination in cingulate cortex areas is
based on the study of Torta and Cauda (2011). BA, Brodmann area; HEM, hemisphere; LH, left
hemisphere; MNI, Montreal Neurological Institute; OP, parietal operculum; PAG, periaqueductal
gray; PCC, posterior cingulate cortex; PMC, pontine micturition center; pMCC, posterior
midcingulate cortex; PoCG, postcentral gyrus; RH, right hemisphere.

Figure 3. Rendered brain displaying BOLD-signal peaks of voiders versus nonvoiders. LH, left hemisphere; RH, right hemisphere; PoCG, postcentral gyrus; OP, parietal operculum;
PAG, periaqueductal gray.
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controlling reflex micturition in anesthetised rats (Tai et al.
2009). While urinary storage was associated with an inactive
PMC, switching to micturition when the bladder volume ap-
proached the reflex micturition threshold was associated with
enhanced PMC activity (Tai et al. 2009). In our study, signifi-
cant PMC activity in voiders was observed only a short time
prior to micturition onset. This suggests that the PMC plays an
essential role in the final step of the initiation process, instigat-
ing the switch from storage to actual micturition. In this experi-
ment, in cases in which the PMC could not be activated within
the given time frame, no micturition occurred (Fig. 4b,c).

In line with the current understanding of the neural control
of bladder contraction which is, once triggered by the PMC, ex-
clusively driven by parasympathetic input from S2–S4 and not
amenable to voluntary interruption, only a voluntarily induced
contraction of the EUS can interrupt micturition via reverse
spinal feedback to the detrusor (Blok 2002; de Groat and
Wickens 2013). Recent neuroimaging studies of repetitive
pelvic floor contractions (mimicking the interruption of mic-
turition), often showed evidence of supplementary motor area
(SMA, BA 6) activation (Zhang et al. 2005; Di Gangi Herms
et al. 2006; Seseke et al. 2006; Kuhtz-Buschbeck et al. 2007).
Neither SMA, nor other motor cortex activity, was present at
the threshold of P < 0.01 (cluster corrected, k > 106) in our
study, something probably attributable to differences in the
applied protocol. Several of these previous studies used proto-
cols with iterant blocks of repetitive contractions over several
seconds (15–32 s) (Zhang et al. 2005; Kuhtz-Buschbeck et al.
2007) or continuous contraction over 2–3 s, repeated 15–33
times (Di Gangi Herms et al. 2006; Seseke et al. 2006). In our
experiment, the STOP condition involved a single, short EUS

contraction, which was probably insufficient to elicit a signifi-
cant motor fMRI response, even when the STOP condition was
modeled with a duration of 18 s (STOP plus subsequent REST
condition; data not shown).

Nevertheless, during interruption of actual micturition we
observed activity in the cerebellum, another area related to
motor control (Manto and Oulad Ben Taib 2013). Although
previous studies have reported cerebellar activity in response
to different LUT conditions, its role in micturition control is
unclear. Demonstration of fiber connections from the LUT to
the cerebellum (Sakakibara et al. 2004) and its numerous
connections to many other parts of the central nervous system,
including areas involved in micturition control, lead to the hy-
pothesis that it serves as a modulatory center for various re-
sponses, for example, to a full bladder (Dietrichs and Haines
2002). Patients with cerebellar lesions frequently present with
abnormal LUT function, including not only EUS dyscoordina-
tion and delayed initiation of micturition but also urgency in-
continence and detrusor overactivity (Sakakibara et al. 2004;
Chou et al. 2013). Urodynamic studies in animals following
removal of the cerebellum reported both inhibitory and
facilitatory effects on micturition (Dietrichs and Haines 2002;
Sakakibara et al. 2004). Such a bidirectional modulatory func-
tion of the cerebellum on EUS coordination is supported by
the cerebellar activity observed shortly before micturition,
during actual micturition, and during interruption of mictur-
ition in voiders.

The PAG and ACC activity observed in voiders during the
STOP condition probably represents LUT sensory processing
in response to micturition interruption. Both areas have fre-
quently been implicated in LUT interoceptive processes during

Figure 4. BOLD-signal changes in the pons (6, −30, −24) of voiders during different micturition-related conditions, that is, IMITATE (gray line), INITIATE-E (dashed line), INITIATE-L
(black line), URINATE (dotted line) (a). Fitted BOLD responses in the pons (6, −30, −24) during INITIATE-L of a single subject who was able to micturate 15 times over the course of
the experiment (b). Fitted BOLD responses in the pons (6, −30, −24) during INITIATE-L of a single subject who was able to micturate 6 times in the course of the experiment (c).
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urinary storage and bladder filling (Fowler and Griffiths 2010).
However, interruption of micturition by EUS contraction is a
strong inhibitor of the micturition reflex at the spinal cord level
through increased pudendal afferent firing. In turn, such

pudendal stimulation affects supraspinal sensory processing,
manifested as decreased desire to void (Burgio et al. 1998;
Mehnert et al. 2008). This might explain the rather moderate
increase in PAG and ACC activity and the lack of significant ac-
tivity in other areas of LUT interoception such as the insula,
thalamus, and OP1.

Supraspinal Initiation of Micturition
Our findings are also supportive of our second hypothesis, in
that initiation of micturition involves several supraspinal areas
beyond the brainstem. In the healthy state, initiation of mictur-
ition requires a voluntary decision and subsequent neuronal
implementation. An area frequently associated with decision-
making and executive function is the PFC. Clinical observa-
tions (Ueki 1960; Andrew and Nathan 1964) in patients with
loss of voluntary micturition control due to forebrain lesions
indicated an important role for the PFC in the control of mic-
turition. Recent animal (Yamamoto et al. 2010; Nishijima et al.

Figure 5. Summary of the functional connectivity (FC) analysis for voiders. FC during INITIATE (=INITIATE-E + INITIATE-L, P< 0.05, FDR corrected) (a). FC during URINATE
(P<0.05, FDR corrected) (b). FC for the contrast “INITIATE–URINATE” (P< 0.001, uncorrected) (c). The red lines indicate that coupling between connected areas was significantly
stronger for the contrasts INITIATE versus REST, URINATE versus REST, and INITIATE versus URINATE. The blue line indicates a significantly stronger coupling between left MFG and
CT for the contrast URINATE versus INITIATE. CT, cerebellar tonsil; LH, left hemisphere; MFG, middle frontal gyrus; MTG, middle temporal gyrus; OP, parietal operculum; PCC,
posterior cingulate cortex; PMC, pontine micturition center; PoCG, postcentral gyrus; PreCG, precentral gyrus; RH, right hemisphere; VPL, ventral posterolateral nucleus.

Table 5
Activation foci in the pontine micturition center from the previous literature

Author Year Method MNI coordinates (mm)

X Y Z

Fukuyama et al. 1996 SPECT 9 −20 −25
Blok et al. 1997 PET 12 −46 −27
Blok et al. 1998 PET 18 −44 −32
Nour et al. 2000 PET 3 −38 −37
Our study 2013 fMRI 6 −30 −24

Notes: The coordinates of the activation foci of the pontine micturition center reported in human
neuroimaging studies during actual micturition. Coordinates originally given as Talairach coordinates
have been converted to MNI coordinates. SPECT, single photon emission computed tomography;
PET, positron emission tomography; fMRI, functional magnetic resonance imaging.
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2012) and PET studies in healthy humans (Blok et al. 1997,
1998; Nour et al. 2000) have also demonstrated significant PFC
involvement in micturition control. We observed bilateral IFG
activity during INITIATE-E and bilateral MFG activity during
INITIATE-L. In our study, the BOLD signal changes in the MFG
and IFG were in regions similar to those observed in prior PET
micturition studies (Fukuyama et al. 1996; Blok et al. 1997,
1998; Nour et al. 2000). However, it remains unclear whether
the PFC inhibits or excites the micturition process or indeed
has both functions. Clinical observations support the assump-
tion that the PFC has a predominantly inhibitory function, as
lesions in this region tend to lead to urinary urgency and urge
incontinence, possibly due to premature or disinhibited
release of the micturition reflex (Andrew and Nathan 1964;
Sakakibara et al. 1996, 1999). Animal studies suggest that there
are both excitatory and inhibitory micturition neurons distribu-
ted within the PFC (Yamamoto et al. 2010; Nishijima et al.
2012). This would be in line with the notion that activation of
the PFC is specifically relevant to deciding whether or not to
start micturition (Blok 2002; Kavia et al. 2005). The PFC is un-
likely, however, to be an isolated decision center—more likely it
is part of a network that not only processes sensory evidence to
compute a decision but also translates this evidence into an
action, that is, micturition (Heekeren et al. 2008). Parietal and
prefrontal areas in particular (activated in voiders), have been
described as important components in perceptual decision-
making (Heekeren et al. 2008; Kable and Glimcher 2009).

The frontoparietal areas activated in voiders during mictur-
ition initiation; the superior dorsal and inferior parietal lobes,
IFG, MFG, and anterior insula, correspond to several core com-
ponents of the proposed ventral and dorsal frontoparietal net-
works, with the former involved in interruption and resetting
of ongoing activity and the latter selecting and linking stimuli
and responses (Corbetta et al. 2008).

We observed parietal activity during INITIATE-L in voiders in
OP1 and OP4. OP1 is implicated in interoception and has dense
connections to both anterior parietal and thalamic areas, includ-
ing the VPL. It is also associated with the integrative aspects of
somatosensory processing (Eickhoff et al. 2010) that may
include processing of feedback information from the pelvic
floor muscles and EUS. OP4 has sensorimotor functions with
connections to frontal and primary sensorimotor areas that
support basic sensorimotor processing and action control func-
tions (Eickhoff et al. 2010) such as relaxation of the pelvic floor
musculature and the EUS in preparation to pass urine. Indeed,
we found significant FC of OP4 to the MFG, preCG, and CT,
reflecting the sensorimotor involvement of OP4 in micturition
initiation. Moreover, significantly stronger FC was observed
between MFG and OP1/OP4 during initiation, as compared
with micturition, suggesting that frontoparietal interactions are
important for switching from storage to micturition.

Another relevant structure for micturition control is the
cingulate cortex. It is considered important for not only the sen-
sorimotor, but also emotional and motivational, aspects of mictur-
ition (Fowler and Griffiths 2010; Torta and Cauda 2011). We
found significant PCC activity in voiders during INITIATE-L,
similar to the findings of a previous study in healthy women with
full bladders interpreted as motivational representation of bladder
fullness, to prompt emptying of the bladder before becoming too
full (Dasgupta et al. 2005). Our connectivity analysis demon-
strated significant interactions of the PCC with several areas
including OP1 and 4 during INITIATE-L, indicating that tight

coupling and information flow between the cingulate and somato-
sensory cortices may be necessary for initiating micturition.

Supraspinal Functional Connectivity
In line with our third hypothesis, we observed significantly
stronger inter-regional coupling during initiation of micturition
compared with actual micturition, mainly driven by the stron-
ger FC between OP, MFG, and thalamus during initiation of
micturition (Fig. 5c). This finding strongly indicates that the
frontoparietal network plays an important role in the neural or-
chestration of micturition initiation.

The only functional coupling that was significantly stronger
during micturition with respect to initiation was seen between
the left MFG and the cerebellum. Based on the aforementioned
functional properties of the MFG and cerebellum, that is, plan-
ning, decision-making and a modulatory function on EUS co-
ordination, this finding may reflect the planning of EUS
contraction required for ceasing micturition.

Differences Between Voiders and Nonvoiders
Nonvoiders, as compared with voiders, lack significant pontine,
that is, PMC, activity during INITIATE-E and INITIATE-L. In ac-
cordancewith the known function of the PMC, this finding is ex-
pected and probably causative of the unsuccessful attempt to
micturate. However, lacking PMC activity may well be only the
final element of an activation cascade not initiated in nonvoi-
ders. Nonvoiders demonstrated considerably lower BOLD-
signal changes than voiders during INITIATE-L and had signifi-
cantly less activity in the cingulate (PCC and pMCC) and parietal
(OP1 and 4) cortices—both areas implicated in micturition fa-
cilitation by the FC results in voiders. Interestingly, nonvoiders,
in contrast to voiders, demonstrated some aMCC activity. A very
similar aMCC area has been described in women with chronic
urinary retention due to EUS overactivity of unknown origin
(Dasgupta et al. 2005). This finding is suggestive of an inhibi-
tory effect of the aMCC on micturition-facilitating structures
such as the PMC and PAG. This interpretation is supported by
the findings of Dasgupta et al. (2005) who demonstrated the
abolition of aMCC activity following sacral neuromodulation re-
sulting in successful micturation, and observed that previously
absent midbrain activity became significant. Altered emotional
and/or motivational processing linked to the cingulate cortex
and related to the experimental setting may have affected the
ability of the nonvoiders in our study to micturate, since all sub-
jects were able to empty their bladder without difficulty outside
the scanner.

In Summary

In summary, our fMRI study demonstrates that activation of a
specific supraspinal network incorporating prefrontal, parietal,
and cingulate areas is required to successfully initiate mictur-
ition. Once micturition is triggered via the PMC, supraspinal
input subsides significantly and micturition proceeds in a
reflex-like manner. Unsuccessful attempts at micturition result
from the inefficient activation of the PAG and PMC during initi-
ation. This condition arises from inadequate antecedent activa-
tion of frontoparietal and cingulate cortical regions involved in
decision-making and implementation processes related to mic-
turition control.
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