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Habitat suitability models can be generated using methods requiring information on
species presence or species presence and absence. Knowledge of the predictive
performance of such methods becomes a critical issue to establish their optimal
scope of application for mapping current species distributions under different
constraints. Here, we use breeding bird atlas data in Catalonia as a working example
and attempt to analyse the relative performance of two methods: the Ecological Niche
factor Analysis (ENFA) using presence data only and Generalised Linear Models
(GLM) using presence/absence data. Models were run on a set of forest species with
similar habitat requirements, but with varying occurrence rates (prevalence) and niche
positions (marginality). Our results support the idea that GLM predictions are more
accurate than those obtained with ENFA. This was particularly true when species were
using available habitats proportionally to their suitability, making absence data reliable
and useful to enhance model calibration. Species marginality in niche space was also
correlated to predictive accuracy, i.e. species with less restricted ecological requirements
were modelled less accurately than species with more restricted requirements. This
pattern was irrespective of the method employed. Models for wide-ranging and tolerant
species were more sensitive to absence data, suggesting that presence/absence methods
may be particularly important for predicting distributions of this type of species. We
conclude that modellers should consider that species ecological characteristics are
critical in determining the accuracy of models and that it is difficult to predict
generalist species distributions accurately and this is independent of the method used.
Being based on distinct approaches regarding adjustment to data and data quality,
habitat distribution modelling methods cover different application areas, making it
difficult to identify one that should be universally applicable. Our results suggest
however, that if absence data is available, methods using this information should be
preferably used in most situations.
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Mapping species distributions is a key issue in ecology

and conservation since statement of hypotheses often

relies on an accurate knowledge of where species occur.

To map species distributions at large spatial scales,

different approaches have been adopted the most

common of which being the general atlas-distribution

framework (Donald and Fuller 1998, Mitchel-Jones et

al. 1999, Underhill and Gibbons 2002). The spatial

positioning of data from large museum collections may

also appear as an alternative in some cases (Peterson
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et al. 2002). Given the geographical extent of their

coverage, the near-equal grid-cell sizes used, and the

standardisation of their sampling methodology, atlases

are among the most powerful tools available to analyse

species’ distributions and their governing factors

(Donald and Fuller 1998). Nevertheless, most atlases

have focused on reporting the occurrence of species and

provide relatively poor quantitative information on

species abundances or relative suitability of different

locations. A recent large scale atlas work (Gibbons et al.

1993) has attempted to obtain quantitative estimates of

variation in species abundances (Johnson and Sargeant

2002).

Habitat-suitability or niche-based modelling techni-

ques use information on species locational records

environmental factors to generate statistical functions

that allow predictions of potentially suitable habitat

distribution for species (for a review see Guisan and

Zimmerman 2000). The projection of the generated

functions to areas where environmental factors are

known but species have not been sampled allows an

optimal, cost effective, method to map species distribu-

tions in large regions and at low spatial resolutions

(Hausser 1995, Guisan and Zimmerman 2000, Peterson

et al. 2002). The recent development of techniques

combined with an increasing availability of large-scale

environmental information in digital format offers an

opportunity to test and improve methodologies for

quantitative mapping of species distributions. Appro-

priate data on species distributions have already been

demonstrated to provide useful information for conser-

vation planning. For instance, species extinctions seem

more likely in areas with low suitability or in areas where

species are less abundant. Including such information in

reserve-selection procedures improves the ability to

ensure long-term persistence of species (Araújo et al.

2002). Furthermore, habitat suitability models are in-

creasingly being used to assess the impact of future land

use or climate changes (Austin et al. 1996, Buckland et

al. 1996, Peterson et al. 2002, Thuiller 2003a), or design

ecological networks at large spatial scales (Bani et al.

2002).

There are different methods available to generate

habitat suitability maps for species. A major difference

between them is the quality of data needed. A first group

of methods includes generalised linear models (GLM),

generalised additive models (GAM), classification and

regression tree analyses, and artificial neural networks

(ANN). These methods require good quality presence/

absence data in order to generate statistical functions or

discriminative rules that allow habitat suitability to be

ranked according to distributions of presence and

absence of species (Manel et al. 1999, Guisan and

Zimmerman 2000). A second group of methods include

the Ecological Niche Factor Analysis (ENFA), Bioclim

and Domain. These methods require presence data only

and were developed to allow use data where knowledge

of absences is inadequate or unavailable (Carpenter et al.

1993, Hirzel et al. 2002a, Farber and Kadmon 2003).

Such methods rely on the definition of environmental

envelopes around locations where species occur, which

are then compared to the environmental conditions of

background areas (Hirzel et al. 2002a). Using a virtual

species with predefined habitat selection preferences,

Hirzel et al. (2001) compared model performances of a

method relying on species presence only (ENFA) with a

method that requires both presence and absence data

(GLM). Although both methods provided good predic-

tions of the virtual species distribution, authors found

that ENFA had a tendency to outperform in scenarios

where species did not occupy all suitable habitat (i.e.

many absences were thus modelled within suitable

habitat). Conversely, when species were modelled to

use all optimal habitats with a high probability and

modelled to use sub-optimal habitats with lower prob-

abilities, then GLM was more accurate.

Since data quality is likely to be a key issue affecting

reliability of model predictions (Zaniewski et al. 2002,

Stockwell and Peterson 2002a, b), knowledge of the

predictive performance of methods and their domain of

application becomes an important issue at early stages of

project-development in surveys aimed at mapping spe-

cies distributions. At present, we lack extensive tests of

the relative performances of methods that compare

species distribution models using presence-only or pre-

sence/absence data. While use of virtual species is useful

as a preliminary exploration of methods’ behaviour, it is

important to use real data on species distributions to

expand understanding of the relative performance of

methods. Furthermore, since accurate data on absences

is difficult to obtain, especially for mobile or inconspic-

uous species, it is particularly important to investigate

the circumstances that make models using presence-only

data to perform at least as well as models using presence/

absence data. This should allow for a better under-

standing of the methods that are more adequate for

particular applications. Another generally unexplored

question is how dependent is the accuracy of a modelling

approach to the ecological characteristics of the species

and how these interact with species prevalence

(i.e. proportion of occurrences in a data set) to determine

model accuracy (but see Manel et al. 2001, Segurado and

Araújo 2004). Given that species with more restricted

ecological niches are more localised and less frequent, it

is expected, even in cases in which data quality is poor,

that they are better modelled and thus their distributions

more easily predicted that more widespread species

(Stockwell and Peterson 2002b, Segurado and Araújo

2004).

Here, we use breeding-bird atlas distribution data as a

working example and attempt to analyse the relative

performances of these two types of methods on a set of
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forest species with similar habitat requirements but with

varying prevalence and ecological niche characteristics.

We first ask whether methods using presence data only

perform equally well than those using presence/absence

and whether hypothetical differences in performance

hold when evaluating predictive habitat-suitability meth-

ods on independent data sets. We then investigate the

role of species’ ecological niche and prevalence on model

accuracy and investigate whether these factors affect

model accuracy in interaction with the method used.

Methods

Bird data

In our assessment of habitat-suitability methodologies,

we used species occurrence data from a subset of the

Catalan Breeding Bird Atlas (Estrada et al. 2004). The

CBBA is a large-scale survey that covers the whole of the

Catalan region (northeastern Iberian Peninsula, 31 000

km2, Fig. 1). Within the study area 1550 1�/1 km cells

were selected (covering ca 6% of the total area extent) to

conduct standardised surveys of species presence during

the breeding seasons 1999�/2001. Cells were selected

by volunteers in a stratified fashion assuming that

they should cover the main habitat types present in the

10�/10 km UTM grid cell in which they were located

(Hirzel and Guisan 2002). On each selected cell, two

one-hour visits were conducted and the presence of

species was investigated. The first visit was made in

March�/April and the second during May�/June to

better cover the breeding phenology span of different

species. In this paper, we included species with at least 15

occurrences. We then selected a sub-set of species that

spanned a range of possible prevalence values (Table 1).

Overall we modelled 30 forest species as judged from

their habitat selection patterns in the Mediterranean

area (Table 1).

Species presence records were assumed to be reliable.

The same could not be said for absence records; indeed,

failing to detect a species does not guarantee the species

is absent from that cell. Presence is a probabilistic

function mainly affected by species abundance and

detectability. By assuming that a species’ detectability is

constant across habitats, we considered that absences in

this study were either reliable or associated to habitats in

which abundance of species was low. However, the

assumption that absence indicates areas where species

are not present due to a negative species-environmental

relationship is not necessarily a valid one. This assump-

tion may not hold for a variety of reasons including

Fig. 1. Maps showing the predicted distributions of GLM (A) and ENFA (B) and the discrepancies between the two methods (C)
for one of the forest species used, the nuthatch Sitta europaea . The discrepancy map was created by crossing predicted binary
presence/absence maps after choosing for each modelling method a threshold maximising specificity and sensitivity. In (C) black
cells show areas where ENFA predicted species absence and GLM presence, whereas light grey cells show areas where ENFA
predicted presence and GLM predicted absence. Dark grey indicate coincidence in model predictions.
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habitat population dynamics, fragmentation, rate of

dispersal or history, which may induce species absence

from otherwise optimal habitat (Loehle and LeBlanc

1996, Araújo and Williams 2000). If the role of such

events is significant and the species is not in equilibrium

with its environment, absence data may affect model

building whatever methodology is used, but this will be

specially true when absence data is also included in the

model calibration. On the other hand, if absences are

indeed related to low suitable habitat for the species (i.e.

the species is near the equilibrium with the environ-

ment), the information provided by them should im-

prove the performance of methods relying on both

presence and absence data (Hirzel et al. 2001).

Environmental data

Environmental variables (ENV) were generated from

available GIS (Geographical Information Systems)

layers. Habitat composition was analysed from land-

use layers generated by the Cartographic Institute of

Catalonia (ICC) and Agriculture Department (DARP,

Table 2). After successive processes of simplification and

classification, land-use maps were resampled to a 50 m

pixel resolution and converted to several boolean maps

(i.e. one per each land use category) which allowed the

generation of final variables describing each 1�/1 km

cell (Table 2).

We also used climatic variables (temperature, precipi-

tation and solar radiation) which were obtained from the

Catalan Digital Atlas (CDA, Ninyerola et al. 2000),

whereas data on topography was obtained from a Digital

Elevation Model (DEM) generated by the ICC from

topographic 1:50 000 maps. To obtain a value for each

cell we calculated the mean value for all pixels (200 m

side) in that cell (Table 2). We finally used three more

variables that allowed the detection of geographic

patterns in species distributions that were not captured

by habitat or climatic ENV. These variables were the

mean latitude and longitude co-ordinate for each cell

and the mean distance to the sea (Table 2).

Statistical models
Methods based on presence/absence data

Different methods have been envisaged to build pre-

dictive models based on presence/absence data. Amongst

them generalised linear models have been extensively

tested elsewhere and have proved robust in a number of

independent situations (Manel et al. 1999, Pearce and

Table 1. Species and model accuracies 9/SE as estimated from area under the ROC curve (AUC). § Marginality as estimated by
Biomapper algorithm. Species are sorted according to their prevalence which was calculated as proportion of presences within the
data set of 1550 cells sampled.

Species names GLM (AUC) ENFA (AUC) Prevalence Marginality
Index §

Calibration Evaluation Calibration Evaluation

Emberiza citrinella 0.959/0.036 0.939/0.041 0.889/0.015 0.959/0.024 0.01 0.73
Parus palustris 1.009/0.002 0.949/0.028 0.829/0.045 0.919/0.013 0.01 0.93
Phoenicuros phoenicuros 0.919/0.027 0.579/0.182 0.679/0.012 0.669/0.111 0.02 0.65
Regulus regulus 0.999/0.003 0.919/0.044 0.949/0.043 0.919/0.091 0.03 0.99
Sylvia hortensis 0.899/0.021 0.769/0.069 0.729/0.004 0.689/0.056 0.03 0.59
Anthus trivialis 0.909/0.024 0.799/0.066 0.809/0.028 0.769/0.071 0.04 0.69
Prunella modularis 1.009/0.001 0.919/0.001 0.949/0.019 0.899/0.053 0.05 0.88
Sylvia borin 0.829/0.022 0.799/0.043 0.719/0.028 0.729/0.028 0.06 0.66
Sitta europaea 0.939/0.010 0.919/0.016 0.829/0.023 0.819/0.037 0.11 0.77
Muscicapa striata 0.769/0.022 0.689/0.040 0.589/0.014 0.609/0.019 0.12 0.62
Emberiza cia 0.889/0.011 0.869/0.019 0.769/0.025 0.759/0.041 0.21 0.55
Turdus philomelos 0.819/0.015 0.789/0.022 0.709/0.016 0.719/0.024 0.25 0.57
Phylloscopus collybita 0.849/0.014 0.759/0.027 0.699/0.017 0.649/0.026 0.25 0.62
Parus ater 0.929/0.009 0.899/0.016 0.679/0.017 0.649/0.027 0.27 0.66
Sylvia cantillans 0.839/0.013 0.819/0.020 0.699/0.017 0.689/0.025 0.29 0.47
Oriolus oriolus 0.779/0.015 0.689/0.026 0.669/0.013 0.629/0.021 0.29 0.54
Lullula arborea 0.879/0.011 0.789/0.021 0.739/0.017 0.709/0.027 0.30 0.47
Regulus ignicapillus 0.889/0.010 0.849/0.018 0.819/0.016 0.769/0.025 0.35 0.60
Parus cristatus 0.839/0.012 0.849/0.018 0.749/0.013 0.769/0.022 0.37 0.52
Streptopelia turtur 0.819/0.013 0.819/0.020 0.729/0.014 0.699/0.021 0.41 0.56
Aegithalos caudatus 0.869/0.011 0.839/0.019 0.789/0.015 0.819/0.023 0.38 0.57
Phylloscopus bonelli 0.849/0.012 0.799/0.021 0.699/0.016 0.699/0.025 0.43 0.47
Troglodytes troglodytes 0.879/0.010 0.809/0.020 0.779/0.014 0.729/0.023 0.48 0.54
Sylvia melanocephala 0.939/0.007 0.909/0.014 0.759/0.015 0.759/0.022 0.50 0.63
Parus caeruleus 0.889/0.010 0.829/0.020 0.779/0.014 0.769/0.023 0.51 0.52
Garrulus glandarius 0.859/0.011 0.819/0.020 0.769/0.015 0.729/0.025 0.55 0.51
Emberiza cirlus 0.849/0.012 0.819/0.020 0.759/0.015 0.739/0.024 0.55 0.47
Erithacus rubecula 0.919/0.009 0.909/0.014 0.839/0.013 0.839/0.020 0.57 0.53
Luscinia megharynchos 0.839/0.014 0.809/0.023 0.709/0.018 0.699/0.027 0.66 0.51
Turdus merula 0.889/0.015 0.859/0.022 0.609/0.016 0.649/0.024 0.85 0.41
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Ferrier 2000, Osborne et al. 2001, Thuiller et al. 2003).

Therefore, to analyse binary data such as the presence/

absence of species within each sampled cell, we applied

generalised linear regression techniques with binomial

error distribution (logistic regression, GLM, McCullagh

and Nelder 1989). We included as potential predictors in

model building all linear and quadratic terms, which

excluded environmental predictors showing correla-

tions �/0.9. To select the most parsimonious model, we

used an automatic stepwise model-selection procedure

starting from a null model containing the intercept only.

The ‘‘step.glm’’ function in S-Plus builds models by

adding new terms and investigating how much they

improve the fit, and by dropping terms that do not

degrade the fit by a significant amount (Anon. 1999).

Quadratic terms were included only if they improved

their linear counterpart. The statistic used to select the

final model was the Akaike Informaton Criteria (AIC,

Chambers and Hastie 1997). It is important to stress

GLM was used with a predictive rather than inductive

goal. In such circumstances accuracy of model predic-

tions is more important than significance of particular

ecological terms (Legendre and Lengendre 1998).

Methods requiring presence data only

Different methods have been proposed to predict species

distributions based on presence data only. These

methods search for an ‘‘environmental envelope’’

Table 2. Environmental variables (ENV) used to generate habitat suitability models of the 30 forest bird species used in the
comparison of methods. Unless otherwise mentioned, variables referred to 1�/1 km squares correspond to means obtained from
averaging individual values from pixels contained each 1�/1 km square. Cartographic sources are indicated when necessary.

Descriptor type Variable description [units] Range

Forest
Coniferous forest 1 0�/400
Esclerophylous 1 0�/400
Deciduous forest 1 0�/400
Pinus halepensis forest 2 0�/400
Pinus sylvestris forest 2 0�/400
Abies alba -Pinus uncinata forest pixels in 1�/1 km squares 2 0�/400
Pinus nigra forest 2 0�/400
Other Pinus forest 2 0�/400
Quercus suber forest 2 0�/400
Quercus ilex forest 2 0�/400
Quercus humilis forest 2 0�/393
Other deciduous forest 2 0�/400
Distance to nearest forest patch [log m] 2 0�/10

Agriculture
Dry herbaceous cropland (cereals) 1 0�/400
Irrigated herbaceous cropland pixels (corn) 1 0�/400
Dry arboreal cropland (olive tree, almond) 1 0�/400
Irrigated arboreal cropland (fruit trees) 1 0�/400
Vineyard 1 0�/400

Low vegetation cover
Scrub 1 0�/400
Bare ground (rocks) 1 0�/400

Landscape
Number of land uses in 1�/1 km squares (based on land use
cover 1997, urban and industrial categories clumped) 1

1�/11

Human impact
Low density urbanization 1 0�/190
Distance to cities �/10 000 inhabitants [log m] 2 0�/11
Infrastructure (transport network and urban areas) 1 0�/400
Distance to main roads of the primary road network [log m] 1 0�/10
Distance to roads of the secondary road network [log m] 1 0�/10

Climate
Mean solar radiation 3 [10 kJm2�/day�1] 19�/961
Mean accumulated summer precipitation (June�/September) [l�/m�2] 3 50�/500
Mean accumulated of mean winter temperatures (December�/March) [8C] 3 �/50�/105

Topography
Mean altitude [m] 1 0�/2850
Mean slope [degrees] 1 0�/39

Geography
Mean latitude [degrees] 1 2.70�/3.80
Mean longitude [degrees] 1 45.70�/46.50
Mean distance to the sea [km] 1 33�/100

1 ‘Institut Cartogràfic de Catalunya’ (ICC).
2 ‘Departament de Medi Ambient de la Generalitat de Catalunya’ (DAM).
3 ‘Centre de Recerca Ecologica i Aplicacions Forestals’ (CREAF).
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characteristic of the points in which the species is present

in order to extrapolate to the remaining area under study

(Guisan and Zimmerman 2000). To analyse these kinds

of data we used the Ecological Niche Factor Analysis

(ENFA) released in the BIOMAPPER package (Hirzel

et al. 2002b). ENFA quantifies the niche occupied by a

species by comparing its distribution in ecological space

(‘‘the species distribution’’) with the distribution of all

cells (the ‘‘global distribution’’) (Hirzel et al. 2002a).

ENFA focuses on the marginality of the species (how the

species mean differs from the global mean) and environ-

mental tolerance (how the species variance compares to

the global variance). Species marginality gives indication

of the species niche position whereas species tolerance it

is negatively associated to species specialisation and

refers to its niche width, or breadth. ENFA uses a factor

analysis with orthogonal rotations to 1) transform the

predictor variables to a set of uncorrelated factors, and

2) to construct axes in a way that accounts for all

marginality of the species in the first axis, and that

minimizes tolerance in the following axes. There are

different algorithms available in BIOMAPPER to build

habitat suitability maps from ENFA analysis (Hirzel et

al. 2002b). Following Hirzel and Arlettaz (2004) we used

the geometric mean algorithm, which takes into account

the density of observation points in environmental space

by computing the geometric mean to all observation

points. We used a Box-Cox transformation of the

environmental variables to enhance normality except in

the cases when transformation produced near binary

outcomes (Hirzel et al. 2002a).

Marginal species are likely to be less tolerant in most

conditions, and species marginality and tolerance were

indeed highly correlated in our set of forest species

(r�/�/0.76, pB/0.0001). Furthermore, ecologically mar-

ginal species may tend to be less tolerant to changes in

ecological conditions leading to restricted distributions.

Species marginality and species prevalence were also

significantly correlated in our data set (r�/�/0.68,

pB/0.0001). In order to allow the independent assess-

ment of the different components of species niche and

prevalence, we conducted a Principal Component Anal-

ysis using species marginality, tolerance and prevalence

as original variables. After a varimax transformation of

the principal components maximising their correspon-

dence to the original variables, we succeed to obtain two

independent components: 1) a marginality component

positively associated to species marginality (r�/0.90)

and more weakly, negatively to tolerance (r�/�/0.60),

and 2) a prevalence component identifying a gradient of

species prevalence (r�/0.90) parallel to that of species

tolerance (r�/0.70), separating less tolerant and scarcer

species from more tolerant and abundant ones. These

two components were finally used as predictors of model

accuracy in further analyses.

Evaluation of habitat suitability models

We used cross-validation to evaluate predictive model

accuracy and divided the data in two different sets, by

randomly assigning 70% of occurrence values for each

species to a calibration data-set and 30% of the

remaining occurrences to an independent evaluation

data set. The calibration data set was used to develop

the habitat model that was evaluated on the evaluation

data set (Fielding and Bell 1997).

There are practical difficulties in evaluating predic-

tions from presence-only data models with traditional

evaluation methods (Pearce and Ferrier 2000) given that

absence data is usually missing and therefore can not be

used to evaluate model predictions. A possible method is

to compare the suitability of areas where the species is

present with that of the background environment (Hirzel

et al. 2001). Other authors have used correlations with

known, or reference distributions, to evaluate models

performance (Hirzel et al. 2001, Zaniewski et al. 2002,

Boyce et al. 2002). However, in our case complete or

reference species distributions were unavailable. Predic

ting species absences is an important issue even when

information has not been explicitly incorporated into

model development (Stockwell and Peterson 2002a).

Therefore, we assessed the accuracy of both ENFA and

GLM models on the calibration and evaluation data sets

using both presences and absences. By means of

misclassification, results from probabilistic models

are often judged as successful if predicted probabilities

�/0.5 correspond with observed occurrences and values

B/0.5 with absences and prediction errors (false positives

and false negatives) are low. However, this dichotomy is

arbitrary and lacks any ecological justification. A more

powerful approach is to assess model success across a

range of dichotomies from different cut-off points using

the receiver operating characteristics (ROC) plots. The

ROC plot is based on a series of misclassification

matrices computed for a range of cut-offs from 0 to 1.

It then plots on the y-axis the true positive fraction,

against the false positive fraction from the same

misclassification matrix (Fielding and Bell 1997, Pearce

and Ferrier 2000). The area under the ROC curve (AUC)

is a convenient measure of overall fit and commonly

varies between 0.5 (for chance performance) and 1

(perfect fit). We obtained AUC and its standard error

with a custom function in S-Plus software (Anon. 1999).

Comparison of accuracy between modelling
methodologies

We first test for overall differences between modelling

method (GLM vs ENFA) and data-set (calibration vs

evaluation) by means of repeated measures ANOVA

using modelling method and data-set as within-subject

factors in the design according to species. We then used
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repeated measures ANCOVA designs to assess how

accuracy of habitat models varied between method and

data-set using these factors as within-factors subjects but

also adding to the design the two principal components

summarising niche characteristics and species prevalence

(i.e. the marginality component and the prevalence

component).

Results

Overall accuracies of models

Overall model accuracy estimated with the ROC method

performed better than random in every case analysed

(Table 1). AUC values were higher for GLM models than

for ENFA models (Table 3, Figs 2 and 3) and were also

higher when evaluated for the calibration data compared

to the evaluation data set (Table 3, Fig. 2). We also found

that change in predictive accuracies between the calibra-

tion and the evaluation data sets was larger for GLM

than for ENFA models, indicating that the loss in

predictive performance when applied to an independent

data set not used for model construction is higher for

GLM (Table 3, Fig. 2). In addition to overall differences

in predictive accuracy, we detected considerable varia-

tion in species spatial distributions projected with GLM

and ENFA (Fig. 1). There was a general tendency for

ENFA to overestimate the spatial extent of the distribu-

tions, especially on the edges of those estimated by

GLM; in some cases areas estimated to have high

species’ probabilities of occurrence with GLM were

overlooked by ENFA (e.g. Fig. 1).

Effects of species niche characteristics and

prevalence on model performance

Species distributions in ecological space had a major role

in determining species model accuracies, with AUC

being generally higher for more marginal species (mar-

ginality component, Table 3). The observation that

marginal species were modelled more accurately was

coincident for the two methods tested and for the data

sets used as indicated by the lack of significant interac-

tions, which suggests that this effect was robust to

methodological considerations (Table 3, Fig. 4).

The prevalence component did not have an overall

consistent effect on model performance (Table 3, Fig. 5).

However, there was a significant difference in the effect

of this factor on model performance between methods in

Table 3. Repeated-measures ANCOVA conducted on the predictive model accuracies of GLM and ENFA models on 30 forest
species in Catalonia. The within subject effects considered are method (two levels, GLM vs ENFA, see section methods) and data-
set (two levels, calibration vs evaluation). Species marginality component and the prevalence component (see methods) were used as
continuous predictors in the ANCOVA analyses. Significant results are emphasized in bold.

Source of variation Model accuracy (AUC)

DF F p

Between subject effects
Marginality component 1 33.61 B/0.0001
Prevalence component 1 0.02 0.89
Error 27

Within subject effects
Method 1 141.05 B/0.0001
Method�/Marginality component 1 2.15 0.15
Method�/Prevalence component 1 3.54 0.07
Error 27
Data-set 1 23.64 B/0.0001
Data-set�/Marginality component 1 0.03 0.87
Data-set�/Prevalence component 1 4.71 B/0.05
Error 27
Method�/Data-set 1 25.69 B/0.0001
Method�/Data-set�/Marginality component 1 0.49 0.49
Method�/Prevalence component 1 11.29 B/0.001
Error 27

Fig. 2. Mean values of model accuracies for GLM and ENFA
methods applied on both the calibration (70% of sample cells,
triangles) and the evaluation data (remaining 30% of sample
cells, circles, n�/30 species). Whiskers represent the standard
error of the estimates.
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the evaluation data set but not in the calibration data set,

with higher values of the prevalence component assoc-

iated with higher AUC values in GLM models but not in

ENFA, which remained unaffected by this factor (Table

3, Fig. 5). This effect resulted in a stronger overall

positive relationship between the prevalence component

and predictive accuracy in the evaluation data set than in

the calibration data set (Table 3, Fig. 5).

Discussion

Our results showed that GLM using both presence and

absence data predicted the distribution of forest species

with higher accuracy than ENFA, which used presence

data only. This supports the view that the forest species

analysed used available habitats proportionally to their

suitability, making absence data reliable and useful to

enhance model calibration This is in line with the results

obtained by Hirzel et al. (2001) using a modelling

approach based on a virtual species with predetermined

habitat preferences. The authors found that GLM

performed significantly better than ENFA when estimat-

ing habitat suitability in an overabundance scenario in

which species occupied all optimal habitats and occupied

secondary habitats at lower probabilities. In this

scenario, absence data is likely to be reliable and help

to ‘‘fix the floor’’ of what is unsuitable habitat for each

focal species. First, by giving a low weighting to

occurrences in low-density habitats, absence data helps

to identify low suitability areas that may have otherwise

been classified as good habitats if only presence data

were used. Occurrences in good but scarce habitats may

also bias models based on presence only data because

relative importance of such habitats may be over-

weighted by a larger number of observations in other

habitat types. For instance in the case of the nuthatch,

deciduous forest areas, which cover a limited surface

within the study region, were ranked as low suitability by

the presence only method. Indeed this species had a

small number of occurrences in such areas that were

overridden by the greater number of occurrences in other

more abundant habitats (Fig. 1). Here the availability of

absences may become critical to correctly assess the

relative suitability of these areas in comparison with

other areas equally suitable but where presences are

more common due to the relative availability of different

habitats in the area. Some authors have suggested that

when lacking absence data, distribution models may be

improved by generating random pseudo-absences from

Fig. 3. ROC plot for GLM and ENFA methods for the
evaluation data set on one of the species analysed, the nuthatch,
Sitta europaea (see Fig. 1 for predicted distributions, and Table
1 for actual ROC values). Sensitivity represents the true positive
fraction and 1-specificity the false positives fraction for a range
of cut-offs used to classified modelled probabilities into
presence absence data.

Fig. 4. Relationship between model accuracies for GLM and
ENFA methods and species marginality component (index
describing how far from the mean conditions of the study area
the species optimum is found, n�/30 species). A. Calibration
data (70% of sample cells). B. Evaluation data (remaining 30%
of sample cells).
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background areas in which species data is missing

(Stockwell and Peterson 2002a). However, this method

may result in biased absence data if species are wide-

spread or presence data is scarce (Boyce et al. 2002).

The approach employed to test model accuracy

assumes that identification and prediction of locations

from which species are absent is important. This is likely

to be the case in predictive cartographic habitat model-

ling (e.g. vertebrate atlas studies), but may not be the

case if identification of ecological mechanisms are more

specific (i.e. selecting optimal areas for species reintro-

duction). In cases with poor data availability or assump-

tions of species equilibrium are strongly violated (i.e. use

of museum data to produce distributions at large spatial

scales, or distribution of invading or spreading species in

which absence data is ecologically meaningless), evalua-

tion of absence data becomes meaningless. Presence only

methods may then make best use of available presence

data. They also have the advantage of reducing the

contributions of non-equilibrium factors in model pre-

dictions (Hirzel et al. 2002a). Recently, Zaniewski et al.

(2002) have shown that although presence-absence based

methods were more discriminant than ENFA, at a

species level, they appeared to be less suitable to identify

areas with high conservation concern in a multi-specific

perspective. For example, if the objective were to protect

rare or endangered species overestimating areas of

potentially elevated biodiversity might be preferable

than underestimating their existence and presence only

methods may be useful (Zaniewski et al. 2002). In this

case, however one should proceed with caution because

optimistic predictions proved false may artificially in-

crease the cost of conservation strategies (Araújo and

Williams 2000).

Sudden changes in habitat quality may occur under

natural conditions (Gates and Donald 2000) resulting in

individuals not using optimal habitats or being present

in low quality areas. Caution in the use of habitat

suitability methods should be adopted if strong suspi-

cions of non-equilibrium situations are expected. How-

ever, in large scale distribution modelling, most species,

especially in rather mobile groups such as birds, are

likely to be close to equilibrium with environmental

conditions due to population dynamics and habitat

selection mechanisms (Chamberlain and Fuller 1999).

This is likely to be the case if factors causing non-

equilibrium are related mainly to dispersal. In these

cases, absences are likely to reflect low habitat suitability

and therefore improve model performance. We argue

that using of absence data in building presence/absence

models is generally more appropriate than using pre-

sence only data. This should be particularly true when

using data from intensive collection studies, such as

breeding bird atlases where an important number of

absences are indeed expected to be true absences and

reflect low habitat suitability. Ecological interpretation

of different habitat modelling methodologies is of great

importance and may guide the final choice of available

alternatives. Zaniewski et al. (2002) argue that pure

presence-only methods such as ENFA are more likely to

predict potential distributions that more closely resemble

the fundamental niche of the species, whereas presence-

absence modelling is more likely to reflect the present

natural distribution derived from realized niche. How-

ever, both methods aim at predicting distributions by

sampling real distributions, and therefore, they provide

different estimations of the realised niche of the species

(Loehle and LeBlanc 1996). Since presence only methods

do not take into account the areas from which the

species might be absent, they are less conservative in

estimating the species’ realised niche. On the other hand,

they may better capture realised niche responses in

species which are far from equilibrium with the environ-

ment and therefore are not yet using all habitats

corresponding to their realized niche (Hirzel et al.

2001). It is important to emphasize that, being based

on distinct approaches regarding adjustment to data and

variation in data quality, habitat distribution modelling

methods will likely cover different application areas and

Fig. 5. Relationship between model accuracies for GLM and
ENFA methods and the prevalence component (gradient
separation abundant tolerant species from scarce less tolerant
species, n�/30 species). A. Calibration data (70% of sample
cells). B. Evaluation data (remaining 30% of sample cells).
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it will be impossible to identify one among them as

universally applicable (Elith and Burgman 2002a, b,

Segurado and Araújo 2004). Therefore, the goals and

assumptions of habitat modelling should be clear before

they are applied to particular situations. Methods based

on presence only data such as ENFA appear to fully

cover habitat modelling focused on data in which

absence data is not available, or when the main objective

of the modelling is to identify overall suitable areas for a

given species (i.e. the current distribution of the species is

certainly unreliable). Otherwise, methodologies employ-

ing presence/absence methods should be prioritised.

Species niche characteristics, prevalence and model

accuracy

We found that ecological niche position (marginality)

plays a key role in determining predictive accuracy in

models developed with both GLM and ENFA. In

particular, less marginal bird species from which selected

habitats differed little from the available environmental

conditions in the study area were modelled less accu-

rately than more marginal selective species. This result

agrees with the results of Hepinstall et al. (2002) and

Stockwell and Peterson (2002b) who also observed that

the performance of bird habitat models was negatively

correlated with the proportion of habitats used by a

species with more generalist species being poorly mod-

elled. Segurado and Araújo (2004) described similar

pattern of increasing accuracy of model predictions for

marginal amphibian and reptile species in Portugal.

Stockwell and Peterson (2002b) offered as a biological

explanation for this observation that widespread species

often show local or regional differences in ecological

characteristics. Modelling all these sub-populations

together would effectively overestimate the species’

ecological breath and hence reduce model accuracy.

Therefore, the more widespread a species is, the more

likely it is to use different habitats thus increasing the

likelihood that more factors determine its distributions

(Osborne and Suárez-Seoane 2002). Another potentially

simpler explanation is that species described to have

wider distributions or use a wide range of habitats in one

area might not be limited by any of the measured

predictive factors at the scale at which models are fitted.

In both cases, an accurate prediction of species distribu-

tions becomes difficult and will benefit from availability

of absence data to determine relative suitability among

available habitats. By contrast, both GLM and ENFA

methods seem to perform equally well on more marginal

species, which offers a promising background to the

development of models of marginal potentially threa-

tened species from sources of poor quality data (Peter-

son et al. 2002).

A major but variable role of prevalence on the

predictive accuracy of habitat models has been stressed

by several studies (Araújo and Williams 2000, Pearce

and Ferrier 2000, Manel et al. 2001, Stockwell and

Peterson 2002b). For example, Araújo and Williams

(2000) found that prevalence affected negatively the

specificity component of model predictive ability (i.e.

increasing false positives), while it would affect positively

the sensitivity component of model predictive ability (i.e.

reducing false negatives). On the other hand, Manel et

al. (2001) found that predictive model accuracy assessed

with the ROC method was independent of prevalence

(an observation that was not supported by Segurado and

Araújo 2004). However, a critical assessment of the

effects of prevalence on model predictive accuracy is

problematic because prevalence is likely to vary both

with species ecological characteristics and relative sam-

pling effort. More marginal, or less tolerant, species will

tend to be less frequent and therefore, relatively fewer

occurrences will be available than for species with a wider

ecological distribution. On the other hand, relative lower

sampling effort or bias in data collection may also

decrease species prevalence. Prevalence is thus likely to

affect model accuracy more strongly via indirect effects

of species ecology. Thuiller (2003b) found that within a

given species, accuracy is independent of prevalence

supporting the view that among species effects of

prevalence on model accuracy are likely to be associated

to variability in species niche characteristics. In our

study, we could not completely isolate prevalence from

this factor. However, we found that independently of the

marginality component, the effect of the prevalence

component may still play a secondary role on predictive

model accuracy (Hirzel et al. 2001, Karl et al. 2002).

This role suggests that the effect of prevalence on

predictive accuracy is moderately stronger in models

using presence/absence data, because a relative increase

in the amount of information derived from the addi-

tional presences may enhance its ability to discriminate

the quality of the different sites. When using a presence

only method an increase in the number of occurrences

analysed did not render similar benefits to model

accuracies. Indeed, using a virtual species, Hirzel et al.

(2001) already showed that independently of data quality

ENFA appeared to be robust to data quantity. This is

supported by our results that the prevalence component

did not affect accuracies of ENFA models independently

from species ecology. In Hirzel et al. (2001), GLM was

also found to be relatively robust to data quantity.

However, our results suggested that higher prevalence

for a given species ecology may enhance model accuracy

on independent test data, raising the issue of the

importance of testing habitat predictive models on

evaluation data tests not used for model development

(Fielding and Bell 1997, Beutel et al. 1999, Hirzel et al.

2001). Future studies should explicitly assess the influ-
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ence of the relationship between sample size and ecology

on the relative performance of habitat suitability models

based on presence and absence methods.
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Hirzel, A. H., Helfer, V. and Métral, F. 2001. Assessing habitat-
suitability models with a virtual species. �/ Ecol. Modell. 145:
111�/121.

Hirzel, A. H., Hausser, J. and Perrin, N. 2002a. Biomapper 2.0.
Div. of Conservation Biology, Bern, B/http://www.unil.ch/
biomapper�/.

Hirzel, A. H. et al. 2002b. Ecological-niche factor analysis: How
to compute habitat- suitability maps without absence data?
�/ Ecology 83: 2027�/2036.

Johnson, D. H. and Sargeant, G. A. 2002. Towards better
atlases: improving presence-absence information. �/ In:
Scott, M. S. et al. (eds), Predicting species occurrences:
issues of accuracy and scale. Island Press, pp. 391�/398.

Karl, J. W. et al. 2002. Species commonness and the accuracy of
habitat-relationship models. �/ In: Scott, M. S. et al. (eds),
Predicting species occurrences: issues of accuracy and scale.
Island Press, pp. 573�/580.

Legendre, P. and Legendre, L. 1998. Numerical ecology, 2nd ed.
�/ Elsevier.

Loehle, C. and LeBlanc, D. 1996. Model-based assessments of
climate change effects on forests: a critical review. �/ Ecol.
Modell. 90: 1�/31.

Manel, D. et al. 1999. Alternative methods for predicting species
distribution: an illustration with Himalayan river birds. �/ J.
Appl. Ecol. 36: 734�/747.

Manel, S., Williams, H. C. and Ormerod, S. J. 2001. Evaluating
presence-absence models in ecology: the need to account for
prevalence. �/ J. Appl. Ecol. 38: 921�/931.

McCullagh, P. and Nelder, J. A. 1989. Generalized Linear
Models. �/ Chapman Hall.

Mitchell-Jones, A. J. et al. 1999. Atlas of European mammals.
�/ Academic Press.

Ninyerola, M., Pons, X. and Roure, J. M. 2000. A methodolo-
gical approach of climatological modelling of air tempera-
ture and precipitation through GIS techniques. �/ Int. J.
Climatol. 20: 1823�/1841.
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