
A Dimerized HMX1 Inhibits EPHA6/epha4b in Mouse and
Zebrafish Retinas
Fabienne Marcelli1,2, Gaëlle Boisset1, Daniel F. Schorderet1,2,3*

1 IRO – Institute for Research in Ophthalmology, Sion, Switzerland, 2 Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, 3 Faculty

of Biology and Medicine, University of Lausanne, Lausanne, Switzerland

Abstract

HMX1 is a homeobox-containing transcription factor implicated in eye development and responsible for the oculo-auricular
syndrome of Schorderet-Munier-Franceschetti. HMX1 is composed of two exons with three conserved domains in exon 2, a
homeobox and two domains called SD1 and SD2. The function of the latter two domains remains unknown. During retinal
development, HMX1 is expressed in a polarized manner and thus seems to play a role in the establishment of retinal polarity
although its exact role and mode of action in eye development are unknown. Here, we demonstrated that HMX1 dimerized
and that the SD1 and homeodomains are required for this function. In addition, we showed that proper nuclear localization
requires the presence of the homeodomain. We also identified that EPHA6, a gene implicated in retinal axon guidance, is
one of its targets in eye development and showed that a dimerized HMX1 is needed to inhibit EPHA6 expression.
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Introduction

Homeobox-containing transcription factors represent an im-

portant class of factors involved in the regulation of embryogenesis

and other molecular programs. HMX1 is a homeobox-containing

transcription factor implicated in eye development. In 1992,

Stadler et al. described a new homeobox gene called GH6. This

gene was later renamed HMX1 and was assigned to the NKX5

family, the reason why HMX1 is also known as NKX5-3 [1]. Later,

further members were identified: HMX2 (NKX5-2), HMX3 (NKX5-

1) and, in chicken, zebrafish and medaka, SOHo-1 [2–4]. The

NKX5/HMX family of transcription factors contains a unique

homeobox region that is phylogenetically conserved. HMX1,

HMX2 and HMX3 contain two other conserved domains called

SD1 and SD2, located immediately C-terminally to the homeobox

[5]. The function of these domains is still unknown.

Whereas Hmx2 and Hmx3 play a role in inner ear develop-

ment, Hmx1 and SOHo-1 are mainly implicated in eye

development. In the mouse eye, Hmx1 expression can be detected

as early as E10.5, and transcripts are more specifically present in

the lens and in the antero-medial part of the neural retina [4–8].

In the developing chicken eye, it is expressed in the dorsal neural

retina and lens epithelium as well as in the optic nerve [9]. HMX1

expression starts 40 hours into development (stage 11) in the

surface ectoderm surrounding the optic vesicle. At optic cup

invagination (stage 14–15), it is expressed in the anterior/nasal

side of the early retina [10]. In zebrafish, hmx1 is first expressed in

the entire eye at 10 somite-of-stage (ss), and is then repressed in the

dorsal part at 18 ss. At 24 hours post fertilization (hpf), it is

restricted to the nasal retina and, one day later, expression is

restricted to the nasal part of the ganglion cell layer (GCL). At four

and five days post fertilization, signal is also observed in the nasal

part of the inner nuclear layer (INL). In the developing lens,

expression is observed from 24 to 72 hpf [11,12].

We recently reported a family with a 26-bp deletion in exon 1 of

HMX1 leading to the oculo-auricular syndrome of Schorderet-

Munier-Franceschetti (OMIM: 612109), characterized by mi-

crophthalmia, microcornea, nystagmus, cataract, coloboma, optic

nerve dysplasia, RPE abnormalities, rod-cone dystrophy and

deformation of the ear lobule [12,13]. A mouse model containing

a mutation in Hmx1 has been described [6]. It shows laterally

protruding ears, subtle changes in cranial bone morphology,

perinatal semi-lethality, reduced body mass and microphthalmia

with low-grade keratoconjunctivitis sicca and entropion. The eyes

show no evidence of microcornea, anterior segment dysgenesis,

cataract, coloboma, retinal detachment or retinal dysplasia. Quina

et al. observed a significant reduction of geniculate ganglion

neurons [7]. In vitro, HMX1 binds to a 59-CAAGTG-39 sequence,

represses transcription from a luciferase reporter containing this

binding site and can antagonizeNKX2.5, a cardiac homeo

protein, which is activating this same reporter construct [14].

Nkx2.5 is also known to dimerize at its homeodomain and other

regions in the C-terminus [15].

In this study, we showed that HMX1 acted as a dimer and that

the homeobox and the conserved domain SD1 were needed for

dimerization to occur. SD2 was not involved in the dimerization

process. We also identified EPHA6 as a target of HMX1 and

showed that HMX1 repressed the EPHA6 promoter in vitro. The

inhibitory activity of HMX1 was associated with the presence of

the SD1 and homeobox domains. Whereas the EPHA6 inhibition

was lost with mutants of each of these 2 domains, the SD2 mutant

showed a small activation of the EPHA6 promoter. Mutation of
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the three CAAG(TG) sequences of the promoter attenuated the

repression by HMX1. This inhibition was confirmed in vivo in

zebrafish embryos.

Materials and Methods

Plasmid Constructions
Subcloning was performed according to standard protocols.

Mutagenesis was performed using the QuickChange II Site-

Directed Mutagenesis Kit (Stratagene, Agilent Technology AG,

Basel, Switzerland). The sequence of the primers used in this study

is available from the authors.

Cell Culture and Transfection
Human embryonic kidney (HEK) 293T cells were cultured at

37uC and in 5% CO2 atmosphere, in Dulbecco’s Modified Eagle’s

Medium (DMEM) high glucose with stable glutamine (GE-

Healthcare, Glattbrugg, Switzerland), supplemented with 10%

FBS (Lonza, Basel, Switzerland), 100 U/ml penicillin and

100 mg/ml streptomycin (Invitrogen, Basel, Switzerland). Trans-

Figure 1. Dimerization of HMX1 in HEK 293T cells. HMX1 is dimerizing as shown by the increasing BRET2 ratio in presence of the two fusion
proteins. Data points represent the mean of two experiments +/2 SD (A). Co-immunoprecipitation was only observed in presence of the two HMX1
fusion proteins. IP was performed with anti-Renilla Luciferase antibody and WB with anti-GFP antibody (B). The size of the HMX1 band revealed with
anti-HA-Tag (6E2) Mouse mAb was twice the size in non-denaturing conditions as in denaturing conditions. As no higher molecular weight bands
were observed, it is unlikely that trimers were formed (C).
doi:10.1371/journal.pone.0100096.g001

A Dimerized HMX1 Inhibits EPHA6

PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e100096



fection was performed using the Calcium Phosphate method

(ProFection Mammalian Transfection System, Promega, Duben-

dorf, Switzerland).

BRET2

200’000 HEK 293T cells in DPBS were distributed into black

96-well microplates for fluorescence quantification. Filter sets were

adapted to 485 nm for GFP2 excitation and 510 nm for emission.

Cells expressing BRET2 donor (RLUC) alone were used to

determine the fluorescence background. 200’000 cells with

comparable fluorescence levels were distributed into white 96-

well microplates for luminescence quantification. The luciferase

substrate Coelenterazine 400A, DeepBlueC (Chemie Brunschwig,

Basel, Switzerland) was added to a final concentration of 5 mM.

Filter sets were adapted to 410 nm for luciferase emission and

515 nm for GFP2 emission. The emitted fluorescence and

luminescence were measured using an Envision 2103 Multilabel

Reader (PerkinElmer, Schwerzenbach, Switzerland), and analyzed

with the Wallac Envision Manager V1.12 software (PerkinElmer,

Schwerzenbach, Switzerland).

Co-immunoprecipitation
200 mg of proteins were immunoprecipitated overnight at 4uC

on a rotating wheel with 2.5 ml anti-Renilla Luciferase antibody

(MAB4400, Millipore, Zug, Switzerland). 20 ml of washed protein

G plus agarose beads (Santa Cruz, LabForce AG, Nunningen,

Switzerland) were added and incubated 2 hrs at 4uC on the

rotating wheel. After centrifugation at 4uC, the supernatants were
kept as controls. The pellets were resuspended in 25 ml 2x SDS

loading buffer and loaded on a 12% SDS-page gel, alongside with

20 ml of supernatant and 40 mg of proteins.

Western Blot
Proteins were extracted from cell cultures using RIPA (50 mM

Tris-HCl pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% sodium

deoxycholate, 0.1% SDS) and concentrations measured using the

Micro BCA Protein Assay Kit (Thermo Fisher Scientific, Reinach,

Switzerland) on a Multiplate Reader Synergy HT (Bio-Tek,

Luzern, Switzerland) with the KC4 software. The following

antibodies were used: HA-Tag (6E2) Mouse mAb #2367 (Cell

Signaling, LabForce AG, Nunningen, Switzerland), GFP N-

terminal G1544 (Sigma, Buchs, Switzerland), PARP (46D11)

Rabbit mAb #9532 (Cell Signaling, Labforce AG, Nunningen,

Switzerland), p62/SQSTM1 P0067 (Sigma, Buchs, Switzerland),

Ub (A-5) sc-166553 (Santa Cruz Biotechnology, LabForce AG,

Nunningen, Switzerland) and a-Tubulin Clone B-5-1-2 T5168

(Sigma, Buchs, Switzerland).

Figure 2. Identification of the domains of HMX1 needed for dimerization. Deletions of two of the conserved domains, the homeobox
(black) and SD1 (blue) prevented dimerization. Deletion of the SD2 domain (red) had no effect (A). Deletion of the C-terminus of the protein does not
prevent dimerization (B). Data points represent the mean of two experiments +/2 SD.
doi:10.1371/journal.pone.0100096.g002
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Native Western Blot
Cells were lysed in a non-denaturing lysis buffer (20 mM Tris-

HCl, 137 mM NaCl, 10% glycerol, 1% Triton X-100, 2 mM

EDTA, pH 8.0). The protein concentrations were measured as

described above. 5 mg were loaded on a Mini-Protean TGX

precast gel 4–15% (BioRad Laboratories AG, Cressier, Switzer-

land) with non-denaturing loading buffer (300 mM Tris-HCl

pH 7.8, 30% glycerol, 0.6% bromophenol blue) and migrated

without denaturation in a running buffer without SDS.

GFP2 Fluorescence Imaging and Nuclei Isolation
Cells were analyzed 48 hrs post-transfection under a Zeiss

Axiovert 200 microscope with filters adapted for excitation and

emission at lex= 480 nm and lem=510 nm, respectively, and

the AxioVision 4.2 software. For nuclei isolation, cells were

counted and resuspended at 108 cells/ml Nuclei Isolation Buffer

(250 mM sucrose, 20 mM Hepes pH 7.8, 10 mM KCl, 1.5 mM

MgCl2, 0.5 mM spermidin). Cells were then homogenized with a

Potter and spread on a slide.

In Silico Search for a Nuclear Localization Signal (NLS)
The mouse HMX1 sequence was entered in the NLS-Mapper

software that can be found at http://nls-mapper.iab.keio.ac.jp/

cgi-bin/NLS_Mapper_form.cgi.

Immunofluorescence
Immunofluorescence was performed 24 hrs post transfection.

When necessary, 50 mM chloroquine were added for 16 hrs. The

primary antibody (LC3B #2775, Cell Signaling, LabForce AG,

Nunningen, Switzerland) was diluted in 1x PBS +2% NGS +0.2%
Triton X-100 and incubated overnight at 4uC in a humid

chamber. The secondary antibody (Alexa Fluor 594 goat a-rabbit
IgG (H+L) (A11012), Molecular Probes, LubioScience, Luzern,

Switzerland) was diluted in the same buffer, and incubated 1 hr at

Figure 3. Cellular expression of the fusion proteins between GFP and HMX1 and its mutants in HEK 293T cells. GFP is expressed in the
whole cell (A), whereas GFP-HMX1 is expressed in the nucleus (B). The different mutants, GFP-HMX1 del SD1 (C), GFP-HMX1 del SD2 (D), GFP-HMX1
del Cter1 (E), GFP-HMX1 del Cter2 (F), GFP-HMX1 del Cter3 (G), GFP-HMX1 del Cter4 (H) and GFP-HMX1 del Cter5 (I) retain a nuclear localization. GFP-
HMX1 del HD on the other hand is expressed in a punctate manner (J). These aggregates are present in the nucleus as well as in the cytoplasm:
compare L (GFP-HMX1 del HD before nuclei isolation) and P (GFP-HMX1 del HD after nuclei isolation) to K (GFP-HMX1 before nuclei isolation) and O
(GFP-HMX1 after nuclei isolation). Reinsertion of the seven-amino acid KKTRTVF did not change the punctate phenotype (M), nor did the deletion of
the Cter half of the homeobox (N). Scale bars: 50 mm for A-J, M, N; 10 mm for K, L, O, P.
doi:10.1371/journal.pone.0100096.g003
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RT in a humid chamber in the dark. Nucleic acids were stained

with 100 mM DAPI (4,6-diamidino-2-phenyl-indole HCl) (1/

19500 in 1x PBS) for 10 min in a humid chamber in the dark.

Cells were then mounted with Citifluor AF1 (Citifluor Ltd,

Leicester, UK), and conserved at 4uC. The slides were analyzed

under an Olympus BX61 microscope and the CellM software

(Olympus, Volketswil, Switzerland).

Hoechst-PI Staining
20 mg/ml bisBenzimide H 33342 trihydrochloride (Sigma,

Buchs, Switzerland) and 1 mg/ml Propidium Iodide (Fluka,

Buchs, Switzerland) were diluted 1/29000 into the culture

medium. Cells were analyzed under a Zeiss Axiovert 200

microscope and the AxioVision 4.2 software.

Luciferase Assays
48 hrs post transfection cells were washed with 1x PBS, and

300 ml luciferase assay lysis buffer (100 mM K2HPO4 pH 7.8,

0.2% Triton X-100) were added. Cells were scraped at 4uC and

centrifuged 3 min at 129000 rpm at 4uC. 5 ml of supernatant were
transferred to a transparent 96-well plate containing 50 ml 2x b-gal
buffer (120 mM Na2HPO4, 80 mM NaH2PO4, 2 mM MgCl2,

100 mM b-mercaptoethanol). 50 ml of 2x ONPG (1.33 mg/ml 2-

nitrophenyl-B-D-galactopyranoside) were added and the plate

read at 412 nm of absorbance on a Multiplate Reader Synergy

HT (Bio-Tek, Luzern, Switzerland) with KC4 software. If the

values were constant in all conditions, 5 ml of supernatants were
transferred to a white 384-well plate, 20 ml of Luciferase Assay

Reagent (Promega, Dubendorf, Switzerland) were added and

luminescence measured on the Multiplate Reader Synergy HT

every 3 minutes until the peak of luciferase activity was reached.

The obtained values were normalized using a b-gal reporter under
the control of a CMV promoter. A mean between the 3 highest

values was used for the luciferase/b-gal ratio. Each experiment

was performed three times in duplicates. Only transfections with

stable b-gal values between the different conditions, indicating

similar transfection efficiency, were used. Two-tailed Student’s T-

tests with unequal variance were used to determine statistical

differences between the conditions.

Chromatin Immunoprecipitation
All experiments involving live animals were authorized by the

Veterinary Service of the State of Valais under authorizations Nu
VS-13 and VS-19. The litter of four was housed with the mother

and was anesthetized with isoflurane prior to being euthanized by

cervical dislocation. Retinas from four 2-week-old wild-type

C57Bl/6J mice were dissected, fixed, and homogenized. Glycine

was added to a final concentration of 0.125 M before centrifu-

Figure 4. Determination of the nature of the GFP-HMX1 del HD aggregates. GFP-HMX1 del HD aggregates do not colocalize with LC3B and
are thus not included in autophagosomes (A–C). Cells expressing GFP-HMX1 del HD (green) present no increased autophagy, and HMX1 del HD
aggregates do not colocalize with autophagosomes (LC3B staining in red, after 50 mM chloroquine treatment for 16 hrs). Likewise, p62 and ubiquitin
levels were not increased, confirming that autophagy was not activated (D). Scale bars: 50 mm.
doi:10.1371/journal.pone.0100096.g004
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Figure 5. Action of HMX1 on the EPHA6 promoter. Schematic representation of the subcloned fragment of the EPHA6 promoter with the three
binding sites (red arrows and black characters), and the mutated sequences (red characters) (A). Luciferase assay on the wt EPHA6 promoter with
HMX1, HMX1 del SD1, HMX1 del SD2 and HMX1 del HD. HMX1 inhibits the promoter by 42%, HMX1 del SD1 and HMX1 del HD have no effect, and
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gation. The pellet was resuspended in nuclei lysis buffer (50 mM

Tris-HCl pH 8.0, 10 mM EDTA pH 8.0, 1% SDS). The resulting

chromatin was sonicated, snap-frozen in liquid nitrogen, and kept

at 280uC. The next day, the tube was centrifuged, and the

supernatant transferred to new eppendorf tubes containing 10 ml
of Protein A-Agarose beads (Roche, Basel, Switzerland). 100 ml of
supernatant were pre-cleared with the 10 ml of beads for 1 hr on a

rotating wheel at 4uC. The tubes were centrifuged and the

supernatants transferred to new tubes. A control tube containing

10 ml 5% BSA and a test tube with 2 ml Hmx1 antibody

(ARP32629_P050, Aviva, LubioScience, Luzern, Switzerland)

were prepared. The tubes were incubated overnight at 4uC on a

rotating wheel. After 10 ml of Protein A-Agarose beads were added

to both tubes and another incubation, the tubes were centrifuged

and the supernatants were kept at 280uC (=TIC). The pellets

were washed in IP wash buffer nu1 (0.1% SDS, 1% Triton X-100,

20 mM EDTA pH 8.0, 150 mM NaCl, 20 mM Tris-HCl

pH 8.0), 4 times in IP wash buffer nu2 (0.1% SDS, 1% Triton

X-100, 2 mM EDTA pH 8.0, 500 mM NaCl, 20 mM Tris-HCl

pH 8.0), once in IP wash buffer nu3 (250 mM LiCl, 1% NP-40,

1% deoxycholate, 1 mM EDTA pH 8.0, 10 mM Tris-HCl

pH 8.0) and once in TE 10:1 (10 mM Tris-HCl pH 7.5), 1 mM

EDTA pH 8.0). The antibody was eluted from beads by adding

150 ml IP elution buffer (50 mM NaHCO3, 1% SDS) twice and by

shaking 15 min at RT. 12 ml 5M NaCl and 1 ml RNase A (10 mg/

ml) (Roche, Basel, Switzerland) were added and the tubes were

incubated 5 hrs at 67uC. The TIC samples were thawed and

100 ml transferred to new tubes. 500 ml IP elution buffer, 24 ml 5
M NaCl and 2 ml RNase A (10 mg/ml) were added, and the tubes

were incubated 5 hrs at 67uC. After incubation, 2.5 volumes 100%

EtOH were added for precipitation overnight at 4uC. The next

day, the tubes were centrifuged and the pellets were dissolved in

100 ml TE 10:1. 25 ml proteinase K buffer for ChIP (50 mM Tris-

HCl pH 7.5, 25 mM EDTA pH 8.0, 1.25% SDS) and 1 ml
proteinase K (Roche, Basel, Switzerland) were added, and the

tubes incubated 2 hrs at 45uC. 175 ml TE 10:1 and 300 ml
Phenol:Chlorophorm:Isoamyl Alcohol 25:24:1 (Sigma, Buchs,

Switzerland) were added, the tubes shaken and centrifuged.

30 ml of 5 M NaCl, 1 ml of 5 mg/ml glycogen and 750 ml of 100%
EtOH were added to the supernatants, mixed and precipitated

overnight at 4uC. The next day, the tubes were centrifuged, the

supernatants were removed and the pellets resuspended in 30 ml
TE 10:1. PCR analysis was performed on 2 ml of samples.

Generation of the Zebrafish Hsp70-HMX1 Transgenic
Line
AB zebrafish were raised and kept under standard laboratory

conditions at 28.5uC. Transgenesis was performed by generating

Tol2 transposon constructs using the tol2kit [16]. The zebrafish

hmx1 coding sequence was cloned downstream of the hsp70

promoter and the DNA construct together with the transposase

mRNA were injected at the one-cell stage. Fish were raised to

adulthood and the cardiac GFP expression was used as a marker

for germline transmission. Experiments were done on F3 obtained

from F2 that were intercrossed in order to increase the number of

larvae carrying the transgene. Tg (hsp70: hmx1) and wt were heat

shocked at 1 dpf during 30 min at 39uC, euthanized and fixed

4 hrs after.

Whole-mount in situ Hybridization
Standard one-color whole-mount in situ hybridization was

performed at various stages. Hybridization reaction was done at

68uC for 14–18 hrs. Washing steps and antibody incubation were

performed in an in situ machine (BioLane HTI, Hölle&Hüttner,

Tubingen, Germany). Templates used to generate DIG-labeled

RNA probes included zebrafish hmx1 (ID: 797503), epha4b (ID:

64270) and pax6 (ID: 60639). In vitro transcription was done with

the Roche RNA Labeling Kit (Roche Applied Science, Basel,

Switzerland).

Results

HMX1 dimerizes through the SD1 and homeobox
domains
The ability to homo- or heterodimerize has been demonstrated

for many transcription factors, including the NKX member

NKX2-5, a cardiac homeobox gene that dimerizes through its

homeodomain (HD) [15]. We therefore investigated, using a

BRET2 approach, whether HMX1 behaved similarly and formed

dimers or oligomers. The BRET2 technique is based on the energy

transfer occurring between the renilla luciferase (RLUC) and the

green fluorescent protein (GFP) when they are in close proximity.

The principle of the technique is to generate fusion proteins

between proteins of interest and the RLUC and the GFP, and

measure the energy transfer in culture conditions to determine if

the proteins of interest are interacting.

When plasmids expressing fusion proteins between RLUC and

HMX1, and GFP2 and HMX1 were mixed and transfected in

HEK 293T cells, a robust increase in the BRET2 ratio was

observed with increasing concentrations of GFP2-HMX1, indi-

cating that HMX1 dimerized (Figure 1A). We confirmed

dimerization of HMX1 by co-immunoprecipitation (co-IP) using

an RLUC antibody for immunoprecipitation and a GFP antibody

for blotting. Out of the six conditions tested, the only condition in

which immunoprecipitation occurred was when the two different

HMX1 fusion proteins were present (Figure 1B). Non-denaturing

electrophoresis was also used to further confirm this result. As no

western-blot suitable antibody against HMX1 existed, we tagged

HMX1 with an HA-tag and used antibodies against HA to

visualize the fused HA-HMX1 protein. HA-tagged wild-type

HMX1 proteins were loaded on a non-denaturing native

electrophoresis gel and sizes were compared to a denaturing gel

after western blot analysis with an anti-HA antibody. The size of

the band in non-denaturing conditions was twice the size of the

band in denaturing conditions, suggesting dimerization. As no

bands of higher molecular weight were observed, it is unlikely that

trimers or other multimers were formed (Figure 1C).

In order to determine the dimerization domain of HMX1, we

generated deletions of various portions of the protein. HMX1 is

composed of two exons, with three conserved domains in exon

two: the homeobox (HD), and two domains called SD1 and SD2,

located 39 to the HD and whose function is presently unknown.

We deleted each of these domains separately by site-directed

mutagenesis and repeated the BRET2 experiments. As shown in

figure 2A, deletions of HD or SD1 led to the loss of dimerization,

whereas deletion of SD2 had no effect. This suggested that HD

and SD1 were implicated in the dimerization of HMX1. In order

HMX1 del SD2 slightly activates the promoter (B). Chromatin immunoprecipitation on 2-week-old C57Bl/6J retinas demonstrated the physical
interaction between HMX1 and the EphA6 promoter. 5% BSA was added in the control conditions instead of the Hmx1 antibody. TIC= total input
chromatin (C). Mutation of the HMX1 binding sites attenuates the effect of HMX1 and HMX1 del SD2 but does not completely abolish it (D). Data
points represent the mean of three experiments +/2 SD. ** : P,0.01. * : P,0.05 (Student’s T-test).
doi:10.1371/journal.pone.0100096.g005
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Figure 6. Regulation after hmx1 misexpression in zebrafish. Expression of hmx1 after heat shock in wt and tg (hsp70:hmx1) embryos (A, B).
Hmx1, normally restricted to the nasal retina, lens and ear (arrows in A), was broadly expressed in the transgenic embryo (B). Epha4b expression after
heat shock in wt and Tg (hsp70:hmx1) embryos (C–F). Dissected eye showed a strong reduction of epha4b expression in the temporal retina when
HMX1 was co-expressed (E, F). Pax6 regulation after HMX1 misexpression in zebrafish. Ocular expression of pax6 in wt (G) was not modified by
overexpression of HMX1 in Tg(hsp70:hmx1) embryos (H). Scale bars: 100 mm.
doi:10.1371/journal.pone.0100096.g006
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to confirm these results and to show that the HMX1 C-terminal

region was not involved in dimerization, in contrary to that of

NKX2-5, we generated serial deletions of the C-terminal part of

the protein. None of these constructs prevented dimerization as

shown by BRET2 (Figure 2B).

The Entire HD is Necessary for Correct Nuclear
Localization of HMX1
Fusing HMX1 to the GFP2 reporter allowed us to visualize its

cellular localization. GFP alone localized to the cytoplasm

(Figure 3A), whereas GFP-HMX1 localized to the nucleus

(Figure 3B). All of the generated mutants retained this nuclear

localization except one (Figure 3C–J). The HD deletion mutant

was expressed in a punctate manner in the nucleus as well as in the

cytoplasm (Figure 3K, L, O, P). This punctate phenotype could

possibly be due to the loss of a nuclear localization signal located in

the homeobox. We therefore tested the sequence for potential

nuclear localization signals (NLS) using NLS mapper, a bioinfor-

matic tool available online. The analysis of HMX1 revealed the

presence of a monopartite NLS -RGGRRKKTRTVF-, with

KKTRTVF corresponding to the very beginning of the HD, with

a score of 9.5. Deleting this signal could thus explain why the GFP-

HMX1 del HD protein lost its nuclear localization. To test this

hypothesis, we reinserted the seven-amino acid KKTRTVF into

the HMX1 del HD sequence. However, reinserting these amino

acids did not modify the punctate expression and localization of

this mutant (Figure 3M). To verify if the predicted NLS needed

additional amino acids to be functional, we generated a new

mutant with a deletion of the C-terminal half of HD (30 amino

acids). However, this construct was still expressed in a punctate

manner similar to the deletion of the entire HD (Figure 3N).

The homeobox of HMX1 is of helix-turn-helix-loop-helix type.

It is likely that removal of any part of this structure prevents the

correct folding of the protein and that it activates clearance

mechanisms. In an effort to determine the nature of the aggregates

generated by the GFP-HMX1 del HD mutant, we tested several

hypotheses. First, the shape, size and distribution of the aggregates

suggested that they could be autophagosomes induced by the

abundant expression of aberrant proteins. We therefore verified if

GFP-HMX1 del HD colocalized with LC3B by immunofluores-

cence, but this was not the case (Figure 4A, B, C). Even after

treating cells with chloroquine to visualize autophagosomes, GFP-

HMX1 del HD did not colocalize with autophagosomes. To

confirm this result, we also tested whether p62 and ubiquitin

expression was increased in the presence of GFP-HMX1 del HD.

The role of ubiquitin is to clear abnormal proteins by targeting

them for degradation by the 26S proteasome. Poly-ubiquitinated

protein aggregates are also sequestered in inclusion bodies

containing p62, and the aggregates are cleared via autophagy.

In our experiments, we did not observe any increase in expression

of these two proteins, indicating that these mechanisms were not

activated (Figure 4D). To determine whether the cells were

suffering from the presence of GFP-HMX1 del HD aggregates, we

looked for the presence of increased apoptosis by PARP cleavage

assay. Cleavage of PARP by Caspase-3 is a step in the cascade

leading to apoptosis. However, we failed to show any such increase

(data not shown). Moreover, no increased cell death was observed

when performing a Hoechst-PI staining for dying cells (data not

shown). The exact nature of these punctae could thus not be

determined and we do not know at this time whether they

represent pure HMX1 aggregates or a more complex structure.

HMX1 Binds to the Promoter of EPHA6/epha4b and
Inhibits its Expression
HMX1 and SOHO-1 are defining the EPHA3 expression

domain in the developing chick retina [10]. Ephrins act as

topographically specific repulsive guidance cues for ganglion cell

axons. EPHA3 is expressed in a temporal.nasal gradient in the

developing chick retina and is present on ganglion cell axons

during the time of target innervations. HMX1 and SOHO-1 are

expressed in an inversed gradient to that of EPHA3 (nasal.

temporal), and when HMX1 and SOHO-1 are expressed

ectopically, EPHA3 expression is lost. EPHA3 thus appeared to

be a good candidate as a target for HMX1. However, ephrins do

not have the same patterns of expression and do not play the same

roles between different species. In the ganglion cell layer, where

Hmx1 is expressed on the nasal side, EphA5 and EphA6 (P0

mouse) and EPHA3 (chicken) are only expressed on the temporal

side [10,17,18]. Chicken EphA5 and EphA6 are uniformly

expressed in the chick retina, and EphA3 is not expressed in the

mouse retina GCL [17,19–21]. Therefore mouse EphA5 and

EphA6 seem to be functional homologs of chicken EPHA3, which

suggests that HMX1 could repress the activity of the EphA5 or

EphA6 promoter in mouse. In zebrafish, epha4b is expressed in

the same temporal pattern as chicken EPHA3 and mouse EphA5

and EphA6, whereas epha6 is not expressed in the eye (not shown).

Amendt et al. showed that HMX1 was preferentially binding to

a CAAG(TG) sequence [14]. The EPHA6 promoter contains three

such binding sites, the second being conserved between human

and mouse (239 relative to the ATG), whereas the EPHA5

promoter does not contain any. EPHA6 was also identified as a

potential target of HMX1 using a predictive promoter model that

we recently developed [22]. We therefore analyzed the effect of

HMX1 on the human EPHA6 promoter. The technique we used

allowed measuring the activity of the promoter by placing a

luciferase reporter under its control. We subcloned a fragment

spanning from 2150 to +150 nucleotides relative to the EPHA6

translation initiation codon into a luciferase reporter vector. This

fragment represented the minimal EPHA6 promoter with a 13-fold

increased activity compared to pGL3-basic vector. Shorter

fragments (2100 to +150 and 250 to +150) displayed reduced

promoter activity (five- and three-fold increased activity, respec-

tively, compared to pGL3-basic vector) whereas the +1 to +150
fragment displayed no promoter activity (data not shown). The

measured activity values were normalized using a b-gal reporter
under the control of a CMV promoter. The subcloned fragment

contained three potential binding sites for HMX1: one CAAGTG

in the forward direction at position –39, one CAAG in the forward

direction (220) and one CAAG in the reverse direction (265)

(Figure 5A). We performed luciferase assays with wild-type HMX1

and the mutants deleting the HD, SD1 or SD2. As shown in

figure 5B, HMX1 was inhibiting the EPHA6 promoter activity by

42%. The physical interaction between HMX1 and the EphA6

promoter was demonstrated by chromatin immunoprecipitation

on retinas isolated from two-week-old C57BL/6J mice (Figure 5C),

a technique allowing to determine which proteins bind to a DNA

fragment by crosslinking them and selecting for the fragments

bound to the protein by immunoprecipitation and PCR amplifi-

cation of the fragment. We also validated this interaction in vivo on

the zebrafish epha4b gene, the functional homolog of EPHA6,

having two HMX1 binding sites in its promoter. We generated a

transgenic fish line expressing a ubiquitous heat-shock activated

hmx1 gene and showed by in situ analysis that the aberrant ectopic

expression of hmx1 in the temporal retina reduced the expression

of epha4b (Figure 6A–F), which was not the case for the control

gene pax6 (Figure 6G–H).
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We then checked whether dimerization was needed for HMX1

repressive activity. Mutant constructs preventing dimerization, i.e.

deletions of HD or SD1, had no activity, indicating that only

dimerized HMX1 regulates EPHA6 expression. The mutant with a

deleted SD2 domain slightly activated the EPHA6 promoter,

suggesting that this region might represent the binding site of a

cofactor needed for the inhibitory activity of HMX1 (Figure 5B).

In order to confirm that the CAAG/CAAGTG sites represented

bona fide binding sites for HMX1, we mutated them into the

sequences shown in red in figure 5D. Control experiments showed

that these mutations did not affect EPHA6 promoter activity (data

not shown). Transfection experiments using these mutated

constructs showed a reduction of the inhibitory activity of

HMX1 from 42% to 22% (Figure 5D). This indicates that the

CAAG/CAAGTG sites represent true binding sites for HMX1.

However additional sites might exist, as deletion of CAAG/

CAAGTG sites failed to completely abrogate the inhibition.

Discussion

The interest in the HMX1 transcription factor has surged with

the discovery in 2008 that it was causing the oculo-auricular

syndrome of Schorderet-Munier-Franceschetti [12]. In addition of

being expressed in somatosensory organs [23], Hmx1 has been

shown to retain a neuronal fate in migrating neural crest cells [24]

and to modulate the adrenergic/cholinergic program of sympathic

neurons [25]. It is also well expressed in sensory spinal and cranial

ganglia [9]. In C. elegans, the Mls-2 gene, a member of the HMX

family, regulates cytoskeletal organization and cell elongation [26].

However, few contributions have been published about its mode of

action in the eye. We therefore investigated its role in eye

development.

We showed that HMX1 exerts an inhibitory effect on EPHA6

and that dimerization is necessary for this activity. Luciferase

assays are known for producing artefactual results. By increasing

the number of replicates and analyzing only the experiments

where all conditions showed similar transfection efficiencies, we

were able to obtain stable results, which were further confirmed by

ChIP and in vivo experiments in zebrafish. Mutations that removed

the dimerization domains of HMX1, i.e. the HD and SD1

domains, abolished its inhibitory efficiency on EPHA6 promoter.

Removing the HD also perturbed the cellular localization of

HMX1, which was no longer restricted to the nucleus. All other

mutants, including deletion of the SD1 domain, maintained a

strict nuclear expression indicating that SD1 is involved in

dimerization while the HD is necessary both for dimerization

and nuclear localization. In addition to ChIP validation in mouse

retina, we also showed that ectopic overexpression of HMX1 in

the whole eye in a zebrafish transgenic animal in which expression

of HMX1 was under a heat-shock-inducible promoter was

accompanied by a reduction of epha4b ocular expression, the

zebrafish functional homolog of EPHA6.

The role of the SD2 domain remains unknown. We showed that

a deletion mutant, which was dimerizing normally, was not

inhibiting the EPHA6 promoter like the wild type protein, but was

slightly activating it, instead. This conserved domain could thus be

an interaction site for a cofactor necessary for the inhibition action

of HMX1.

When deleting the homeobox, we observed that the GFP-

HMX1 fusion protein lost its specific nuclear localization, and

became expressed in a punctate manner in the nucleus as well as in

the cytoplasm. Our first hypothesis was that the protein lacking the

homeobox was misfolded, and therefore activated clearance

mechanisms, either by autophagy or by the proteasome degrada-

tion system. The homeobox of HMX1 has a well defined helix-

loop-helix-turn-helix tertiary structure type. It is possible that

deleting it entirely or part of it changes the three-dimensional

structure enough to activate the clearance mechanisms for

misfolded proteins. However, we could not detect any indication

that these mechanisms were triggered. One of the main

components of autophagosomes is LC3B, and we therefore tested

whether it colocalized with GFP-HMX1 del HD. This was,

however, not the case even after blocking autophagy using a

chloroquine treatment. We did not observe an increase in

expression of ubiquitin and p62, confirming that the HMX1

aggregates were not autophagosomes, and that the proteasome

was not activated. The HMX1 del HD aggregates did not induce

cell death either as we observed no increase in PI-stained cells

compared to other transfections (not shown). Moreover, PARP

was not cleaved by Caspase 3 in GFP-HMX1 del HD

transfections, indicating an absence of apoptosis (not shown).

Thus, we do not know at this time what is the exact nature of these

GFP-HMX1 del HD aggregates and if they represent pure HMX1

aggregates or a more complex structure.

In a previous study, we showed that a morpholino-based knock-

down of zebrafish hmx1 had no effect on retinal patterning [11],

which is in contradiction to the results obtained previously in the

chick retina [10] and the results presented here. However, in

chicken the relationship between HMX1 and EPHA3 was shown

by overexpressing HMX1 on the temporal side of the retina where

it is not expressed normally. The same procedure was used in the

current work. In our previous study, hmx1 was knocked-down on

the nasal side of the retina, whereas the temporal part was

unaffected by this procedure, and epha4b was able to play its role in

the temporal retina.

In summary, we showed that HMX1 exerts its inhibitory

activity through a dimer and identified EPHA6 as a target of

HMX1. Identifying other targets will allow us to further

understand the role of HMX1.
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