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Comprehensive molecular profiling of lung adenocarcinoma

The Cancer Genome Atlas Research Network

Abstract

Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report 

molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and 

DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of 

somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically 

significantly mutated, including RIT1 activating mutations and newly described loss-of-function 

MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations 

were more frequent in female patients, whereas mutations in RBM10 were more common in 

males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in 

samples otherwise lacking an activated oncogene, suggesting a driver role for these events in 

certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations 

driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. 

MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known 

mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway 

activation. These data establish a foundation for classification and further investigations of lung 

adenocarcinoma molecular pathogenesis.
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Lung cancer is the most common cause of global cancer-related mortality, leading to over a 

million deaths each year and adenocarcinoma is its most common histological type. 

Smoking is the major cause of lung adenocarcinoma but, as smoking rates decrease, 

proportionally more cases occur in never-smokers (defined as less than 100 cigarettes in a 

life-time). Recently, molecularly targeted therapies have dramatically improved treatment 

for patients whose tumours harbour somatically activated oncogenessuch as mutant EGFR1 

or translocated ALK, RET, orROS1 (refs 2–4). Mutant BRAF and ERBB2 (ref. 5) are also 

investigational targets. However, mostlung adenocarcinomas either lack an identifiable 

driver oncogene, or harbour mutations in KRAS and are therefore still treated with 

conventional chemotherapy. Tumour suppressor gene abnormalities, such as those in TP53 

(ref. 6), STK11 (ref. 7), CDKN2A8, KEAP1 (ref. 9), and SMARCA4 (ref. 10) are also 

common but are not currently clinically actionable. Finally, lung adenocarcinoma shows 

high rates of somatic mutation and genomic rearrangement, challenging identification of all 

but the most frequent driver gene alterations because of a large burden of passenger events 

per tumour genome11–13. Our efforts focused on comprehensive, multiplatform analysis of 

lung adenocarcinoma, with attention towards pathobiology and clinically actionable events.

Clinical samples and histopathologic data

We analysed tumour and matched normal material from 230 previously untreated lung 

adenocarcinoma patients who provided informed consent (Supplementary Table 1). All 

major histologic types of lung adenocarcinoma were represented: 5% lepidic, 33% acinar, 

9% papillary, 14% micropapillary, 25% solid, 4% invasive mucinous, 0.4% colloid and 8% 

unclassifiable adenocarcinoma (Supplementary Fig. 1)14. Median follow-up was 19 months, 

and 163 patients were alive at the time of last follow-up. Eighty-one percent of patients 

reported pastor present smoking. Supplementary Table 2 summarizes demographics. DNA, 

RNA and protein were extracted from specimens and quality-control assessments were 

performed as described previously15. Supplementary Table 3 summarizes molecular 

estimates of tumour cellularity16.

Somatically acquired DNA alterations

We performed whole-exome sequencing (WES) on tumour and germ-line DNA, with a 

mean coverage of 97.6× and 95.8×, respectively, as performed previously17. The mean 

somatic mutation rate across the TCGA cohort was 8.87 mutations per megabase (Mb) of 

DNA (range: 0.5–48, median: 5.78). The non-synonymous mutation rate was 6.86 per Mb. 

MutSig2CV18 identified significantly mutated genes among our 230 cases along with 182 

similarly-sequenced, previously reported lung adenocarcinomas12. Analysis of these 412 

tumour/normal pairs highlighted 18 statistically significant mutated genes (Fig. 1 a shows 

co-mutation plot of TCGA samples (n =230), Supplementary Fig. 2 shows co-mutation plot 

of all samples used in the statistical analysis (n =412) and Supplementary Table 4 contains 

complete MutSig2CV results, which also appear on the TCGA Data Portal along with many 

associated data files (https://tcga-data.nci.nih.gov/docs/publications/luad_2014/). TP53 was 

commonly mutated (46%). Mutations in KRAS (33%) were mutually exclusive with those in 

EGFR (14%). BRAF was also commonly mutated (10%), as were PIK3CA (7%), MET (7%) 

and the small GTPase gene, RIT1 (2%). Mutations in tumour suppressor genes including 
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STK11 (17%), KEAP1 (17%), NF1 (11%), RB1 (4%) and CDKN2A (4%) were observed. 

Mutations in chromatin modifying genes SETD2(9%), ARID1A(7%) and SMARCA4 (6%) 

and the RNA splicing genes RBM10 (8%) and U2AF1 (3%) were also common. Recurrent 

mutations in the MGA gene (which encodes a Max-interacting protein on the MYC 

pathway19) occurred in 8% of samples. Loss-of-function (frameshift and nonsense) 

mutations in MGA were mutually exclusive with focal MYC amplification (Fisher’s exact 

test P =0.04), suggesting a hitherto unappreciated potential mechanism of MYC pathway 

activation. Coding single nucleotide variants and indel variants were verified by 

resequencing at a rate of 99% and 100%, respectively (Supplementary Fig. 3a, 

Supplementary Table 5). Tumour purity was not associated with the presence of false 

negatives identified in the validation data (P =0.31; Supplementary Fig. 3b).

Past or present smoking associated with cytosine to adenine (C >A) nucleotide transversions 

as previously described both in individual genes and genome-wide12,13. C >A nucleotide 

transversion fraction showed two peaks; this fraction correlated with total mutation count 

(R2 =0.30) and inversely correlated with cytosine to thymine (C >T) transition frequency (R2 

=0.75) (Supplementary Fig. 4). We classified each sample (Supplementary Methods) into 

one of two groups named transversion-high (TH, n =269), and transversion-low (TL, n 

=144). The transversion-high group was strongly associated with past or present smoking (P 

< 2.2 ×10−16), consistent with previous reports13. The transversion-high and transversion-

low patient cohorts harboured different gene mutations. Whereas KRAS mutations were 

significantly enriched in the transversion-highcohort (P=2.1×10−13), EGFR mutations were 

significantly enriched in the transversion-low group (P =3.3 ×10−6). PIK3CA and RB1 

mutations were likewise enriched in transversion-low tumours (P <0.05). Additionally, the 

transversion-low tumours were specifically enriched for in-frame insertions in EGFR and 

ERBB2 (ref. 5) and for frameshift indels in RB1 (Fig. 1b). RB1 is commonly mutated in 

small-cell lung carcinoma (SCLC). We found RB1 mutations in transversion-low 

adenocarcinomas were enriched for frameshift indels versus single nucleotide substitutions 

compared to SCLC (P <0.05)20,21 suggesting a mutational mechanism in transversion-low 

adenocarcinoma that is probably distinct from smoking in SCLC.

Gender is correlated with mutation patterns in lung adenocarcinoma22. Only a fraction of 

significantly mutated genes from the complete set reported in this study (Fig. 1a) were 

enriched in men or women (Fig. 1c). EGFR mutations were enriched in tumours from the 

female cohort (P =0.03) whereas loss-of-function mutations within RBM10, an RNA-

binding protein located on the X chromosome23 were enriched in tumours from men (P 

=0.002). When examining the transversion-high group, 16 out of 21 RBM10 mutations were 

observed in males (P =0.003, Fisher’s exact test).

Somatic copy number alterations were very similar to those previously reported for lung 

adenocarcinoma24 (Supplementary Fig. 5, Supplementary Table 6). Significant 

amplifications included NKX2-1, TERT, MDM2, KRAS, EGFR, MET, CCNE1, CCND1, 

TERC and MECOM (Supplementary Table 6), as previously described24, 8q24 near MYC, 

and a novel peak containing CCND3 (Supplementary Table 6). The CDKN2A locus was the 

most significant deletion (Supplementary Table 6). Supplementary Table 7 summarizes 

molecular and clinical characteristics by sample. Low-pass whole-genome sequencing on a 
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subset (n =93) of the samples revealed an average of 36 gene–gene and gene–inter-gene 

rearrangements per tumour. Chromothripsis25 occurred in six of the 93 samples (6%) 

(Supplementary Fig. 6, Supplementary Table 8). Low-pass whole genome sequencing-

detected rearrangements appear in Supplementary Table 9.

Description of aberrant RNA transcripts

Gene fusions, splice site mutations or mutations in genes encoding splicing factors promote 

or sustain the malignant phenotype by generating aberrant RNA transcripts. Combining 

DNA with mRNA sequencing enabled us to catalogue aberrant RNA transcripts and, in 

many cases, to identify the DNA-encoded mechanism for the aberration. Seventy-five per 

cent of somatic mutations identified by WES were present in the RNA transcriptome when 

the locus in question was expressed (minimum 5×) (Supplementary Fig. 7a) similar to prior 

analyses15. Previously identified fusions involving ALK (3/230 cases), ROS1 (4/230) and 

RET (2/230) (Fig. 2a, Supplementary Table 10), all occurred in transversion-low tumours (P 

=1.85 × 10−4, Fisher’s exact test).

MET activation can occur by exon 14 skipping, which results in a stabilized protein26. Ten 

tumours had somatic MET DNA alterations with MET exon 14 skipping in RNA. In nine of 

these samples, a 5′ or 3′ splice site mutation or deletion was identified27. MET exon 14 

skipping was also found in the setting of a MET Y1003* stop codon mutation (Fig. 2b, 

Supplementary Fig. 8a). The codon affected by the Y1003* mutation is predicted to disrupt 

multiple splicing enhancer sequences, but the mechanism of skipping remains unknown in 

this case.

S34F mutations in U2AF1 have recently been reported in lung adenocarcinoma12 but their 

contribution to oncogenesis remains unknown. Eight samples harboured U2AF1S34F. We 

identified 129 splicing events strongly associated with U2AF1S34F mutation, consistent with 

the role of U2AF1 in 3′-splice site selection28. Cassette exons and alternative 3′ splice sites 

were most commonly affected (Fig. 2c, Supplementary Table 11)29. Among these events, 

alternative splicing of the CTNNB1 protooncogene was strongly associated with U2AF1 

mutations (Supplementary Fig. 8b). Thus, concurrent analysis of DNA and RNA enabled 

delineation of both cis and trans mechanisms governing RNA processing in lung 

adenocarcinoma.

Candidate driver genes

The receptor tyrosine kinase (RTK)/RAS/RAF pathway is frequently mutated in lung 

adenocarcinoma. Striking therapeutic responses are often achieved when mutant pathway 

components are successfully inhibited. Sixty-two percent (143/230) of tumours harboured 

known activating mutations in known driver oncogenes, as defined by others30. Cancer-

associated mutations in KRAS (32%, n =74), EGFR (11%, n =26) and BRAF (7%, n =16) 

were common. Additional, previously uncharacterized KRAS, EGFR and BRAF mutations 

were observed, but were not classified as driver oncogenes for the purposes of our analyses 

(see Supplementary Fig. 9a for depiction of all mutations of known and unknown 

significance); explaining the differing mutation frequencies in each gene between this 

analysis and the overall mutational analysis described above. We also identified known 
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activating ERBB2 in-frame insertion and point mutations (n =5)6, as well as mutations in 

MAP2K1 (n =2), NRAS and HRAS (n =1 each). RNA sequencing revealed the 

aforementioned MET exon 14 skipping (n =10) and fusions involving ROS1 (n =4), ALK (n 

=3) and RET (n =2). We considered these tumours collectively as oncogene-positive, as they 

harboured a known activating RTK/RAS/ RAF pathway somatic event. DNA amplification 

events were not considered to be driver events before the comparisons described below.

We sought to nominate previously unrecognized genomic events that might activate this 

critical pathway in the 38% of samples without a RTK/RAS/RAF oncogene mutation. 

Tumour cellularity did not differ between oncogene-negative and oncogene-positive samples 

(Supplementary Fig. 9b). Analysis of copy number alterations using GISTIC31 identified 

unique focal ERBB2 and MET amplifications in the oncogene-negative subset (Fig. 3a, 

Supplementary Table 6); amplifications in other wild-type proto-oncogenes, including KRAS 

and EGFR, were not significantly different between the two groups.

We next analysed WES data independently in the oncogene-negative and oncogene-positive 

subsets. We found that TP53, KEAP1, NF1 and RIT1 mutations were significantly enriched 

in oncogene-negative tumours (P <0.01; Fig. 3b, Supplementary Table 12). NF1 mutations 

have previously been reported in lung adenocarcinoma11, but this is the first study, to our 

knowledge, capable of identifying all classes of loss-of-function NF1 defects and to 

statistically demonstrate that NF1 mutations, as well as KEAP1 and TP53 mutations are 

enriched in the oncogene-negative subset of lung adenocarcinomas (Fig. 3c). All RIT1 

mutations occurred in the oncogene-negative subset and clustered around residue Q79 

(homologous to Q61 in the switch II region of RAS genes). These mutations transform 

NIH3T3 cells and activate MAPK and PI(3)K signalling32, supporting a driver role for 

mutant RIT1 in 2% of lung adenocarcinomas. This analysis increases the rate at which 

putative somatic lung adenocarcinoma driver events can be identified within the 

RTK/RAS/RAF pathway to 76% (Fig. 3d).

Recurrent alterations in key pathways

Recurrent aberrations in multiple key pathways and processes characterize lung 

adenocarcinoma (Fig. 4a). Among these were RTK/RAS/ RAF pathway activation (76% of 

cases), PI(3)K-mTOR pathway activation (25%), p53 pathway alteration (63%), alteration of 

cell cycle regulators (64%, Supplementary Fig. 10), alteration of oxidative stress pathways 

(22%, Supplementary Fig. 11), and mutation of various chromatin and RNA splicing factors 

(49%).

We then examined the phenotypic sequelae of some key genomic events in the tumours in 

which they occurred. Reverse-phase protein arrays provided proteomic and 

phosphoproteomic phenotypic evidence of pathway activity. Antibodies on this platform are 

listed in Supplementary Table 13. This analysis suggested that DNA sequencing did not 

identify all samples with phosphoprotein evidence of activation of a given signalling 

pathway. For example, whereas KRAS-mutant lung adenocarcinomas had higher levels of 

phosphorylated MAPK than KRAS wild-type tumours had on average, many KRAS wild-

type tumours displayed significant MAPK pathway activation (Fig. 4b, Supplementary Fig. 
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10). The multiple mechanisms by which lung adenocarcinomas achieve MAPK activation 

suggest additional, still undetected RTK/RAS/ RAF pathway alterations. Similarly, we 

found significant activation of mTOR and its effectors (p70S6kinase, S6, 4E-BP1) in a 

substantial fraction of the tumours (Fig. 4c). Analysis of mutations in PIK3CA and STK11, 

STK11 protein levels, and AMPK and AKT phosphorylation33 led to the identification of 

three major mTOR patterns in lung adenocarcinoma: (1) tumours with minimal or basal 

mTOR pathway activation, (2) tumours showing higher mTOR activity accompanied by 

either STK11-inactivating mutation or combined low STK11 expression and low AMPK 

activation and (3) tumours showing high mTOR activity accompanied by either 

phosphorylated AKT activation, PIK3CA mutation, or both. As with MAPK, many tumours 

lack an obvious underlying genomic alteration to explain their apparent mTOR activation.

Molecular subtypes of lung adenocarcinoma

Broad transcriptional and epigenetic profiling can reveal downstream consequences of 

driver mutations, provide clinically relevant classification and offer insight into tumours 

lacking clear drivers. Prior unsupervised analyses of lung adenocarcinoma gene expression 

have used varying nomenclature for transcriptional subtypes of the disease34–37. To 

coordinate naming of the transcriptional subtypes with the histopathological38, anatomic and 

mutational classifications of lung adenocarcinoma, we propose an updated nomenclature: 

the terminal respiratory unit (TRU, formerly bronchioid), the proximal-inflammatory (PI, 

formerly squamoid), and the proximal-proliferative (PP, formerly magnoid)39 transcriptional 

subtypes (Fig. 5a). Previously reported associations of expression signatures with pathways 

and clinical outcomes34,36,39 were observed (Supplementary Fig. 7b) and integration with 

multi-analyte data revealed statistically significant genomic alterations associated with these 

transcriptional subtypes. The PP subtype was enriched for mutation of KRAS, along with 

inactivation of the STK11 tumour suppressor gene by chromosomal loss, inactivating 

mutation, and reduced gene expression. In contrast, the PI subtype was characterized by 

solid histopathology and co-mutation of NF1 and TP53. Finally, the TRU subtype harboured 

the majority of the EGFR-mutated tumours as well as the kinase fusion expressing tumours. 

TRU subtype membership was prognostically favourable, as seen previously34 

(Supplementary Fig. 7c). Finally, the subtypes exhibited different mutation rates, transition 

frequencies, genomic ploidy profiles, patterns of large-scale aberration, and differed in their 

association with smoking history (Fig. 5a). Unsupervised clustering of miRNA sequencing-

derived or reverse phase protein array (RPPA)-derived data also revealed significant 

heterogeneity, partially overlapping with the mRNA-based subtypes, as demonstrated in 

Supplementary Figs 12 and 13.

Mutations in chromatin-modifying genes (for example, SMARCA4, ARID1A and SETD2) 

suggest a major role for chromatin maintenance in lung adenocarcinoma. To examine 

chromatin states in an unbiased manner, we selected the most variable DNA methylation-

specific probes in CpG island promoter regions and clustered them by methylation intensity 

(Supplementary Table 14). This analysis divided samples into two distinct subsets: a 

significantly altered CpG island methylator phenotype-high (CIMP-H(igh)) cluster and a 

more normal-like CIMP-L(ow) group, with a third set of samples occupying an intermediate 

level of methylation at CIMP sites (Fig. 5b). Our results confirm a prior report40 and provide 
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additional insights into this epigenetic program. CIMP-H tumours often showed DNA 

hypermethylation of several key genes: CDKN2A, GATA2, GATA4, GATA5, HIC1, HOXA9, 

HOXD13, RASSF1, SFRP1, SOX17 and WIF1 among others (Supplementary Fig. 14). WNT 

pathway genes are significantly over-represented in this list (P value =0.0015) suggesting 

that this is a key pathway with an important driving role within this subtype. MYC 

overexpression was significantly associated with the CIMP-H phenotype as well (P =0.003).

Although we did not find significant correlations between global DNA methylation patterns 

and individual mutations in chromatin remodelling genes, there was an intriguing 

association between SETD2 mutation and CDKN2A methylation. Tumours with low 

CDKN2A expression due to methylation (rather than due to mutation or deletion) had lower 

ploidy, fewer overall mutations (Fig. 5c) and were significantly enriched for SETD2 

mutation, suggesting an important role for this chromatin-modifying gene in the 

development of certain tumours.

Integrative clustering41 of copy number, DNA methylation and mRNA expression data 

found six clusters (Fig. 5c). Tumour ploidy and mutation rate are higher in clusters 1–3 than 

in clusters 4–6. Clusters 1–3 frequently harbour TP53 mutations and are enriched for the two 

proximal transcriptional subtypes. Fisher’s combined probability tests revealed significant 

copy number associated gene expression changes on 3q in cluster one, 8q in cluster two, and 

chromosome 7 and 15q in cluster three (Supplementary Fig. 15). The low ploidy and low 

mutation rate clusters four and five contain many TRU samples, whereas tumours in cluster 

6 have comparatively lower tumour cellularity, and few other distinguishing molecular 

features. Significant copy number-associated gene expression changes are observed on 6q in 

cluster four and 19p in cluster five. The CIMP-H tumours divided into a high ploidy, high 

mutation rate, proximal-inflammatory CIMP-H group (cluster 3) and a low ploidy, low 

mutation rate, TRU-associated CIMP-H group (cluster 4), suggesting that the CIMP 

phenotype in lung adenocarcinoma can occur in markedly different genomic and 

transcriptional contexts. Furthermore, cluster four is enriched for CDKN2A methylation and 

SETD2 mutations, suggesting an interaction between somatic mutation of 

SETD2andderegulated chromatin maintenance in this subtype. Finally, cluster membership 

was significantly associated with mutations in TP53, EGFR and STK11 (Supplementary Fig. 

15, Supplementary Table 6).

Conclusions

We assessed the mutation profiles, structural rearrangements, copy number alterations, DNA 

methylation, mRNA, miRNA and protein expression of 230 lung adenocarcinomas. In 

recent years, the treatment of lung adenocarcinoma has been advanced by the development 

of multiple therapies targeted against alterations in the RTK/RAS/RAF pathway. We 

nominate amplifications in MET and ERBB2 as well as mutations of NF1 and RIT1 as driver 

events specifically in otherwise oncogene-negative lung adenocarcinomas. This analysis 

increases the fraction of lung adenocarcinoma cases with somatic evidence of 

RTK/RAS/RAF activation from 62% to 76%. While all lung adenocarcinomas may activate 

this pathway by some mechanism, only a subset show tonic pathway activation at the protein 

level, suggesting both diversity between tumours with seemingly similar activating events 
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and as yet undescribed mechanisms of pathway activation. Therefore, the current study 

expands the range of possible targetable alterations within the RTK/RAS/RAF pathway in 

general and suggests increased implementation of MET and ERBB2/HER2 inhibitors in 

particular. Our discovery of inactivating mutations of MGA further underscores the 

importance of the MYC pathway in lung adenocarcinoma.

This study further implicates both chromatin modifications and splicing alterations in lung 

adenocarcinoma through the integration of DNA, transcriptome and methylome analysis. 

We identified alternative splicing due to both splicing factor mutations in trans and mutation 

of splice sites in cis, the latter leading to activation of the MET gene by exon 14 skipping. 

Cluster analysis separated tumours based on single-gene driver events as well as large-scale 

aberrations, emphasizing lung adenocarcinoma’s molecular heterogeneity and combinatorial 

alterations, including the identification of coincident SETD2 mutations and CDKN2A 

methylation in a subset of CIMP-H tumours, providing evidence of a somatic event 

associated with a genome-wide methylation phenotype. These studies provide new 

knowledge by illuminating modes of genomic alteration, highlighting previously 

unappreciated altered genes, and enabling further refinement in sub-classification for the 

improved personalization of treatment for this deadly disease.

METHODS SUMMARY

All specimens were obtained from patients with appropriate consent from the relevant 

institutional review board. DNA and RNA were collected from samples using the Allprep 

kit (Qiagen). We used standard approaches for capture and sequencing of exomes from 

tumour DNA and normal DNA15 and whole-genome shotgun sequencing. Significantly 

mutated genes were identified by comparing them with expectation models based on the 

exact measured rates of specific sequence lesions42. GISTIC analysis of the circular-binary-

segmented Affymetrix SNP 6.0 copy number data was used to identify recurrent 

amplification and deletion peaks31. Consensus clustering approaches were used to analyse 

mRNA, miRNA and methylation subtypes using previous approaches15. The publication 

web page is (https://tcga-data.nci.nih.gov/docs/publications/luad_2014/). Sequence files are 

in CGHub (https://cghub.ucsc.edu/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Somatic mutations in lung adenocarcinoma
a, Co-mutation plot from whole exome sequencing of 230 lung adenocarcinomas. Data from 

TCGA samples were combined with previously published data12 for statistical analysis. Co-

mutation plot for all samples used in the statistical analysis (n =412) can be found in 

Supplementary Fig. 2. Significant genes with a corrected P value less than 0.025 were 

identified using the MutSig2CV algorithm and are ranked in order of decreasing prevalence. 

b, c, The differential patterns of mutation between samples classified as transversion high 

and transversion low samples (b) or male and female patients (c) are shown for all samples 

used in the statistical analysis (n =412). Stars indicate statistical significance using the 

Fisher’s exact test (black stars: q <0.05, grey stars: P <0.05) and are adjacent to the sample 

set with the higher percentage of mutated samples.

Page 15

Nature. Author manuscript; available in PMC 2014 November 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Aberrant RNA transcripts in lung adenocarcinoma associated with somatic DNA 
translocation or mutation
a, Normalized exon level RNA expression across fusion gene partners. Grey boxes around 

genes mark the regions that are removed as a consequence of the fusion. Junction points of 

the fusion events are also listed in Supplementary Table 9. Exon numbers refer to reference 

transcripts listed in Supplementary Table 9. b, MET exon 14 skipping observed in the 

presence of exon 14 splice site mutation (ss mut), splice site deletion (ss del) or a Y1003* 

mutation. A total of 22 samples had insufficient coverage around exon 14 for quantification. 

The percentage skipping is (total expression minus exon 14 expression)/total expression. c, 
Significant differences in the frequency of 129 alternative splicing events in mRNA from 

tumours with U2AF1 S34F tumours compared to U2AF1 WT tumours (q value <0.05). 

Consistent with the function of U2AF1 in 3′ splice site recognition, most splicing 
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differences involved cassette exon and alternative 3′ splice site events (chi-squared test, P 

<0.001).
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Figure 3. Identification of novel candidate driver genes
a, GISTIC analysis of focal amplifications in oncogene-negative (n =87) and oncogene-

positive (n =143) TCGA samples identifies focal gains of MET and ERBB2 that are specific 

to the oncogene-negative set (purple). b, TP53, KEAP1, NF1 and RIT1 mutations are 

significantly enriched in samples otherwise lacking oncogene mutations (adjusted P <0.05 

by Fisher’s exact test). c, Co-mutation plot of variants of known significance within the 

RTK/RAS/RAF pathway in lung adenocarcinoma. Not shown are the 63 tumours lacking an 

identifiable driver lesion. Only canonical driver events, as defined in Supplementary Fig. 9, 

and proposed driver events, are shown; hence not every alteration found is displayed. d, 
New candidate driver oncogenes (blue: 13% of cases) and known somatically activated 

drivers events (red: 63%) that activate the RTK/RAS/RAF pathway can be found in the 

majority of the 230 lung adenocarcinomas.
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Figure 4. Pathway alterations in lung adenocarcinoma
a, Somatic alterations involving key pathway components for RTK signalling, mTOR 

signalling, oxidative stress response, proliferation and cell cycle progression, nucleosome 

remodelling, histone methylation, and RNA splicing/processing. b, c, Proteomic analysis by 

RPPA (n =181) P values by two-sided t-test. Box plots represent 5%, 25%, 75%, median, 

and 95%. PP, proximal proliferative; TRU, terminal respiratory unit; PI, proximal 

inflammatory. c, mTOR signalling may be activated, by either Akt (for example, via PI(3)K) 

or inactivation of AMPK (for example, via STK11 loss). Tumours were separated into three 

main groups: those with PI(3)K-AKT activation, through either PIK3CA activating mutation 

or unknown mechanism (high p-AKT); those with LKB1-AMPK inactivation, through either 
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STK11 mutation or unknown mechanism with low levels of LKB1 and p-AMPK; and those 

showing none of the above features.
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Figure 5. Integrative analysis
a–c, Integrating unsupervised analyses of 230 lung adenocarcinomas reveals significant 

interactions between molecular subtypes. Tumours are displayed as columns, grouped by 

mRNA expression subtypes (a), DNA methylation subtypes (b), and integrated subtypes by 

iCluster analysis (c). All displayed features are significantly associated with subtypes 

depicted. The CIMP phenotype is defined by the most variable CpG island and promoter 

probes.
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