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English abstract: Regulation of the integration of newly generated 
neurons in the adult hippocampus 
 

Marine Krzisch, Département des neurosciences fondamentales (DNF), UNIL 

 

Hippocampal adult neurogenesis results in the continuous formation of new neurons in the adult 

hippocampus, which participate to learning and memory. Manipulations increasing adult 

neurogenesis have a huge clinical potential in pathologies involving memory loss. 

Intringuingly, most of the newborn neurons die during their maturation. Thus, increasing 

newborn neuron survival during their maturation may be a powerful way to increase overall 

adult neurogenesis. The factors governing this neuronal death are yet poorly known.  

 

In my PhD project, we made the hypothesis that synaptogenesis and synaptic activity play a 

role in the survival of newborn hippocampal neurons and may therefore lead to increased 

memory peformances. To this aim, we studied three factors potentially involved in the 

regulation of the synaptic integration of adult-born neurons.  

 

First, we used propofol anesthesia to provoke a global increase in GABAergic activity of the 

network, and we evaluated the outcome on newborn neuron synaptic integration, morphological 

development and survival. Propofol anesthesia impaired the dendritic maturation and survival 

of adult-born neurons in an age-dependent manner. Next, we examined the development of 

astrocytic ensheathment on the synapses formed by newborn neurons, as we hypothesized that 

astrocytes are involved in their synaptic integration. Astrocytic processes ensheathed the 

synapses of newborn neurons very early in their development, and extracellular glutamate 

reuptake by their processes modulated synaptic transmission on these cells. Finally, we studied 

the cell-autonomous effects of the overexpression of synaptic adhesion molecules on the 

development, synaptic integration and survival of newborn neurons, and we found that 

manipulating of a single adhesion molecule was sufficient to modify synaptogenesis and/or 

synapse function, and to modify newborn neuron survival.  

 

Together, these results suggest that the activity of the neuronal network, the modulation of 

glutamate transport by astrocytes, and the synapse formation and activity of the neuron itself 

may regulate the survival of newborn neurons. Thus, the survival of newborn neurons may 

depend on their ability to communicate with the network. This knowledge is crucial for finding 

ways to increase neurogenesis in patients. More generally, understanding how the neurogenic 

niche works and which factors are important for the generation, maturation and survival of 

neurons is fundamental to be able to maybe, one day, replace neurons in any region of the brain 
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Abstract français : Mécanismes régulant l’intégration synaptique 

des neurones générés dans l’hippocampe adulte 
Marine Krzisch, Département des neurosciences fondamentales (DNF), UNIL 

 

De nouveaux neurones sont constamment produits dans l’hippocampe lors de la neurogenèse 

adulte, et ce processus intervient dans l’apprentissage et la mémoire. Les manipulations 

augmentant la neurogenèse adulte ont un potentiel énorme en termes d’applications 

thérapeutiques, dans le cadre de pathologies impliquant une perte de mémoire. Hors, la plupart 

des neurones générés dans l’hippocampe adulte meurent par apoptose durant leur maturation. 

Par conséquent, augmenter la survie des nouveaux neurones durant cette période pourrait être 

un moyen efficace d’augmenter la neurogenèse hippocampale adulte. Les facteurs contrôlant 

cette mort neuronale sont cependant peu connus.  

 

Dans le cadre de mon projet de thèse, nous avons fait l’hypothèse que la synaptogenèse et 

l’activité synaptique jouent un rôle dans la survie des nouveaux neurones hippocampaux, et 

nous avons étudié trois facteurs potentiellement impliqués dans l’intégration synaptique des 

nouveaux neurones. Dans un premier temps, nous avons utilisé l’anesthésie au propofol pour 

provoquer une augmentation globale de l’activité GABAergique du réseau neuronal, et nous 

avons évalué les conséquences de cette anesthésie sur l’intégration synaptique mais aussi sur le 

développement morphologique et la survie des nouveaux neurones. Nous avons observé une 

réduction de la maturation dendritique et la survie des nouveaux neurones après anesthésie au 

propofol, et cet effet dépendait de l’âge des neurones. Nous avons ensuite fait l’hypothèse que 

les astrocytes étaient impliqués dans l’intégration synaptique des nouveaux neurones, et nous 

avons examiné le développement des processus astrocytaires autour de leurs synapses. Notre 

travail a montré que les processus astrocytaires recouvrent les synapses formées par les 

nouveaux neurones très tôt dans leur développement, et que ces processus  modulent la 

transmission synaptique de ces neurones. Enfin, nous avons étudié les effets directs de la 

surexpression de molécules d’adhésion dans les nouveaux neurones sur leur développement, 

leur intégration synaptique et leur survie. Notre étude a montré que la manipulation d’une seule 

molécule d’adhésion est suffisante pour modifier la synaptogenèse et/ou la fonction synaptique 

des nouveaux neurones, et pour modifier leur survie.  

 

Ces résultats suggèrent que l’activité du réseau neuronal, la modulation du transport du 

glutamate par les astrocytes, et la formation et l’activité des synapses du neurone lui-même 

régulent la survie des nouveaux neurones. Par conséquent, la survie des nouveaux neurones 

pourrait dépendre de leur capacité à communiquer avec le réseau qui les entoure. Ces 

connaissances sont fondamentales pour trouver des moyens d’augmenter la neurogenèse adulte 

chez les patients. De manière plus globale, comprendre les modalités de fonctionnement de la 

niche neurogénique et découvrir quels sont les facteurs importants dans la genèse, maturation 

et survie des nouveaux neurones est crucial pour être un jour capable de remplacer des neurones 

dans d’autres régions du cerveau. 
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SSB: Single synapse bouton 

SSRI: Serotonin-selective reuptake inhibitor 

SynCAM1: Synaptic adhesion molecule 1 

VGAT: Vesicular GABA transporter 
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Introduction  

Adult stem cells are undifferentiated cells, found among differentiated cells in a tissue or organ. 

Adult stem cells can self-renew and can differentiate to yield some or all of the major 

specialized cell types of the tissue or organ. The primary roles of adult stem cells in a living 

organism are to maintain and repair the tissue in which they are present.  

Research on adult stem cells began in the 1950s, when researchers discovered that bone marrow 

contains two kinds of stem cells1. The first population is called hematopoietic stem cells and 

forms all the types of blood cells in the body. The second population, called bone marrow 

stromal stem cells was discovered few years later. These cells can generate bone, cartilage, fat, 

cells supporting the formation of blood, and fibrous connective tissue. 

However, it is only in the 1960s that scientists discovered stem cells in the adult brain, that 

ultimately become nerve cells 2,3. The existence of these dividing cells, called adult neural stem 

cells, was however dismissed for a very long time. In 1983, Nottebohm’s group discovered 

neuronal production in the higher vocal center of the adult female canary brain following 

systemic testosterone administration. This was later found to be involved in song learning in 

males 4. This discovery sparked renewed interest in the topic, but it was not until the 1990s that 

scientists agreed that the adult mammalian brain contains neural stem cells able to generate the 

brain’s three major cell types: neurons, astrocytes and oligodendrocytes. 

These adult neural stem cells continually proliferate, and the process by which they generate 

neurons is called adult neurogenesis. The neurons generated from adult neural stem cells are 

called adult-born neurons. This phenomenon occurs in a number of species, including humans 

and rodents 5-9. Intriguingly, adult neural stem cells only give rise to neurons in two canonical 

brain areas: the dentate gyrus of the hippocampus and the subventricular zone. Neuroblasts 

produced in the subventricular zone (SVZ) then migrate to the olfactory bulb. In adult humans, 

700 new neurons are added in each hippocampus per day 8, and in adult rodents, more than 

2500 neurons are formed per day in each hippocampus 10. In contrast, it seems that adult 

neurogenesis is extremely limited in the human olfactory bulb 11, whereas more than 30000 of 

neurons are generated and reach the olfactory bulb each day in adult mice 12.    

Recent work suggests that adult neurogenesis also takes place in another region, the median 

eminence of the hypothalamus, but this idea is still debated 13. Other studies show that, in 

contrary to rodents, adult-born neurons produced in the human SVZ do not migrate to the 
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olfactory bulb 11,14. Interestingly, a study published very recently suggests that in the human, 

these neurons may migrate to the striatum instead of the olfactory bulb, whereas this has not 

been described in rodents 15. Neurogenesis persists at rather high rates during the entire lifespan 

in humans, at least in the hippocampus, although it declines with age 8,16,17 (Figure 1).  

 

Figure 1: Neuronal Turnover Dynamics in the Human Hippocampus 8. The number of DCX-positive 

cells per mm2 in the human dentate gyrus 17 and the neuronal turnover rates computed from 14C 

concentration-based modeling show similar modest declines with age during adult ages. Straight lines 

depict linear regression curves, and the regression line for DCX cell counts was calculated for 

individuals aged 10 years and older.  

 

The discovery of adult neurogenesis in several regions of the brain raises a number of questions: 

What is the function of adult-born neurons? How are adult-born generated and how do they 

integrate into the circuitry? Could they be used as a way to replace damaged or dead cells in 

the brain? 

As the hippocampus is the most important region of neurogenesis in the human brain, and given 

potential therapeutic applications of adult hippocampal neurogenesis in neurodegenerative 

diseases such as Alzheimer’s disease, this work primarily focuses on the mechanisms of 

synaptic integration of new neurons in the adult hippocampus.  

Hippocampal adult neurogenesis 

Hippocampal structure and connectivity 
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The hippocampus is a brain structure located in the medial temporal lobe of the brain. It belongs 

to the limbic system and plays a very important role in learning and memory. The hippocampus 

is composed of the dentate gyrus (DG) and the Cornus Ammonis (CA), divided in three parts: 

CA1, CA2 and CA3 (Figure 2). Neurons from the entorhinal cortex (EC) project to the dentate 

gyrus via the perforant path, called this way because the axons of the entorhinal cortex perforate 

the subiculum to project on the granule cells of the dentate gyrus. The granule cells project on 

the pyramidal cells of the CA3 via their mossy fibers, and the neurons of the CA3 region project 

on the granule cells of the CA1 via Schaffer collaterals. The CA1 sends axons back to the 

entorhinal cortex. This perforant path-DG-CA3-CA1 pathway is also called trisynaptic circuit. 

The entorhinal cortex also directly projects on the CA1 and the CA3, and neurons of the CA3 

are recurrently connected (Figure 2).  

 

Figure 2: Hippocampal connectivity. The hippocampus is composed of the dentate gyrus (DG) and the 

Cornus Ammonis (CA), divided in three parts: CA1, CA2 and CA3. Neurons from the entorhinal cortex 

(EC) project to the DG via the performant path. The granule cells of the DG project to the pyramidal 

cells of the CA3 via the mossy fiber pathway, and the neurons of the CA3 project on the granule cells 

of the CA1 via Schaffer collaterals. Adapted from http://neuralcircuits.uwm.edu/neural-circuits-of-the-

hippocampus/. 

Location of hippocampal adult neurogenesis 

Perforant path 
Mossy fiber 

pathway 

Schaffer 

collaterals Recurrent  

connections 

http://neuralcircuits.uwm.edu/neural-circuits-of-the-hippocampus/
http://neuralcircuits.uwm.edu/neural-circuits-of-the-hippocampus/
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Hippocampal adult neurogenesis was discovered in 1965 by Altman and Das 3, and its existence 

was confirmed in humans by Eriksson and colleagues in 1998 16. In physiological conditions, 

only one type of neuron is produced in the hippocampus: the granule cell of the dentate gyrus 

(Figure 3). The dentate gyrus is formed by three layers. The closest layer to the cortical surface 

is the molecular layer, which contains mainly dendrites and axons. Below it lays the granule 

cell layer, containing the cell bodies of granule cells. These cell bodies are densely packed, 

giving a V-shaped structure to this layer. Below the granule cell layer lays the hilus, formed by 

the axons of granule cells and interneurons. The subgranular zone (SGZ) is located between the 

hilus and the granule cell layer (GCL), and it contains the cells bodies of adult neural stem cells, 

which give rise to adult-born neurons (Figure 3).  

 

Figure 3: Structure of the mouse dentate gyrus. The mouse DG is formed by the molecular 

layer, which contains mainly dendrites and axons from the performant path axons of the 

entorhinal cortex, the granule cells layer, containing the cell bodies of granule cells, and the 

hilus, formed by the axons of the granule cells and interneurons. The subgranular zone (SGZ) 

contains the cell bodies of adult neural stem cells. The dashed white line represents the 

inferior limit of the SGZ. This limit is usually defined as being 3 cell bodies (i.e. about 40 µm) 

away from the limit of the granule cell layer. 

Genesis, maturation and synaptic integration of hippocampal adult-born 

granule cells  

Molecular layer 

Hilus 
Granule cell layer 

SGZ 
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Genesis and maturation of hippocampal adult-born neurons 

In the mouse hippocampus, the formation and maturation of new neurons lasts for about 8 

weeks. Newborn granule cells originate from the division of adult neural stem cells. Adult 

neural stem cells, also called type 1 cells, are a subpopulation of the radial glia of the SGZ and 

they express the same markers as astrocytes: the intermediate filament protein Glial fibrillary 

acidic protein (GFAP), Glutamate aspartate transporter (GLAST), glutamine synthetase and the 

calcium-binding protein S100-beta. They also express Brain lipid binding protein (BLBP), the 

intermediate filament protein Nestin, and Sox2, a transcription factor that is essential for 

maintaining self-renewal, that are commonly used as markers of neural stem cells (Figure 4). 

Their cell body is located in the SGZ (Figure 3) and they extend a radial process through the 

granule cell layer, which branches into the inner portion of the molecular layer. They self-renew 

by dividing symmetrically, but an adult neural stem cell can also divide asymetrically and give 

rise to an early progenitor cell and a new adult neural stem cell.  

Early progenitor cells, also called type 2 cells, are divided in two groups: type 2a cells, that still 

express glial markers: GFAP, Nestin and Sox2, but lack the characteristic morphology of radial 

glia, and type 2b cells, that show the first indications of neuronal lineage choice and that express 

NeuroD1 and Prox1 (Figure 4). These neuronal precursors quickly proliferate, migrate and give 

rise to neuroblasts. It is important to note that this migration remains limited to the second third 

of the molecular layer. 

During this period of high proliferation, type 2b cells start expressing the microtubule-

associated protein doublecortin (DCX) and Polysialylated-neural cell adhesion molecule (PSA-

NCAM), which are markers of immature neurons, and stop expressing Nestin (Figure 4). This 

stage is called neuroblast, and corresponds to the type-3 cell. 

Neuroblasts then start expressing NeuN, which is a neuronal marker, as well as the calcium-

binding protein calretinin. During the second week after cell division, they start to extend their 

axonal processes to the hilus and their dendritic processes towards the molecular layer of the 

DG (Figure 4). At the end of the second week after birth, the first dendritic spines and mossy 

fiber terminals (MFT) of adult-born neurons are formed. 

During the third week, newborn neurons continue to extend their axons and dendrites and to 

form spines in the molecular layer and MFTs in the CA3, and they stop expressing DCX and 

PSA-NCAM. At 4 weeks, they are fully integrated in the synaptic network, they stop expressing 
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the calcium-binding protein calretinin and start expressing the calcium-binding protein 

calbindin (Figure 4). Then, although neuronal maturation is complete, dendritic spines and axon 

terminals continue to mature until 8 weeks after birth. At the end of this period, adult-born 

neurons are undistinguishable from neurons born during the embryonic development, 

functionally and morphologically 18,19. For more detailed information, please see the book 

chapter Adult neurogenesis in the adult hippocampus, from Adult neurogenesis, edited by F.H. 

gage, G. Kempermann and H. Song20. 
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Figure 4: Time course of maturation of mouse hippocampal adult-born neurons. a, Marker expression 

of neuronal precursor cells and newborn neurons. Nestin, Sox2, GFAP and BLBP are expressed by adult 

neural stem cells. During the early progenitor stage (type-2a and type-2b cells), the cells stop 

expressing these markers and start expressing DCX and PSA-NCAM. From 14 days to one month after 

cell birth, neuroblasts express the calcium-binding protein calretinin. From one month after cell birth, 

a 

b 
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newborn neurons express the calcium-binding calbindin. NeuN is expressed by newborn neurons from 

the early progenitor stage, but is expressed at high levels only from one month after cell birth. b, 

Schematic representation and confocal micrographs of the different stages of morphological 

maturation, from stem cell to mature neuron. Full morphological maturation of newborn neurons is 

reached at 4 weeks after cell birth, although the synapses made by these neurons continue to mature 

until 8 weeks after cell birth. The bottom panel indicates the approximate timeline of the major input 

and output of adult-born neurons. The first input adult-born neurons get is GABAergic. Glutamatergic 

synapses only appear at the beginning of the third week of maturation, and glutamatergic input and 

output develop concomitantly. The final step of maturation of adult-born neurons is the formation of 

perisomatic GABAergic synapses at the end of the fourth week. Adapted from Zhao et al. 2008 and 

Toni et al. 2010 21,22. 

 

It is of note that in non-human primates, the time course of neuronal maturation in the adult 

hippocampus is longer: in adult macaque monkeys, granule cell maturation takes more than 6 

months 23. This lengthened time course for granule cell maturation may be relevant for 

preservation of neural plasticity over their longer lifespan. Also, given the phylogenetic 

proximity between humans and non-human primates, this work suggests that the period of 

maturation of hippocampal adult-born neurons may be longer in humans too. 

During their maturation, adult-born neurons undergo a period of intense cell death: within the 

first four weeks of their development, 70% newborn granule cells die by apoptosis 24. This 

suggests the existence of a mechanism of selection: neurons relevant for the function of the 

network may survive, while other neurons may die. Interestingly, the different steps of the 

generation, maturation and survival of adult-born neurons are regulated separately: an increase 

in proliferation does not necessarily lead to an increase in overall adult neurogenesis, and adult-

born neuron survival can be increased without affecting proliferation. For example, exposure 

to an enriched environment promotes the survival of progenitor cells in C57BL6 mice without 

affecting their proliferation 25. Conversely, antidepressants increase hippocampal neural 

progenitor proliferation without affecting their survival in adult rats 26.  

Tools to study the generation and maturation of adult-born hippocampal neurons  

Different techniques are used to study adult-born hippocampal neurons and their maturation.  

[3H]thymidine is incorporated into the DNA of cells during DNA synthesis, allowing for the 

relatively specific labeling of cells in S phase of the cell cycle. In the original publications on 
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adult neurogenesis, tritiated thymidine ([3H]thymidine) was used to investigate the time of 

origin of hippocampal neurons. However, inherent limitations of the technique, such as the 

radioactivity of this substance and the time-consuming nature of autoradiography, coupled with 

the inability to sample more than the upper few micrometers of a tissue section, led to the 

development of other approaches.  

Nowadays, the thymidine analog bromodeoxyuridine (BrdU) is used for labeling cells in 

division. Similarly to tritiated thymidine, BrdU incorporates into the DNA of cells engaged in 

DNA synthesis. Immunohistochemistry using a monoclonal antibody directed against this 

molecule gives this method several inherent advantages over [3H]thymidine autoradiography, 

including the ability to amplify the signal and detect labeled cells throughout thick tissue 

sections. In addition, fluorescently labeled secondary antibodies allow colocalization of BrdU 

with other cell-type markers, such as NeuN, to identify adult-born neurons. This technique was 

pivotal in confirming the existence of neurogenesis in the human adult hippocampus 16. Animals 

usually undergo several injections of BrdU during a short period of time, to label a consequent 

number of cells, and progenitor cell proliferation can be evaluated by sacrifying the animals up 

to one day later, whereas granule cell survival is assessed by sacrifying the animals at later 

timepoints. Newborn neurons are detected by co-immunohistochemistry against BrdU and 

neuronal markers such as DCX, that labels immature neurons from 1 to 3 weeks after cell 

division, and NeuN, that labels mature neurons. However, this method does not give access to 

the morphology of newborn neurons, and does not allow the selective identification of neurons 

at specific developmental stages.  

To achieve this goal, transgenic reporter mouse lines have been used. Nestin expression marks 

stem and progenitor cells in the developing and adult central and peripheral nervous system. 

Regulatory elements of the nestin gene have been used by several groups to generate reporter 

transgenic lines that express GFP or other fluorescent proteins in neural stem and progenitor 

cells of the adult nervous system. These mouse lines are used to study the very first steps of 

adult neurogenesis, i.e. stem cell division and neuronal progenitor proliferation. Similarly, the 

promoter of the DCX gene has been used to generate reporter transgenic lines expressing 

fluorescent proteins in neural progenitor cells and immature neurons until three weeks of 

development. DCX is expressed in immature neurons from one to three weeks of development, 

thus these transgenic lines are useful to study intermediate steps of adult-born neuronal 

maturation. Transgenic mouse lines have several advantages: they are non-invasive, and they 

allow full morphological analysis of the cells. Furthermore, reporter mice can easily be crossed 
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with other genetically modified mice to examine the role of specific genes or mutations on adult 

neurogenesis. However, specificity of marker expression in newborn cells must be confirmed 

with other approaches, because some developmentally regulated proteins might be re-expressed 

in mature neurons that undergo functional or structural changes. Also, since transgenic labeling 

identifies cells based on their ability to express a stage-specific marker, transgenic reporter lines 

provide a snapshot of a population of cells at a particular time window of their development, 

but do not allow individual cells to be tracked over time. 

In contrast, retroviral labeling allows tracking newborn cells over time. Retroviruses are 

characterized by their ability to generate double-stranded DNA (dsRNA) from their RNA 

genome through reverse transcription. Upon entry into host cells, the retroviral RNA genome 

is transcribed into a dsDNA in the cytoplasm of the host cell. The newly synthesized dsDNA 

enters the nucleus, where it integrates into the chromosomal DNA of the host cell. 

Oncoretroviruses, such as Moloney murine leukemia virus (MoMuLV), enter the nucleus at the 

onset of mitosis, when the nuclear envelope breaks down, and as a consequence only transduce 

dividing cells. These viruses have been pseudotyped to infect dividing neuronal progenitor cells 

only, and then used to label these progenitors during neurogenesis. Because retrovirus-mediated 

cell labeling results in permanent labeling of dividing cells and their progeny, and because 

neural progenitors give rise to adult-born neurons, this technique has enabled the examination 

of the morphological development and the functional integration of newborn neurons in vivo.  

By injecting a retrovirus carrying the expression cassette of a fluorescent protein reporter gene 

in the dentate gyrus of adult mice, van Praag and colleagues were the first to show that one-

month-old adult-born dentate granule cells become functional and integrate into the 

hippocampal network 27. Next, using the same methodology and sacrifying the mice at different 

timepoints of newborn neuron maturation, Zhao and colleagues could follow the morphological 

and functional development of adult-born neurons 28.   

Also, retroviruses can be modified to alter the expression of a gene of interest, so that the 

function of the gene can be studied in the context of progenitor proliferation, differentiation, 

and neuronal maturation. For example, different forms of a protein of interest, including wild-

type, constitutively active, and dominant-negative forms can be overexpressed. Genes of 

interest can also be knocked down using RNAi. This strategy allows the cell-autonomous 

analysis of individual neurons because only small populations of cells are genetically modified 

and their surrounding environment is intact.  
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However, retrovirus-mediated cell labeling in the adult rodent brain requires stereotaxic surgery 

to deliver the virus to the area of interest. This approach is thus invasive, and the surgery itself 

can induce local inflammatory reactions, that may bias the results. Also, retroviral labeling 

labels a little number of cells, which may be a problem for detecting small size effects, or for 

studying larger-scale effects of the genetic modification of adult-born neurons, such as effects 

on animal behaviour. 

New transgenic approaches that exploit inducible and conditional expression systems, such as 

tamoxifen-dependent recombination (e.g, using Cre-ER, a fusion of Cre recombinase and the 

hormone-binding domain of the oestrogen receptor) or tetracyclin-dependent gene expression 

or recombination (e.g., using Tet-based activators) combine the advantages of both genetic and 

retroviral labeling, and provide more powerful methods to label cells and manipulate adult 

neurogenesis. For an exhaustive review of the topic, please see the book chapters Detection and 

phenotypic characterization of adult neurogenesis, Evolving methods for the labeling and 

mutation of postnatal neuronal precursor cells: a critical review, The use of reporter mouse 

lines to study adult neurogenesis, and Retrovirus-mediated cell labeling from Adult 

neurogenesis, edited by F.H. gage, G. Kempermann and H. Song20. 

Synaptogenesis and synaptic activity of hippocampal adult-born neurons 

Adult-born neurons become functional: using a retroviral vector carrying a GFP expression 

cassette to label adult-born hippocampal neurons, van Praag and colleagues showed that they 

display passive membrane properties, action potentials and functional synaptic inputs 27 (Figure 

5).   
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Figure 5: Newly generated neurons receive synaptic inputs and display neuronal electrophysiological 

properties 25. a, Electron micrograph of synaptic terminals (arrows) on the soma of an adult-born 

neuron (asterisk) in the granule cell layer. b, Membrane potential of an adult-born neuron in response 

to depolarizing currents recorded under current clamp at the resting potential. Numbers on the left 

indicate stimulus size. Scale: 25 mV, 50 ms. c, Action potential recorded in an adult-born neuron. d, 

Spontaneous postsynaptic currents recorded under voltage clamp. 

 

How are the synapses of adult-born neurons formed? 

While still dividing, early progenitors show tonic activation by immature GABAergic inputs 

from parvalbumin interneurons (Figure 4). During the first days of maturation, even if they 

lack synaptic inputs, newborn neurons express GABAA and glutamate (both α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid i.e. AMPA and N-methyl-D-aspartate i.e. 

NMDA) receptors, as well as voltage-dependent Na+ and K+ channels at low levels. As a 

consequence, depolarizing steps elicit immature action potentials (single spikes with small 

amplitude and long duration) in current clamp recordings.  Recently, Song and colleagues 

showed that early progenitors quickly form immature synapses with parvalbuminergic 

interneurons. Surprisingly, the role of these synapses seems related to progenitor survival, and 

not to synaptic transmission: activation of parvalbuminergic interneurons promotes the 

a c b 

d 
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survival of early hippocampal progenitors, whereas suppression of parvalbuminergic neuron 

activity decreases their survival 29. 

Through the second week of maturation, GABAergic terminals make the first functional 

synapses onto the dendrites of new neurons (Figure 4). Presynaptic GABA release now elicits 

depolarizing post-synaptic currents with slow kinetics 30-32. One important population of 

GABAergic neurons responsible for the initial contacts with slow kinetics are the neurogliaform 

interneurons, whose connectivity with adult-born neurons is initially sparse, and increases 

several fold as neurons mature 33.  

Until the second week of adult-born neuron development, GABA acts as an excitatory 

transmitter. GABA triggers conformational changes in GABAA receptors, which function as 

ligand-gated chloride (Cl-) channels, to facilitate the passive inflow or outflow of Cl- ions. The 

driving force of Cl- (ICl-) is proportional to the difference between the membrane potential 

(Vm) and the reversal potential of Cl- (ECl-), Vm-ECl-. When Vm>ECl-, Vm-ECl->0 so ICl- > 

0 and this leads to an influx of Cl- in the neuron. When Vm<ECl-, Vm-ECl-<0 so ICl-<0 and 

this leads to an efflux of Cl- from the neuron. The regulation of intracellular Cl- concentrations 

in neurons depends primarily on the balance between the activity of the Na+/K+/Cl- 

cotransporter NKCC1, that drives Cl- influx, and the Cl-/K+ cotransporter KCC2, that drives Cl- 

extrusion. Until two weeks of development, NKCC1 levels of expression in immature neurons 

are high and KCC2 levels of expression are low, leading to a high intracellular Cl- concentration, 

and, in turn, a high ECl-. As a consequence, in neurons before 2 weeks of maturation, Vm<ECl-

, so ICl-<0 and GABAA receptor activation by GABA triggers Cl- efflux, which leads to 

membrane depolarization. As neurons mature, KCC2 levels progressively increase, and ECl- 

value becomes inferior to Vm value. This produces a GABA shift: at the beginning of the third 

week of maturation, ICl->0, and GABAA receptor activation now induces Cl- influx and 

membrane hyperpolarization. GABA becomes hyperpolarizing, acting as an inhibitory 

neurotransmitter 34-36. 

The first glutamatergic synapses appear when the neurons enter the third week of maturation, 

at the same time as they form their first mossy fiber terminals 19,28 (Figure 4). The mechanism 

of onset of glutamatergic synaptogenesis has been discovered recently: Chancey and 

collaborators showed that immature granule cells bear NMDA receptors only-containing 

synapses. These synapses are silent, and can be converted into NMDA/AMPA active synapses 

after coincident GABA-mediated depolarization and NMDA receptor activation by presynaptic 
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glutamate release 37. This unsilencing leads to the production of functional glutamatergic 

synapses.  

Glutamatergic synaptogenesis onto developing neurons takes several weeks. As granule cells 

grow, dendrites grow and branch, and spine density increases 19,28,38 (Figure 4). This 

morphological development is accompanied by an increase in the amplitude of postsynaptic 

responses that can be visualized upon activation of the performant pathway in acute slices. The 

maximal size of excitatory postsynaptic responses is reached after six weeks of maturation 

18,39,40. The final step of maturation of adult-born neurons is the formation of perisomatic 

GABAergic synapses at the end of the fourth week 40 (Figure 4).  For more detailed information, 

please see Toni and Sultan 201121 and Toni and Schinder41, in press. 

Thus, during their development, adult-born neurons make excitatory synapses with perforant 

path afferences in the molecular layer on their dendritic spines, and their axon terminals synapse 

with pyramidal neurons of the CA3. This involves plasticity and remodeling of the pre-existing 

afferent and efferent neurons. This raises the following question: does the adult brain generate 

new pre- and post-synaptic partners to accommodate the new neurons, or do new neurons 

connect to pre-existing partners? 

 

The work of Nicolas Toni and colleagues supports the second hypothesis 19,21,42. Indeed, three-

dimensional reconstructions of mature dendritic spines based on serial section electron 

micrographs showed that they formed multiple synapse boutons, i.e. they contacted axon 

terminals already synapsing with one or several other neurons. At 4 weeks after cell division, 

two thirds of the dendritic spines of adult-born neurons contacted multiple-synapse boutons 

(MSB), whereas one third contacted a bouton devoid of other synapse. Also, the proportion of 

dendritic spines contacting a MSB decreased with adult-born neuron maturation, suggesting a 

transformation of MSBs into single-synapse boutons (SSB) over time. 

 

Interestingly, the development of MFTs from adult-born neurons follows a similar mechanism 

42. The immature axon terminals contact the dendritic shafts of CA3 pyramidal cells. When they 

mature, the MFTs contact either individual small thorny excrescences protruding from these 

dendrites, or share mature thorny excrescences with other granule neurons. It is only after two 

months of maturation that MFTs contact individual and mature thorny excrescences. This 

suggests that both the synaptic input and output of adult-born neurons have a time window 

during which synaptic partners are shared with pre-existing neurons, and that they compete with 
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those of pre-existing neurons and finally replace them at synapses (Figure 6). Interestingly, 

most of the adult-born hippocampal neurons die by apoptosis within the first four weeks of their 

maturation 24, and this cell death correlates with glutamatergic synaptogenesis. Together, these 

findings suggest that adult-born neurons may compete with other neurons for survival. 

 

 

Figure 6: Suggested sequence of events involved in the synaptic integration of adult‐born neurons 

into the glutamatergic network. Upper panel (input): A filopodia of an adult‐born neuron (green) is 

attracted by a pre‐existing synapse between an axonal bouton (blue) and another neuron (red). When 

the filopodia stabilizes and matures into a dendritic spine, a MSB is formed. Progressively, the spine 

from the adult‐born neuron increases in size and the spine from the other neuron decreases in size 

until it retracts, transforming the MSB in a SSB. Lower panel (output): Upon reaching the CA3 area, 

MFTs contact the dendrites of pyramidal cells. At about one month, MFTs contact thorny excrescences, 

some of which are shared with pre‐existing neurons and it is only after 2 months that individual 

contacts are made between pre‐ and post‐synaptic partners. From Toni et al. 2011 21 

 

Thus, hippocampal adult-born neurons become functional, and follow a specific time course of 

maturation and synaptogenesis. As the energetic cost of the production of new cells by an 
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organism is high, the fact that adult hippocampal neurogenesis is quantitatively important and 

has been evolutionary conserved suggests that it plays important physiological functions. Do 

hippocampal adult-born neurons have specific properties that give them a specific physiological 

role? 

 

Hippocampal adult neurogenesis is involved in learning and memory 

Long-term potentiation (LTP) is a long-lasting enhancement in signal transmission between 

two neurons that results from stimulating them synchronously. Compared to mature neurons, 

immature adult-born neurons display enhanced plasticity and a lower threshold for LTP 

induction: Schmidt-Hieber and colleagues showed that long-term potentiation could be induced 

more easily in young neurons than in mature neurons under identical conditions (Figure 7) 43. 

Indeed, when the same stimulation paradigm was applied to both cells, only immature neurons 

showed a significant increase in excitatory post-synaptic potential amplitude.  

 

Figure 7: Young granule cells have a lower threshold for LTP induction than mature granule cells. a, 

c, Biocytin-filled mature (a) and young (c) granule cell. b, d, average excitatory post-synaptic potential 
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amplitude for mature (b) and young (c) granule cells. The same paradigm of LTP induction (TBS1) was 

applied to both neurons. Adapted from Schmidt-Hieber et al. 2004 43 

 

However, adult-born neurons only show increased synaptic plasticity during a specific time 

window, i.e. between 3 and 7 weeks after neuronal birth44. Then, their level of plasticity 

becomes similar to that of mature granule cells. Different synaptic and network mechanisms 

seem to contribute to the enhancement in synaptic plasticity observed in immature neurons. The 

key mechanism is the switch in the NMDA receptor composition occurring during neuronal 

maturation. Immature neurons express NMDA receptor 2 subunit (NR2B)-containing NMDA 

receptors, which display high affinity for CaM kinase II (CaMKII) and are responsible for the 

lower threshold of LTP induction in adult-born neurons. As neurons mature, they switch 

towards NR2A-containing NMDA receptors that present lower affinity for CaMKII and, as a 

consequence, decreased levels of LTP expression. Interestingly, the enhanced plasticity 

observed for excitatory inputs has been recently demonstrated for the outputs of newborn 

neurons, at the level of mossy fibers45. 

 

This enhanced plasticity confers a particular role to adult-born neurons in learning and memory. 

In fact, adult neurogenesis seems to be particularly important for performance in complex 

learning tasks. As we will see with several examples below, the experimental reduction of adult 

neurogenesis in rodents results in learning and memory impairments, whereas increasing adult 

neurogenesis improves learning and memory.  

Volontary wheel running and environmental enrichment robustly increase hippocampal adult 

neurogenesis46,47. Using a combination of toys, food supplement, running-wheel and a wider 

cage, Kempermann and colleagues showed that the survival of newly-born granule cells in the 

dentate gyrus increased in adult C57BL6/J mice housed in an enriched environment versus in 

standard laboratory cages. Similarly, van Praag and colleagues showed that voluntary wheel 

running increases proliferation and overall adult neurogenesis in mice: running doubled the 

number of surviving newborn hippocampal neurons in adult mice, in amounts similar to 

enriched environment. 

Incidentally, environmental enrichment and running improve learning and memory. van Praag 

and colleagues tested LTP and spatial learning in the Morris water maze in groups of mice 

housed with a running wheel or under standard conditions. The Morris water navigation task 

consists in training the mice to find a hidden platform that allows them to escape from the water. 
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A shortening of the time to find the platform over trial indicates that the mice learnt the position 

of the platform. Following training, spatial memory is evaluated with a probe test, in which the 

platform is removed from the pool. The time the mouse spends searching the platform in the 

quadrant where it was located previously (target quadrant) is measured and compared to the 

time the mouse spends in the other quadrants. More than 25% of the total time spent in the 

target quadrant is indicative of memory retention. They found that voluntary wheel running 

enhanced dentate gyrus LTP, and improved learning and memory performances, as the time 

spent searching the platform during training decreased faster during training for running than 

non-running mice 48.  

Similarly, environmental enrichment enhances memory function in the water maze and other 

various learning tasks 49-51. Thus, voluntary running and environmental enrichment increase 

adult neurogenesis as well as learning and memory performances, suggesting a relationship 

between adult neurogenesis and cognition. 

After ablating adult neurogenesis by irradiation in mice, Clelland and colleagues found 

impairments in spatial discrimination in two behavioral assays: a spatial navigation radial arm 

maze task and a spatial, but non-navigable task in the mouse touch screen 52. The navigation 

radial arm maze task they used comprises 3 phases (Figure 8a). During the habituation phase, 

mice are placed in a radial maze in which all arms are unblocked and all wells at the end of the 

arms contain one food pellet each, so that they learn that the end of each arm contains a single 

food pellet. During the sample phase, mice are placed in the maze where all arms except the 

start arm and the sample arm are blocked. The mouse is allowed to visit the sample arm and to 

retrieve a food pellet reward. During the choice phase, arms in the start and sample 

(unrewarded) locations are open, as well as an arm in an additional correct location (rewarded). 

As the mouse previously learnt that each arm only contains a single food pellet, it is expected, 

if it makes the difference between the sample and the additional location, to go to the additional 

arm. Additional arms varied in distance from the sample arm by a spatial separation of 2, 3, or 

4 arms (Figure 8b). Mice with ablated hippocampal neurogenesis were selectively impaired at 

low separations (spatial separation of 2 arms), but not at high separations (separation of 3 or 4 

arms) (Figure 8d). 

In the mouse touch screen task, the mice are placed in front of a screen containing 5 squares, 

and are required to touch one of the two illuminated squares with their nose (the one on the left) 

to receive a reward, until a criterion (7 correct touches out of 8 consecutive touches) is reached 
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(Figure 8c). Mice were tested on either the low separation (illuminated squares separated by 

one dark square) or the high separation (illuminated squares separated by 3 dark squares). Mice 

with ablated neurogenesis exhibited impaired performance at low but not high separations 

during the acquisition of this task, consistent with a pattern separation deficit observed in the 

first experiment (Figure 8e). 

 

 

Figure 8: Mice with ablated neurogenesis show impaired pattern separation. a, Each trial in the radial 

maze consists in a sample phase and a choice phase. During the sample phase, the mouse retrieves a 

food pellet in the only accessible arm. During the choice phase, the mouse can go either the sample or 

to the newly unblocked arm, and is expected to go directly to the new arm. b, The difficulty of the 

pattern separation task in the radial maze is increased by increasing the distance between the sample 

and the new arm. c, In the mouse touch screen task, the mice has to touch the correct square with its 

nose, e.g., the left illuminated square of a screen containing two illuminated squares and 3 unlit 

squares. The experiment stops when a criterion of 7 of 8 consecutive correct touches is reached. Mice 

are tested on either the low separation (Separation 2) or the high separation pattern (Separation 4). 

Adapted from Clelland et al. 2009 52    

 

Therefore, mice with ablated hippocampal adult neurogenesis were impaired when stimuli were 

presented with little spatial separation, but not when stimuli were more widely separated in 

space and therefore easier to distinguish. This shows that adult-born neurons are involved in 

pattern separation function in the dentate gyrus of adult mice. 

 

b 

a c 

d e 
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The most compelling evidence for a role of adult neurogenesis in learning and memory was 

obtained recently by optogenetics. Indeed, combined optogenetics and viral approaches allow 

selective activation or inhibition of a population of adult-born neurons of the same age during 

a short period of time. Alonso and colleagues optogenetically activated adult-born neurons of 

the olfactory bulb and tested the mice with a task of odor recognition 53 (Figure 9). This task 

consisted to partially water-deprive mice, and to expose them to two different odors. When the 

mice were exposed to odor 1, they received water supply if they licked the water delivery tube 

in front of them. In contrary, odor 2 was not associated with water delivery. Therefore, if the 

mouse could discriminate odor 1 and odor 2, it was expected to lick the water tube only when 

it smelled odor 1. Mice were tested with different pairs of odors, some easy to discriminate (two 

different molecules) and some harder to discriminate (two enantiomers of the same molecule). 

Mice with optogenetical activation of adult-born neurons simultaneous to odor delivery learnt 

faster and remembered better than control mice, but only in the context of a difficult pair of 

odors. Therefore, learning and memory were improved by the optogenetical activation of adult-

born neurons, but only in the context of a difficult task of odor recognition.  

 

 

 

Figure 9: Optogenetical activation of adult-born neurons in the olfactory bulb accelerates learning 

and improves memory. a, Partially water-deprived mice were trained to lick the water delivery tube 

only when smelling odor 1. Odor 2 was not associated with water delivery. The percentage of correct 

responses (lickings of the water tube when odor 1 was presented and absence of licking when odor 2 

was presented) was recorded. Stimulation of adult-born neurons simultaneous to odor delivery did 

not change the learning rate of an easy odor discrimination task (b), whereas a difficult task was learnt 

quicker (c). d,  To assess olfactory memory, mice were tested 50 days after the odor discrimination 

Easy task Difficult task Easy Difficult 
a d c b 



  

31 
 

task. Adult-born neuron stimulation simultaneous to odor delivery improved memory, but only in the 

context of a difficult task. Adapted from Alonso et al. 2012 53 

 

In the hippocampus, Gu and colleagues used optogenetics to reversibly silence groups of 

different aged adult-born hippocampal neurons during behavioral tasks45. They generated a 

retrovirus carrying the expression cassette of an inhibitory optogene, Archaerhodopsin-3. This 

gene encodes a light-driven outward proton pump. The activation of this pump by light 

produces hyperpolarizing currents and leads to effective and reversible neuron silencing54. This 

retrovirus selectively infects neuronal precursor cells, which allows the selective expression of 

the gene in a subpopulation of adult-born neurons of the same age.  

The authors injected a retrovirus carrying the Arch-Green fluorescent protein (Arch-GFP) 

expression cassette in the dentate gyrus of adult mice to express Arch in hippocampal adult-

born neurons. With this approach, they could reversibly silence hippocampal adult-born 

neurons at different timepoints of their maturation. Then, they tested the mice with two different 

behavioral assays: contextual fear conditioning and spatial learning in Morris water maze.  

Silencing adult-born neurons during the time window during which they display increased 

synaptic plasticity, i.e. 4 weeks after cell division (4wpi), disrupted hippocampal memory 

retrieval in the two tests (Figure 10). Mice with inactivated adult-born neurons froze less than 

control mice in the context associated with the electrical shock (Figure 10a), and they spent an 

equal amount of time in the 4 quadrants of Morris water maze during the probe test (Figure 

10b). On the other hand, silencing the neurons before (2 weeks i.e. 2 wpi) or after this time 

window (8 weeks i.e. 8 wpi) had no effect on memory retrieval (Figure 10c-d). This suggests 

that adult-born neurons play a specific role in learning and memory during the time window 

during which they display increased synaptic plasticity. 
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Figure 10: Temporary silencing of 4 week-old neurons impairs memory retrieval. a, Temporary 

silencing of 4 week-old adult-born neurons impairs the expression of a fear conditioning memory: 

silencing of adult-born granule cells at 4 weeks post-injection (4 wpi) reduced freezing to the context 

compared with controls (No light). b, Optical inactivation of 4-week-old adult-born neurons (4 wpi) 

impairs spatial memory. During the probe test, control mice spent significantly more time searching in 

the target quadrant (NE) compared with the other quadrants, whereas the difference was not 

significant for mice with inactivated adult-born neurons. Behavioral roles of adult-born neurons are 

sensitive to their age: silencing adult-born neurons at 2 weeks (2 wpi)  (c) or 8 weeks (8 wpi) (d) after 

cell division did not affect memory retrieval. Adapted from Gu et al. 2012 45 

Thus, adult-born neurons become functional and play a role in crucial brain functions, such as 

learning and memory. New granule cells preferentially make synapses with partners already 

synapsing with other neurons. Consequently, adult neurogenesis may be a mechanism of brain 

repair in the context of disease, as newborn cells may then replace dying pre-existing granule 

cells. Could adult neurogenesis be a mechanism of brain repair, or could neurological diseases 

influence adult neurogenesis, which would then participate to the pathogenesis? 

Adult neurogenesis and pathologies  

Alteration of adult neurogenesis in neurodegenerative diseases 

Huntington’s disease (HD) is a neurodegenerative inherited disorder with progressive 

symptoms, including involuntary movements, cognitive deficits and various psychiatric 

disturbances. The most striking feature of HD is the progressive degeneration of projection 

neurons, leading to atrophy of the striatum, which is adjacent to the SVZ. Post-mortem analyses 

of brains from HD patients showed an increased SVZ thickness due to increased cell 

proliferation. This increased cell proliferation was mostly due to an increase in the proliferation 

of neural stem cells in the SVZ55,56. This alteration of neurogenesis was precisely described in 

4 wpi 
a c d b 
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a transgenic mouse model of HD, R6/2 mouse, which carries human HD mutations57. The 

ability of neural stem cells dissociated from the SVZ of this mouse to self-renew increased with 

the progression of the disease. In addition, a subpopulation of the neuroblasts from the SVZ 

migrated to the striatum, whereas the migration of neuroblasts toward the olfactory bulb was 

significantly reduced, suggesting that neuroblast migration was redirected from the olfactory 

bulb to the striatum. Unlike in the SVZ, cell proliferation and neurogenesis are decreased in the 

hippocampus of R6/2 mice58,59. The relationship between decreased hippocampal neurogenesis 

and the pathogenesis of HD has not been defined. However, enrichment of the mouse 

environment, known to increase hippocampal neurogenesis, delays the progression of the 

symptoms of the disease in the model mice 60.  

 

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases, and is 

characterized by the progressive alteration of cognitive functions and severe neurodegeneration. 

AD is characterized by the accumulation of β-amyloid peptide (Aβ) in senile plaques, and by 

neurofibrillary tangles, containing the hyperphosphorylated microtubule-associated protein tau. 

Aβ is derived from the amyloid precursor protein (APP). Animal models of AD produce 

conflicting data regarding adult neurogenesis. The majority of studies performed on transgenic 

animals expressing the mutant APP show a decrease in adult neurogenesis in the DG or both 

the DG and the SVZ 61. The analysis of post-mortem brain tissues from AD patients showed a 

decrease in neuronal progenitor cells in the SVZ 62 but an increase in progenitor cells in the 

DG63. These conflicting results could be explained by the fact that animal models of AD do not 

perfectly reflect the pathology: the animals usually carry a single mutation involved in familial 

AD, and they do not reproduce all the symptoms of the disease 64. Also, data from post-mortem 

human tissue are difficult to interpret because post-mortem material reflects the late stages of 

the disease. Importantly, drugs used to treat AD increase adult neurogenesis in animal models 

65. Overall, the complexity of AD pathogenesis prevents a clear understanding of the role and 

the direction of changes in adult neurogenesis, but it remains possible that a decrease in 

neurogenesis contributes to AD pathogenesis. For more detailed information, please see 

Kaneko and Sawamoto 200966.  

Alteration of adult neurogenesis in neuropsychiatric disorders 

Depression is the most common mental illness in the world and is characterized by pervasive 

and persistent low mood accompanied by low self-esteem and by a loss of interest or pleasure in 

http://en.wikipedia.org/wiki/Depression_(mood)
http://en.wikipedia.org/wiki/Self-esteem
http://en.wikipedia.org/wiki/Anhedonia
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normally enjoyable activities. Exposure to long-term psychosocial stress and repeated 

inescapable stress leads to depressive behaviors in animals and suppresses the production and/or 

survival of adult-born neurons in the DG67,68. Interestingly, the chronic administration of 

antidepressants such as tricyclic antidepressants and serotonin-selective reuptake inhibitors 

(SSRI) and mood stabilizers increases hippocampal neurogenesis26,69. Also, when hippocampal 

neurogenesis is disrupted by irradiation, SSRI do not attenuate depressive behavior anymore, 

indicating that neurogenesis is necessary for the mechanism of action of antidepressants70. 

 

Schizophrenia is a mental disorder affecting about 1% of the general population, and is 

characterized by a breakdown in thinking, hallucinations, delusions, lack of motivation and 

poor emotional responses. Post-mortem studies of the human brain reported a more than 60% 

reduction in the number of proliferating cells expressing ki67, a cell-cycle marker, in the 

hippocampal SGZ of patients with schizophrenia71. Moreover, a schizophrenia susceptibility 

gene, DISC1 (Disrupted in Schizophrenia 1) plays a role in the regulation of the maturation and 

the integration of newly generated granule cells72. Furthermore, disruption of hippocampal 

neurogenesis by irradiation in mice leads to the behavioral abnormalities seen in animal models 

of schizophrenia 73, and there is a higher prevalence of schizophrenia among people accidentally 

exposed to radiation 74,75. This suggests a link between hippocampal neurogenesis and 

schizophrenia, although the involvement of hippocampal neurogenesis in the 

neuropathophysiology of schizophrenia has not been established yet. For an exhaustive review 

of the topic, please see Kaneko and Sawamoto 200966. 

 

Thus, adult neurogenesis correlates with learning and memory, and is altered in a number of 

pathologies. It is therefore likely that increasing adult neurogenesis might be an interesting 

therapeutic approach to treat some of these diseases or to restore cognition loss, often associated 

with neurological diseases.  

 

An increase in adult neurogenesis can be attained by increasing the production of new neurons 

or increasing their survival. Survival is an interesting parameter to act on, because most of the 

adult-born hippocampal neurons (70%) die by apoptosis within the third week of their 

maturation (Figure 11). This suggests that these adult-born neurons undergo stringent selection, 

and that increasing their ability to pass this selection will increase their survival, and therefore 

increase adult neurogenesis. On which criteria is this selection made? 
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Role of synaptogenesis and synaptic activity in the integration and survival of 

hippocampal adult-born neurons 

The majority of adult-born neurons die before completing their maturation. Kempermann and 

colleagues injected adult mice with BrdU once a day for 12 consecutive days to label adult-

born hippocampal neurons. Mice were sacrified at different timepoints after the last injection 

of BrdU, and the number of BrdU-labeled cells was counted24. In another publication by Zhao 

et al., the formation of glutamatergic inputs on newborn neurons was analyzed by retroviral-

mediated labeling of adult-born neurons: dendritic spine density was counted at different 

timepoints after retroviral injection28. Interestingly, neuronal cell death correlates with the 

formation of the first glutamatergic inputs on dendritic spines and the first mature synapses with 

CA3 pyramidal cells (Figure 11). This suggests that synaptogenesis and survival are linked. 

 

Figure 11: The apoptosis of adult-born hippocampal neurons correlates with the formation of the 

first glutamatergic synapses. White line: Number of Bromodeoxyuridine (BrdU)-labeled cells at 

various time-points after BrdU injection. Black line: Excitatory synapse density. BrdU labels cells in 

division and was used to label adult-born neurons born at the time of injection. Numbers are absolute 

cell counts per animal. The decrease in BrdU+ cell numbers parallels the increase in excitatory synapse 

density of adult-born neurons, suggesting that the death of adult-born neurons and excitatory 

synaptogenesis are linked. Adapted from Kempermann et al. 2003 and Zhao et al. 200624,28. 

 

Secondly, newborn neuron survival seems to depend on neuronal activity: enriched 

environment increases the survival of newborn granule cells, leading to an overall increase in 

hippocampal neurogenesis in rodents 46. Learning can also impact adult neurogenesis: 

hippocampus-dependent learning tasks increase the survival of hippocampal adult-born 

neurons, whereas non hippocampus-dependent learning tasks have no effect on this process76,77. 
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Thus, activities increasing neuronal activity, such as learning, can increase the survival of 

hippocampal adult-born neurons.  

 

More compelling evidence for a link between neuronal activity and adult-born neuron survival 

was provided by studies using genetic modification of adult-born neurons. Tashiro and 

colleagues showed that a cell-specific knock-out of the NMDA receptor 1 (NR1) subunit of the 

NMDA receptor in adult-born neurons dramatically decreased newborn neuron survival during 

the third week after division (Figure 12) 78.  

 

    

Figure 12: The absence of functional NMDA receptor reduces the survival rate of adult-born neurons. 

Adult mice floxed for the NR1 subunit of NMDA receptor, i.e. in which NR1 gene is flanked by target 

sequences of Cre recombinase, were injected with a mix of two retrovirus, one carrying the expression 

cassette of Red fluorescent protein (RFP), and the other carrying the expression cassette of Cre 

recombinase fused to the Green fluorescent protein (GFP). As these retroviruses selectively infect 

neuronal precursor cells, this resulted in two subpopulations of adult-born neurons in the same mice, 

one expressing RFP, and the other one expressing Cre-GFP and thus knocked out for NR1. The survival 

rate of NR1 knockout GFP-positive neurons was reduced compared to control RFP-positive neurons. 

Adapted from Tashiro et al. 2006 78 

Also, Ge and colleagues showed that the experimental conversion of GABA-induced 

depolarization into hyper-polarization in newborn neurons before three weeks of maturation by 

knock-down of  NKCC1 induces marked defects in synapse formation and dendritic 

development in vivo 36 (Figure 13). Indeed, newborn neurons expressing a shRNA against 

NKCC1 showed decreased dendritic arborization and decreased dendritic length (Figure 13a). 

The formation of GABAergic and glutamatergic synapses was also altered (Figure 13c-f). Thus, 
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neurons in which GABA-induced depolarization was annihilated showed defects in synaptic 

integration and maturation. 
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Figure 13: GABA is essential for the proper synaptic maturation and integration of adult-born 

neurons. a, Quantification of total dendritic length and branch number of Nkcc1-shRNA-expressing 

and control newborn neurons at 14 dpi. b, Sholl analysis of the dendritic complexity of Nkcc1-shRNA-

expressing and control newborn neurons. c-d, Formation of GABAergic synaptic inputs by control and 

NKCC1-shRNA-expressing  neurons. Shown are the percentage of newborn neurons with detectable 

GABAergic post-synaptic currents (PSCs), mean amplitude of GABAergic PSCs (c), mean frequency and 

peak amplitude of GABAergic SSCs recorded at 28 dpi (d). Numbers associated with symbols refer to 

the number of cells examined. e–f, Formation of glutamatergic synaptic inputs by newborn neurons. 

Same as in (c–d), except that the recordings were carried out in the presence of bicuculline (10 μM). 

Blue lines indicate the addition of CNQX (50 μM). Scale bars: 10 pA and 40 ms. Adapted from Ge et al. 

2006 36 

a b 

c d 

e f 
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Last but not least, in the adult rat hippocampus, induction of LTP at medial perforant path-

granule cell synapses promotes survival of 1 to 2 week-old adult-born dentate granule cells 

(Figure 14) 79. The pseudotetanus (PT) protocol, that does not induce LTP, has no effect on 

adult-born neuron survival.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: LTP enhances survival of recently born granule cells. Average total number of BrdU-labeled 

cells in the dentate gyrus from control, and LTP or PT sides. LTP was induced 1 or 2 weeks after BrdU 

injections and rats were killed at the survival time of 4 weeks post-BrdU. Adapted from Bruel-

Jungerman et al. 2006 79 

 

Therefore, synaptic activity and excitatory as well as inhibitory synaptogenesis may be crucial 

for neuronal survival and  integration in the circuitry. Also, increasing synaptogenesis might 

increase the survival of hippocampal adult-born neurons and, as a consequence, increase 

learning and memory. 

 

 

 

 

Experimental part 

Most of the adult-born neurons die during their maturation. Acting on adult-born neuronal 

survival may thus be crucial to influence total neurogenesis and its impact on behavior or 
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disease. As synaptogenesis and synaptic activity are linked to adult-born neuron survival, 

increasing synaptogenesis in newborn neurons could increase adult neurogenesis and then 

increase learning performances.  

 

Which parameters could influence synaptic activity and synaptogenesis of adult-born neurons? 

 

We chose to study three important factors potentially acting on adult-born neuronal synaptic 

integration and survival. First, we studied the effect of a global increase of GABAergic activity 

of the network on the development and survival of hippocampal adult-born neurons. Secondly, 

we examined the development of astrocytic ensheathment on the synapses formed by adult-

born neurons and we studied the effect of inhibition of astrocytic glutamate reuptake on the 

synaptic activity of adult-born neurons, as we hypothesized that astrocytes may be involved in 

the synaptic integration of newborn neurons. Finally, we examined the role of synaptic adhesion 

molecules in newborn neurons and studied their cell-autonomous effects on the integration and 

survival of these neurons. 

 

As a consequence, my PhD project is articulated in three questions:  

- What is the outcome of a global decrease in synaptic activity on the maturation, 

survival and integration of adult-born hippocampal neurons? 

 

- Do astrocytic processes ensheath adult-born neurons synapses, and if so, what is 

the role of this ensheathment on the synaptic integration of adult-born neurons ? 

 

- What are the consequences of an increase in synaptogenesis on the survival and 

integration of adult-born neurons? 

 

Mechanisms involved in the synaptic integration of adult-born neurons potentially represent a 

very efficient way to stimulate adult neurogenesis in the context of neurodegenerative diseases 

or memory loss. Furthermore, virally-labelled cohorts of newborn neurons with simultaneous 

synaptogenesis occurring on large dendritic trees represent an ideal model to study the 

mechanisms of synaptogenesis in the adult brain, such as those occurring during LTP 

expression, that are normally scarce events.    
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Project 1: What is the outcome of a global decrease in synaptic 

activity on the maturation and integration of adult-born 

hippocampal neurons? 

Introduction 

The aim of this project is to examine the role of the network activity on the synaptic 

integration and survival of immature neurons.  

Anesthetics modulate GABAergic and glutamatergic transmission, and they decrease the brain 

excitation/inhibition balance. Anesthesia is therefore an efficient way to globally decrease 

synaptic activity. Moreover, some experimental work has shown that anesthetics can impair 

post-natal neurogenesis and induce cognitive impairment:  Zhu and colleagues showed in 2010 

that repeated isoflurane exposure of juvenile rats impaired object recognition performances, 

and that the deficits became more pronounced as the animals grew older 80 (Figure 15a-b). This 

memory deficit was accompanied by a persistent decrease in the neural stem cell pool and cell 

proliferation, leading to persistently reduced neurogenesis (Figure 15c). Older rats’ scores for 

the same behavioural tests were not affected, and their neurogenesis was only slightly affected 

by isoflurane exposure (Figure 15a-c).  

 

Figure 15: Repeated exposure to isoflurane impairs object recognition in young rats, and the deficits 

become more pronounced when they grow older. a, Experimental design for the young (post-natal 

c a 

b 
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day 14, P14) and older (P60) rats. The rats were exposed to isoflurane (isoflurane) or a mixture of 

oxygen and air (control) for 35 minutes daily for four successive days. Object recognition was tested 4 

weeks (P43 for young rats, P89 for old rats) or 10 weeks (P88 for young rats, P118 for older rats) after 

the last isoflurane exposure. b, Recognition memory index was significantly reduced 4 weeks after 

isoflurane exposure in P14 to P45 rats, but not P60 to P91 rats (left panel). The recognition memory 

index reduction was even more pronounced 10 weeks after isoflurane exposure in P14 to P90 rats, but 

not P60 to P120 (right panel). c, Isoflurane decreased adult neurogenesis in both the P14 to P45 and 

the P60 to P91 rats, but the decrease was more pronounced in P14 to P45 rats. Adapted from Zhu et 

al. 2010 80 

Moreover, prolonged exposure to anesthetics such as ketamine, propofol or isoflurane induces 

neuronal apoptosis and neurodegeneration in rodent and monkey developing brains. In ten day-

old mice, coadministration of ketamine with propofol or ketamine with thiopental or a high 

dose of propofol alone triggers neurodegeneration 81 (Figure 16a). Also, exposure of ten day-

old mice to a combination of anesthetic agents or ketamine alone resulted in functional deficits 

in adulthood: adult mice display disrupted learning in a radial arm maze behavioural test (Figure 

16b).  
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Figure 16: Prolonged exposure of mouse pups to anesthetics induces neurodegeneration and 

functional deficits in adulthood. a, Fluoro-Jade staining in olfactory bulb (upper panel) and stria 

terminalis (lower panel) of mouse pups treated with vehicle, 5 mg/kg thiopental (Thio L), 25 mg/kg 

thiopental (Thio H), 10 mg/kg propofol (Prop L), 60 mg/kg propofol (Prop H), 25 mg/kg ketamine (Ket), 

25 mg/kg ketamine plus 5 mg/kg thiopental (Thio L _ Ket) or 25 mg/kg ketamine plus 10 mg/kg propofol 

(Prop L _ Ket) on neonatal day 10 and killed 24 h later. Staining is expressed as a percentage of vehicle-

treated mouse pups. b, Radial arm maze acquisition performance of adult mice treated with the same 

anesthetics as in a, on neonatal day 10 and tested in the radial arm maze at 63 days of age. Number of 

errors (upper panel) and total time (seconds, lower panel) on 3 consecutive days of testing. A: 

significant difference versus vehicle; B: significant difference versus all monotherapy groups; C: 

significant difference versus Prop L, at 1% level of significance. Letters in uppercase and lowercase 

represent 1% and 5% levels of significance, respectively. Adapted from Fredriksson et al. 2007 81 

 

In PND5 rhesus monkeys, 24-hour exposure to ketamine induced neuronal cell death, whereas 

3-hour exposure has no effect 82. 24-hour exposure to ketamine has no effect on PND 35 

animals.  

a b 
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Therefore, anesthetics can impair brain development and subsequently affect learning 

performances and behavior in adulthood. However, the effects of anesthesia on the adult brain 

are less clear. As described in the previous chapters, adult-born neurons undergo intense 

development and their morphological and functional maturation depends on the GABAergic 

afferences they receive. Therefore, they may be particulary sensitive to anesthesia exposure.  

Propofol is an anesthetic commonly used in human surgery, and it exerts its effect primarily by 

potentiating GABAergic transmission. In this part of the project, we tested whether potentiating 

global GABAergic transmission during 6 hours with propofol anesthesia would affect neuronal 

development and survival in adult mice. 

Results 

The results of this project were published in the following article: 

Marine Krzisch, Sébastien Sultan, Julie Sandell, Kornél Demeter, Laszlo Vutskits, Nicolas Toni 

(2013) Propofol Anesthesia Impairs the Maturation and Survival of Adult-born 

Hippocampal Neurons, Anesthesiology 

 

We found in this article that adult-born mouse hippocampal neurons are vulnerable to propofol 

anesthesia, which reduced neuron survival and dendritic maturation in vivo. Propofol impaired 

the survival and maturation of adult-born neurons in an age-dependent manner. Anesthesia 

induced a significant decrease in the survival of neurons that were 17 days old at the time of 

anesthesia, but not of neurons that were 11 days old. Similarly, propofol anesthesia significantly 

reduced the dendritic maturation of neurons generated 17 days before anesthesia, without 

interfering with the maturation of neurons generated 11 days before anesthesia. These results 

reveal that propofol impairs the survival and maturation of adult-born hippocampal neurons in 

a developmental stage-dependent manner in mice. 

Contribution to the project 

I produced the virus used in this study. I performed retroviral labeling of adult-born neurons by 

injecting a retrovirus carrying GFP expression cassette in the dentate gyrus of adult C57BL6/J 

mice. Then, I anesthetized the mice, sacrified them, immunostained the slices, took confocal 

micrographs and performed morphological analyses (Figures 2 and 3 of the article). To study 

control neurons, DiI labeling and analysis of DiI labeling data were performed by Julie Sandell, 

whereas microinjections were performed by Kornél Demeter and data from the microinjections 

were analyzed by myself. I contributed to the writing of the article. 
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Project 2: Do astrocytic processes ensheath adult-born neurons 

synapses, and is this ensheathment functionally relevant?  

Introduction 

The aim of this project is to examine the role of cellular contacts between immature 

neurons and astrocytes in the synaptic integration of adult-born neurons.  

 

Astrocytes may have a fundamental importance during the development of adult-born neurons. 

Astrocytes extend processes that make contact with most neuronal synapses in the central 

nervous system (CNS) (Figure 17) 83,84.  

 

Figure 18: Astrocytic processes ensheath synapses in the central nervous system. A a, Three-

dimensional reconstruction of a single astroglial process (blue) interdigitating among many dendrites, 

four of which are reconstructed here (gold, yellow, red, and purple). Axonal boutons are not displayed. 

b, Mushroom spine apposed by astroglia (arrows). c, Thin dendritic spine apposed by astroglia 

(arrows). Scale bar in (c) is for (b) and (c). B, Astroglial processes at the axon-dendritic spine interface; 

astro, astroglial process (blue); psd, postsynaptic density (red); sp, dendritic spine head (yellow); ax, 

axonal bouton (green). Adapted from Witcher et al. 2007 83 

 

These processes have a crucial role in synapse function and plasticity 84. Furthermore, astrocytic 

processes reuptake glutamate from the synaptic cleft, and this is crucial for synaptic function, 

but also for neuronal survival. Rothstein and collaborators used antisense oligonucleotides to 

chronically inhibit the synthesis of astroglial glutamate transporters in adult rats. The loss of 

A 

B 
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astroglial glutamate transporters GLT-1 or GLAST in rat resulted in elevated extracellular 

glutamate levels and neurodegeneration characteristic of excitotoxicity. Thus, glial glutamate 

transporters are essential for maintaining low extracellular glutamate and preventing chronic 

glutamate neurotoxicity 85.  

 

Astrocytes also play a crucial role in synapse formation and maturation during embryonic 

development. Synaptogenesis and astrocytogenesis occur simultaneously 86,87, and astrocytes 

express cell membrane-bound and soluble factors enabling synaptic maturation and stability.  

 

In 2001, Ullian and colleagues showed that in the absence of glial cells, the number of synapses 

formed by retinal ganglion neurons in culture decreased by sevenfold and that the few synapses 

that did form were functionally immature: the size of the postsynaptic response of neurons 

without glia was decreased by three folds (Figure 19) 88. Thus, glia increases synapse number 

and efficacy. 

 

 

 

Figure 19: Astrocytes increase the number of synapses per neuron. a, The number of synapses formed 

by retinal ganglion neurons in culture increased sevenfold in the presence of glia. Synapses were 

detected by electron microscopy. b, Current densities of retinal ganglion cells cultured in the absence 

or presence of glia. Adapted from Ullian et al. 2001 88 

 

In 2005, Christopherson and colleagues confirmed that astrocytes promote excitatory 

synaptogenesis and synapse maturation in vivo:  they showed that immature but not mature 

astrocytes expressed thrombospondins-1 and -2 and that these proteins promoted 

synaptogenesis in vitro but also in vivo: TSP1/2 double knock-out mice cerebral cortex 

displayed decreased synapse number (Figure 20) 89. 

a b 
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Figure 20: The cerebral cortex of TSP1/2 double knockout mice displays decreased synapse number 

compared to control. a, Quantification of colocalization of pre- and postsynaptic markers in brain 

sections from wild-type and TSP1/2 P21 double knockout brains. b, Wild-type and TSP1/2 double null 

P21 cortex immunolabeled for presynaptic Bassoon (BSN) and postsynaptic SAP102. Fewer synaptic 

puncta containing both pre- and postsynaptic markers are present in TSP1/2 double knockout brains 

compared to wild-type. Scale bar is 6 µm. Adapted from Christopherson et al. 2005 89 

 

Therefore, astrocytes may play a very important role in the synaptogenesis of adult-born 

neurons, and thus in their integration and survival. However, shortly after birth, gliogenesis is 

reduced 90, and the role of astrocytes in synaptogenesis occuring in the adult brain is not clear 

83. Notably, is unknown whether astrocytes interact with synapses formed by adult-born neurons 

and participate to their function. 

 

a 

b 



  

49 
 

Astrocytes remain plastic throughout adulthood 83,91-93. In particular, Haber and colleagues 

showed that astrocytes can rapidly extend and retract their processes to engage and disengage 

from motile dendritic spines 94. Furthermore, astrocytic motility is, on average, even higher than 

its dendritic spine counterparts (Figure 21).  

 

Figure 21: Astrocytic processes undergo rapid structural modifications, typically coordinated with 

structural modifications of dendritic spines. a, Three-dimensional reconstructions of astrocytic 

processes over a 10 min period. b, Volume measurements of retracting (red circles, corresponding to 

the red process in a) and extending (blue squares, corresponding to the blue process in b) processes 

plotted over time. Scale bars: a, 10 µm; b, 4 µm. c, Approximately 50% of astrocytic process–spine pairs 

show coordinated changes in size over time, 27% are not coordinated, and 23% show opposite 

changes. d, Astrocytic processes have significantly higher motility indices than spines.  

 

d 
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Our hypothesis is that astrocytic perisynaptic processes participate to the establishment and 

plasticity of synapses formed by adult-born neurons. However, although astrocytes remain 

plastic throughout adulhood, the extensive synaptogenesis occurring during the maturation of 

adult-born neurons may not be accompanied by the simultaneous generation of astrocytic 

processes from pre-existing astrocytes. Therefore, as a first step, we studied the development 

of astroglial perisynaptic processes on the dendritic spines of neurons born in the adult 

hippocampus and the role of astrocytic glutamate transporters in their synaptic transmission. 

 

Results 

The results of this project were published in the following article: 

 

Marine Krzisch, Silvio G. Temprana, Lucas A. Mongiat, Jan Armida, Valentin Schmutz, Mari 

A. Virtanen, Jacqueline Kocher-Braissant, Rudolf Kraftsik, Laszlo Vutskits, Karl-Klaus 

Conzelmann, Matteo Bergami, Fred H. Gage, Alejandro F. Schinder, Nicolas Toni (2014) Pre-

existing astrocytes form functional perisynaptic processes on neurons generated in the 

adult hippocampus, Brain structure and function 

 

We found that the afferent and efferent synapses of newborn neurons are ensheathed by 

astrocytic processes, irrespective of the age of the neurons or the size of their synapses. The 

quantification of gliogenesis and the distribution of astrocytic processes on synapses formed by 

adult-born neurons suggest that the majority of these processes are recruited from pre-existing 

astrocytes. Furthermore, the inhibition of astrocytic glutamate re-uptake significantly reduced 

postsynaptic currents and increased paired-pulse facilitation in adult-born neurons, suggesting 

that perisynaptic processes modulate synaptic transmission on these cells. Finally, some 

processes were found intercalated between newly formed dendritic spines and potential 

presynaptic partners, suggesting that they may also play a structural role in the connectivity of 

new spines. Together, these results indicate that pre-existing astrocytes remodel their processes 

to ensheathe synapses of adult-born neurons and participate to the functional and structural 

integration of these cells into the hippocampal network. 
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Contribution to the project 

I analyzed all the electron microscopy data produced by Nicolas Toni, and I made the three-

dimensional reconstructions presented in Figure 2, 3 and 5 (except 3F, which was made by 

Nicolas Toni). I maintained transgenic mouse lines (Aldh1l1-GFP and GFAP-GFP mice). I 

produced a virus carrying the RFP expression cassette and injected it in the dentate gyrus of 

adult mice expressing GFP under the astrocytic promoter Aldh1l1 or GFAP (Aldh1l1-GFP and 

GFAP-GFP mice) to label newborn neurons. I sacrified mice at different timepoints and 

performed confocal imaging and analyses of the dendritic spines and of the arborization of 

adult-born neurons. I supervised a master student, Jan Armida, who took confocal micrographs 

of newborn neuron mossy fiber terminals in hippocampal slices from the mice I injected and 

analyzed them (Figure 2 and Supplementary figure 3). Figure 3A and 3B were obtained using 

hippocampal slices from mice injected with BrdU by Sebastien Sultan. I supervised a summer 

student, Valentin Schmutz, who produced the data displayed in Supplementary figure 2. I 

contributed to the writing of the article. 
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Project 3: What are the consequences of an increase in 

synaptogenesis on the survival and integration of adult-born 

neurons? 

Introduction 

The aim of this project is to enhance synaptogenesis on new, immature neurons, in a cell-

autonomous manner and to examine the effect of this manipulation on the integration and 

survival of newborn neurons.  

 

Neuronal cell adhesion molecules are proteins located on the neuronal cell surface, involved in 

binding with other cells or with the extracellular matrix. Previous work showed that some of 

these molecules are able to increase synaptogenesis and synapse maturation in neurons from 

the CNS. Synaptic Adhesion Molecule 1 (SynCAM1) is a transmembrane protein located pre- 

and post-synaptically, and forms homo- or heterodimers with the other members of the 

SynCAM1 family 95,96. Biederer and colleagues were the first to show that SynCAM1 is 

involved in excitatory synaptogenesis 95. SynCAM1 expressed in non-neuronal cells induced 

co-cultured hippocampal neurons to form presynaptic specializations onto these cells. 

Moreover, SynCAM1 overexpression increased the frequency of spontaneous miniature 

synaptic currents in co-cultured hippocampal neurons. As miniature frequency depends 

primarily on the number of synapses and their release probability, the authors concluded that 

SynCAM1 induced synapse formation in these neurons.  

 

SynCAM1 contains an NH2-terminal signal peptide, three extracellular Ig domains, a single 

transmembrane region, and a short COOH-terminal cytoplasmic tail. SynCAM1 mutant 

SynCAMΔIg, that lacks Ig domains and is unable to undergo extracellular homophilic 

interactions, had no effect on synapse formation. Thus, SynCAM1 extracellular interactions are 

necessary for its function. As a consequence, the isolated cytoplasmic tail of SynCAM1 

competes with SynCAM1 for binding to its cytosolic substrates, and as it cannot induce synapse 

formation, is expected to act as a dominant negative fragment by inhibiting endogenous 

SynCAM1. As expected, the isolated cytoplasmic tail of SynCAM1 acted as a dominant 

negative form of SynCAM1 and inhibited synapse assembly 95.  
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In 2010, the Robbins and colleagues showed that overexpression of SynCAM1 in excitatory 

neurons of the forebrain of adult mice specifically increased excitatory synapse number (Figure 

22) in the CA1 region of the hippocampus. SynCAM1 knock-out mice showed the opposite 

phenotype: excitatory synapse density was decreased in the CA1, whereas inhibitory synapse 

density was unchanged (Figure 22) 97. 

Figure 22: SynCAM1 Regulates Excitatory Synapse Number. a, SynCAM1 overexpression increases 

excitatory synapse density (left panel). Inhibitory synapse density is unaffected by overexpression 

(right panel). b, Lack of SynCAM1 reduces excitatory synapse number (left panel) but does not affect 

inhibitory synapse density (right panel). Adapted from Robbins et al 2010 97 

 

Similarly, Sara and colleagues showed that SynCAM1 overexpression increased the frequency 

of spontaneous miniature synaptic currents in cultured hippocampal neurons 98. However, 

morphological analysis of neurons overexpressing SynCAM1  showed the opposite of the 

predictions from electrophysiological analyses: SynCAM1 overexpression did not increase 

excitatory synapse number. Therefore, in this study, SynCAM1 specifically increased 

excitatory synapse function, without having an effect on synapse number. This contradicts 

Biederer’s in vivo findings, and may be explained by the overexpression of SynCAM1 in all 

the excitatory neurons of the forebrain in Biederer’s study. We indeed cannot exclude that the 

increase in excitatory synapse density in CA1 neurons observed by Biederer in vivo is due to a 

non-cell- autonomous effect of SynCAM1 overexpression on CA1 neurons. 

 

a b 
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Neuroligin-1 (NL1) and Neuroligin-2 (NL2) are two members of a family of neuronal cell 

adhesion molecules, the neuroligins. Neuroligins are transmembrane proteins located post-

synaptically, and act as ligands for neurexins, located presynaptically. Numerous studies have 

shown that neuroligins mediates the formation and maintenance of synapses between neurons 

in vitro and in vivo 99-103. Initial evidence came from Scheiffele and colleagues, who 

demonstrated that both NL1 and NL2 expressed in a non-neuronal cell could induce co-cultured 

neurons to form presynaptic specializations onto the non-neuronal cell. This finding was 

amplified by complementary experiments showing that β-neurexin, that binds NL1 and NL2, 

can induce post-synaptic specializations in co-cultured neurons when expressed in a non-

neuronal cell. Finally, direct overexpression of NL1 in transfected neurons caused an increase 

in synapse numbers on these neurons 104,105 (Figure 23). 

 

Figure 23: NL1 promotes synaptic differentiation. Hippocampal neurons were co-transfected with 

expression vectors for NL-1 and GFP or with GFP vectors only. Quantification of post-synaptic protein 

recruitment, dendritic spine induction, and synapse formation in cells expressing NL-1 and EGFP-

transfected control cells. Adapted from Chih et al. 2005 105 

 

Interestingly, NL1 and NL2 are alternatively spliced in their ectodomains, i.e. domains that 

extend into the extracellular space. Inclusion of short alternative exons at two sites, named 

inserts A and B, generates four NL1 variants: NL1(-) (without insert), NL1A (with insert A), 

NL1B (with insert B), and NL1AB (with both inserts). NL1B and NL1AB are abundant, 

whereas only a small pool of NL1(-) and NL1A is present in hippocampal neurons 106 (Figure 

24). NL2 undergoes a similar splicing event at the first site, generating two splice variants: 

NL2A and NL2(-). NL2A is the most abundant variant in hippocampal neurons. This alternative 

splicing controls the synapse-inducing activity of NL1 and NL2 toward glutamatergic and 
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GABAergic axons. In cultured hippocampal neurons, NL1(-) and NL1A significantly increase 

the density of both glutamatergic and GABAergic synapses, whereas NL1B and NL1AB greatly 

increase excitatory glutamatergic synapse density but have little effect on GABAergic synapses. 

In contrast, NL2A and NL2(-) show similar induction of glutamatergic and GABAergic 

synapses when overexpressed 106. 

 

Figure 24: Alternative splicing controls the synapse-inducing activity of NL1 and NL2 toward 

glutamatergic and GABAergic axons. a, RT-PCR analysis with primers flanking the splice insertion sites 

A and B on RNA isolated from rat hippocampus, cortex, and cerebellum. β-actin was amplified as a 

positive control. Products containing (+) and lacking (−) the splice insertion A or B are marked. 

Molecular weight markers are in base pairs. b, Density of presynaptic vGlut1- and VGAT-positive 

puncta on cells overexpressing EGFP, NL1(−), NL1A, NL1B, or NL1AB. c,  Density of presynaptic vGlut1- 

and VGAT-positive puncta on cells overexpressing EGFP, NL2(−), NL2B, NL2A, or NL2AB. Adapted from 

Chih et al. 2006 106 

 

We focused our study on four molecules: SynCAM1, SynCAM1 cytosolic tail (dominant 

negative form of SynCAM1), NL1B and NL2A. SynCAM1, NL1B and NL2A were expected 

to act on different aspects of synaptogenesis: SynCAM1 would specifically increase excitatory 

synapse number and/or strength, NL1B would specifically increase excitatory synapse 

formation, and NL2A would increase both excitatory and inhibitory synapse formation. We 

hypothesized that synaptogenesis and neuronal survival are linked because studies suggest that 

neuronal survival is activity-dependent, and because synaptogenesis and neuronal death occur 

during the same time window. We expected these different adhesion molecules to modify 

different aspects of newborn neuron synaptogenesis. This way, we could distinguish what 

aspects of synaptogenesis were important for neuronal survival and maturation. We 

a b 
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overexpressed these molecules in hippocampal adult-born neurons using a retroviral approach 

and studied their effect on the maturation and survival of these neurons. 

 

Material and methods 

Experimental animals  

The animals used in this study were 7- to 9-week-old C57BL6/J male mice. Mice were group-

housed in standard cages under light- (12 h light/dark cycle) and temperature-controlled (22°C) 

conditions. The maximal number of mice per cage was 5. Food and water were available ad 

libitum. Every effort was made to minimize the number of animals used and their suffering. 

Experimental protocols were approved by the Swiss animal experimentation authorities 

(Service de la consommation et des affaires vétérinaires, Epalinges, Switzerland, Authorization 

number: 2302).   

Virus-mediated gene overexpression 

The overexpression of the genes of interest was first tested in vitro: we infected Human 

embryonic kidney (HEK) 293T cells with 104 pfu (1µL) of retrovirus carrying the expression 

cassette of the gene (cag-SynCAM1-IRES-RFP, cag-NL1B-IRES-RFP, cag-GFP-2A-NL2A or 

cag-GFP-2A-dnSynCAM1), and performed immunohistochemistry against the adhesion 

molecule (SynCAM1, NL1B, NL2A, or the cytoplasmic tail of SynCAM1, i.e. dnSynCAM1). 

Expression of the proteins was effective and localized at the cell plasma membrane (SynCAM1, 

NL1B, NL2A) or in the cytosol (SynCAM1 cytosolic tail), showing proper addressing of the 

proteins after synthesis (Figure 25). 
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Figure 25: Retroviral infection leads to the expression of the gene of interest and to the proper 

addressing of the proteins of interest in HEK 293T cells. Left panel: pictures of a single confocal plan 

from cell cultures infected with the viruses carrying the different constructs. Right panel: plot profiles 

of the different channels. Expression of the gene was effective. As expected, SynCAM1, NL1B and NL2A 

proteins were localized at the cell plasma membrane, whereas dnSynCAM1 was cytosolic. Yellow 

dashed lines show the lines used to build the plot profile.  

To selectively overexpress the genes of interest in adult-born hippocampal neurons, we used 

Moloney murine leukemia viruses (MoMuLV). These retroviruses selectively infect neuronal 

precursor cells, which give rise to adult-born neurons. Moreover, their half-life is limited to few 

hours, allowing the overexpression of the genes of interest in a subpopulation of neurons all 

generated at the same time. Thus, at 14 days post-injection, all labeled neurons are 14 day-old. 

Also, as the retroviral infection of newborn neurons is sparse, non-cell autonomous effects of 

the genes of interest can be excluded, because genetically modified granule cells are located far 

from each other. 
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Final virus titers were 107-108 particles forming unit/milliliter (pfu/mL) and 2 μL of the mix 

were injected into each of the two dentate gyri at the following coordinates from the Bregma: 

anteroposterior -2 mm, lateral +1.75 or -1.75 mm and dorsoventral -2.25 mm. After every 

injection and throughout the experiment, animals were regularly monitored for their physical 

recovery in agreement with, and under the approval of the European and German guidelines on 

animal experimentation.  

To overexpress SynCAM1 or NL1B in adult-born hippocampal neurons, the dentate gyrus of 

adult mice was injected with a mixture of two MoMuLV, one carrying cag-GFP expression 

cassette and the other one carrying either cag-SynCAM1 IRES-RFP or cag-NL1B-IRES-RFP 

expression cassette. To overexpress NL2A or dnSynCAM1 in adult-born hippocampal neurons, 

the same approach was used with a mix of a virus carrying cag-RFP expression cassette and a 

virus carrying cag-GFP-2A-NL2A or cag-GFP-2A-dnSynCAM1. Mice were sacrified at 

different timepoints after injection, corresponding to different developmental stages of newborn 

neurons: 14 days post-injection (dpi), 21 dpi or 28 dpi. Neurons were imaged with confocal 

microscopy, and changes their maturation, synaptic integration and survival were analyzed 

(Figure 26).  

Figure 26: Experimental design. To overexpress the gene of interest in adult-born hippocampal 

neurons, the dentate gyrus of adult mice was injected with a mixture of two retroviruses, one carrying 

the expression cassette of RFP or GFP (control retrovirus), and one carrying the expression cassette of 

the gene of interest and of RFP or GFP (cag-gene of interest-IRES-XFP or cag-XFP-2A-gene of interest). 

This gave rise to two subpopulations of adult-born granule cells, one expressing the gene of interest 

and the reporter gene, labeled in one color (either green or red, depending on the constructs), and the 

other one only expressing the reporter gene and labeled in another color (red or green). Mice were 

sacrified at different timepoints after injection to study the morphological development of newborn 
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neurons (lower panel). The picture on the left represents the hippocampus of an adult mouse injected 

with a mixture of two retroviruses, one carrying the expression cassette of RFP, and the other one 

carrying the expression cassette of GFP-2A-NL2A. 

Brain slice preparation and immunohistochemistry  

At 14, 21, and 28 days after viral injection, mice were perfused with 4% paraformaldehyde in 

phosphate buffered saline, their brains were cryoprotected and sectioned at a thickness of 60 

μm. RFP signal was amplified using rabbit anti-RFP IgG (600-401-379 Rockland 

Immunochemicals, Gilbertsville, Pennsylvania, USA; diluted 1:1000 in phosphate buffer saline 

containing Normal serum at 3% and Triton at 0.25%) and Hylite 594 goat anti-rabbit IgG 

secondary antibody (61056-1-H594 Anawa trading SA, Wangen, Switzerland;1:500). GFP 

signal was amplified using Chicken anti-GFP IgG (GFP-1020 Aves Labs, Tigard, Oregon, 

USA; 1:1000) and Dylight 488 goat anti-chicken IgY (603-141-126 Anawa Trading SA; 1:500). 

Vesicular GABA Transporter (VGAT) was detected using mouse anti-VGAT IgG (131011 

Synaptic Sytems GmbH, Goettingen, Germany; 1:1000) and Hylite 594 goat anti-mouse IgG 

secondary antibody (61057-05-H594 Anawa trading SA; 1:500). GABAA receptors were 

detected using rabbit anti-GABAA receptor IgG (AGA-001 Alomone Labs, Jerusalem, Israel; 

1:500) and donkey Dylight 649 anti-rabbit IgG secondary antibody (611-743-127 Anawa 

trading SA; 1:500).  

In HEK 293T cells cultures infected with MoMuLVs, SynCAM1 was detected using chicken 

anti-SynCAM IgG (CM004-3 MBL International, Woburn, MA, USA; 1:1000) and Dylight 

488 goat anti-chicken IgY (603-141-126 Anawa Trading SA; 1:500). dnSynCAM1 was 

detected using rabbit anti-SynCAM IgG (S 4945, Sigma-Aldrich Chemie GmbH, Buchs, 

Switzerland; 1:5000) and Cy3 goat anti-rabbit IgG secondary antibody (111-165-144, Jackson 

ImmunoResearch Laboratories, Westgrove, PA, USA;1:500). NL1B was detected using goat 

anti-Neuroligin-1 IgG (ANR-036; Alomone labs; 1:25) and donkey Alexa 555 anti-goat IgG 

secondary antibody (A21432 Invitrogen, Lucerne, Switzerland; 1:250). NL2A was detected 

using rabbit anti-Neuroligin-2 IgG (sc-50394 Santa Cruz biotechnologies; 1:100) and goat 

Hylite 594 anti-rabbit IgG secondary antibody (61056-1-H594 Anawa trading SA; 1:500). 4,6 

Diamidino-2-phenylindole (DAPI) was used to reveal nuclei.   
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Confocal microscopy and image analyses  

Hippocampal sections were imaged using a Zeiss LSM 710 confocal microscope (Carl Zeiss, 

Feldbach, Switzerland). Global views of neurons were imaged with a 40x oil lens and a z- step 

of 2 µm, and dendrites or mossy fiber terminals were imaged with a 63x oil lens and a z-step 

of 0.38 µm. To assess GABAergic synapse density, dendrites were imaged with a 40x oil lens 

and a z-step of 0.45 µm. To measure differences in axonal length between dnSynCAM1-

expressing and control neurons, the beginning and the end of the CA3 area were imaged using 

a 40x oil lens and a z-step of 2 µm. All analyses were performed using Fiji software (freely 

available at http://fiji.sc/).  

Dendritic spine density was measured as the number of spines divided by the length of the 

dendritic segment. Dendritic spine density and diameter were measured on maximal intensity 

projections. GABAergic synapses were defined as appositions of vesicular GABA transporter 

(VGAT)-positive and GABAA receptor (GABAAR)-positive puncta after 

immunohistochemistry against VGAT and GABAAR. GABAergic synapse density was 

analyzed on z-stacks and measured as the number of GABAergic synapses divided by the length 

of the dendritic segment.  

The maturation of mossy fiber terminals (MFT) was evaluated following four criteria: area, 

perimeter, number of extensions and circularity. Circularity was defined as 4 x pi x area / 

(perimeter)2. During MFT maturation, their area, perimeter and number of extensions increase, 

whereas their circularity decreases 42,107. The area and perimeter of mossy fiber terminals were 

measured on maximal intensity projections by tracing the contour of the MFT, excluding the 

satellites and filopodia. The number of extensions of the MFT was defined as the number of 

filopodia or satellites starting at the core of the MFT. Branching of satellites was not included 

in the counting (Figure 32b).  

To measure differences in axonal length between dnSynCAM1-expressing and control neurons, 

we counted the number of mossy fiber terminals in two areas of the same size: one at the 

beginning of the CA3 region, and the other one at the end of the CA3 region. We then calculated 

the ratio between the number of overexpressing mossy fiber terminals and the number of control 

mossy fiber terminals. If overexpressing axons reached more often the end of the CA3 region, 

the ratio was expected to increase between the beginning and the end of the CA3. Inversely, if 

overexpressing axons reached less often the end of the CA3 region, we expected the ratio to 
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decrease. If there was no difference between control and overexpressing axons, the ratio was 

expected to remain constant. 

Sholl analysis was performed on maximal intensity projections. The space between each radius 

was set up at 10% of the length of the neuron, to normalize the analysis regarding the length of 

the neuron (Figure 27).  

 

Figure 27: Sholl analysis. The dendritic arborization of adult-born neurons was measured using Sholl 

analysis. The arborization of newborn neurons was divided in radiuses, and the total dendritic length 

was calculated between each radius. The space between each radius was defined as 10% of the 

maximal length of the neuron, in order to normalize the data regarding the size of the neurons. 

Maximal dendritic extension and migration were measured on maximal intensity projections. 

Maximal dendritic extension was defined as the ratio between the length from the cell body of 

the neuron to the tip of its longest dendrite and the distance from the cell body to the end of the 

molecular layer of the dentate gyrus (Figure 28) 108. Neuronal migration was measured as the 

ratio between the length from the beginning of the granule cell layer and the beginning of the 

cell body of the neuron and the thickness of the granule cell layer (Figure 28).  

Radius= 100 %  

Radius= 40 %  

Radius= 90 %  

Radius= 30 %  

Radius= 20 %  
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Figure 28: Measurements of the maximal dendritic extension and migration of newborn neurons. 

The maximal dendritic extension was defined as a/b*100. The migration was calculated as d/D. GCL: 

Granule cell layer; ML: Molecular layer 

Adult-born neuron survival was assessed by injecting 8 mice with the same mixture of 

retroviruses, and sacrifying 4 mice at 14 dpi and 4 mice at 28 dpi. For each mouse, the total 

number of overexpressing and control neurons were counted, and the ratio between the total 

number of overexpressing neurons and the total number of control neurons was calculated at 

the two timepoints. If overexpressing adult-born neurons displayed increased survival 

compared to controls, the ratio was expected to increase between 14 and 28 dpi. Inversely, if 

overexpressing neurons survived less than controls, the ratio would decrease between these two 

timepoints. Finally, if survival was not influenced by the gene overexpression, the ratio would 

not change (Figure 29). 
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Figure 29: Assessment of the differences of survival between control and overexpressing neurons 

between 14 and 28 dpi. All mice were injected with the same mixture of retroviruses at Day 0 (0 dpi). 

Half of the mice were sacrified at 14 dpi, and the other half was sacrified at 28 dpi. For each mouse, 

the total number of overexpressing and control neurons were counted, and the ratio between the total 

number of overexpressing neurons and the total number of control neurons was calculated. If the 

survival of overexpressing adult-born neurons was increased, the ratio was expected to increase 

between 14 and 28 dpi (upper panel). If survival did not change, the ratio was expected to remain 



  

64 
 

constant between the two timepoints (middle panel). Finally, if survival was decreased, the ratio was 

expected to decrease between the two timepoints (lower panel).  

Statistical analyses  

Hypothesis testing was two-tailed. All analyses were performed using GraphPad Prism 6 

(Graphpad Software, Inc., La Jolla, California, USA). First, Shapiro-Wilk tests were performed 

on each group of data to test for distribution normality. When the distribution was not normal, 

the non-parametric Mann-Whitney test was applied. When the distribution was normal, the 

equality of variances of the groups was tested and the adequate unpaired t-test was used. Data 

are presented as mean ± SEM. For Sholl analyses, the total dendritic length of control and 

overexpressing neurons was calculated and used for statistical analyses. 

Results 

To overexpress adhesion molecules in mouse adult-born hippocampal neurons, we injected the 

dentate gyrus of adult mice with a mixture of two retrovirus, one carrying a fluorescent protein 

reporter expression cassette ( cag-XFP, control cassette), and the other one carrying the 

expression cassette of the gene of interest and another fluorescent protein reporter (cag-XFP-

2A-gene of interest, cassette of overexpression). Mice were sacrified at different timepoints 

after injection, and the migration, maturation, integration and survival of adult-born neurons 

were evaluated using confocal microscopy (Figure 26). 

dnSynCAM1 expression decreases glutamatergic synapse and mossy fiber 

terminal maturation, and alters the survival of newborn neurons 

To investigate whether SynCAM1 was involved in the regulation of synaptogenesis on adult-

born neurons, we first expressed the dominant negative form of SynCAM1 (dnSynCAM1) in 

adult-born neurons, and we studied their synaptic integration and survival. As SynCAM1 

constitutive knock-out decreases dendritic spine density in hippocampal CA1 neurons 97, we 

first measured the dendritic spine density of adult-born neurons.  

The proximal and second thirds of the molecular layer are innervated differently: the proximal 

third receives hilar and commissural afferences, whereas the second third receives input from 

the entorhinal cortex. Therefore, the proximal and second third of the molecular layer were 

analyzed separately. Surprisingly, at 21 and 28 days post-injection (dpi), dnSynCAM1 

expression did not affect dendritic spine density (Figure 30). As dendritic spines usually receive 
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glutamatergic input, the density of dendritic spines reflects glutamatergic synapse density. 

Thus, dnSynCAM1 expression had no effect on glutamatergic synapse formation on adult-born 

neurons. 

 

Figure 30: Effect of dnSynCAM1 expression or SynCAM1 overexpression on the dendritic spine 

density of adult-born hippocampal neurons. a, Dendritic spine density of newborn neurons in the 

proximal third of the molecular layer. b, Dendritic spine density of newborn neurons in the middle 

third of the molecular layer. Neither dnSynCAM1 expression nor SynCAM1 overexpression affected 

dendritic spine density in adult-born hippocampal neurons at 21 and 28 dpi. nanimals=4, nneurons=40 per 

group 

Sara et al. showed that SynCAM1 increased synapse efficacy in cultured hippocampal neurons 

98. Furthermore, synapse efficacy increases during synapse maturation, and dendritic spine 

morphology is related to excitatory synapse maturation in adult-born neurons: the proportion 

of mushroom spines increases with the age of the newborn neurons, whereas the proportion of 

filopodia decreases 19. Thus, we then analyzed dendritic spine morphology of adult-born 

neurons (Figure 31). We classified the dendritic spines according to their maximal diameter 

into three categories: filopodia: diameter strictly inferior to 0.30 µm; thin spine: diameter 

comprised between 0.30 µm and 0.55 µm; mushroom spine : diameter strictly superior to 0.55 

µm. At 28 dpi, dnSynCAM1 overexpression decreased the proportion of mushroom spines and 

increased the proportion of filopodia. No effect could be detected at 21 dpi. Our data suggest 

that dnSynCAM1 expression decreased excitatory synapse maturation at 28 dpi.  
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Figure 31: Effects of SynCAM1 expression or dnSynCAM1 expression on dendritic spine morphology 

at 28 dpi. Dendritic spines were classified into three categories according to their diameter: filopodia, 

thin, and mushroom spines. An example of each category is represented on the picture on the right. a, 

Percentage of filopodia, thin and mushroom spines of control and SynCAM1-overexpressing (upper 

panel) or dnSynCAM1-expressing neurons (lower panel)  at 21 dpi. b, Percentage of filopodia, thin and 

mushroom spines of control and SynCAM1-overexpressing (upper panel) or dnSynCAM1-expressing 

neurons (lower panel)  at 28 dpi. dnSynCAM1 expression increased the proportion of filopodia and 

decreased the proportion of mushroom spines, whereas SynCAM1 overexpression decreased the 

proportion of filopodia and thin spines and increased the proportion of mushroom spines in adult-born 

hippocampal neurons. nanimals=4, nneurons=40 per group. **: p<0.01; ***: p<0.0001 

As dendritic spine maturation was altered by dnSynCAM1 expression, and as SynCAM1 is 

located pre- and post-synaptically, we hypothesized that mossy fiber terminal maturation may 

also be affected by dnSynCAM1 expression in newborn granule cells. We studied different 

parameters of maturation of the axon terminals of adult-born neurons, i.e. the mossy fiber 

terminals (Figure 32). During mossy fiber terminal maturation, their area, perimeter and the 

number of extensions increase, whereas their circularity decreases. At 28 dpi, dnSynCAM1 

expression decreased mossy fiber terminal area, perimeter, and number of extensions, and 

increased circularity.  
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Figure 32: Effects of SynCAM1 expression or dnSynCAM1 expression on mossy fiber terminal (MFT) 

maturation at 28 dpi. a, Circularity, area, perimeter and number of extensions of MFT of control, 

SynCAM1-overexpressing and dnSynCAM1-expressing neurons. dnSynCAM1 expression decreased the 

area, perimeter, number of extensions, and increased the circularity of MFTs, whereas SynCAM1 

overexpression increased the area and perimeter of MFTs. b, Measurement of the different 

parameters of MFT maturation. c, Representative confocal images of control and SynCAM1-

overexpressing (left panel) or dnSynCAM1-expressing MFTs (right panel) at 28 dpi. Scale bars represent 

5 µm. nanimals=4, nMFT=40 to 60 per group. *: p<0.05; **: p<0.01 

dnSynCAM1 expression also decreased the average axonal length of adult-born neurons: the 

axons of neurons expressing dnSynCAM1 reached less often the end of the CA3 region than 

the controls (Figure 33). Thus, dnSynCAM1 expression decreased mossy fiber terminal 

maturation and axon elongation in adult-born neurons. 
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Figure 33: dnSynCAM1 expression decreases axonal length at 28 dpi. a, Representative maximal 

intensity projections of confocal microscope fields at the beginning and the end of the CA3 region. 

GFP-expressing MFTs are overexpressing dnSynCAM1, whereas RFP-expressing MFTs are control 

MFTs. b, Localization of the fields at the beginning and the end of the CA3 region. c, The ratio between 

the number of dnSynCAM1-overexpressing MFTs and the number control MFTs decreased between 

the beginning and the end of the CA3 region. The scale bar represents 20 µm. nanimals=4. *: p<0.05 

The maturation of the dendritic arborization and synaptogenesis may be linked: Ge and 

colleagues showed that knock-down of NKCC1 led to marked defects in both synapse 

formation and dendritic development of newborn neurons 36. Sholl analysis showed a transient 

increase in dendritic arborization by dnSynCAM1 expression at 21 dpi (Figure 34).  
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Figure 34: Sholl analysis of dnSynCAM1-expressing and SynCAM1-overexpressing neurons. From left 

to right: Dendritic branch length of control and SynCAM1-overexpressing (upper panel) or 

dnSynCAM1-expressing (lower panel) adult-born neurons between each Sholl radius, at 14, 21 and 28 

dpi. Sholl radiuses are expressed as a percentage of the total length of the neuron. Lower panel: 
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representative confocal images of control (left) and dnSynCAM1-expressing (right) neurons at 21 dpi. 

Scale bar represents 10 µm. nanimals=4, nneurons=40 per group. **: p<0.01 

However, these differences were normalized at 28 dpi, indicating that expression of 

dnSynCAM1 had no long-lasting effects on the development of the dendritic arborization of 

adult-born neurons. Dendritic extension was not affected by dnSynCAM1 expression (Figure 

35).  

 

Figure 35: Maximal dendritic extension of newborn hippocampal neurons is neither affected by 

SynCAM1 overexpression nor by dnSynCAM1 expression. Maximal dendritic extension of control, 

SynCAM1-overexpressing and dnSynCAM1-expressing neurons at 14, 21 and 28 dpi. No significant 

difference was measured between the maximal dendritic extension of control and SynCAM1-

overexpressing or dnSynCAM1-expressing neurons. nanimals=4, nneurons=40 per group 

dnSynCAM1 expression had no effect on the migration of newborn neurons (Figure 36). 

 

 

 



  

71 
 

Figure 36: dnSynCAM1 expression did not affect newborn neuron migration, whereas SynCAM1 

overexpression slightly increased neuronal migration at 28 dpi. Migration of control and SynCAM1-

overexpressing (a) or dnSynCAM1-expressing (b) neurons in the GCL at 14, 21 and 28 dpi. SynCAM1 

overexpression increased newborn neuron maturation at 28 dpi. nanimals=4, nneurons=40 per group. *: 

p<0.05 

As dnSynCAM1 decreased both glutamatergic synapse and MFT maturation, we next 

investigated changes in survival provoked by the expression of dnSynCAM1 in newborn 

neurons. Adult-born granule cell death occurs predominantly before 4 weeks of maturation. We 

evaluated adult-born neuron survival between 14 and 28 dpi. We injected mice with the same 

mixture of viruses, and sacrified half of them at 14 dpi, and the other half at 28 dpi. We then 

measured the ratio between the number of overexpressing neurons and the number of control 

neurons for each mouse, at both timepoints. If overexpressing adult-born neurons have 

increased survival compared to control, the ratio is expected to increase between 14 and 28 dpi. 

Inversely, if overexpressing neurons survive less than controls, the ratio will decrease between 

these two timepoints. Finally, if survival is not influenced by the gene overexpression, the ratio 

will not change (Figure 29). 
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The average ratio between dnSynCAM1-expressing and control neurons decreased between 14 

and 28 dpi. Thus, dnSynCAM1 expression decreased adult-born neuron survival (Figure 37). 

These results suggest that glutamatergic synapse maturation is an important factor for adult-

born neuron survival. 

Figure 37: dnSynCAM1 expression decreases the survival of hippocampal adult-born neurons 

between 14 and 28 dpi, whereas SynCAM1 overexpression has no effect. a, Ratios between the total 

number of SynCAM1-overexpressing neurons and the number of control neurons at 14 and 28 dpi. b,  

Ratios between the total number of dnSynCAM1-expressing neurons and the number of control 

neurons at 14 and 28 dpi. nanimals=4 per group. *: p<0.05 

SynCAM1 overexpression increases glutamatergic synapse and mossy fiber 

terminal maturation without increasing the survival of hippocampal adult-born 

neurons 

As overexpression of dnSynCAM1 in adult-born neurons decreased glutamatergic synapse and 

MFT maturation and had a deleterious outcome of their survival, we hypothetized that 

SynCAM1 overexpression may increase glutamatergic synapse and MFT maturation in adult-

born neurons and improve their survival. Thus, we overexpressed the SynCAM1 in adult-born 

neurons, and we characterized changes their synaptic integration and survival with the same 

parameters we used for dnSynCAM1-expressing neurons.  
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At 28 dpi, SynCAM1 overexpression increased the proportion of mushroom spines, while 

decreasing the proportion of thin spines and filopodia (Figure 31). No effect could be detected 

at 21 dpi. SynCAM1 overexpression also increased MFT area and perimeter at 28 dpi (Figure 

32). Thus, as expected, SynCAM1 overexpression had the opposite effect as dnSynCAM1 

expression, and increased excitatory synapse and MFT maturation at 28 dpi.  

At 21 and 28 dpi, SynCAM1 overexpression did not affect dendritic spine density (Figure 30). 

Thus, neither dnSynCAM1 expression nor SynCAM1 overexpression had an effect on 

glutamatergic synapse formation on adult-born neurons. Similarly, Sholl analysis and analysis 

of dendritic extension showed no effect of SynCAM1 overexpression on the dendritic 

arborization and dendritic extension of adult-born neurons (Figures 34-35). However, the 

migration of SynCAM1-overexpressing neurons was increased at 28 dpi, although the neurons 

remained in the GCL (Figure 36). 

Surprisingly, the ratio between SynCAM1-overexpressing neurons and control neurons was 

unchanged between 14 and 28 dpi, indicating that SynCAM1 overexpression did not modify 

adult-born neuron survival (Figure 37). Together, these results suggest that although 

glutamatergic synapse maturation is an important factor for adult-born neuron survival, 

increasing glutamatergic synapse maturation may not be sufficient to increase newborn neuron 

survival. 

Neuroligin-1B overexpression increases glutamatergic synaptogenesis without 

affecting newborn neuron survival 

We next investigated whether acting on synapse formation per se would modify neuronal 

survival. NL1B overexpression increases glutamatergic synaptogenesis in cultured 

hippocampal neurons, whereas it does not affect GABAergic synaptogenesis 106. We first 

assessed the effect of NL1B overexpression on the synaptogenesis of adult-born neurons in 

vivo. As expected, NL1B overexpression increased dendritic spine density in the second third 

of the molecular layer in adult-born neurons at 21 and 28 dpi, whereas we could not detect any 

changes in the proximal third of the molecular layer (Figure 38).  
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Figure 38:  NL1B overexpression increased dendritic spine density of newborn neurons in the second 

third of the molecular layer. a, Spine density of NL1B-overexpressing and control neurons in the 

proximal third of the molecular layer. b, Spine density of NL1B-overexpressing and control neurons in 

the middle third of the molecular layer. c, Representative confocal maximal intensity projections of 

control and NL1B-overexpressing neurons at 28 dpi. The scale bar represents 5 µm. nanimals=4, 

nneurons=40 per group. *: p<0.05; ****: p<0.00001 

In contrast with SynCAM1 overexpression, NL1B overexpression did not affect dendritic spine 

diameter (Figure 39). 

 

 

a b 

c 
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 Figure 39: NL1B overexpression did not affect the dendritic spine morphology of newborn neurons. 

Percentage of filopodia, thin and mushroom spines in control and NL1B-overexpressing neurons at 21 

(a) and 28 (b) dpi.  nanimals=4, nneurons=40 per group 

Also, NL1B overexpression did not affect mossy fiber terminal area, perimeter, circularity, or 

number of extensions (Figure 40).  

 

Figure 40: NL1B overexpression did not affect the MFT maturation of newborn neurons. Circularity, 

area, perimeter and number of extensions of MFT of control and NL1B-overexpressing neurons. 

nanimals=4, nMFT=40 to 60 per group 

We next evaluated whether NL1B overexpression induced changes in the maturation of the 

dendritic arborization of newborn hippocampal neurons. Sholl analysis showed no effect of 

NL1B overexpression on dendritic arborization (Figure 41).  

a b 
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Figure 41: NL1B overexpression did not affect the development of the dendritic arborization of 

newborn neurons. From left to right: Dendritic branch length of control and NL1B-overexpressing 

adult-born neurons between each Sholl radius, at 14, 21 and 28 dpi. Sholl radiuses are expressed as a 

percentage of the total length of the neuron. nanimals=4, nneurons=40 per group 

Furthermore, the dendritic extension and migration of newborn neurons were not affected by 

NL1B overexpression (Figures 42). 

  

Figure 42: NL1B overexpression neither affected the maximal dendritic extension nor the migration 

of newborn neurons. a, Maximal dendritic extension of control and NL1B-overexpressing neurons at 

14, 21 and 28 dpi. b, Migration in the GCL of control and NL1B-overexpressing neurons at 14, 21 and 

28 dpi. nanimals=4, nneurons=40 per group 

Finally, we measured the survival of NL1B-overexpressing adult-born neurons between 14 and 

28 dpi. The survival of adult-born neurons was not significantly increased by NL1B 

overexpression (Figure 43). 

a b 
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Figure 43: NL1B overexpression did not affect newborn neuron survival between 14 and 28 dpi. 

Ratios between the total number of NL1B-overexpressing neurons and the number of control neurons 

at 14 and 28 dpi. nanimals=4 

Together, these results suggest that the increase in glutamatergic synapse density produced by 

NL1B overexpression is not sufficient to increase adult-born neuron survival, or that increasing 

glutamatergic synapse density in newborn neurons is not sufficient to improve their survival. 

Neuroligin-2A overexpression increases glutamatergic and GABAergic 

synaptogenesis, and increases newborn neuron survival 

We next investigated whether increasing both glutamatergic and GABAergic synaptogenesis 

would increase neuronal survival. We overexpressed NL2A in adult-born neurons, and we 

studied their maturation, integration and survival.  

We first measured the effect of NL2A overexpression on the formation of glutamatergic and 

GABAergic synapses by adult-born neurons (Figure 44). NL2A overexpression increased 

dendritic spine density in the proximal and second thirds of the molecular layer at 21 dpi, 

whereas at 28 dpi dendritic spine density was only increased in the proximal third of the 

molecular layer. To measure GABAergic synapse density on adult-born neurons dendrites, 

brain slices were immunostained with antibodies directed against VGAT and GABAAR, and 

we quantified the density of appositions of VGAT-positive and GABAAR-positive puncta. 

GABAergic synapse density was increased in NL2A-overexpressing neurons at 21 dpi.  
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Figure 44: NL2A overexpression increases newborn neuron dendritic spine and GABAergic synapse 

density in adult-born neurons. a, Dendritic spine density in the proximal (left panel) and the middle 

(right panel) third of the molecular layer of control and NL2A-overexpressing neurons at 21 and 28 dpi. 

At 21 dpi, NL2A overexpression increased dendritic spine density in the first and second thirds of the 

ML. At 28 dpi, NL2A overexpression increased dendritic spine density in the first third of the ML. b, 

Density of GABAergic synapses in control and NL2A-overexpressing neurons at 21 dpi. At 21 dpi, NL2A 

overexpression increased the number of GABAergic synapses on the cell bodies of newborn neurons, 

a 

c 

b 

d 
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and the density of GABAergic synapses on the first dendritic segment of the neurons. The first dendritic 

segment of newborn neurons was defined at the segment that was adjacent to the cell body. The 

second dendritic segment was adjacent to the first one. c, Representative confocal maximal intensity 

projections of dendritic segments from control and NL2A-overexpressing neurons in the first third of 

the molecular layer at 28 dpi. d, Representative confocal plans of 21-day-old newborn neurons in slices 

immunostained for VGAT and GABAA receptor. Arrows show GABAergic synapses, defined as 

appositions of GABAAR+ and VGAT+ puncta. From left to right: cell body, first dendritic segment, and 

second dendritic segment of a newborn neuron.   nanimals=4, nneurons=40 per group. *: p<0.05; **: p<0.01 

We next assessed the effect of NL2A overexpression on dendritic spine and mossy fiber 

terminal maturation (Figure 45). NL2A overexpression only had a slight effect on dendritic 

spine morphology: at 28 dpi, the proportion of filopodia was increased, but the proportion of 

thin and mushroom spines remained unchanged. Similarly, NL2A overexpression slightly 

increased mossy fiber terminal area at 28 dpi, without changing the perimeter, number of 

extensions and circularity. This indicates that NL2A overexpression slightly increased 

glutamatergic synapse and mossy fiber terminal maturation. 
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Figure 45: Effect of NL2A overexpression on dendritic spine morphology and mossy fiber terminal 

maturation. Percentage of filopodia, thin and mushroom spines in control and NL2A-overexpressing 

neurons at 21 (a) and 28 (b) dpi NL2A overexpression increased the proportion of filopodia in 

hippocampal newborn neurons at 28 dpi but not at 21 dpi. c,  Circularity, area, perimeter and number 

of extensions of MFT of control and NL2A-overexpressing neurons. NL2A overexpression increased 

MFT area without changing the other morphological parameters at 28 dpi. nanimals=4, nneurons=40 per 

group, nmft=40 to 60 per group. **: p<0.01 

Sholl analysis showed a transient increase in neuronal dendritic arborization at 14 dpi in NL2A-

overexpressing neurons, which was normalized at 21 dpi (Figure 46). 

a 

c 

b 
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Figure 46: NL2A overexpression transiently increased newborn neuron dendritic arborization. a, 

From left to right: Dendritic branch length of control and NL2A-overexpressing adult-born neurons 

between each Sholl radius, at 14, 21 and 28 dpi. Sholl radiuses are expressed as a percentage of the 

total length of the neuron. NL2A overexpression increased neuronal dendritic arborization at 14 dpi, 

but the effect was normalized at 21 dpi. b, Representative confocal maximal intensity projections of 

control (left) and NL2A overexpressing (right) newborn hippocampal neurons. The scale bar represents 

10 µm. nanimals=4, nneurons=40 per group. **: p<0.01 

Dendritic extension was not affected by NL2A overexpression, and the migration of NL2A-

overexpressing neurons was only transiently increased at 21 dpi (Figure 47). 

 

a 

b 
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Figure 47: NL2A overexpression neither affected the dendritic extension nor the migration of 

newborn hippocampal neurons. a, Maximal dendritic extension of control and NL2A-overexpressing 

neurons at 14, 21 and 28 dpi. b, Migration in the GCL of control and NL2A-overexpressing neurons at 

14, 21 and 28 dpi. nanimals=4, nneurons=40 per group 

Interestingly, NL2A overexpression increased adult-born neuron survival by two-fold (Figure 

48).  

 

Figure 48: NL2A overexpression increased newborn neuron survival between 14 and 28 dpi. Ratios 

between the total number of NL2A-overexpressing neurons and the number of control neurons at 14 

and 28 dpi. nanimals=4. *: p<0.05 

a b 
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Finally, at 14 dpi, the number of aberrant, i.e. neurons with a cell body located outside of the 

granule cell layer or displaying changes in their polarity, NL2A-overexpressing neurons and 

control neurons were comparable, suggesting that, if NL2A overexpression increases neuronal 

survival, it does not lead to the production of neurons that are aberrantly integrated into the 

network (Figure 49). 

 

 

Figure 49: NL2A overexpression did not significantly increase the number of aberrant neurons at 14 

dpi. Ratios between the number of aberrant neurons and the total number of neurons for control and 

NL2A-overexpressing neurons. Aberrant neurons were defined as neurons with a cell body located 

outside of the GCL or displaying changes in their polarity. This ratio was not significantly altered by 

NL2A overexpression. nanimals=4. 

 

Discussion 

During their maturation, adult-born hippocampal neurons undergo massive death by apoptosis, 

suggesting a selection of the neurons that are the most relevant for the circuitry, and an 

elimination of neurons irrelevant for the network. However, the criteria for this selection are 

unclear. In the present study, we examined the cell-autonomous effects of the overexpression 

of different adhesion molecules on the development, synaptic integration and survival of adult-

born neurons. We found that the adhesion molecules we studied had distinct effects on newborn 

neuron synaptogenesis. In particular, dnSynCAM1 decreased synaptic size while NL2A 

increased spine density, leading to decreased and increased newborn neuron survival, 

respectively. NL1B and SynCAM1 respectively increased spine density and spine size without 

increasing survival. Together, these results show that the manipulation of a single adhesion 

molecule is sufficient to modify synaptogenesis and/or synapse function, and to modify 
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newborn hippocampal neuron survival. This supports the hypothesis that synaptogenesis is 

important for neuronal survival, and that neurons that have an increased ability to connect to 

their pre- and post-synaptic partners have increased chances of survival.  

Effects of synaptic adhesion molecules on the synaptogenesis and survival of 

adult-born hippocampal neurons 

SynCAM1 overexpression did not increase glutamatergic synapse formation. This contradicts 

Robbins’s in vivo findings, showing that in vivo SynCAM overexpression in CA1 neurons 

promoted excitatory synapse formation, and may be explained by differences in the 

experimental design. Indeed, as our retroviruses infect sparse neurons, we were able to 

overexpress the SynCAM1 in granule cells located far from each other. This approach allowed 

us to study the cell-autonomous effects of SynCAM1 overexpression, whereas Robbins and 

colleagues overexpressed SynCAM1 in all the excitatory neurons of the forebrain. Thus, it 

cannot be excluded that the increase in excitatory synapse density in CA1 neurons they 

observed in vivo is due to a non-cell-autonomous effect of SynCAM1 overexpression on CA1 

neurons. Moreover, in line with our findings, SynCAM1 overexpression in cultured 

hippocampal neurons increases glutamatergic synapse efficacy without increasing 

glutamatergic synapse number 98.  

 

As expected, NL1B overexpression increased spine density, which is in line with previous 

results 106,109. Interestingly, SynCAM1 and NL1B overexpression had complementary effects: 

SynCAM1 overexpression selectively increased glutamatergic synapse and mossy fiber 

terminal maturation without having an effect on glutamatergic synapse density, whereas NL1B 

overexpression increased glutamatergic synapse density but did not affect synapse maturation. 

In both cases though, no effect on adult-born neuron survival could be detected.  

 

However, expression of dnSynCAM1, the cytoplasmic tail of SynCAM1, which acts as a 

competitive inhibitor of SynCAM1 95, decreased glutamatergic synapse and mossy fiber 

terminal maturation, and decreased newborn neuron survival. This suggests that synapse 

function is an important factor for newborn neuron survival, and that, if increasing synapse 

maturation by SynCAM1 overexpression is not sufficient to increase neuronal survival, 

decreasing synapse maturation by dnSynCAM1 expression does alter survival. Similarly, 

knockdown of NL1 in adult-born neurons has been shown to decrease adult-born neuron 
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survival 109. Thus, if NL1 overexpression is not sufficient for increasing adult-born neuron 

survival, decreasing NL1 expression decreases adult-born granule cell survival. Thus, 

glutamatergic synapse formation is also an important factor for neuronal survival. 

 

NL2A overexpression increased both glutamatergic and GABAergic synapse formation, 

confirming previous studies 106. NL2A overexpression also had a small effect on glutamatergic 

synapse and mossy fiber terminal maturation, which has, to our knowledge, never been 

described. NL2A overexpression led to increased adult-born neuron survival, and this is 

remarkable because this implies that overexpression of a single adhesion molecule is sufficient 

to increase adult-born neuron survival by two-fold. NL2A only had transient effects on neuronal 

arborization and migration, suggesting that increasing glutamatergic and GABAergic 

synaptogenesis is by itself sufficient to increase adult-born neuron survival.  

 

However, we cannot exclude a direct anti-apoptotic effect of NL2A on newborn neurons: NL2A 

could act directly on the apoptosis pathway to decrease the probability of neuronal death. 

However, to our knowledge, adhesion molecules have never been shown to play a role in the 

induction of apoptosis in physiological conditions, at least in the central nervous system. 

Additionally, NL2A and NL1B belong to the same family of proteins, and we did not observe 

any effect of NL1B overexpression on neuronal cell death. Thus, this seems unlikely.  

 

In contrast, NL1B overexpression had no effect on adult-born neuron survival. According to 

the literature, NL1B overexpression does not increase GABAergic synaptogenesis. This leads 

to several hypotheses: 1. Increasing GABAergic synapse formation increases neuronal survival. 

2. An increase in both GABAergic and glutamatergic synapse formation is necessary to increase 

neuronal survival. 3. NL2A leads to an increase in both synapse formation and maturation, 

which leads to increased neuronal survival. In any case, we can conclude that synapse formation 

and maturation play a role in neuronal survival. 

 

Interestingly, changes in mossy fiber terminal maturation induced by the overexpression of the 

adhesion molecules we studied reflected changes in dendritic spine maturation: when dendritic 

spine maturation was modified, mossy fiber terminal maturation was modified to the same 

extent. This is in accordance with previous work showing that the development of dendritic 

inputs and axonal outputs is coordinated: they develop concomitantly on adult-born neurons 

19,42,110. Our results are also in line with the fact that SynCAM1 acts in developing hippocampal 
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neurons to shape migrating growth cones, and contributes to the differentiation of their axo-

dendritic contacts 111. Neuroligin-2 is a post-synaptic protein, so the fact that it influences, even 

slightly, mossy fiber terminal maturation, is puzzling. However, this could be explained by 

regulatory mechanisms synchronizing the development of the synaptic inputs and outputs of 

adult-born neurons. By increasing the maturation of dendritic spines, NL2 overexpression 

would then induce axon terminal maturation indirectly. 

 

To confirm that synaptogenesis is involved in the survival of newborn neurons and complete 

our study, electrophysiological recordings of overexpressing newborn neurons in acute 

hippocampal slices will be essential. Indeed, our work did not allow to conclude whether the 

respective increase and decrease in synapse size we observed in SynCAM1-overexpressing 

neurons and dnSynCAM1-expressing neurons were related to a decrease in synaptic strength. 

Similarly, assessing whether the synapses produced by NL1B and NL2A newborn neurons are 

functional will be of interest to confirm that synaptogenesis influences neuronal survival. 

Indeed, one could imagine that NL1B and NL2A overexpression lead to the production of more 

dendritic spines, but that they do not form functional synapses. This would imply that NL2A 

has a direct effect on neuronal survival, and that it is not related to synaptogenesis. These 

electrophysiological analyses would also allow us to conclude whether overexpressing neurons 

are overall more or less synaptically active than control neurons, i.e. whether they have 

increased or decreased output to the circuitry. This knowledge is important, because, if the 

inputs the adult-born neurons receive may determine their survival, it is likely that the outputs 

they send to the network are also of importance for their survival. 

Effects of synaptic adhesion molecules on the dendritic arborization and 

migration of adult-born hippocampal neurons 

The overexpression of the adhesion molecules we studied had no long-lasting effects on the 

development of the dendritic arborization of adult-born neurons, and did not change newborn 

neuron dendritic extension at the timepoints we studied.  

 

However, we found an increase in dendritic arborization complexity in adult-born neurons 

overexpressing NL2A at 14 dpi. These data are in line with the results of Ge and colleagues, 

who showed that eliminating excitatory GABA action on newborn hippocampal granule cells 

decreased dendritic arborization complexity at the same developmental timepoint 36. Indeed, in 
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contrary to their approach, the overexpression of NL2A results in an increase in GABAergic 

synaptogenesis, which may increase excitatory GABA action. Together, these results suggest 

that GABA excitatory action may accelerate the development of the dendritic arborization. 

 

In contrast, it is interesting to notice that, when we increased (SynCAM1 overexpression) or 

decreased glutamatergic action (dnSynCAM1 expression) by increasing or decreasing 

glutamatergic synapse maturation without affecting GABA excitatory action, we found a 

transient decrease and increase in dendritic arborization of adult-born neurons at 21 dpi, 

respectively, although the effect was small. Together, these results suggest that, while GABA 

excitatory action may accelerate the development of the dendritic arborization, glutamatergic 

action might delay it. This leads to the hypothesis that a good balance between GABA and 

glutamatergic synapses might be transiently necessary for the proper maturation of the dendritic 

arborization during adult-born neuron development, although much additional data will be 

necessary to validate this hypothesis. 

Does the overexpression of adhesion molecules influence the fitness of adult-

born neurons during synaptic competition? 

Evidence for direct synaptic competition between cohorts of newborn neurons derives from the 

experiments of Tashiro and colleagues, in which the NMDA receptor subunit was specifically 

deleted in newborn neurons by retroviral mediated Cre-expression in mice with floxed NR1 

alleles 78. The authors used the same retroviral approach as us, allowing them to silence NMDA 

receptors in a sparse subset of adult-born neurons. When NMDA receptors were silenced only 

in a sparse subset of adult-born neurons, the survival of these adult-born neurons was decreased. 

However, when all the NMDAR were silenced pharmacologically in the DG, the survival of 

adult-born neurons was not compromised. This supports the notion that survival and integration 

of newborn neurons does not depend on the absolute, but rather on the relative degree of NMDA 

receptor activation.  

 

Similarly, Kwon and colleagues showed that cortical neurons with higher levels of NL1 

compared to their neighbours had increased spine density and functional synapse number, 

whereas neurons with lower levels of NL1 were deficient in the same aspects 103. In contrary, 

global knockout of NL1 neither reduced functional glutamatergic synapse number nor dendritic 
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spine density of these neurons. Thus, during their maturation, hippocampal adult-born neurons 

may compete with other neurons for integration into the network and survival.  

 

Synaptic competition may occur only between newborn neurons of the same age, but newborn 

neurons may also potentially compete with pre-existing, more mature, granule neurons. Yasuda 

and colleagues recently reported that the axons of genetically silenced granule cells become 

eliminated through competition with axons of unaffected cells of the same age 112. Interestingly, 

this elimination was greatly reduced when post-natal neurogenesis was abolished, providing 

direct evidence for the possibility that mature neurons may also compete with young granule 

neurons for the activity-dependent refinement of DG-CA3 connections. However, given that 

the authors performed their experiments exclusively during postnatal stages, it remains to be 

established whether this activity-dependent competition between axons also operates in the 

adult DG.  

 

Together, these studies support the hypothesis of a competition between adult-born neurons, or 

between adult-born neurons and more mature neurons, during the phase of survival. In this 

work, because of our experimental design, we genetically modified a sparse subset of adult 

neural progenitors, which gave rise to a sparse population of genetically modified adult-born 

neurons. Neurons expressing dnSynCAM1 may thus have decreased synaptic activity compared 

to their neighbours, whereas neurons overexpressing NL2A may have relatively increased 

synaptic activity. This might respectively give them a handicap or an advantage in their 

competition for survival with other granule cells, and might explain why dnSynCAM1 

expression decreases, whereas NL2A overexpression increases, adult-born neuron survival.  

 

Filopodia are thought to represent the first stage of synaptogenesis, and to develop into dendritic 

spines once they found a synaptic partner 113. Overexpression of NL2A in newborn neurons 

slightly decreased the proportion of filopodia, suggesting that, in NL2A-overexpressing 

neurons, more filopodia found a partner, and consequently transformed into dendritic spines. 

This could be explained by the fact that, if a competition exists at the scale of the synapse, i.e. 

if several dendritic spines compete for the same axonal bouton in the case of a multiple synapse 

bouton, NL2A-overexpressing filopodia may have been favored in this competition: NL2A 

overexpression may have increased the competitivity of the synapses formed by these filopodia, 

for example by increasing their stability. 
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Does NL2A overexpression in adult-born neurons improve learning and 

memory? 

NL2A overexpression increased newborn neuron survival between 14 and 28 dpi by two folds. 

Additionally, NL2A overexpression increased glutamatergic and GABAergic synapse density, 

and slightly increased glutamatergic synapse and axon terminal in adult-born neurons at 21 and 

28 dpi. Thus, adult-born neurons overexpressing NL2A may display increased activity. 

Therefore, the hippocampus of mice injected with the virus carrying NL2A expression cassette 

contains a subpopulation of adult-born neurons with increased survival at the age when they 

have an impact on hippocampal LTP, and that potentially also display increased synaptic 

activity during the time window when newborn neurons have been shown to be crucial for 

memory formation. This leads to the hypothesis that mice injected with the virus carrying NL2A 

expression cassette may have increased learning and memory in complex behavioural tasks, as 

adult neurogenesis has been shown to be involved in learning performances. 

 

Because of studies showing that epileptic activity leads to increased adult-born neuron 

maturation and survival, one could argue that accelerated maturation and increased survival of 

adult-born neurons are nefast for the function of the circuitry114-116. However, if NL2A-

overexpressing neurons displayed increased maturation and increased survival, and migrated 

faster than controls, they did not migrate farther, as at 28 dpi, their migration was similar to 

controls. Also, at 14 dpi, the number of aberrant, i.e. neurons with a cell body located outside 

of the granule cell layer or displaying changes in their polarity, NL2A-overexpressing neurons 

and control neurons were comparable (Figure 49). Moreover, at 21 and 28 dpi, NL2A-

overexpressing neurons diplayed similar neuronal arborization and dendritic extension as 

controls.  

 

Thus, NL2A overexpression improves neuronal survival and augments synaptogenesis without 

leading to the production of more aberrant neurons, and does not have long-term effects on the 

migration, dendritic extension and arborization of adult-born neurons. It is thus unlikely that 

overexpressing NL2A in adult-born granule cells leads to the formation of adult-born neurons 

deleterious for the function of the circuitry, as it might be the case in epilepsy.  

 

This means that overexpressing NL2A in adult-born granule cells may lead to the increased 

overall production of more active adult-born neurons, and therefore improve learning and 
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memory abilities, without deleterious consequences on the function of the network, as these 

neurons do not seem to be aberrantly connected. As a consequence, it would be of interest to 

test the learning and memory abilities of mice injected with a virus carrying NL2A-expression 

cassette. Adult-born granule cells have a specific role in learning and memory during the time 

window during which they display enhanced synaptic plasticity, i.e. around 28 dpi. Also, 

NL2A-overexpressing neurons show increased synaptogenesis at 21 and 28 dpi. Thus, the best 

timepoint to study learning and memory in these mice would be 28 days after retroviral 

injection. 

The finding that NL2A increases newborn neuron survival is very interesting in terms of clinical 

approaches. Indeed, if mice overexpressing NL2A in adult-born neurons show increased 

learning and memory performances, it suggests that increasing the survival and the activity of 

newborn hippocampal neurons may relieve the symptoms of patients suffering from diseases 

such as Alzheimer’s disease or depression. The next step would be to test the same approach in 

mouse models of these pathologies. 

 

 

 

 

 

 

 

 

 

 

General discussion 

Adult hippocampal neurogenesis leads to the continuous production of new granule cells in the 

hippocampus. These neurons born in adulthood result from a lengthy process of generation and 
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maturation, which has a heavy energetic cost. However, 70% of these neurons die at different 

steps of their maturation, before 4 weeks of maturation. The specific function of adult-born 

neurons seems limited to the time window during which they display increased plasticity, i.e. 

between 3 and 7 weeks of maturation, thus after the period of cell death.  This suggests that 

adult-born neurons undergo a stringent selection before they accomplish their function in the 

network, and, as the energetic cost of adult-born neuron generation and maturation is high, that 

this selection may be crucial for proper functioning of the network. If this selection exists, on 

which criteria is it made? 

 

In contrary to prenatal neurogenesis, adult neurogenesis occurs in a behaving animal, which 

constantly receives stimuli from its surrounding environment. Also, prenatal astrocytogenesis 

occurs after prenatal neurogenesis 117, whereas during adult neurogenesis, newborn neurons 

grow into a pre-existing network of astrocytes. Finally, adult-born neurons integrate into a pre-

existing, fixed neuronal network, whereas it is not the case during prenatal neurogenesis.  These 

peculiar conditions may have consequences on the modalities of synaptic integration and 

survival of adult-born neurons. In this work, we examined three different aspects of the synaptic 

integration of newborn hippocampal neurons: neuronal network activity, astrocytic 

ensheathment, and the cell-autonomous overexpression of synaptic adhesion molecules, and 

their effect on the maturation and survival of these neurons.  

 

We found that propofol anesthesia significantly impaired the survival and dendritic maturation 

of adult-born neurons. Thus, a global increase in inhibition seems to be deleterious for the 

development and survival of adult-born neurons. This suggests that adult-born neuron 

maturation and survival depend on the activity of the surrounding, pre-existing, neuronal 

network. We discovered that pre-existing astrocytic processes ensheath the synapses formed by 

adult-born neurons very early in neuronal development, and that inhibition of astrocytic 

glutamate reuptake reduces postsynaptic currents and increases paired-pulse facilitation in 

adult-born neurons, suggesting that perisynaptic processes modulate synaptic transmission on 

these cells. This shows that, as adult-born neurons grow, their synapses are very quickly 

ensheathed by the astrocytic processes from surrounding, and that these astrocytic processes 

have a role in the functional and structural integration of adult-born neurons into the pre-

existing neuronal network. Finally, we found that the manipulation of a single adhesion 

molecule is sufficient to modify synaptogenesis and/or synapse function, and to modify 

newborn hippocampal neuron survival. This suggests that synapse formation and maturation, 
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and more generally the ability of the newborn neuron to communicate with its synaptic partners, 

is crucial for its survival. 

 

Effect of anesthesia on the maturation and survival of adult-born neurons 

In this project, we found that adult-born mouse hippocampal neurons are vulnerable to propofol 

anesthesia, which reduced neuron survival and dendritic maturation in vivo. Propofol impaired 

the survival and maturation of adult-born neurons in an age-dependent manner. Anesthesia 

induced a significant decrease in the survival of neurons that were 17 days old at the time of 

anesthesia, but not of neurons that were 11 days old. Similarly, propofol anesthesia significantly 

reduced the dendritic maturation of neurons generated 17 days before anesthesia, without 

interfering with the maturation of neurons generated 11 days before anesthesia. These results 

point to a developmental stage-dependent impact of propofol anesthesia on differentiating 

adult-born hippocampal neurons.  

 

Together, these data suggest that the activity of the neuronal network influences the survival 

and maturation of adult-born neurons. Indeed, propofol acts mainly as a GABAergic agonist: it 

binds to GABAA receptors and potentiates their activity by slowing the channel-closing time 

118,119. Thus, propofol anesthesia is expected to decrease the excitation/inhibition balance of the 

neuronal network, and thus to decrease global network activity, by increasing GABAergic 

transmission. However, propofol anesthesia may have other effects than increasing GABAergic 

transmission. 

 

Indeed, propofol has also been shown to act as an NMDA receptor antagonist 120,121 and to 

decrease stimulated dopamine release via a mechanism independent of GABAA receptors 122. 

Thus, although the main mechanism of action of propofol is an increase in GABAergic activity, 

propofol has other effects on synaptic transmission, independent of GABAergic activity. As a 

consequence, to confirm whether the decrease in maturation and survival we observed in adult-

born hippocampal neurons is due to an actual increase in the global GABAergic activity of the 

network and not to other effects of propofol, it would be of interest to inject our mice with 

another GABAergic agonist, such as other anesthetics or sedatives, like benzodiazepines. 

Indeed, benzodiazepines such as diazepam act as positive allosteric modulators of GABAA 

receptors, by increasing the affinity of synaptic GABAA receptors for GABA and increasing 

the frequency of openings of extrasynaptic GABAA receptors 123. 
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Given that the survival and maturation of adult-born neurons are increased by stimulating 

external conditions such as environmental enrichment 24 and altered by impoverished 

environment such as social isolation 124-126, one can also argue that the effects of anesthesia on 

adult neurogenesis we observed are due to sleep itself, i.e. a decrease in the interactions with 

the environment, and not to a direct increase in global GABAergic transmission. To dissociate 

the effects induced by sleep and by global network inhibition, we could inject components 

increasing GABAergic transmission without inducing sleep, such as GABA transaminase 

inhibitors like valproic acid, which induce the accumulation of GABA at synapses, as GABA 

transaminase degrades GABA. Additionally, performing the reverse approach as in our study, 

by decreasing GABA transmission, or increasing glutamatergic transmission, to provoke an 

increase in the excitation/inhibition balance in the brain, and showing the opposite effect, i.e. 

an increase and the maturation and survival of newborn neurons, would add weight to our data. 

For this goal, we could use AMPAkines, which are chemical compounds stimulating AMPA 

receptors, or GABAA receptor antagonists such as flumazenil, which is used to reverse 

anesthesia in patients. 

 

The differential effect of propofol anesthesia on 17 and 11-day-old neurons may be explained 

by two factors. First, the animals were all sacrified at 21 days after retroviral or BrdU injection, 

meaning that neurons that underwent anesthesia at 11 days of development were analyzed 8 

days after, whereas neurons that underwent anesthesia at 17 days of development were analyzed 

only 4 days after. Thus, the fact that we could not detect an effect of anesthesia at 11 dpi in 21 

days old newborn neurons could be explained by the fact that the effect is only transient and 

diseappears after 4 days: the maturation of adult-born neurons would then be simply delayed, 

and cell death only transiently increased. Consequently, anesthetizing mice at 11 dpi and 

sacrifying them at 15 dpi, and then anesthetizing mice at 17 dpi and sacrifying them at 25 dpi 

would allow to discriminate whether the absence of effect at 11 dpi is due to a difference in the 

developmental stage of newborn neurons, or simply due to the transient nature of the effect of 

anesthesia.  

 

Secondly, if the differential effect of propofol anesthesia on 17 and 11-day-old neurons is 

actually due to a difference in the developmental stage of newborn neurons, it may be explained 

by the GABA shift occuring in adult-born neurons around 14 dpi: from being depolarizing, 

GABA becomes hyperpolarizing in newborn neurons. Thus, at 11 dpi, increasing global 
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GABAergic transmission may increase newborn neuron excitation and thus increase their 

activity, which does not affect maturation and survival. In contrast, at 17 dpi, this increase in 

global GABAergic transmission may increase the inhibition of newborn neurons and thus 

reduce their activity, leading to a decrease in their maturation and survival. 

 

In the previous paragraphs, we assumed that the effect of propofol anesthesia is non-cell 

autonomous. However, our study does not allow us to determine whether the effect we observed 

on newborn neurons is due to a direct effect of anesthesia on newborn neurons, which may be 

more sensitive than pre-existing neurons to anesthesia as they are still immature, or to the actual 

decrease in the excitation/inhibition balance of the surrounding network, that acts indirectly on 

newborn neurons.  

 

To answer this question, we could engineer a mouse expressing Designer Receptor Exclusively 

Activated by Designer Drugs (DREADDs) in forebrain neurons. DREADDs are engineered G-

protein coupled receptors, which are activated by otherwise inert drug-like small molecules. 

These receptors allow the remote control of the activity of neurons in vivo. In particular, the 

activation of Hm3Dq by clozapine-N-oxide (CNO) in neurons activates Gq-mediated signaling 

and induces neuronal burst firing 127. Conversely, the activation of Hm4Di in neurons by CNO 

induces Gi activation and neuronal silencing 128. CNO can be administered by peripheral 

injection. Therefore, we could engineer mice expressing Hm4Di in forebrain neurons and graft 

wild-type adult neural stem cells in the dentate gyrus of these mice. Then, we would activate 

these receptors with peripheral injection of CNO at 11 dpi or 17 dpi, and assess newborn neuron 

maturation and survival at 21 dpi. If adult-born neuron survival and maturation are altered by 

this approach, this means that the sole inhibition of the surrounding neuronal network is 

sufficient to alter newborn neuron maturation and survival, and thus, that adult-born neuron 

maturation and survival depends on the global activity of the neuronal network. Conversely, 

performing exactly the same study with Hm3Dq would allow us to investigate whether a global 

increase in excitation increases the maturation and survival of newborn neurons. Expressing 

Hm4Di or Hm3Dq in adult-born neurons via our retroviral approach and assessing the outcome 

of the activation of these receptors at 11 dpi and 17 dpi may also shed light on an eventual 

direct, cell-autonomous effect of the inhibition or excitation of adult-born neurons at these 

developmental timepoints. 

 



  

95 
 

Adult neurogenesis is involved in learning and memory, and anesthesia is suspected to 

contribute to the onset of memory deficits in patients which underwent an operation. These 

deficits, that the elderly are more likely to develop, is known as postoperative cognitive 

dysfunction 129. We showed a decrease in the survival of newborn neurons after anesthesia, 

potentially leading to a decrease in adult neurogenesis, if the proliferation of neuronal 

progenitors does not increase via a compensatory mechanism. This decrease in adult 

neurogenesis after anesthesia might link the memory deficits provoked by operations to 

anesthesia.  

 

Indeed, a threshold in the number of newborn hippocampal neurons produced per day below 

which cognitive deficits appear may exist. If this is the case, as aging decreases the production 

of hippocampal newborn neurons, anesthesia, by further decreasing adult neurogenesis, may 

lead to cognitive deficits in the elderly. The fact that these deficits are more rarely observed in 

younger patients may be explained by the higher levels of neurogenesis in young humans: a 

decrease in adult neurogenesis has no visible effect on the cognitive performances of young 

humans, because the threshold in newborn neuron production below which deficits appear has 

not been reached. Therefore, the equivalent of environmental enrichment after an operation 

under anesthesia might help the elderly recover their learning and memory performances: one 

could think of preventing cognitive deficits in these patients by making them perform a variety 

of social, physical and intellectual activies after anesthesia, as this might help the levels of 

neurogenesis get back to pre-operation levels. Potentially, administering molecules increasing 

overall levels of adult neurogenesis after an operation may also be of great help for elderly 

patients to recover learning and memory performances comparable to those before anesthesia. 

 

Astrocytic ensheathment of the synapses of adult-born neurons 

 

In the second project, we found that the synapses of newborn neurons are ensheathed by 

astrocytic processes, and that this ensheathment appears very early: at 7 dpi, this ensheathment 

is already present on the dendrites of adult-born neurons. Additionally, this ensheathment does 

not change with the age of the neuron or the size of the synapse. Furthermore, inhibiting 

astrocytic glutamate re-uptake reduced postsynaptic currents and increased paired-pulse 

facilitation in adult-born neurons. This points to a modulation of synaptic transmission by 

perisynaptic astrocytic processes. Finally, we found that some astrocytic processes were 
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intercalated between dendritic spines from newborn neurons and potential presynaptic partners, 

suggesting that astrocytes may also play a structural role in the connectivity of the spines 

formed by adult-born neurons. Together, these results indicate that pre-existing astrocytes 

remodel their processes to ensheathe synapses of adult-born neurons and participate to the 

functional and structural integration of these cells into the hippocampal network.  

 

For electrophysiological analyses, we applied dihydrokainate (DHK), which specifically blocks 

the astrocytic glutamate transporter GLT-1,  on acute slices of C57BL6/J mice injected with a 

cag-GFP retrovirus 30 days before. We recorded post-synaptic responses of GFP-labeled 

newborn neurons evoked by paired pulses delivered to the perforant path. DHK reduced the 

EPSC amplitude and increased paired pulse ratio in newborn neurons. The enhanced paired 

pulse ratio indicates that presynaptic release probability was reduced by DHK. This showed 

that inhibiting astrocytic glutamate re-uptake decreases the presynaptic release probability at 

synapses formed by adult-born neurons. Thus, we concluded that astrocytic glutamate 

transporters enhance release probability and, as a consequence, strengthen excitatory synaptic 

transmission onto newly generated granule cells. 

  

However, like any inhibitor, DHK could have non-specific effects: a study suggested that, in 

addition to inhibiting glutamate transport in astrocytes, DHK prevents astrocyte potassium 

uptake130. This is why performing the same experiment with other inhibitors of GLT-1, such as 

WAY-213,613, would further validate these results. Also, we could inhibit other functions of 

astrocytes, such as activity-dependent ATP release. Indeed, the ATP released by astrocytes as 

a result of neuronal activity can also participate in activity-dependent synaptic modulation: 

Zhang et al. showed that the release of ATP from astrocytes tonically suppresses glutamatergic 

synapses in hippocampal neurons in culture 131. Thus, inhibition of ATP release might 

potentially affect the synaptic transmission of adult-born neurons, and this would strengthen 

our conclusion that astrocytic processes ensheathing adult-born neurons play an important role 

in their synaptic transmission.  

 

The observation of astrocytic ensheathment of multiple synapse dendrites and boutons showed 

that the multiple synaptic partners involved in these structures shared a single astrocytic process 

in most cases, suggesting that astrocytes remodel their processes to accommodate the spines or 

mossy fiber terminals of adult-born neurons. The existence of multiple synapse dendrites 

(MSD) and boutons (MSB) suggests that adult-born neurons may compete with other neurons 
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for the access to their synaptic partners 19. This peculiar astrocytic ensheathment on MSD and 

MSB suggests that astrocytes might play a role in this competition, by mechanically facilitating 

the access of the spines or the axon terminals of the newborn neuron to their synaptic partners, 

or, in contrary, by mechanically blocking the access to the partners. Astrocytic processes 

ensheathing these structures may also release factors attracting or repelling the dendritic spines 

or axonal boutons of the adult-born neuron. If astrocytes do not let the newborn neuron form 

synapses, the newborn neuron would then be unable to make connections with the network, and 

be eliminated.  

 

Dendritic spines often have twisted necks and do not necessarily synapse with the nearest 

axonal bouton, suggesting that the choice of their presynaptic partner is not made randomly, 

but according to specific cues. We hypothetized that astrocytes have a role in choice of the 

synaptic partner of adult-born neurons. Indeed, filopodia, which are thought to be nascent 

spines, have been shown to be attracted by glutamate 132. Moreover, astrocytes clear glutamate 

from the synaptic cleft and reduce its diffusion in the extrasynaptic space. Thus, nascent spines 

may tend to grow towards the least ensheathed bouton. In addition, astrocytic processes may 

physically block the contact of the spine with its potential presynaptic partners. Thus, astrocytes 

may physically and chemically guide nascent spines towards a specific presynaptic partner. 

Finally, by secreting molecules that induce synaptogenesis or  synaptic plasticity, such as 

Thrombospondins 89, glypicans 133, D-serine 134, or ATP 135, astrocytes could induce 

synaptogenesis of adult-born neurons on selective synaptic partners.  

 

We used serial section electron microscopy to study the boutons located close to dendritic 

spines from new neurons but not synapsing with them. We found that for 38% of these boutons, 

an astrocytic process was intercalated between the bouton and the new spine. These results 

show that pre-existing perisynaptic processes intercalate between the new spines and some of 

their potential presynaptic partners and, by doing so, might play a structural role in their 

connectivity by blocking the access of the spines to some of their potential partners. However, 

electron microscopy does not allow the analysis of the same spine over time, thus this approach 

becomes very quickly limited when it comes to answer this question. 

 

To test these hypotheses, i.e. synaptic competition exists between newborn neurons and other 

newborn or pre-existing neurons, and astrocytes play a role in this competition by influencing 

the choice of the synaptic partner of adult-born neurons, time-lapse imaging would be a better 
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approach than electron microscopy. Indeed, with this technique, we could follow the formation 

of multiple synapse boutons and multiple synapse dendrites, and observe how astrocytic 

processes remodel when the spines or the mossy fiber terminals of adult-born neurons connect 

to their partners. However, organotypic slices are very difficult to make after P11. Also, labeling 

several presynaptic neurons and post-synaptic adult-born neurons and astrocytes with distinct 

colors would be very tricky, if not impossible.  Thus, it would be hard to perform this 

experiment in the context of adult neurogenesis using organotypic slices.  

 

This question of the choice of the synaptic partner and the role of astrocytes in it could be 

studied with another, more ambitious and recent in vitro technique: the three dimensional co-

cultures of hippocampal neurons and astrocytes. Neurons within these structures exhibit 

complex 3-dimensional morphologies with rich neurite arborization, can be 

electrophysiologically recorded and display functional synapse formation and network 

properties 136. In this model, grafting adult neural stem cells expressing RFP in an environment 

of pre-existing hippocampal neurons expressing GFP and pre-existing astrocytes expressing 

CFP (Cyan fluorescent protein) may allow to examine how astrocytic processes remodel during 

the formation of synapses from adult-born neurons. Indeed, we could perform two-photon time-

lapse imaging on these structures and study the sequence of events of the formation of a synapse 

of newborn neurons, and how astrocytes remodel to let the new neurons in, or, in contrary, to 

block them from accessing their partners. However, the resolution limit of a two-photon 

microscope is around 0.5 µm, e.g. the size of a thin spine. As a consequence, this would be very 

difficult to perform for dendritic spines, but as mossy fiber terminals are larger, it might be 

feasible to study how they connect to the dendrites of other neurons and how whether and when 

astrocytic processes remodel during the formation of the synapse with this approach.   

 

The next step of this project is to interfere with astrocytic function and to evaluate the outcome 

of this interference on adult-born neuronal synaptogenesis, maturation and survival. Sebastien 

Sultan, a post-doctoral trainee from Nicolas Toni’s group, investigated the effect of blocking 

astrocytic exocytosis on the maturation and survival of adult-born hippocampal neurons. He 

found that blocking exocytosis from astrocytes reduced the formation of axo-spinous synapses 

with newborn neurons, but did not interfere with the stability of pre-existing synapses. 

Furthermore, blocking astrocytic exocytosis impaired the morphological and functional 

maturation of newborn neurons. These effects were mediated by D-serine, as intraperitoneal 
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injections of D-serine restored the maturation and the formation of dendritic protrusions by 

adult-born neurons. Finally, the survival of adult born hippocampal neurons was also altered 

by the blockade of astrocytic exocytosis. 

These results combined to ours show that astrocytes have a prominent role in the morphological 

and functional maturation of newborn neurons, and that they also influence neuronal survival. 

Astrocytes may act at different levels to promote the survival of adult-born neurons. By 

reuptaking glutamate at the synaptic cleft, they enhance presynaptic release probability at the 

synapses formed by adult-born neurons, which may enhance adult-born neuron activity and 

thus increase their survival. By secreting molecules such as D-serine, astrocytes stimulate the 

synaptogenesis of adult-born neurons, which also may contribute to their survival. By blocking 

the spines of newborn neurons from accessing some of their potential presynaptic partners, 

astrocytes may allow newborn neurons to form relevant connections, and therefore to avoid 

elimination by apoptosis.  

After acting on astrocytic release, we could modify other components of neuron-glia 

communication,  and evaluate the outcome on adult-born neuronal maturation and survival. In 

the mouse hippocampus, signaling by Eph receptors and their cell surface-associated ephrin 

ligands has been implicated in synapse and spine formation 137-141. In particular, the A-type 

EphA4 is expressed in astrocytic persynaptic processes, and interacts with Ephrin-A3, which is 

enriched on dendritic spines in hippocampal neurons 142 Activation of EphA4 by Ephrin-A3 

induces spine retraction, whereas inhibition of EphA4/Ephrin-A3 interactions distorts spine 

shape and organization in hippocampal slices 142. Furthermore, loss of ephrin-A3 or Ephrin-A4 

affects LTP formation 143. Thus, astrocytes use the Eph-ephrin system to shape spine 

morphology and synaptic function. Disrupting this system, by disrupting the interaction of 

EphA4/EphrinA3 in hippocampal newborn neurons, or, in contrast, enhancing it, would be 

another way to alter the neuron-glia communication in adult-born neurons, by modifying, this 

time, the adhesions between astrocytic processes and newborn neurons. We could use our 

retroviral approach to knock-down or overexpress Ephrin-A3 in adult-born neurons, by 

expressing a shRNA directed against Ephrin-A3 or overexpressing Ephrin-A3 in newborn 

neurons. To knock-down or overexpress EphA4 in astrocytes, we could use a lentivirus 

containing the expression cassette of EphA4 coupled to the expression of a fluorescent reporter, 

under the control of an astrocytic promoter such as GFAP or Aldh1l1.  
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Overexpressing adhesion molecules in adult-born neurons 

In this project, we examined the cell-autonomous effects of the overexpression of different 

adhesion molecules on the development, synaptic integration and survival of adult-born 

neurons. We found that the adhesion molecules we studied had distinct effects on newborn 

neuron synaptogenesis. In particular, dnSynCAM1 decreased synaptic size while NL2A 

increased spine density, leading to decreased and increased newborn neuron survival, 

respectively. NL1B and SynCAM1 respectively increased spine density and spine size without 

increasing survival. Together, these results show that the manipulation of a single adhesion 

molecule is sufficient to modify synaptogenesis and/or synapse function, and to modify 

newborn hippocampal neuron survival. This supports the hypothesis that synaptogenesis has a 

crucial role for neuronal survival, and that neurons that have an increased ability to connect to 

their pre- and post-synaptic partners have increased chances of survival.  

 

Our immunohistochemical analyses showed that, upon retroviral infection, SynCAM1 cytosolic 

tail is present in the whole cytoplasm of HEK 293T cells, whereas SynCAM1 is located at the 

plasma membrane (Figure 25). As a consequence, SynCAM1 cytosolic tail is expected to bind 

the cytosolic substrates of SynCAM1, but may also bind other cytosolic substrates unaccessible 

to SynCAM1, as SynCAM1 is exclusively located at the plasma membrane. This could lead to 

side effects not related to SynCAM1 inhibition. This is why our approach would nicely be 

completed by silencing SynCAM1 in adult-born neurons via an shRNA directed against 

SynCAM1. Incidentally, although neurons expressing dnSynCAM1 display a maturation 

comparable to controls in terms of migration, spine density, dendritic extension and 

arborization, we cannot exclude the fact that their decreased survival is due to the toxicity of 

dnSynCAM1 itself. To eliminate this hypothesis, we could co-overexpress dnSynCAM1 and 

SynCAM1 in newborn neurons, which, if the decrease in survival is due to the decrease in 

synapse maturation we observed and not to dnSynCAM1 toxicity, should restore survival 

comparable to controls. 

 

SynCAM1 and NL1B overexpression had complementary effects: SynCAM1 overexpression 

increased glutamatergic synapse maturation without having an effect on glutamatergic synapse 

formation, whereas NL1B overexpression increased glutamatergic synapse density but did not 

affect synapse maturation. In both cases though, no effect on adult-born neuron survival could 

be detected. On the contrary, dnSynCAM1 expression in newborn neurons led to lower survival, 

and Schnell and colleagues showed in 2013 that NL1B knockdown in adult-born neurons also 
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decreased their survival 109. Thus, glutamatergic synapse maturation and formation are 

important factors for newborn neuron survival, even if increasing them separately has no effect 

on newborn neuron survival. However, an increase in both glutamatergic synapse density and 

maturation may lead to increased survival. As a consequence, it would be of interest to co-

overexpress SynCAM1 and NL1B in adult-born neurons and to measure their survival between 

2 and 4 weeks of maturation. Co-overexpression of these two proteins will increase both the 

formation and maturation of glutamatergic synapses on newborn neurons, and this will help 

determine whether increasing glutamatergic synaptogenesis may improve survival. Co-

overexpression of SynCAM1 and NL2A may also be useful to determine whether increasing 

synapse maturation may further improve the survival of NL2A-overexpressing adult-born 

neurons. Similarly, using AMPAkines, which stimulate AMPA receptors and thus increase the 

global excitation of the network, we could make an attempt to potentiate the effects of NL1B, 

NL2A or SynCAM1 overexpression on newborn neuron maturation and survival. 

 

NL2 had the strongest effect on the synaptogenesis of adult-born granule cells, and was the sole 

adhesion molecule of our work capable to improve the survival of adult-born neurons. 

Therefore, it would be valuable to focus on this molecule in further studies. First, completing 

our study by expressing a shRNA direct against NL2A in newborn neurons would be valuable. 

More ambitious and exciting, creating a mouse line overexpressing NL2A in all hippocampal 

adult-born neurons would greatly help the study of the behavioural effects of NL2A 

overexpression in adult-born neurons, as the retroviral approach only allows the overexpression 

of NL2A in a sparse subset of adult-born neurons. 

 

 To this end, we could take advantage of mice expressing GFP under the GAD67 promoter, 

GAD67-GFP mice. Zhao et al. discovered in 2010 that, unexpectedly, GAD67-GFP mice 

selectively and transitorily express GFP in newborn dentate granule cells of the adult 

hippocampus 144. The authors determined that GFP expression covered the whole 

developmental stage of newborn neurons, beginning within the first week of cell division and 

disappearing as newborn neurons mature, about 4 weeks post-mitotic. We could modify this 

mouse line to create GAD67-GFP-2A-NL2A mice, which overexpress NL2A in newborn 

hippocampal neurons from 1 to 4 weeks of maturation, i.e. during the time window of 

synaptogenesis.  
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This mouse line would allow analyses that are difficult to perform using a retroviral approach 

to overexpress NL2A in adult-born neurons. In young mice, NL2A overexpression might 

greatly increase neurogenesis, and potentially increase learning and memory performances. 

These mice could be tested with different behavioural tasks assessing aspects of learning and 

memory related to adult hippocampal neurogenesis, such as spatial learning and pattern 

separation. As adult neurogenesis has been shown to be implicated in the pathogenesis of 

anxiety and depression 145-147, these mice could also be tested for these two parameters with 

elevated plus maze, the open field tests, that are testing anxiety-related behaviour, and forced 

swim test, testing depression-related behaviour. As a complement, it would be exciting to test 

whether animals overexpressing NL2A in adult-born neurons are more resistant to social 

isolation and stress such as chronic restraint stress, as these two parameters decrease adult 

neurogenesis and are known to induce anxiety and depression-related behaviours in rodents 

148,149.  

 

Sahay et al. ablated Bax in adult neural stem cells to induce the expansion of the population of 

adult-born neurons by suppressing newborn neuron death during their maturation, and showed 

an improvement in pattern separation, but no effect on other types of learning such as object 

recognition, spatial learning, contextual fear conditioning and extinction learning, and no 

behavioural response like that induced by anxiolytic agents or antidepressants 150.  

 

However, if the hypothesis that adult-born neurons undergo a selection during which neurons 

unable to properly integrate into the circuitry are suppressed before 4 weeks of maturation is 

true, then the authors suppressed the hypothetical competition between adult-born neurons and 

other neurons, and allowed neurons that are weakly connected or not connected to the pre-

existing network to survive. In contrary, if this selection exists, our approach should keep this 

selective survival intact, because it should improve newborn neuron survival by increasing the 

ability of new neurons to connect to the network, instead of suppressing their ability to be 

eliminated from it.  In other words, at 4 weeks of maturation, NL2A-overexpressing neurons 

survive better because they passed the phase of competition and selection successfully, and not 

because this phase was suppressed. Thus, our study may shed light on the role of the phase of 

intense cell death that adult-born neurons undergo during their maturation. NL2A-

overexpressing neurons may also have increased synaptic plasticity, which should be verified 

by electrophysiological analyses, and, as synaptic plasticity is one of the important 

neurochemical foundations of learning, this increased plasticity and improved survival of 
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newborn neurons may have great effects on learning and memory performances of GAD67-

GFP-2A-NL2A mice. 

  

Synaptic plasticity, adult neurogenesis and learning and memory performances have been 

shown to decrease during aging by numerous studies 151,152. Similarly, Alzheimer’s disease is 

characterized by memory loss, and data from mouse models show that adult neurogenesis and 

synaptic plasticity are altered in this disease. NL2A overexpression in adult-born hippocampal 

newborn neurons in aged mice may restore adult neurogenesis levels, and additionally lead to 

the production of more plastic adult-born neurons. Therefore, one may expect an improvement 

in learning and memory performances in aged mouse overexpressing NL2A in adult-born 

hippocampal neurons. Similarly, restoring adult neurogenesis and allowing the production of 

more plastic hippocampal newborn neurons by overexpression of NL2A in newborn neurons 

of Alzheimer’s disease mouse models such as APP/PS1 mice and assessing the outcome on 

learning and memory capacities is of great interest in terms of clinical applications.  

 

In this study, although in some cases we observed morphological changes of the axons and 

mossy fiber terminals of adult-born neurons overexpressing an adhesion molecule, we aimed at 

modifying the post-synaptic properties of newborn neurons to increase or decrease the synaptic 

input they receive. However, the output new neurons send to the network may be equally 

important for their selection. 

 

Therefore, we could express Hm3Dq or Hm4Di using the same retroviral vector we used for 

overexpressing adhesion molecules in newborn hippocampal neurons, activate these receptors 

with peripheral injection of CNO during different time windows of development, and assess 

newborn neuron maturation and survival. The most interesting time window to increase or 

decrease firing in newborn neurons is the period of survival of adult-born neurons, i.e. before 4 

weeks of maturation. We expect that during this time window Hm3Dq activation will lead to 

an increase in neuronal firing rate, and as increased adult-born neuronal activity may increase 

adult-born neuron survival, to increased maturation and survival of adult-born neurons. Hm4Di 

activation will presumably decrease neuronal firing rate and might lead to a decrease in 

newborn neuron maturation and survival.  
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Conclusions and perspectives 

 

The work of my PhD suggests that intrinsic and extrinsic factors are involved in adult-born 

neuron survival: the activity of the network, the formation of functional astrocytic processes 

around the synapses of adult-born neurons, and the ability of newborn neurons to form 

functional synapses seem crucial for the further survival of adult-born neurons (Figure 50). 

 

 Figure 50: The synaptic integration and survival of adul-born neurons are influenced by intricated 

extrinsic (activity of the network, astrocytes) and intrinsic factors (synaptogenesis and synaptic 

activity of the neurons). In red, the manipulations we performed: 1) Anesthesia: Propofol anesthesia 

decreased newborn neuron survival and maturation. 2) Perisynaptic processes were present at the 

synapses of newborn neurons and blocking glutamate reuptake reduced synaptic transmission on new 

neurons. 3) Overexpression of adhesion molecules: The overexpression of a single adhesion molecule 

in newborn neurons was sufficient to increase synaptogenesis and survival of these neurons. The 

arrows show that these factors are interdependent. For example, astrocytes influence the 
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communication between newborn neurons and the rest of the network, and the synaptic activity of 

the network can modify the activity of astrocytes. 

 

These factors all play a role in the communication of adult-born neurons with their surrounding 

environment, i.e. neighbouring astrocytes and neurons.  Thus, our data suggest that increasing 

the ability of newborn neurons to communicate with the rest of the network, i.e. to receive 

information from neighbouring neurons or to send information to them, increases their survival. 

Similarly, we can hypothesize that newborn neurons unable to communicate with the rest of the 

network, i.e. unable to receive information from neighbouring neurons or to send information 

to them, are eliminated by apoptosis.  

 

This elimination may be crucial for the proper function of the network, and a dysfunction of 

this selection might be illustrated by pathologies such as epilepsy. Indeed, Jessberger and 

colleagues showed that epilepsy increases the maturation and survival of adult-born 

hippocampal neurons, and leads to a high number of aberrantly connected newborn neurons 114. 

These aberrant neurons may interfere with hippocampal function and contribute to cognitive 

impairment caused by epileptic activity in the hippocampus 115. Several reviews also suggest 

that these aberrant neurons may increase the risk of epileptic seizures, which induces a vicious 

circle, in which epilepsy leads to the production of aberrant neurons, which further increase the 

risk of epileptic seizures, leading to chronic epilepsy 116. In this disease, the selection of adult-

born neurons may be abolished by the increased activity of the network. As aberrant neurons 

are not eliminated anymore, they have detrimental effects on the rest of the network. This also 

illustrates the bidirectional relationship between the newborn neurons and the pre-existing 

network: newborn neurons have an effect on the function of the network, and, in turn, the 

network may influence newborn neuron survival by a feedback regulatory mechanism. 

 

In addition, our work showed that the regulation of the synaptic integration and survival of 

adult-born neurons takes place at many levels: at the level of the neuron itself, but also at the 

level of the cells of the network, i.e. neighbouring neurons and astrocytes. It is important to 

note that these levels are intricated (Figure 51): for instance, astrocytes have a role in newborn 

neuron synaptic transmission, but they also regulate the synaptic transmission of the other 

neurons of the network with the release of gliotransmitters, and thus influence the synaptic 

activity of the network 153.  
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In addition, parameters not related to synaptic communication, such as metabolic parameters, 

may also influence the selective survival of adult-born neurons. Indeed, Chichung Lie’s group 

showed that impaired mitochondrial function altered the survival of newborn neurons whereas 

it only had transient effects on the parameters of newborn neuron synaptogenesis they measured 

154. This highlights that, per se, functional metabolism of adult-born neurons may be crucial for 

their survival. 

 

In line with this, proper neurovascular coupling may be of importance for the survival of adult-

born neurons. Indeed, neurovascular coupling links neuronal activity to cerebral blood flow, 

which is primordial for coupling the supply of oxygen and nutrients to neurons and neuronal 

activity, as the need for oxygen and nutrients increases with neuronal activity. Astrocytes play 

a key role in neurovascular coupling 155(Petzold 2011). Indeed, the release of glutamate by 

presynaptic neurons in the synaptic cleft elicits the production and release of prostaglandin E2 

(PGE2) in the astrocytic process ensheathing the synapse. PEG2 release leads to the dilation of 

blood vessels, leading to a local augmentation of cerebral blood flow. Thus, neurovascular 

coupling is another potential important factor for survival, which depends, at least in part, on 

astrocytic function. 

 

In addition, microglia may also be involved in newborn neuron selection. Indeed, microglia has 

been shown to have a role in activity-dependent synaptic pruning 156-158. Microglia also 

phagocyte the newborn neurons that died by apoptosis 159, and activated microglia inhibits the 

proliferation of neuronal precursor cells 160. Thus, microglia and adult hippocampal 

neurogenesis are linked, but the effect of microglia on the survival of newborn neurons remains 

to be determined. The fact that microglia is involved in synaptic pruning suggests that microglia 

has a role in the elimination of non-functional synapses. Microglia might act after astrocytes in 

the selection of newborn neurons: astrocytes may select the synapses that are formed and 

persist, and microglia may eliminate non-functional synapses. Microglia might also eliminate 

synapses formed with the wrong partners. 

 

Neurotrophic factors also promote adult-born neuron survival: among them, BDNF: normal 

BDNF signaling is required for the survival of adult-born neurons 161,162. BDNF is released by 

neurons, glia, but also endothelial cells, and has different actions on these cells. Thus, the 

release of neurotrophic factors in the extracellular environment by different cell types adds a 

level of complexity to the regulation of newborn neuron survival and integration. 
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Last but not least, the role of timing has been shown to be crucial in adult-born neuron survival: 

when the neurons are formed determines whether they die or survive. We showed that newborn 

neurons displayed decreased survival when the mice were anesthetized at 17 dpi, whereas no 

effect was observed at 11 dpi. Additionally, Anderson et al. showed that associative learning 

increases the survival of hippocampal adult-born neurons only during a critical period:   neurons 

aged of 1 to 2 weeks at the time of training displayed increased survival after learning, whereas 

cells that were younger or older did not 163. Thus, the time when the neurons are generated 

determines whether they survive, and this highlights the fact that the survival of adult-born 

neurons depends on the needs of the network. Also, only few of the neurons that are produced 

daily survive, implying that the demands of the network may change within very short periods 

of time, and that a decrease or an increase in the survival of adult-born neurons coupled to 

variations in their production may allow a very quick adaptation to the needs of the network. 

 

Therefore, many extrinsic and intrinsic factors influence neuronal survival and might play a 

role in their selection. These factors are interdependent, which may permit a fine regulation of 

the survival of adult-born neurons and of their incorporation in the network (Figure 51). 

However, this selection is still hypothetical, and the criteria of survival of adult-born neurons 

remain unclear.  
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Figure 51: Potential factors influencing the choice between survival and death of newborn neurons. 

In blue: extrinsic factors; in black: intrinsic factors; in purple: factors that may be both intrinsic and 

extrinsic. In red, the manipulations we performed: 1) Anesthesia: Propofol anesthesia decreased 

newborn neuron survival and maturation. 2) Blockade of astrocytic glutamate reuptake: Perisynaptic 

processes were present at the synapses of newborn neurons and had a role in synaptic transmission. 

3) Overexpression of adhesion molecules: The genetic modification of a single adhesion molecule in 

newborn neurons was sufficient to produce modifications in synaptogenesis and survival of these 

neurons. The arrows show that these factors are interdependent. For example, astrocytes influence 

the communication between newborn neurons and the rest of the network, and the synaptic activity 

of the network can modify the activity of astrocytes. 

 

Understanding whether adult-born neurons are selected, and if yes, by which modalities, is 

crucial in terms of therapeutical applications. First, this is essential for finding the more relevant 

way to provoke a long-term increase in adult-born neuron survival and overall adult 
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neurogenesis in patients. Indeed, increasing adult hippocampal neurogenesis may be an 

efficient way to restore a number of granule cells in patients suffering from Alzheimer’s disease 

or Huntington’s disease, in the hope of improving their symptoms. It could also be of interest 

in neuropsychiatric diseases such as depression and schizophrenia, as adult neurogenesis has 

been shown to be altered in these pathologies.  

 

More generally, understanding how the neurogenic niche works and which factors are important 

for the generation, maturation and survival of neurons is crucial to be able to maybe, one day, 

replace neurons in any region of the brain. Indeed, adult neural stem cells have been isolated 

from diverse brain areas, including non-neurogenic areas, suggesting that they are present in 

the whole CNS 164. Understanding by which factors they start to produce new neurons, and 

what determines the subsequent survival of these neurons in the hippocampus, may allow to 

recreate a favorable environment for neurogenesis in other parts of the brain, which has great 

therapeutic implications.  
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