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Abstract In this paper we consider dependent random variables with common regu-
larly varying marginal distribution. Under the assumption that these random variables
are tail-independent, it is well known that the tail of the sum behaves like in the inde-
pendence case. Under some conditions on the marginal distributions and the depen-
dence structure (including Gaussian copula’s and certain Archimedean copulas) we
provide the second-order asymptotic behavior of the tail of the sum.
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1 Introduction

Assume that X1, . . . , Xn are dependent random variables, which have a marginal
distribution F that is regularly varying with index α. If further these random variables
are pairwise asymptotic independent. Then (see e.g. Davis and Resnick 1996)

lim
u→∞

P (X1 + · · · + Xn > u)

P (X1 > u)
= n. (1)
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For independent random variables it is shown in Omey and Willekens (1986) (see
also Albrecher et al. 2010, for a recent survey), that under some regularity conditions
on F and for α > 1, the second order approximation is

P(X1 + · · · + Xn > u) = nF(u) + 2

(
n

2

)
E [Xi ] f (u) + o( f (u)), u → ∞,

where f is the probability density function of F and F(x) := 1 − F(x). A heuristic
argument suggests that the sum is large if one component is large and the others are
behaving normally, hence

nF (u − (n − 1)E [X1]) (2)

is a better approximation than nF(u), this argument is verified in Albrecher et al.
(2010). In the dependent case, it is natural to assume that replacing the mean in
Eq. 2 by a conditional mean leads to a better approximation. A Taylor argument then
suggests that the second-order asymptotics is given by

P(X1 + · · · + Xn > u) = nF(u) + (1 + o(1)) f (u)

n∑
i=1

E [(Sn − Xi )|Xi = u] , (3)

where Sn := X1 +· · ·+ Xn . However, for a given dependence structure it is not obvi-
ous how to evaluate E [(Sn − Xi )|Xi = u] and the determination of the asymptotic
behavior can be quite tedious. In this paper we provide conditions under which Eq. 3
is valid.

An interesting application of second order asymptotics is Monte Carlo simulation.
Whereas the first order asymptotics are used to study the efficiency of estimators,
second order estimates can lead to a better understanding of these estimators. For
example for the sum of independent random variables Asmussen and Kroese (2006)
define the estimator

Z AK (u) := nF((u − Sn−1) ∨ Mn−1).

Heuristically, one can see the connection to second order asymptotic approximation:

nF((u − Sn−1) ∨ Mn−1) ≈ nF((u − Sn−1)) ≈ nF((u − (n − 1)E [X1])).

The rest of the paper is organized as follows. In Section 2 we review basic con-
cepts of dependent random variables and regularly varying distributions further we
introduce some key Assumptions which either only depend on the marginal distri-
bution or on the copula and the index of regular variation. In Section 3 we derive
the second order asymptotics under technical conditions. In Sections 4–6 we present
three families of copulas which fulfill these conditions. Further we provide numerical
examples in Section 7. Finally the proofs are provided in the Appendices.
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2 Preliminaries and notations

We will assume that the marginal distribution F is regular varying with continuous
density f that is also regularly varying i.e.

lim
u→∞

F(xu)

F(u)
= x−α and lim

u→∞
f (xu)

f (u)
= x−α−1.

An introduction to regularly varying functions can be found in Bingham et al. (1989).
Note that the assumption that F is continuously differentiable is a little stronger than
the assumption in the independent case (c.f. Barbe and McCormick 2009), since we
assume differentiability for all values of x . We need this condition since unlike in the
independent case also the left tail of the marginal distribution can have an influence
on the asymptotic behavior (c.f. Proposition 4.3 below).

To assess the dependence between the random variables X1, . . . , Xn , we assume
that we know its multivariate distribution function or equivalently, its copula C
defined through

P(X1 ≤ x1, . . . , Xn ≤ xn) = C(F(x1), . . . , F(xn)).

To shorten notation for every 1 ≤ m ≤ n let y−m := (y1, . . . , ym−1, ym+1, . . . yn)

and for functions

C(F(y−m), F(y)) := C(F(y1), . . . , F(ym−1), F(y), F(ym+1), . . . , F(yn))

and f (y−m) := ∏
i �=m f (yi ). For partial derivatives of C with respect to the m-th

variable we write Cm hence C1···n denotes the density of the copula (which we assume
that exists). We will denote the density of the marginal copula of the i-th and j-th
(i �= j) variable with

Cm
i j (xi , x j ) =

∫ 1

0
· · ·
∫ 1

0
C1···n(x1, . . . , xn)dx−{i, j}

Conditional probabilities can be expressed through the copula by

P(X1 ≤ x1, . . . Xm−1 ≤ xm−1, Xm+1 ≤ xm+1, . . . , Xn−1 ≤ xn−1|Xm = u)

= ∂

∂y
C(F(x−m), y)

∣∣∣∣
y=F(u)

= Cm(F(x−m), F(u)). (4)

In the case that C1···n and the density f are continuous function one can easily show
that for every u this defines a (n − 1)-dimensional distribution. When ever we will
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refer to conditional distributions in this paper we mean the version defined through
Eq. 4. Related to the conditional distributions is the function

hi, j (s, t) :=
∫ 1

1−s
Cm

i j (x, (1 − t))dx .

Note that

hi, j
(
F(δu), F(yu)

) = P(Xi > δu|X j = uy)

If Eq. 3 holds then we have to assume that the probability that two variables Xi and
X j are large in common or that one variable X j is much larger then u is asymptoti-
cally negligible for the second order approximation. These conditions correspond in
the independent case to the condition that α > 1. These assumptions can be expressed
in terms of conditional distributions, or equivalently in terms of the functions hi, j .

Assumption 2.1 There exits a ĉ1 > 0, 0 < ε1 < 1, ε2 > 0 such that for all i �= j

lim
a→0

sup
ε1<y<(1+ε2)

hi, j (a, ya)

h(i, j (a, a)
≤ ĉ1

Assumption 2.2 For some ε0 > 0, γ1 > γ2 > 1
α

, ĉ2 > 0, ĉ3 > 0 and all (1 + ε0)

(2(n − 1))α < δ < M uniformly for y ∈ [δ, M],

ĉ2(y/δ)γ1 ≤ lim inf
a→0

hi, j (ya, a)

hi, j (δa, a)
≤ lim sup

a→0

hi, j (ya, a)

hi, j (δa, a)
≤ ĉ3(y/δ)γ2 , i �= j.

Further for ε0 > 0, γ3 > 1
α

, ĉ4 > 0 and δ = (1 + ε0)(2(n − 1))α , uniformly for
y ∈ (0, δ]

lim sup
a→0

hi, j (ya, a)

hi, j (δa, a)
≤ ĉ4 yγ3 , i �= j.

The upper tail-dependence coefficients are specified by (see e.g. Coles et al. 1999)

λi, j := lim
u→∞

P(Xi > u, X j > u)

P(Xi > u)
and ρi, j = lim

u→∞
2 log(P(Xi > u))

log(P(Xi > u, X j > u)
− 1

Note that 0 ≤ λi, j ≤ 1 and −1 ≤ ρi, j ≤ 1. Further if λi, j > 0 then ρi, j = 1. In
this paper we will assume that λi, j = 0 for all i �= j . Then it is well known (see e.g.
Albrecher et al. 2006 or Davis and Resnick 1996) that for X1, . . . , Xn with common
regularly varying marginal distribution (1) holds. If ρi, j > −1 exists, then

P(Xi > u, X j > u) = pi, j (u)u
− 2α

1+ρi, j ,
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where |p(u)| can be bounded by a slowly varying function. Hence we will assume
that pi, j (u) is slowly varying, or equivalently

Assumption 2.3

lim
u→∞

P(Xi > xu, X j > xu)

P(Xi > u, X j > u)
= x

− 2α
1−ρi, j , x > 0.

A refinement of the tail-dependence coefficients (λi, j and ρi, j ) is given by second
order regular variation (c.f. de Haan and de Ronde 1998; de Haan and Resnick 1993;
Resnick 2002), which in the case of λi, j = 0 is defined through

lim
u→∞

P

(
X
u ∈[0,x]c

)
P(X1>u)

− (∑n
i=1 x−α

i

)
A(b(t))

= ψ(x1, . . . , xn) (5)

where A(u) is regularly varying function and the limit exists locally uniform for
all 0 < xi ≤ ∞. In the case of independent random variables second order regu-
lar variation can be used to get higher order asymptotic approximation (c.f. Geluk
1992; Geluk et al. 1997). Note that Eq. 5 implies a second order condition on
the marginal distribution F which we don’t assume in this paper. On the other
hand we will see from Propositions 4.1 and 4.3 that the second order asymptotic
behavior can be influenced by the left tail of the marginal distribution. Hence one
needs further conditions on the dependence structure to get second order asymptotic
approximations.

3 Asymptotic results

For our main result, we will need the following additional conditions

Assumption 3.1 For every i �= j E
[
Xi |X j = u

]
is of consistent variation. i.e.

lim
ε→0

lim sup
a→0

∫ 1
0 F−1(x)Cm

i j (x, 1 − (1 + ε)a)dx∫ 1
0 F−1(x)Cm

i j (x, 1 − a)dx

= lim
ε→0

lim inf
a→0

∫ 1
0 F−1(x)Cm

i j (x, 1 − (1 + ε)a)dx∫ 1
0 F−1(x)Cm

i j (x, 1 − a)dx
= 1

Assumption 3.2 For every 0 < ε ≤ 1/2, there exist sets A(ε) = A(ε, m) such that
uniformly for {0 < ux <

∑
i �=m yi , maxi �=m yi < εu} ∩ {y−m ∈ A(ε)}

(1 − oε(1))C1···n(F(y−m), F(u)) � C1···n(F(y−m), F(u(1 − x)))

� (1 + oε(1))C1···n(F(y−m), F(u(1 − (n − 1)ε)))



358 D. Kortschak

and uniformly on {0 < ux <
∑

i �=m yi , maxi �=m yi < εu} ∩ {y−m ∈ A(ε)c}

(1 + oε(1))C1···n(F(y−m), F(u)) � C1···n(F(y−m), F(u(1 − x)))

� (1 − oε(1))C1···n(F(y−m), F(u(1 − (n − 1)ε))),

where oε(1) is a function that approaches zero as ε → 0. Further we have to assume
that for every i �= m, A(ε) fulfills

E
[
Xi 1{A(ε)}|Xn = u

] ∼ (1 + oε(1))E
[
Xi 1{A(ε)}|Xn = u(1 − (n − 1)ε)

]
. (6)

Remark 3.1 If for the set A(ε) in Assumption 3.2 it holds for all ε > 0

E
[
Xi 1{A(ε)}|Xn = u

] = o (E [Xi |Xn = u])

Then Eq. 6 is interpreted as

E
[
Xi 1{A(ε)}|Xn = u(1 − (n − 1)ε)

] = o(E [Xi |Xn = u])

Remark 3.2 Note that for the copulas presented in Sections 5 and 6 we only need
that the marginal distribution is regularly varying to show that Assumptions 3.1 and
3.2 are fulfilled.

Theorem 3.1 Let X1, . . . , Xn be dependent random variables with copula C that
has a continuous density C1···n and a common marginal distribution function F which
is continuously dif ferentiable with regularly varying density f with index −α − 1.
Further assume that Assumptions 2.1–2.3, 3.1 and 3.2 are fulf illed. Then

P(Sn > u) = nF(u) + (1 + o(1)) f (u)

n∑
i=1

n∑
j=1, j �=i

E
[
X j |Xi = u

]
. (7)

Corollary 3.2 Assume that the conditions of Theorem 3.1 hold then

∣∣∣∣∣P(S1 > u) −
n∑

i=1

P

(
Xi > u − E [Sn − Xi |Xi = u]

)∣∣∣∣∣

= o(1) f (u)

n∑
i=1

E [Sn − Xi |Xi = u]
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4 Multivariate Gaussian copula

As a first example we consider the Gaussian copula. In the two-dimensional case, the
density of the Gaussian copula is given by

Cx,y(x, y) = 1√
1 − ρ2

exp

(
−ρ2
−1(x)2 + ρ2
−1(y)2 − 2ρ
−1(x)
−1(y)

2
(
1 − ρ2

)
)

,

where

φ(x) = 1√
2π

e− x2
2 and 
(x) =

∫ x

−∞
φ(x)dx .

Let x = (x1, . . . , xn). The density of the n-dimensional Gaussian Copula is given by

C1···n(x) = 1√
(2π)n det()

exp
(
− 1

2
−1(x)T −1
−1(x)
)

∏n
i=1 φ(
−1(xi ))

,

where  is the correlation matrix of a Gaussian random vector.

Proposition 4.1 Assume that X1, . . . , Xn follow a Gaussian copula with correlation
matrix  and entries −1 < ρi, j < 1. If the marginal distribution F fulf ills the As-

sumption of Theorem 3.1 with α > maxi �= j

(
(1 + ρi, j ) ∨ (1 − ρ2

i, j )
)

and one of the

following conditions is fulf illed

(I) For all i �= j , ρi, j > 0
(II) F(x) has a left endpoint xF > 0

(III) F(x) is regularly varying at zero with index τ > 0,

then Assumptions 2.1–2.3, 3.1 and 3.2 are fulf illed.

Proposition 4.2 Let X1, X2 be two dependent random variables with common
marginal distribution F, where the dependence is given by a Gaussian Copula with
correlation ρ > 0. If for x0 < x < 1

F−1(1 − x) = κx−1/α + r(x),

with r(x) ≤ K x−β , β < 1/α and κ > 0, then

E [X2|X1 = u] ∼ κ

(
ρα

α + ρ2 − 1

)1/α

×
√

α

α + ρ2 − 1

(−4π log(F(u))
) 1

2α
− ρ2

2(α+ρ2−1) F(u)
− ρ2

α+ρ2−1 .
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Proposition 4.3 Let X1, X2 be two dependent random variables with common
marginal distribution F that is regularly varying with index α, where the depen-
dence is given by a Gaussian copula with correlation ρ < 0. If the left endpoint is
xF > 0 then

lim
u→∞ E [X2|X1 = u] = xF .

If xF = 0 and, as x → 0,

F−1(x) = κxτ + r1(x), (8)

with r1(x) ≤ K xβ1 , τ < β and κ > 0 then

E [X2|X1 = u] ∼ κ

( −ρ

1 + τ(1 − ρ2)

)−τ
√

1

1 + τ(1 − ρ2)

× (−4π log(F(u))
)− τ

2 + τρ2

2(1+τ(1−ρ2)) F(u)
τρ2

1+τ(1−ρ2) .

5 Archimedean copulas

Consider now Archimedean copulas (c.f. Nelsen 2006) with generator ϕ(x), [0, 1] →
[∞, 0], where ϕ(x) is strictly decreasing. The Archimedean Copula is then de-
fined by

C(x1, . . . , xn) = ϕ−1

(
n∑

i=1

ϕ(xi )

)

To ensure that C is a copula for all n, we further assume that ϕ is strict (i.e.
ϕ(0) = ∞) and ϕ−1 is completely monotone, hence ϕ−1 has derivatives of all orders
(ϕ−1)(k)(x) that alternate in sign. Further there exists a positive random variable Z
with

(ϕ−1)(k)(x) = E

[
Zke−x Z

]
, x ∈ [0, ∞).

The tail-dependence coefficient is then given by (cf. Nelsen 2006, Corollary 5.4.3)

λ = 2 − lim
x→0+

1 − ϕ−1(2x)

1 − ϕ−1(x)
.

Further if λ = 0 then for all n > 0 it holds that

lim
u→∞

P(X1 > u, . . . , Xn > u)

P(X1 > u)
= 0.
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hence the inclusion–exclusion principle implies

lim
x→0+

1 − ϕ−1(nx)

1 − ϕ−1(x)
= lim

u→∞
1 − ϕ−1(nϕ(F(x)))

1 − ϕ−1(ϕ(F(x)))

= lim
u→∞

1 − P(X1 ≤ u, . . . , Xn ≤ u)

P(X1 > u)
= n.

Consequently if λ = 0 then 1 − ϕ−1(x) is regularly varying at 0 with index 1.
To prove Assumptions 2.1–2.3, 3.1 and 3.2, we will need some further conditions
on ϕ(x).

Proposition 5.1 Let X1, . . . , Xn be dependent random variables with marginal
distribution F that fulf ill the condition of Theorem 3.1 and copula C which is
Archimedean with strict generator ϕ that is completely monotone. Further assume

(a) ϕ−1(x) = 1 − cx − xβ L(x), L(1/x) slowly varying and 1 < β ≤ 2, c > 0,
(b) (ϕ−1)′(x) = −c − βxβ−1L2(x), where limx→0 L(x)/L2(x) = 1,
(c) if β = 2 we further assume that 0 < (ϕ−1)′′(0) < ∞,
(d) (ϕ−1)′′(x) is regularly varying at 0,
(e) α > (1 + ρ)/(1 − ρ) = 1/(β − 1).

Then Assumptions 2.1–2.3, 3.1 and 3.2 are fulf illed. Further

lim
u→∞ E [X1|X2 = u] = −1

c

∫ ∞

0
x
(
ϕ−1

)′′
(ϕ(F(x)))

(
ϕ′(F(x))

)
f (x)dx < ∞.

Remark 5.1 The assumptions (a)–(d) are fulfilled for the families of copulas pro-
vided in Nelsen (2006, Table 4.1) for which the inverse of the generator is completely
monotone and λ = 0. These are the families 1 (θ ≥ 0), 3 (θ ≥ 0), 5 (θ > 0),
13 (θ > 1), 17 (θ > −1), 19 and 20. Further for all of these copulas we have β = 2.

6 Copulas with bounded densities

In this section we consider two-dimensional copulas which have a density that can be
bounded from above and below; examples are the Placket family (c.f. Nelsen 2006)

C(x1, x2)

:= (1+ (θ −1)(x1 + x2))−
√

(1+ (θ −1)(x1 + x2))2 −4x1x2θ(θ −1)

2(θ −1)
, θ > 0,

the Ali–Mikhail–Haq family with

C(x1, x2) := x1x2

1 − θ(1 − x1)(1 − x2)
, −1 < θ < 1
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Fig. 1 A plot of relative errors
and convergence rate for a
Gaussian copula with ρ = 0.9
and Pareto marginals with
α = 2.
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and the Farlie–Gumbel–Morgen stern family of copulas with

C(x1, x2) = x1x2 + θx1x2(1 − x1)(1 − x2), −1 ≤ θ < 1.

Proposition 6.1 Assume that X1, . . . , Xn are dependent according to a copula C
with continous density C1···n. If the marginal distribution F fulf ills the conditions of
Theorem 3.1 with α > 1 and there exits constants m < M with

m ≤ inf
0≤xi ≤1

C1···n(x1, . . . , xn) ≤ sup
0≤xi ≤1

C1···n(x1, . . . , xn) ≤ M

then Assumptions 2.1–2.3, 3.1 and 3.2 are fulf illed. Further

lim
u→∞ E [X1|X2 = u] =

∫ 1

0
F−1(x)Cm

i j (x, 1)dx < ∞.

7 Numerical examples

In this section we provide numerical examples for the derived asymptotic approx-
imations. To that end we will use a two-dimensional Gaussian copula with ρ ∈

Fig. 2 A plot of relative errors
and convergence rate for a
Gaussian copula with ρ = 0.5
and Pareto marginals with
α = 2.
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Fig. 3 A plot of relative errors
and for a Gaussian copula with
ρ = −0.5 and Pareto marginals
with α = 2.
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{0.9, 0.5, −0.5}. For the marginal distribution we will use a Pareto distribution with
tail F(x) = (1 + x)−α and α = 2. For ρ = −1/2, we also use a shifted Pareto
distribution as marginal distribution with F(x) = x−α and again α = 2. At first
we discuss the case ρ = 0.9. Figure 1 shows a plot of the absolute value of the
relative error of the first order asymptotic approximation (a1) and the refined asymp-
totic approximation of Eq. 3 (a2). Further we used the approximation E [X2|X1 = u]
replaced by the asymptotic provided in Proposition 4.2 (aa

2 ). Since in the proof of
Theorem 3.1 we condition on Xi ≤ δ/u with δ < u/(2(n − 2) we also provided an
approximation with E [X2|X1 = u] replaced by E

[
X21{X2<u/2}|X1 = u

]
(ac

2). The
x-axis of the plot is − log10(P(X1 + X2 > u)). In Fig. 1 we can see that the approxi-
mation 2F(u) to P(X1 + X2 > u) is rather slow, a fact that is also observed in Mitra
and Resnick (2009) where lognormal marginals are considered. Further we observe
that the second order asymptotics a2 and aa

2 behave quite similarly, but only improve
slightly over the first order asymptotics. The asymptotic approximation ac

2 is sig-
nificantly better than the others, but still not satisfactorily good. Further if we look
at the rate of convergence, we see that the error term used in a2, r2 overestimates the
error while rc

2 underestimates the error. Both of these error terms are far away from
the real error. However, they provide the correct order for the error. Figure 2 gives
basically the same conclusions as Fig. 1. The main difference is that in this case the
asymptotic approximation is significantly better. Depending on the threshold u and
the quality criteria one is using, it can be considered acceptable. In Fig. 3 we see the
corresponding plot for ρ = −0.5. As expected from our theoretical findings the error
of the asymptotic approximation for F(x) = x−α (a0

1) is significantly bigger than in
the case of F(x) = (1 + x)−α . The same is true for the second order approximation
a0c

2 and a0a
2 distribution which are defined analogously to ac

2 respectively aa
2 only for

F(x) = x−α instead of F(x) = (1 + x)−α

8 Conclusion

In this paper we considered dependent regularly varying random variables which are
asymptotically independent. In this case it is known that the sum behaves asymptoti-
cally like in the independent case. Under some conditions on the copula we showed
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that the convergence rate is of a similar form as in the independent case. Further
these formulas were used to improve the approximation that is given by the first-order
asymptotic.

Acknowledgments I would like to thank Hansjörg Albrecher, Enkelejd Hashorva and two anonymous
referees for useful remarks on the paper.

Appendix A: Proofs of Section 3

In this section we denote by di some constants and we denote with

ai (u) :=
∫ u

2(n−1)

0
x Cm

in(F(x), F(u)) f (x) f (u)dx

= f (u)E

[
Xi 1{Xi ≤ u

2(n−1)

}
∣∣∣∣ Xn = u

]
.

Note that from Assumption 2.1 and Potter bounds (e.g. Bingham et al. 1989) it fol-
lows that there exits a c1 > 0, M > 1 such that for all u > u0, all 1 < y < M and
all i �= j

P(Xi > u|X j = yu)

P(Xi > u|X j = u)
≤ c1.

Similarly from Assumption 2.2 it follows that For some β1 > β2 > 1, c2 > 0, c3 > 0
and all 0 < δ < 1/(2(n − 1)), 0 < ε < δ, i �= j uniformly for y ∈ [ε, δ],

c2(y/δ)−β1 ≤ lim inf
u→∞

P(Xi > yu|X j = u)

P(Xi > δu|X j = u)

≤ lim sup
u→∞

P(Xi > yu|X j = u)

P(Xi > δu|X j = u)
≤ c3(y/δ)−β2 (9)

and for some β3 > 1, c4 > 0 and uniformly for y ∈ [1/(2(n − 1)), ∞],

lim sup
u→∞

P(Xi > yu|X j = u)

P(Xi > δu|X j = u)
≤ c4 y−β3, i �= j. (10)

For the proof of Theorem 3.1 we need the following three lemmas.

Lemma A.1 Under the assumptions of Theorem 3.1 for every 0 < δ < 1/(2(n − 1))

and 1 ≤ i ≤ n − 1
∫

[0,δu]n−1
xi C1···n(F(x−n), F(u)) f (x−n) f (u)dx−n

∼ ai (u) + o

⎛
⎝ ∑

j �∈{i,n}
a j (u)

⎞
⎠ (11)
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and

P(Xi > u, Xn > u)

=o

(∫ u
2(n−1)

0
x
[
Cm

in(F(x), F(u))+Cm
in(F(u), F(x))

]
f (x) f (u)dx

)
. (12)

Proof of Lemma A.1 W.l.o.g. we choose i = n − 1. We have that

f (u)

∫
[0,δu]n−1

xn−1 C1···n(F(x−n), F(u)) f (x−n)dx−n

= f (u)

∫ δu

0
x C(n−1)n(F(x), F(u)) f (x)dx

−
d∑

j=1

f (u)

∫
[0,∞)n−2− j ×(δu,∞)×[0,∞) j−1×[0,δu]

xn−1 C1···n(F(x−n),

F(u)) f (x−n)dx−n .

At first note that

f (u)

∫ δu

0
x C(n−1)n(F(x), F(u)) f (x)dx

= f (u)

∫ δu

0

∫ ∞

y
C(n−1)n(F(x), F(u)) f (x)dxdy

− δu f (u)

∫ ∞

δu
C(n−1)n(F(x), F(u)) f (x)dx .

From Eq. 9 we get that there exists β1 > 0 and d1 > 0 such that for every 0 < ε < δ

f (u)

∫ δu

0

∫ ∞

y
C(n−1)n(F(x), F(u)) f (x)dxdy

≥ u f (u)

∫ δ

ε

∫ ∞

yu
C(n−1)n(F(x), F(u)) f (x)dxdy

≥ d1u f (u)

∫ δ

ε

(y/δ)−β1 dy
∫ ∞

δu
C(n−1)n(F(x), F(u)) f (x)dx .

With ε → 0 it follows that

f (u)

∫ δu

0
x C(n−1)n(F(x), F(u)) f (x)dx

∼ f (u)

∫ δu

0

∫ ∞

y
C(n−1)n(F(x), F(u)) f (x)dxdy
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and

δu f (u)

∫ ∞

δu
C(n−1)n(F(x), F(u)) f (x)dx

= o

(
f (u)

∫ δu

0
x C(n−1)n(F(x), F(u)) f (x)dx

)
.

For 1 ≤ j ≤ n − 2 we get

f (u)

∫
[0,∞)n−2− j ×(δu,∞)×[0,∞) j−1×[0,δu]

xn−1 C1···n(F(x−n), F(u)) f (x−n)dx−n

≤ δu f (u)

∫ ∞

δu
Cm

jn(F(x), F(u)) f (x)dx

= o

(
f (u)

∫ δu

0
x Cm

jn(F(x), F(u)) f (x)dx

)
.

With Eq. 9 we get for β2 > 1 and d2 > 0

f (u)

∫ u
2(n−1)

δu

∫ ∞

y
C(n−1)n(F(x), F(u)) f (x)dxdy

≤ d2u f (u)

∫ 1
2(n−1)

δ

(y/δ)−β2dy
∫ ∞

δu
Cm

jn(F(x), F(u)) f (x)dx,

hence Eq. 11 follows.
To prove Eq. 12 note that by Assumption 2.3 for M > 0

P(Xn−1 > u, Xn > u) − P(Xn−1 > Mu, Xn > Mu)

∼
(

1 − M
− 2α

1−ρn−1,n

)
P(Xn−1 > u, Xn > u).

Further

P(Xn−1 > u, Xn > u) − P(Xn−1 > Mu, Xn > Mu)

≤
∫ Mu

u

∫ ∞

u
C(n−1)n(F(xn−1), F(xn)) f (xn−1) f (xn)dxn−1dxn

+
∫ ∞

u

∫ Mu

u
C(n−1)n(F(xn−1), F(xn)) f (xn−1) f (xn)dxn−1dxn .
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By Assumption 2.1 for every ε > 0 there exits d3 > 0 such that

∫ Mu

u

∫ ∞

u
C(n−1)n(F(xn−1), F(xn)) f (xn−1) f (xn)dxn−1dxn

=
∫ M

1

∫ ∞

u
C(n−1)n(F(xn−1), F(yu)) f (xn−1)u f (yu)dxn−1dy

≤ d3u f (u)

∫ ∞

u
C(n−1)n(F(xn−1), F(u)) f (xn−1)dxn−1

∫ M

1
y−β1−α−1dy

= o

(
f (u)

∫ δu

0
x Cm

(n−1)n(F(x), F(u)) f (x)dx

)
.

Analogously we get

∫ ∞

u

∫ Mu

u
C(n−1)n(F(xn−1), F(xn)) f (xn−1) f (xn)dxn−1dxn

= o

(
f (u)

∫ δu

0
x Cm

(n−1)n(F(u), F(x)) f (x)dx

)
.

Hence Eq. 12 follows. ��

Lemma A.2 Under the assumptions of Theorem 3.1

ai (u) ∼
∫ ∞

0
x Cm

in(F(x), F(u)) f (x) f (u)dx

Proof At first note that

∫ ∞

0
x Cm

in(F(x), F(u)) f (x) f (u)dx

= lim
t→∞

∫ t

0
x Cm

in(F(x), F(u)) f (x) f (u)dx

= lim
t→∞

(
f (u)

∫ t

0

∫ ∞

y
Cm

in(F(x), F(u)) f (x)dxdy

− t f (u)

∫ ∞

t
Cm

in(F(x), F(u)) f (x)dx

)



368 D. Kortschak

By Eq. 10 there exists constants d1 > 0 and β > 1 such that for large u and
t > u/2

t f (u)

∫ ∞

t
Cm

in(F(x), F(u)) f (x)dx

≤ d1

(
t

u

)−β ∫ ∞
u

2(n−1)

Cm
in(F(x), F(u)) f (x)dx

which tends to 0 as t → ∞. As above note that
∫ ∞

u
2(n−1)

f (u)

∫ ∞

y
Cm

in(F(x), F(u)) f (x)dxdy

≤ d1u f (u)

∫ ∞
1

2(n−1)

y−βdy
∫ ∞

u
2(n−1)

Cm
in(F(x), F(u)) f (x)dx

hence the lemma follows. ��

Lemma A.3 Under the conditions of Theorem 3.1 for every u−∑n−1
i=1 xi < ξx−n ,u < u

∫
[0,u/(2(n−1))]n−1

xi C1···n(F(x−n), F(ξx−n ,u)) f (x−n) f (ξx−n ,u)dx−n

∼
∫

[0,u/(2(n−1))]n−1
xi C1···n(F(x−n), F(u)) f (x−n) f (u)dx−n + o

⎛
⎝ ∑

j �∈{i,n}
a j (u)

⎞
⎠.

Proof By Assumption 3.2 it follows that there exists a constant d1 such that for all
0 < ε ≤ 1/(2(n − 1))

∫
(εu,u/(2(n−1))]n−1

xi C1···n(F(x−n), F(ξx−n ,u)) f (x−n) f (ξx−n ,u)dx−n

� d1 f (u)

∫
(εu,u/(2(n−1))]n−1∩A(ε)

xi C1···n(F(x−n),

F(u(1 − (n − 1)ε))) f (x−n)dx−n

+ d1 f (u)

∫
(εu,u/(2(n−1))]n−1∩A(ε)c

xi C1···n(F(x−n), F(u)) f (x−n)dx−n

= o

(
n−1∑
i=1

ai (u)

)
,

where the last inequality follows from Lemmas A.1, A.2 and Assumption 3.1.
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By Assumption 3.2 it follows that for all 0 < ε ≤ 1/(2(n − 1)) there exists d2(ε)

with d2(ε) → 0 as ε → 0 such that for all u > uε

∫
[0,εu]n−1

xi C1···n(F(x−n), F(ξx−n ,u)) f (x−n) f (ξx−n ,u)dx−n

� (1 + d2(ε)) f (u)

∫
[0,εu]n−1∩A(ε)

xi C1···n(F(x−n),

F(u(1 − (n − 1)ε))) f (x−n)dx−n

+ (1 + d2(ε)) f (u)

∫
[0,εu]n−1∩A(ε)c

xi C1···n(F(x−n), F(u)) f (x−n)dx−n

With Lemmas A.1 and A.2 we obtain∫
[0,εu]n−1∩A(ε)

xi C1···n(F(x−n), F(u(1 − (n − 1)ε))) f (x−n)dx−n

∼E
[
Xi 1{A(ε)}|Xn = u(1 − (n − 1)ε)

]+ o

(
n−1∑
i=1

E [Xi |Xn = u(1 − (n − 1)ε)]

)

and ∫
[0,εu]n−1∩A(ε)c

xi C1···n(F(x−n), F(u)) f (x−n)dx−n

∼ E
[
Xi 1{A(ε)}|Xn = u

]+ o

(
n−1∑
i=1

E [Xi |Xn = u]

)
.

It follows from Assumptions 3.2 and 3.1 that∫
[0,εu]n−1

xi C1···n(F(x−n), F(ξx−n ,u)) f (x−n) f (ξx−n ,u)dx−n

� (1 + oε(1)) f (u)E [Xi |Xn = u] + o

⎛
⎝ f (u)

∑
j �∈{i,n}

E
[
X j |Xn = u

]
⎞
⎠ .

A lower bound can be derived analogously, hence the lemma follows with ε → 0. ��

Proof of Theorem 3.1 Let X(1) ≤ · · · ≤ X(n) be the order statistic of X1, . . . , Xn .
Following the ideas of Barbe and McCormick (2009) and Albrecher et al. (2010)
we get

P(Sn > u) = P

(
Sn > u, X(n−1) ≤ u

2(n − 1)

)

+ P

(
Sn > u, X(n−1) >

u

2(n − 1)

)
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=
n∑

i=1

P

(
Sn > u, X(n−1) ≤ u

2(n − 1)
, X(n) = Xi

)

+
n∑

i=1

P

(
Sn > u, X(n−1) >

u

2(n − 1)
, X(n) = Xi

)
.

From Assumption 2.3 it follows

P

(
Sn > u, X(n−1) >

u

2(n − 1)
, X(n) = Xi

)

≤
n∑

j=1,i �= j

P

(
X j >

u

2(n − 1)
, Xi >

u

2(n − 1)

)

= O

⎛
⎝ n∑

j=1,i �= j

P(X j > u, Xi > u)

⎞
⎠ .

Next, w.l.o.g. we assume that X(n) = Xn , we get

P

(
Sn > u, X(n−1) ≤ u

2(n − 1)
, X(n) = Xn

)

=
∫

[0,δu]n−1

∫ ∞

u−x1−···−xn−1

C1···n(F(x)) f (x1) · · · f (xn)dx1 · · · dxn

=
∫

[0,u/(2(n−1))]n−1

∫ ∞

u
C1···n(F(x)) f (x1) · · · f (xn)dx1 · · · dxn

+
∫

[0,u/(2(n−1))]n−1

∫ u

u−x1−···−xn−1

C1···n(F(x)) f (x1) · · · f (xn)dx1 · · · dxn

= I1 + I2.

Note that

I1 = P

(
X1 ≤ u

2(n − 1)
, · · · , Xn−1 ≤ u

2(n − 1)
, Xn > u

)

= P(Xn > u) − P

(
max(X1, . . . , Xn−1) >

u

2(n − 1)
, Xn > u

)

= P(Xn > u) + O
(

n−1∑
i=1

P(Xi > u, Xn > u)

)
.
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By the mean value theorem we get that for u −∑n−1
i=1 xi ≤ ξx−n ,u ≤ u and Lemmas

A1–A.3

I2 =
n−1∑
i=1

∫
[0,u/(2(n−1))]n−1

xi C1···n(F(x−n), F(ξx−n ,u)) f (x−n) f (ξx−n ,u)dx−n

∼
n−1∑
i=1

∫
[0,u/(2(n−1))]n−1

xi C1···n(F(x−n), F(u) f (x−n) f (u)dx−n

∼
n−1∑
i=1

E [Xi |Xn = u] ,

hence the proof is complete. ��
Proof of Corollary 3.2 This follows from Theorem 3.1, since for a function a(u)

with limu→∞ a(u)/u = 0

P(Xi > u − a(u)) = P(Xi > u) + a(u) f (u − ξu) ∼ P(Xi > u) + a(u) f (u),

where 0 < ξ(u) < a(u). ��

Appendix B: Proofs for the Gaussian copula

At first note that for x → ∞ and z → 0

1 − 
(x) ∼ 1

x
√

2π
e− x2

2 = 1

x
φ(x) and 
−1(1 − z) ∼ √−2 log(z).

Further note that

lim
z→0


−1(1 − z)

(

−1(1 − z) −

(√−2 log(z) − log(− log(z))

2
√−2 log(z)

))
= 1

2
log(4π).

(13)

Throughout the proofs we denote with ā = 
−1(F(a)) and with Y1, . . . , Yn n
i.i.d. standard normal random variables. Before we prove Proposition 4.1, we prove
Propositions 4.2 and 4.3

Proof of Proposition 4.2 Denoting with Y1 and Y2 two standard normal random
variables, we have

E [X2|X1 = u] = E

[
F−1

(



(
ρY1 +

√
1 − ρ2Y2

))
|F−1(
(Y1)) = u

]

= E

[
F−1

(



(
ρu +

√
1 − ρ2Y2

))]
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= E

[
F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{Y2>0}

]

+ E

[
F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{Y2≤0}

]
.

Note that with Potter bounds (Bingham et al. 1989)

E

[
F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{Y2≤0}

]
≤ F−1

(


(
ρ
−1(F(u))

))
� K uρ2+δ,

for every δ > 0 and K > 1. We get for every δ > 0 and ε > 0 that uniformly for√
1 − ρ2Y2/u = x ≥ −ρ + δ

F−1(
((ρ + x)u)) ∼ F−1

⎛
⎝1 −

exp
(
− 1

2 ((ρ + x)u)2
)

√
2π(ρ + x)u

⎞
⎠

= F−1

⎛
⎜⎜⎝1 −

⎛
⎝ e− 
−1(F(u))2

2√
2π
−1(F(u))

⎞
⎠

(x+ρ)2 (√
2π u

)(x+ρ)2−1

(ρ + x)

⎞
⎟⎟⎠

� F−1

⎛
⎜⎜⎝1 −

(
(1 − ε)

√
2π uF(u)

)(x+ρ)2

(ρ + x)
√

2π u

⎞
⎟⎟⎠

= κ

⎛
⎜⎜⎝
(
(1 − ε)

√
2π uF(u)

)(x+ρ)2

(ρ + x)
√

2π u

⎞
⎟⎟⎠

−1/α

+ r

⎛
⎜⎜⎝
(
(1 − ε)

√
2π uF(u)

)(x+ρ)2

(ρ + x)
√

2π u

⎞
⎟⎟⎠ .

Further

r

⎛
⎜⎜⎝
(
(1 − ε)

√
2π uF(u)

)(x+ρ)2

(ρ + x)
√

2π u

⎞
⎟⎟⎠ ≤ K

⎛
⎜⎜⎝
(
(1 − ε)

√
2π uF(u)

)(x+ρ)2

(ρ + x)
√

2π u

⎞
⎟⎟⎠

−β

.
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For g(u) := (1 − ε)
√

2π uF(u),

lim
u→∞

− log(g(u))

u2
= 1

2
.

Next we evaluate the asymptotics of

E

[
F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{Y2>0}

]

� κ√
2π

∫ ∞

0

⎛
⎜⎝ (g(u))

(√
1−ρ2 x

u +ρ
)2

(
ρ +√1 − ρ2 x

u

)√
2π u

⎞
⎟⎠

−1/α

e− x2
2 dx

= κ(
√

2π u)1/α

√
2π

∫ ∞

0

(
ρ +

√
1 − ρ2 x

u

)1/α

× exp

⎛
⎜⎝ (−2 log(g(u)))

(
ρ +√1 − ρ2 x

u

)2 − αx2

2α

⎞
⎟⎠ dx .

The exponent is maximized for

xu = −2 log(g(u))ρ
√

1 − ρ2

u

(
α − −2 log(g(u))

(
1 − ρ2

)
u2

)−1

∼ u
ρ
√

1 − ρ2

α + ρ2 − 1
.

Substitution x − xu = y yields

E

[
F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{Y2>0}

]

∼
κ
(√

2π u
)1/α

√
2π

exp

⎛
⎝ (− log(g(u)))ρ2

α + −2 log(g(u))

u2

(
ρ2 − 1

)
⎞
⎠

×
∫ ∞

−xu

(
ρ +

√
1 − ρ2 x + xu

u

)1/α

exp

⎛
⎜⎜⎝

(
(−2 log(g(u)))

(
1−ρ2

)
u2 − α

)
x2

2α

⎞
⎟⎟⎠ dx

∼ κ
(√

2π u
)1/α

(
ρα

α + ρ2 − 1

)1/α√
α

α + ρ2 − 1

× exp

⎛
⎝ (− log(g(u)))ρ2

α + −2 log(g(u))

u2

(
ρ2 − 1

)
⎞
⎠.
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To finish the proof, note that

exp

⎛
⎝ (− log(g(u))ρ2

α + −2 log(g(u))

u2

(
ρ2 − 1

)
⎞
⎠

� exp

(
(− log(g(u))ρ2

α + ρ2 − 1
+ (− log(g(u))

u2

×
(
−2 log(g(u)) − u2

) ρ2
(
1 − ρ2

)
(
α + ξu

(
ρ2 − 1

))2
)

.

We have

− 2 log(g(u)) − u2

∼ −2 log(1 − ε) − log(2π) − 2 log
(
F(u)

)− log
(

−1(F(u))2

)

−
⎛
⎝√−2 log

(
F(u)

)− log
(− log

(
F(u)

))
2
√

−2 log
(
F(u)

)
⎞
⎠

2

+ log(4π)

= −2 log(1 − ε) + log(2) + log

(
− log

(
F(u)

)

−1(F(u))2

)
−
⎛
⎝ log

(− log
(
F(u)

))
2
√

−2 log
(
F(u)

)
⎞
⎠

2

→ −2 log(1 − ε).

Hence for k(ε) := (1 − ε)
− ρ2(1−ρ2)

(α+(ρ2−1))2

E [X2|X1 = u]

� κk(ε)
(√

2π u
)1/α

(
ρα

α + ρ2 − 1

)1/α√
α

α + ρ2 − 1
exp

(
(− log(g(u))ρ2

α + (ρ2 − 1
)
)

= κk(ε)

(
ρα

α + ρ2 − 1

)1/α√
α

α + ρ2 − 1

(√
2π u

) 1
α
− ρ2

α+ρ2−1 F(u)
− ρ2

α+ρ2−1

∼ κk(ε)

(
ρα

α + ρ2 − 1

)1/α√
α

α + ρ2 − 1

× (−4π log
(
F(u)

)) 1
2α

− ρ2

2(α+ρ2−1) F(u)
− ρ2

α+ρ2−1 .

An asymptotic lower bound can be established analogously. The propositions follows
with ε → 0. ��
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Proof of Proposition 4.3 For δ > 0 we have to investigate the following three cases

E [X2|X1 = u] = E

⎡
⎣F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{√

1−ρ2Y2
u <−ρ−δ

}
⎤
⎦ (14)

+ E

⎡
⎣F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{

−ρ−δ<

√
1−ρ2Y2

u <−ρ+δ

}
⎤
⎦

(15)

+ E

⎡
⎣F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{√

1−ρ2Y2
u >−ρ+δ

}
⎤
⎦ (16)

At first we consider Eq. 16. By the same method as in the proof of Proposition 4.2,
we get by Potter bounds that for each K > 1 and ε > 0

E

⎡
⎣F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{√

1−ρ2Y2
u >−ρ+δ

}
⎤
⎦

� K

(√
2π u

) 1
α−ε

√
2π

∫ ∞
−ρ+δ√

1−ρ2
u

(
ρ +

√
1 − ρ2 x

u

) 1
α−ε

× exp

⎛
⎜⎝ (−2 log(g(u)))

(
ρ +√1 − ρ2 x

u

)2 − (α − ε)x2

2(α − ε)

⎞
⎟⎠ dx .

The exponent is maximized for

xu = −2 log(g(u))ρ
√

1 − ρ2

u

(
(α − ε) − −2 log(g(u))

(
1 − ρ2

)
u2

)−1

∼ u
ρ
√

1 − ρ2

α − ε + ρ2 − 1
< 0.

Since α > 1 − ρ2, we get that the derivative of the exponent at the point x̂u =
−ρu/

√
1 − ρ2 is negative. Hence we can bound

exp

⎛
⎜⎝ (−2 log(g(u)))

(
ρ +√1 − ρ2 x

u

)2 − (α − ε)x2

2(α − ε)

⎞
⎟⎠

≤ e
−ρ2u2

2(1−ρ2) exp

⎛
⎝

−2 log(g(u))

u2 (1 − ρ2) − (α − ε)

2(α − ε)

(
x − x̂u

)2
⎞
⎠ .
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It follows that for K1 > 1 and ε1 > 0 we can choose δ such that

E

⎡
⎣F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{√

1−ρ2Y2
u >−ρ+δ

}
⎤
⎦ � K1 F(u)

ρ2−ε1
1−ρ2 .

For Eq. 15 note that for K1 > 1 and ε1 > 0 we can choose δ such that

E

⎡
⎣F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{

−ρ−δ<

√
1−ρ2Y2

u <−ρ+δ

}
⎤
⎦

≤ F
−1

(
(δ u))P

(
Y2 >

−(ρ + δ)√
1 − ρ2

u

)
� K1 F(u)

ρ2−ε1
1−ρ2 .

We are left with finding the asymptotic of Eq. 14. If xF > 0, the Proposition follows
since uniformly for u → ∞ (δ < −ρ)

(
ρu +

√
1 − ρ2Y2

)
1{√

1−ρ2Y2
u <−ρ−δ

} → −∞ and 1{√
1−ρ2Y2

u <−ρ−δ

} → 1.

If xF = 0 we get, analogous to the proof of Proposition 4.2 for x < −(ρ + δ)

F−1(
((ρ + x)u)) ∼ F−1

⎛
⎝exp

(
− 1

2 ((ρ + x)u)2
)

−√
2π(ρ + x)u

⎞
⎠

� F−1

⎛
⎜⎜⎝
(
(1 + ε)

√
2π uF(u)

)(x+ρ)2

−(ρ + x)
√

2π u

⎞
⎟⎟⎠

= κ

⎛
⎜⎜⎝
(
(1 + ε)

√
2π uF(u)

)(x+ρ)2

−(ρ + x)
√

2π u

⎞
⎟⎟⎠

τ

+ r

⎛
⎜⎜⎝
(
(1 + ε)

√
2π uF(u)

)(x+ρ)2

−(ρ + x)
√

2π u

⎞
⎟⎟⎠ .

Further we have that

r1

⎛
⎜⎜⎝
(
(1 + ε)

√
2π uF(u)

)(x+ρ)2

−(ρ + x)
√

2π u

⎞
⎟⎟⎠ ≤ K1

⎛
⎜⎜⎝
(
(1 + ε)

√
2π uF(u)

)(x+ρ)2

−(ρ + x)
√

2π u

⎞
⎟⎟⎠

β1

.
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For g(u) := (1 + ε)
√

2π uF(u) we have that

E

⎡
⎣F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{√

1−ρ2Y2
u <−ρ−δ

}
⎤
⎦

�
κ
(√

2π u
)−τ

√
2π

∫ −(ρ+δ)√
1−ρ2

u

−∞

(
−ρ −

√
1 − ρ2 x

u

)−τ

× exp

⎛
⎜⎝−

τ(−2 log(g(u)))
(
ρ +√1 − ρ2 x

u

)2 + x2

2

⎞
⎟⎠ dx .

The exponent is maximized for

xu = −−2 log(g(u))τρ
√

1 − ρ2

u

(
1 + −2 log(g(u))τ

(
1 − ρ2

)
u2

)−1

∼ −u
τρ
√

1 − ρ2

1 + τ
(
1 − ρ2

) .

Continuing as in the proof of Proposition 4.2 we get that there exists k(ε) → 1 as
ε → 0 with

E

⎡
⎣F−1

(



(
ρu +

√
1 − ρ2Y2

))
1{√

1−ρ2Y2
u <−ρ−δ

}
⎤
⎦

� κk(ε)
(√

2π u
)−τ

(
−ρ

1 + τ
(
1 − ρ2

)
)−τ √

1

1 + τ
(
1 − ρ2

)

× exp

⎛
⎝− (− log(g(u)))τρ2

1 + −2 log(g(u))

u2 τ(1 − ρ2)

⎞
⎠

∼ κk(ε)

(
−ρ

1 + τ
(
1 − ρ2

)
)−τ √

1

1 + τ
(
1 − ρ2

)

× (−4π log(F(u))
)− τ

2 + τρ2

2(1+τ(1−ρ2)) F(u)

τρ2

1+τ(1−ρ2) .

As in the proof of Proposition 4.2 we can get a similar lower bound. To finish the
proof note that

τρ2

1 + τ(1 − ρ2)
<

ρ2

1 − ρ2
.

��
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Proof of Proposition 4.1 To prove Assumptions 2.1–2.3 we can w.l.o.g. assume that
n = 2 and ρ := ρi, j . From Ledford and Tawn (1996, Eq. 5.1) it follows that

P(X1 > u, X2 > u) ∼ Cρ(− log(F(u))
2

1+ρ (− log(− log(F(u))))
− ρ

1+ρ

∼ Cρ F(u)
2

1+ρ
(− log

(
F(u)

))− ρ
1+ρ ,

where Cρ = (1 + ρ)3/2(1 − ρ)−1/2(4π)−ρ/(1+ρ). Hence Assumption 2.3 holds.
For Assumptions 2.1 and 2.2 note that

∫ 1

1−δa
C1,2(x, 1 − ya)dx

=
∫ 1

1−δa

1
2π

√
1−ρ2

exp
(
−
−1(x)2+
−1(1−ya)2−2ρ
−1(x)
−1(1−ya)

2(1−ρ2)

)

φ(
−1(x))φ(
−1(1 − ya))
dx

= 1 − 


(

−1(1 − δa) − ρ
−1(1 − ya)√

1 − ρ2

)

To prove Assumption 2.1 note that for all 0 < ε1 < 1, ε2 > 0 and uniformly for
y ∈ (ε1, 1 + ε2) 
−1(1 − ya) ∼ 
−1(1 −a) . Hence for constant d1 > 0 there exists
0 < a0 < 1 such that for y ∈ (ε1, 1 + ε2) and a0 < a < 1

1 − 


(

−1(1−a)−ρ
−1(1−ya)√

1−ρ2

)

1 − 


(

−1(1−a)−ρ
−1(1−a)√

1−ρ2

)

≤d1 exp

⎛
⎝−

ρ2
(

−1(1 − ya)2 − 
−1(1 − a)2

)
− 2ρ
−1(1 − a)

(

−1(1 − ya) − 
−1(1 − a)

)
2(1 − ρ2)

⎞
⎠ .

With Eq. 13 we get that


−1(1 − ya)2 − 
−1(1 − a)2

=
(√−2 log(ya) − log(− log(ya))

2
√−2 log(ya)

)2

−
(√−2 log(a) − log(− log(a))

2
√−2 log(a)

)2

+ oa(1)

= −2 log(y) − log

(
log(ya)

log(a)

)
+ oa(1) = −2 log(y) + oa(1). (17)
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Analogously


−1(1 − a)
(

−1(1 − ya) − 
−1(1 − a)

)

= 
−1(1 − a)

(√−2 log(ya) −√−2 log(a) + log(− log(a))

2
√−2 log(a)

− log(− log(ya))

2
√−2 log(ya)

)
+ oa(1)

= − log(y) + oa(1). (18)

Consequently, for d2 > d1

1 − 


(

−1(1−a)−ρ
−1(1−ya)√

1−ρ2

)

1 − 


(

−1(1−a)−ρ
−1(1−a)√

1−ρ2

) ≤ d2 y− ρ
1+ρ .

For Assumption 2.2 note that we get for any d3 > 1,uniformly for δ < y < M

1 − 


(

−1(1−ya)−ρ
−1(1−a)√

1−ρ2

)

1 − 


(

−1(1−δa)−ρ
−1(1−a)√

1−ρ2

)

≤ d3 exp

⎛
⎝−

(

−1(1 − ya)2 − 
−1(1 − δa)2

)
− 2ρ
−1(1 − a)

(

−1(1 − ya) − 
−1(1 − δa)

)
2(1 − ρ2)

⎞
⎠

� d4(y/δ)
1

1+ρ

for all d4 > d3. A lower bound follows analogously. Further for δ = (1 + ε0)(2(n −
1))α and uniformly in y ∈ (0, δ]

1 − 


(

−1(1−ya)−ρ
−1(1−a)√

1−ρ2

)

1 − 


(

−1(1−δa)−ρ
−1(1−a)√

1−ρ2

)

∼ 
−1(1 − ya) − ρ
−1(1 − a)


−1(1 − δa) − ρ
−1(1 − a)

× exp

⎛
⎝−

(

−1(1 − ya)2 − 
−1(1 − δa)2

)
− 2ρ
−1(1 − a)

(

−1(1 − ya) − 
−1(1 − δa)

)
2(1 − ρ2)

⎞
⎠

Not that uniformly for y ∈ (0, δ]


−1(1 − ya) − ρ
−1(1 − a)


−1(1 − δa) − ρ
−1(1 − a)
∼
√−2 log(ya) − ρ

√−2 log(a)

(1 − ρ)
√−2 log(a)

� d5 y−ε
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for all ε > 0 and d5 > 1. As in Eq. 17 we get that for all ε > 0 and uniformly for
y ∈ (0, δ]


−1(1 − ya)2 − 
−1(1 − δa)2 ∼ −2 log(y/δ) + log

(
log(ya)

log(δa)

)
+ oa(1)

≥ −2(1 − ε) log(y/δ) + oa(1)

and analogously to Eq. 18 we get that for all ε > 0 and uniformly for y ∈ (0, δ]


−1(1 − a)
[

−1(1 − ya) − 
−1(1 − δa)

]
≤ −(1 + ε) log(1 + y) + oa(1).

It follows that for every ε > 0, there exists a d5 > 0 such that uniformly for y ∈ (0, δ]

1 − 


(

−1(1−ya)−ρ
−1(1−a)√

1−ρ2

)

1 − 


(

−1(1−δa)−ρ
−1(1−a)√

1−ρ2

) � d5 y− 1+ε
1+ρ

Hence Assumption 2.2 holds for α > 1 + ρ.
The validity of Assumption 3.1 can be seen from the proofs of Propositions 4.2

and 4.3.
For Assumption 3.2, note that for −1 =: (σ−1

i, j )i=1,...,n, j=1,...,n

C1···n(F(y1), . . . , F(yn−1), F(u(1 − x))

C1···n(F(y1), . . . , F(yn−1), F(u)

= φ(
−1(F(u)))

φ(
−1(F(u(1 − x))))
exp

(
−σ−1

n,n

2

(

−1(F(u(1 − x)))2 − 
−1(F(u))2

))

× exp

(
−

n−1∑
i=1

σ−1
i,n 
−1(F(yi ))

(

−1(F(u(1 − x))) − 
−1(F(u))

))
.

We get uniformly for 0 < x < 1/2

φ(
−1(F(u)))

φ(
−1(F(u(1 − x))))
exp

(
−σ−1

n,n

2

(

−1(F(u(1 − x)))2 − 
−1(F(u))2

))

=
(

φ(
−1(F(u)))

φ(
−1(F(u(1 − x))))

)1−σ−1
n,n

∼
⎛
⎝

√
−2 log F(u)F(u)√

−2 log F(u(1 − x))F(u(1 − x))

⎞
⎠

1−σ−1
n,n

∼ (1 − x)α(1−σ−1
n,n ).
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Further we get uniformly for ε < F(yi ) < F(u/(2(n − 1))) as above

exp

(
−

n−1∑
i=1

σ−1
i,n 
−1(F(yi ))

(

−1(F(u(1 − x))) − 
−1(F(u))

))

∼ exp

(
−α

n−1∑
i=1

σ−1
i,n


−1(F(yi ))


−1(F(u))
log(1 − x)

)
.

Since 
−1(F(yi ))


−1(F(u))
≤ 1, we get that for

A(ε) =
{

n−1∑
i=1

σ−1
i,n 
−1(F(yi )) < 0

}∖
{F(yi ) > ε, i = 1, . . . , n − 1} ,

the bounds where F(u(1 − x)) is replaced by F(u) in Assumption 3.2 are fulfilled.
The bounds where F(u(1−x)) is replaced by F(u(1−(n−1)ε)) follow analogously.
To prove that A(ε) fulfills Eq. 6 we have to show that

E
[
Xi 1{A(ε)}|Xn = u

] ∼ (1 + oε(1))E
[
Xi 1{A(ε)}|Xn = u(1 − (n − 1)ε)

]
.

or

E
[
Xi 1{A(ε)}|Xn = u

] = o (E [Xi |Xn = u]) and

E
[
Xi 1{A(ε)}|Xn = u(1 − (n − 1)ε)

] = o (E [Xi |Xn = u]) .

W.l.o.g. we can choose i = 1 and for i.i.d. standard normal Y1, . . . , Yn (Cholesky
decomposition)

Xn = F−1(
(Yn)), Xi = F−1

⎛
⎝


⎛
⎝ρi,nYn +

i∑
j=1

ρ̂i, j Y j

⎞
⎠
⎞
⎠ , i = 1, . . . , n−1

where ρ̂1,1 =
√

1 − ρ2
1,n . Define

Xi (u) = (Xi |Xn = u) := F
−1

⎛
⎝


⎛
⎝ρi,nu +

i∑
j=1

ρ̂i, j Y j

⎞
⎠
⎞
⎠

and

A(ε, u) =
{

n−1∑
i=1

σ−1
i,n 
−1(F(Xi (u))) < 0

}∖
{F(Xi (u)) > ε, i = 1, . . . , n − 1} .

Then

E
[
Xi 1{A(ε)}|Xn = u

] = E
[
Xi (u)1{A(ε,u)}

]
and

E
[
Xi 1{A(ε)}|Xn = u(1 − ε)

] = E
[
Xi (u(1 − (n − 1)ε))1{A(ε,u(1−(n−1)ε))}

]
.
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We will assume that ρ1,n > 0, the other cases are analogous. From Proposition 4.2

we get that for x0 = ρ
√

1−ρ2

α+ρ2−1
and δ > 0,

E [X1|Xn = u] ∼ E
[
X1(u)1{|Y1−ux0|<δu}

]
∼ (1 + oε(1))E

[
X1(u(1 − (n − 1)ε))1{|Y1−ux0|<δu}

]
.

We want to show that uniformly on {|Y1 − ux0| < δu},

lim
u→∞

X1(u)

X1(u(1 − (n − 1)ε))
= 1 + oε(1). (19)

With y := √1 − ρ2Y1/u we get

X (u)

X (u(1 − (n − 1)ε))
∼

F−1

⎛
⎝1 −

(√
2π uF(u)

)(y+ρ)2

(ρ+y)
√

2π u

⎞
⎠

F−1

⎛
⎜⎝1 −

(√
2π u(1−(n−1)ε)F(u(1−(n−1)ε))

)(y u
u(1−(n−1)ε)

+ρ

)2

(
ρ+y u

u(1−(n−1)ε)

)√
2π u(1−(n−1)ε)

⎞
⎟⎠

.

Define g(u) as in Proposition 4.2. Since u is slowly varying and F−1 is regularly
varying we can concentrate on

exp

(
log(g(u))

(
(y + ρ)2 −

(
y

u

u(1 − (n − 1)ε)
+ ρ

)2
)

− log

(
g(u(1 − (n − 1)ε))

g(u)

)(
y

u

u(1 − (n − 1)ε)
+ ρ

)2 )
.

Since g(u) is regularly varying, we have that

lim
u→∞ log

(
g(u(1 − (n − 1)ε))

g(u)

)(
y

u

u(1 − (n − 1)ε)
+ ρ

)2

= 0.

Further we have that for 1 < ξu,ε < u
u(1−(n−1)ε)

,

log(g(u))

(
(y + ρ)2 −

(
y

u

u(1 − (n − 1)ε)
+ ρ

)2
)

= log(g(u))
u − u(1 − ε)

u(1 − (n − 1)ε)
2y(y(1 − ξu,ε) + ρ)

∼ 2 log(g(u))
u − u(1 − (n − 1)ε)

u(1 − (n − 1)ε)
y(y + ρ).
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Now Eq. 19 follows with 0 < ξ̂u,ε < (n − 1)ε

2 log(g(u))

u(1 − (n − 1)ε)

(

−1(F(u)) − 
−1(F(u(1 − ε)))

)

∼ −(n − 1)ε
−1(F(u(1 − ε))
u f (u(1 − ξ̂u,ε)

φ(
−1(F(u(1 − ξ̂u,ε))
∼ (n − 1)ε

1 − ξ̂u,ε

.

It follows that

E
[
Xi (u(1 − (n − 1)ε))1{A(ε,u(1−(n−1)ε))}

]

∼ (1 + oε(1))E
[
Xi (u)1{A(ε,u(1−(n−1)ε))}1{|Y1−ux0|<δu}

]

= (1 + oε(1))
(
E
[
Xi (u)1{A(ε,u)}1{|Y1−ux0|<δu}

]

+ E
[
Xi (u)1{|Y1−ux0|<δu}

(
1{A(ε,u(1−(n−1)ε))} − 1{A(ε,u)}

)])
.

Hence it is left to show that

E
[
Xi (u)1{|Y1−ux0|<δu}

∣∣1{A(ε,u(1−(n−1)ε))} − 1{A(ε,u)}
∣∣]

=: E
[
Xi (u)1{|Y1−ux0|<δu}1{A(ε,u(1−(n−1)ε))�A(ε,u)}

] = o (E [X1|Xn = u]) .

Define

B(ε, u) :=
{

n−1∑
i=1

σ−1
i,n 
−1(F(Xi (u))) < 0

}

�
{

n−1∑
i=1

σ−1
i,n 
−1(F(Xi (u(1 − (n − 1)ε)))) < 0

}

Bi (ε, u) := {Xi (u) ≤ ε} � {Xi (u(1 − (n − 1)ε)) ≤ ε} , i = 1, . . . , n − 1.

Note that

A(ε, u(1 − (n − 1)ε)) � A(ε, u) ⊆ B(u, ε) ∪
n−1⋃
i=1

Bi (u, ε).

B(u, ε) can be written as

Yn−1 ∈
{

x : u(1 − (n − 1)ε) < x < u
}

· 1

−ρ̂n−1,n−1

(
n−1∑
i=1

σ−1
i,n ρ1,n

)
−

n−2∑
i=1

σ−1
i,n

i∑
j=1

ρ̂i, j

ρ̂n−1,n−1
Y j =: B̂.
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It follows that

E
[
Xi (u)1{|Y1−ux0|<δu}1{B(u,ε}

]

][3pt] =
∫ u(x0+δ)

u(x0−δ)

∫ ∞

−∞
· · ·
∫ ∞

−∞

∫
yn−1∈B̂

(2π)−(n−1)/2 X1(u)e−∑n−1
i=1

x2
2 dy1 · · · dyn−1

≤ |B̂|
∫ u(x0+δ)

u(x0−δ)

∫ ∞

−∞
· · ·
∫ ∞

−∞
(2π)−(n−2)/2 X1(u)e−∑n−2

i=1
x2
2 dy1 · · · dyn−2

= |B̂|E [Xi (u)1{|Y1−ux0|<δu}
] = o

(
E
[
Xi (u)1{|Y1−ux0|<δu}

])
,

where the last equality follows from

|B̂| =
∣∣∣∣∣

1

−ρ̂n−1,n−1

(
n−1∑
i=1

σ−1
i,n ρ1,n

)∣∣∣∣∣
(

u − u(1 − (n − 1)ε)
)

→ 0, as u → ∞.

Since Bi (u, ε) can be written as

Yi ∈
{

x : u(1 − (n − 1)ε) < x < u
} ρi,n

−ρ̂i,i
− 1

ρ̂i,i

−1(F(ε)) −

i∑
j=1

ρ̂i, j

ρ̂i, j
Y j ,

we can show analogously for i > 2 that

E
[
Xi (u)1{|Y1−ux0|<δu}1{Bi (u,ε}

] = o
(
E
[
Xi (u)1{|Y1−ux0|<δu}

])
.

For i = 1 we just have to note that for Y1 ∈ Bi (u, ε) it follows that Y1 ∼ − ρ√
1−ρ2

u

and hence

lim
u→∞ 1{|Y1−ux0|<δu}1{B1(u,ε} = 0.

Hence Proposition 4.1 follows. ��

Appendix C: Proof of Proposition 5.1

Proof of Proposition 5.1 For the proof we assume that c = 1 since cϕ(x) is the
generator of the same copula. Note that it follows from the conditions that

• ϕ(x) = (1 − x) + (1 − x)β L1(1 − x), where L1(1/x) is slowly varying and

L(ϕ(x)) = − (1 − x)β

ϕ(x)β
L1(1 − x).

• ϕ′(x) = −1 − β(1 − x)β−1L3(1 − x), where limx→0 L1(x)/L3(x) = 1.
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Now C has the continuous density

C1···n(x1, . . . , xn) =
(
ϕ−1

)(n)
(

n∑
i=1

ϕ(xi )

)
n∏

i=1

ϕ′(xi ).

For Assumption 2.3 note:

P(X1 > u, X2 > u) = 1 − 2F(u) + C(F(u), F(u))

= 2F(u) −
(

1 − ϕ−1 (2ϕ(F(u)))
)

= 2F(u) − 2ϕ(F(u)) − (2ϕ(F(u)))β L(2ϕ(F(u)))

= −2F(u)β L1
(
F(u)

)− 2β (ϕ(F(u)))β L (2ϕ(F(u)))

∼ (2β − 2
)

F(u)β L1(F(u)).

Hence P(X1 > u, X2 > u) is regularly varying with index −αβ, which leads to
ρ = 2

β
− 1. Assumption 2.1: Chose 0 < ε1 < 1 and 0 < ε2 then uniformly for

ε1 < y < (1 + ε2) and a → 0

∫ 1
1−a C1,2(x, 1 − ya)dx∫ 1
1−a C1,2(x, 1 − a)dx

= (ϕ−1)′(ϕ(1 − ya)) − (ϕ−1)′(ϕ(1 − a) + ϕ(1 − ya))

(ϕ−1)′(ϕ(1 − a)) − (ϕ−1)′(ϕ(1 − a) + ϕ(1 − a))

= β(ϕ(1 − a) + ϕ(1 − ya))β−1 L2(ϕ(1 − a) + ϕ(1 − ya)) − β(ϕ(1 − ya))β−1 L2(ϕ(1 − ya))

β(ϕ(1 − a) + ϕ(1 − a))δ−1 L2(ϕ(1 − a) + ϕ(1 − a)) − β(ϕ(1 − a))β−1 L2(ϕ(1 − a))

=
(

ϕ(1−ya)
ϕ(1−a)

+ 1
)β−1

L2(ϕ(1 − ya) + ϕ(1 − a)) − ϕ(1−ya)
ϕ(1−a)

L2(ϕ(1 − ya))

2β−1 L2(2ϕ(1 − a)) − L2(ϕ(1 − a))

∼ (y + 1)β−1 − y

2β−1 − 1
,

hence Assumption 2.1 holds.
For Assumptions 2.2 note that:

∫ 1
1−ya C1,2(x, 1 − a)dx∫ 1
1−δa C1,2(x, 1 − a)dx

= (ϕ−1)′(ϕ(1 − a)) − (ϕ−1)′(ϕ(1 − ya) + ϕ(1 − a))

(ϕ−1)′(ϕ(1 − a)) − (ϕ−1)′(ϕ(1 − δa) + ϕ(1 − a))

=
(

ϕ(1−ya)
ϕ(1−a)

+ 1
)β−1

L2(ϕ(1 − ya) + ϕ(1 − a)) − L2(ϕ(1 − a))

(
ϕ(1−δa)
ϕ(1−a)

+ 1
)β−1

L2(ϕ(1 − δa) + ϕ(1 − a)) − L2(ϕ(1 − a))

.
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Next, for any δ < M we get uniformly in δ < y < M that

lim
u→0

(
ϕ(1−ya)
ϕ(1−a)

+ 1
)β−1

L2(ϕ(1 − ya) + ϕ(1 − a)) − L2(ϕ(1 − a))

(
ϕ(1−δa)
ϕ(1−a)

+ 1
)β−1

L2(ϕ(1 − δa) + ϕ(1 − a)) − L2(ϕ(1 − a))

= (y + 1)β−1 − 1

(δ + 1)β−1 − 1
.

Hence we can choose γ1 = γ2 = β − 1 > 1/α.
By Taylor theorem it follows that for 0 < ξy < ϕ(1 − ya)

(ϕ−1)′(ϕ(1 − a)) − (ϕ−1)′(ϕ(1 − ya) + ϕ(1 − a))

(ϕ−1)′(ϕ(1 − a)) − (ϕ−1)′(ϕ(1 − δa) + ϕ(1 − a))

= ϕ(1 − ya)

ϕ(1 − δa)

(ϕ−1)′′(ϕ(1 − a) + ξy)

(ϕ−1)′′(ϕ(1 − a) + ξ0)
.

Since ϕ and (ϕ−1)′′ are regularly varying we can choose γ3 = 1 and Assumption 2.2
follows.

To prove Assumption 3.2 at first note that uniformly for 0 < x < 1/2

lim
u→∞

ϕ′(F(u(1 − x))

ϕ′(F(u))
= 1

and

C1···n(F(uy1), . . . , F(uyn−1), F(u(1 − x)))

C1···n(F(uy1), . . . , F(uyn−1), F(u))

=
(ϕ−1)(n)

(∑n−1
i=1 ϕ(F(uyi )) + ϕ(F(u(1 − x)))

)
ϕ′(F(u(1 − x)))

(ϕ−1)(n)
(∑n−1

i=1 ϕ(F(uyi )) + ϕ(F(u))
)

ϕ′(F(u))
.

Since |(ϕ−1)(n)| and ϕ are monotone decreasing and F is monotone increasing, we
get that

∣∣∣∣∣
(
ϕ−1

)(n)
(

n−1∑
i=1

ϕ(F(uyi )) + ϕ(F(u(1 − ε)))

)∣∣∣∣∣

≤
∣∣∣∣∣
(
ϕ−1

)(n)
(

n−1∑
i=1

ϕ(F(uyi )) + ϕ(F(u(1 − x)))

)∣∣∣∣∣

≤
∣∣∣∣∣
(
ϕ−1

)(n)
(

n−1∑
i=1

ϕ(F(uyi )) + ϕ(F(u))

)∣∣∣∣∣ .
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It follows that for A(ε) = ∅ Assumption 3.2 is fulfilled. Finally for Assumption 3.1
note that

E [X1|X2 = u] = ϕ′(F(u))

∫ ∞

0
x
(
ϕ−1

)′′
(ϕ(F(x)) + ϕ(F(u)))ϕ′(F(x)) f (x)dx

∼ −1

c

∫ ∞

0
x
(
ϕ−1

)′′
(ϕ(F(x)) + ϕ(F(u)))ϕ′(F(x)) f (x)dx

≤ −1

c

∫ ∞

0
x
(
ϕ−1

)′′
(ϕ(F(x)))ϕ′(F(x)) f (x)dx .

Since
(
ϕ−1

)′′
(ϕ(F(x)))ϕ′(F(x)) ≈ −1

c
F(x)β−2,

we get that

lim
u→∞ E [X1|X2 = u] = −1

c

∫ ∞

0
x
(
ϕ−1

)′′
(ϕ(F(x)))

(
ϕ′(F(x))

)
f (x)dx < ∞.

��

Appendix D: Proof of Proposition 6.1

Proof of Proposition 6.1 Since C1···n is bounded and hence uniformly continuous we
get that

P(Xi > u, X j > u) =
∫ 1

F(u)

∫ 1

F(u)

Cm
i, j (xi , x j )dxi dx j ∼ F(u)2Cm

i j (1, 1)

hence Assumptions 2.3 holds with ρi, j = 0. Assumptions 2.1 follows from

∫ 1

1−a
Cm

i j (x, 1 − ya)dx ≤ M
∫ 1

1−a
dx ≤ M

m

∫ 1

1−a
Cm

i j (x, 1 − a)dx

Assumptions 2.2 follow from

m

M

y

δ
=
∫ 1

1−ya mdx∫ 1
1−δa Mdx

≤
∫ 1

1−ya Cm
i j (x, 1 − a)dx∫ 1

1−δa Cm
i j (x, 1 − a)dx

≤
∫ 1

1−ya Mdx∫ 1
1−δa mdx

= M

m

y

δ

Since C1···n is uniformly continuous we get that Assumption 3.2 is fulfilled with
A(ε) := ∅ and Assumption 3.1 follows from

lim
a→0

∫ 1
0 F−1(x)Cm

i j (x, 1 − (1 + ε)a)dx∫ 1
0 F−1(x)Cm

i j (x, 1 − a)dx
=
∫ 1

0 F−1(x)Cm
i j (x, 1)dx∫ 1

0 F−1(x)Cm
i j (x, 1)dx

= 1.

��
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