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Abstract
Protein-coding genes evolve at different rates, and the influence of different parameters,

from gene size to expression level, has been extensively studied. While in yeast gene

expression level is the major causal factor of gene evolutionary rate, the situation is more

complex in animals. Here we investigate these relations further, especially taking in account

gene expression in different organs as well as indirect correlations between parameters.

We used RNA-seq data from two large datasets, covering 22 mouse tissues and 27 human

tissues. Over all tissues, evolutionary rate only correlates weakly with levels and breadth of

expression. The strongest explanatory factors of purifying selection are GC content, expres-

sion in many developmental stages, and expression in brain tissues. While the main compo-

nent of evolutionary rate is purifying selection, we also find tissue-specific patterns for sites

under neutral evolution and for positive selection. We observe fast evolution of genes

expressed in testis, but also in other tissues, notably liver, which are explained by weak puri-

fying selection rather than by positive selection.

Introduction
Understanding the causes of variation in protein sequence evolutionary rates is one of the major
aims of molecular evolution, and has even been called a "quest for the universals of protein evo-
lution" [1]. Studies in a variety of organisms have reported that protein evolutionary rates corre-
lated with many parameters, structural and functional [2,3]. Most notably, expression level has
been shown to be the best predictor of evolutionary rate in yeasts and bacteria: highly expressed
proteins are generally more conserved [4–6]. In animals and plants, our understanding has been
complicated by the fact that genes can have different expression levels depending on tissue or
life history stage, and by correlations with multiple other factors such as recombination rate,
gene length or compactness, and gene duplications [7–11]. In mammals, expression breadth has
been suggested to be more important than expression level [12,13]. It has also been suggested
that selection against protein misfolding is sufficient to explain covariation of gene expression
and evolutionary rate across taxa, including mouse and human [14]. This notably explains the
slower evolution of brain-expressed genes; the relation with the influence of breadth of
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expression is unclear. Moreover, it was shown that conserved sites and optimal codons are sig-
nificantly correlated in many organisms, including mouse and human [14].

These correlations of evolutionary rate to many other parameters, which are themselves cor-
related (e.g., gene length and GC content), pose problems to determining what is true and what
is spurious correlation. To disentangle which factors could be determining evolutionary rates a
solution is to use partial correlation, taking into account the relationship between gene struc-
ture and other parameters when considering the correlations with evolutionary rate [7,15].

Here we aim to disentangle aspects of protein evolutionary rate and its explanatory factors
in human and mouse. We use partial correlations, taking into account not only different struc-
tural parameters, but also different aspects of gene expression (level, tissue specificity), using
expression in more than 20 tissues. We also used three measures of protein evolutionary rate
estimated from the branch-site model [16]: strength of negative selection (value of dN/dS on
sites under negative selection); proportion of neutrally evolving sites; and evidence for positive
selection. This allows us to distinguish fast evolution due to weak purifying selection from that
due to positive selection.

Materials and Methods
We used RNA-seq data for mouse from the ENCODE project [17] and for human from Fager-
berg et al. [18]. For mouse, the raw reads in FASTQ format obtained from the ENCODE FTP
server (ftp://hgdownload.cse.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeCshlLongRna-
Seq/) were processed with TopHat2 (version 2.0.9) and Cufflinks2 (version 2.1.1) [19], using
the gene models from Ensembl version 69 [20]. For human, processed data from Fagerberg
et al. [18] were retrieved from the ArrayExpress database (E-MTAB-1733) [21]. For mouse 22
tissues and 27 tissues for human were analyzed, of which 16 are homologous between the two
species. Processed RNA-seq expression was further treated as follows (R script in S2 File): mul-
tiplied by 106 (to avoid values under 1, which are negative after log transformation); log2 trans-
formation; and quantile normalization, replacing zero values by log2(1.0001).

We used either global parameters of expression: median expression, maximal expression,
and specificity among all tissues; or expression in each tissue separately. Expression specificity
τ was calculated as described in Yanai et al. [22]. Values of expression specificity close to zero
indicate that a gene is broadly expressed, and close to one that it is specific of one tissue.

Additional analysis was performed on microarray expression data from 22 human and 22
mouse tissues selected from the Bgee database [23] (S1 File), as well as 8 human and 6 mouse
tissues from Brawand et al. RNA-seq [24]. The corresponding results are presented in S1 File.

As measures of evolutionary rate of protein-coding genes, we used the estimates from the
branch-site model [16] as precomputed in Selectome [25]: purifying selection estimated by the
dN/dS ratio ω0 on the proportion of codons under purifying selection (noted "Omega" in the
figures), evidence for positive selection estimated by the log-likelihood ratio ΔlnL of H1 to H0

(models with or without positive selection), and the proportion of neutrally evolving sites p1.
In Selectome, computations are done on multiple sequence alignments filtered to remove
ambiguously aligned regions [25]; all filtered and unfiltered alignments can be downloaded at
http://selectome.unil.ch/cgi-bin/download.cgi. The evolutionary rate parameters were esti-
mated from the Euteleostomi gene trees on the Murinae branch for mouse and the Homininae
branch for human. We also present in supplementary materials (S1 File) another estimation of
evolutionary rate, using the exon based MI score [26,27].

For all parameters the longest coding transcript was chosen as a representative of the gene,
as the evolutionary rate data were available only for this transcript. Analysis was also redone
for mouse using the most expressed transcript; results are presented in S1 File.

Tissue-Specific Evolution of Protein Coding Genes

PLOS ONE | DOI:10.1371/journal.pone.0131673 June 29, 2015 2 / 15

http://selectome.unil.ch/cgi-bin/download.cgi


Intron number, intron length, CDS length (coding sequence length) and GC content were
taken from Ensembl 69 [20]. Essentiality data were manually mapped and curated (Walid
Gharib, personal communication) for human from the OMIM database [28] and for mouse
from the MGI database [29].

Data of expression at different developmental stages were obtained from Bgee [23]. The
parameter stage number indicates the number of stages in which the gene was reported as
expressed. Mouse development was divided in 10 stages: 1. Zygote 2. Cleavage 3. Blastula 4.
Gastrula 5. Neurula 6. Organogenesis 7. Fetus 8. Infant 9. Adolescent 10. Adult; and human in
8 stages: 1. Cleavage 2. Blastula 3. Organogenesis 4. Fetus 5. Infant 6. Adolescent 7. Early adult
8. Late Adult.

Phyletic age and connectivity (protein-protein interactions) data were downloaded from the
OGEE database [30], as ordinal data. Phyletic age stages used are: 1. Mammalia 2. Chordata 3.
Metazoa 4. Fungi/Metazoa 5. Eukaryota 6. Cellular organism.

Recombination rate was calculated from Cox et al. 2009 data [31].
Correlation between the different parameters was performed in two ways: simple pairwise

Spearman correlation and partial Spearman correlation (results for Pearson correlation are
also presented in S1 File). For partial correlation each pair of parameters were compared taking
into account all other parameters: first a linear model according to all other parameters for
each of the two analyzed parameters was calculated; then the Spearman correlation was calcu-
lated on the corresponding residuals. All R code is available as S2 File.

Partial correlation was used to determine the correlation between two parameters excluding
dependencies from other parameters. The principle of the partial correlation can be shown on
a toy example (Table A in S1 File). As example data for human height and leg length were sim-
ulated, so that either a) the length of both legs is calculated depending on height, or b) the
length of the left leg is calculated from height, and the length of the right leg is calculated from
the length of left leg. With simple correlation the two cases cannot be distinguished, as all three
parameters correlate strongly with each other. With partial correlation we can distinguish the
two cases: in case a) left leg and right leg length don’t correlate with each other if we exclude
influence of the height, but in case b) we see a strong correlation between them, as expected,
while right leg length no longer correlates with height.

Expression, intron length, intron number, CDS length, τ, ω0, paralog number were log2
transformed before calculations. p1 and ΔlnL were normalized by taking the fourth root
[32,33]. For parameters containing zeros a small value was added before log transformation,
chosen as the minimal non zero value of the parameter (except for RNA-seq, see detailed treat-
ment above). We note that despite the transformations, the distributions of several parameters
remain quite far from normal, with notably peaks of null values. While this probably has some
impact on the analysis, we minimize it by using Spearman correlation; truncating distributions
would not allow to analyze globally the influence of all parameters. All distributions, before
and after transformation, are shown in Figure A in S1 File. Altogether 9553 protein-coding
genes for human and 9485 protein-coding genes for mouse were analyzed.

All the analysis was performed in R [34] using Lattice [35] and plyr [36]. For the representa-
tion of the data Cytoscape version 2.8.2 [37] with library RCytoscape [38] and Circos version
0.62–1 [39] were used.

Results
We detail here the results of Spearman partial correlation analyses (Table 1); standard Spear-
man and Pearson, as well as partial Pearson, correlations are provided in S1 File. Spearman
correlation was preferred as most of the data analyzed are not normally distributed (Figure A
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in S1 File), even after transformation, and to avoid a large influence of outliers. It should be
noted that parameters that are expected to have strong direct relations remain strongly corre-
lated in the Spearman partial correlation. For example the correlation between coding sequence
(CDS) length and intron number, in mouse, is ρ = 0.683 for partial vs. ρ = 0.760 for simple cor-
relation, showing that longer genes have more introns. Similarly, partial correlations still show
that higher expressed genes are broadly expressed, and that specific genes have lower expres-
sion in general. Thus little relevant information is lost, while spurious correlations can be hope-
fully avoided.

Evolutionary rate: global influences on selection
Evolutionary rate is represented by three parameters in this study, taken from the branch-site
model (see Methods): ω0 = dN/dS, measures the intensity of purifying selection on the subset
of sites determined to be under purifying selection; p1 is the proportion of neutrally evolving
sites; and ΔlnL measures the strength of evidence for positive selection.

In both mouse and human, none of the aspects of gene expression yields a strong partial
correlation to any feature of evolutionary rate (Table 1 and Fig 1). There is a weak correlation
of ω0 to expression specificity τ in both human and mouse (ρ = 0.085 and 0.067 respectively),
confirming that more broadly expressed genes evolve under stronger purifying selection. Puri-
fying selection ω0 is also negatively correlated to maximum expression, although this is weaker
in human, indicating that genes with high expression in at least one tissue have a tendency to

Table 1. Values of partial Spearman correlations between parameters, over all tissues.

mouse ω0 ΔlnL p1 τ Median
expression

Maximal
expression

Stage
Number

GC
content

Intron
length

Intron
number

CDS
length

Paralogs
number

Phyletic
agehuman

ω0 – -0.031 0.748 0.067 0.051 -0.074 -0.012 -0.055 -0.030 0.052 -0.062 -0.064 -0.163

Δ0.1 0.133 – 0.014 -0.048 -0.187 0.079 -0.043 -0.020 -0.038 -0.060 0.042 -0.017 0.000

p1 0.598 -0.037 – 0.024 -0.005 0.029 -0.047 -0.066 -0.080 -0.034 0.042 -0.069 -0.017

τ 0.085 -0.006 0.018 – -0.803 0.468 -0.374 -0.039 0.094 -0.061 0.074 0.125 -0.069

Median
expression

0.049 -0.105 0.015 -0.790 – 0.553 0.012 0.088 0.135 0.002 0.061 0.070 -0.025

Maximal
expression

-0.041 0.033 -0.005 0.406 0.530 – 0.164 0.231 -0.076 0.168 -0.283 0.075 0.010

Stage
Number

-0.041 -0.055 -0.043 -0.381 0.063 0.163 – -0.287 -0.048 -0.006 0.015 -0.087 0.108

GC
content

-0.159 -0.049 -0.042 0.121 0.139 -0.039 -0.020 – -0.518 -0.190 0.113 0.071 -0.090

Intron
length

-0.088 -0.074 -0.047 0.163 0.165 -0.137 0.103 -0.517 – -0.103 0.044 0.123 -0.105

Intron
number

0.039 -0.039 0.002 -0.091 -0.029 0.205 -0.065 -0.093 -0.037 – 0.683 0.029 0.141

CDS
length

-0.014 -0.011 0.008 0.135 0.109 -0.312 0.101 -0.011 -0.041 0.629 – 0.181 0.111

Paralogs
number

-0.136 -0.019 -0.069 0.155 0.104 0.092 -0.052 0.070 0.103 0.065 0.173 – 0.175

Phyletic
age

-0.213 -0.034 -0.084 -0.136 -0.081 0.048 0.091 -0.065 -0.078 0.151 0.122 0.188 –

Top right of table: values for mouse (corresponding to Fig 1A); bottom left of table: values for human (corresponding to Fig 1B).

All values are significant (Benjamini-Hochberg FDR 1%), except those in italics. Values in bold are strongly significant (p-value�0.0005) and are

represented in Fig 1.

doi:10.1371/journal.pone.0131673.t001
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evolve under strong purifying selection. More surprisingly, purifying selection ω0 is positively
correlated to median expression. Note that these are partial correlations; without correcting for
other parameters, as expected, ω0 correlates negatively with median expression, i.e., highly
expressed genes are under strong purifying selection. It appears that this negative correlation is
driven by the effect of breadth of expression and of maximum expression, with the residual
effect actually in the opposite direction.

Evolutionary features of the genes, paralog number and phyletic age, have a stronger partial
correlation with ω0 than expression: older genes, and genes with more paralogs, evolve under
stronger purifying selection; again, this is after removing the effect of high levels of expression,
as well as the correlation between gene age and number of paralogs. In human, GC content
also appears to have a strong influence on ω0, but much less so in mouse.

It remains that none of these parameters can explain much of the differences in purifying
selection. The total variance of ω0 that they explain (using partial Pearson correlation, as Spear-
man ρ does not relate directly to variance) is 10.2% for human and 13.8% for mouse, thus leav-
ing more than 85% of the variance unexplained.

The strongest correlation with ω0 is for p1, the proportion of sides evolving neutrally (Fig 1).
This partial correlation is ρ = 0.748 in mouse and ρ = 0.598 in human; genes under strong puri-
fying selection have a smaller proportion of sites evolving neutrally. This is not directly due to
the way how these parameters are estimated in the branch-site test, since ω0 is computed on a
distinct set of codons from p1. This proportion p1 of neutrally evolving sites is otherwise mostly
correlated with evolutionary features (phyletic age, paralog number) in human, and with struc-
tural features (intron length, GC content) in mouse, but correlations are weak (all ρ< 0.09).

Evidence for positive selection correlates negatively with median expression in both human
and mouse (Fig 1), i.e. highly expressed genes are under weaker positive selection (ρ = -0.105
and -0.187 respectively). It should be noted that this correlation concerns relatively weak evi-
dence for selection, since only 4 human and 23 mouse genes in the dataset have significant

Fig 1. Spearman partial correlations in a) mouse and b) human. The width of the lines shows the strength of correlations. Red lines show positive
correlations, blue lines show negative correlations. Only significant correlations (p<0.0005) are shown.

doi:10.1371/journal.pone.0131673.g001
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support for branch-site positive selection (using the false discovery rate of 10% cut-off of Selec-
tome, see Methods).

Tissue-specific analysis
When the correlation between expression level, selective pressure, and other parameters, is
analyzed for each tissue separately, there are large differences, notably in the correlation
between expression and purifying selection between tissues (Fig 2).

In both human and mouse, the strongest correlation with purifying selection ω0 is for level
of expression in the brain, as expected from previous studies with less tissues [12,14,40–42].
After correcting for all other effects, the residual correlation is rather weak (ρ between -0.065
and -0.107 depending on species and brain part), but always in the direction of stronger purify-
ing selection on genes with higher expression in brain. In human, there are also significant par-
tial correlations for esophagus, prostate, adrenal, colon, and endometrium (Fig 2B). In mouse,
there are correlations for all sampled tissues except liver, placenta and testis (Fig 2A); in
human the homologous tissues to these three also have among the lowest partial correlations.
Interestingly, the only positive partial correlation with ω0 is for human testis expression, i.e.
higher expression in testis correlates with weaker purifying selection.

The strongest correlations with the proportion of neutrally evolving sites are also for brain
tissues, in human and in mouse. Again the correlation is negative, indicating less neutral evolu-
tion (i.e., more selection) for more highly expressed genes. There are almost no other tissues
with significant partial correlation of expression and p1, although for mouse large intestine the
correlation is significantly positive.

Fig 2. Spearman partial correlation with expression values for each tissue separately for a) mouse and b) human. The width of the lines shows the
strength of correlations. Red lines show positive correlations, blue shows negative correlations. Only significant correlations (p<0.0005) are shown. Color of
the tissue bands represents different groups of tissues (gastrointestinal system (yellow), central nervous system (red), reproductive system (beige) and misc
(orange)).

doi:10.1371/journal.pone.0131673.g002
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Concerning evidence of positive selection, on the other hand, there are significant negative
partial correlations for all tissues, meaning that for each tissue genes with higher expression
have less evidence of positive selection. Brain tissues again have some of the strongest correla-
tions, although they stand out less than for ω0 or p1. In both mouse and human the correlation
is weakest for testis expression, and also quite weak for placenta.

All these correlations include for each tissue both house-keeping and tissue-specific genes;
the former might confuse tissue-specific patterns. Thus we repeated the analysis restricted to
tissue-specific genes, defined as τ> 0.2 (Figure B in S1 File). The global picture is similar, with
notably significant negative partial correlations to ω0 only for expression in human brain and
mouse cerebellum, significant negative correlation to p1 only for mouse brain parts, and con-
versely significant positive correlations to expression in human and mouse testis.

Gene age and duplication
As expected, older genes have more paralogs (positive correlation in Fig 1) [43]. Tissue specific-
ity has a rather strong positive partial correlation with paralog number, and a significant weak
negative correlation with phyletic age was detected; both correlations are stronger in human
than in mouse. That means that, correcting for the correlation between gene age and paralog
number, new genes and genes with more paralogs tend to have more tissue-specific expression.
While in simple correlation, phyletic age and expression level (median or maximum) have a
strong positive correlation (older genes have higher expression), this effect is almost completely
lost in the partial correlation, and so is probably spurious.

The phyletic age of the genes correlates negatively with purifying selection but almost no
correlation can be seen to neutral evolution or positive selection. This is consistent with previ-
ous observations that older genes evolve under stronger purifying selection ([44,45] but see
[46]).

Paralog number correlates negatively with purifying selection in both organisms (-0.064 for
mouse and -0.136 for human). This indicates a stronger effect of the biased preservation of
duplicates under stronger purifying selection [47–49], than of the effect of faster evolution of
duplicated genes [50].

Gene structure
Genes with higher GC content have higher expression level, as shown previously [51], although
the effect is not very strong in partial correlation. Of note, there might be a slight bias of GC
content on RNA-seq detection of expression [52,53]; indeed, the correlation is not significant
when we use microarray expression normalized by gcRMA (S1 File). Previous findings that
highly expressed genes are shorter were only partly confirmed: there is a strong negative partial
correlation between CDS length and maximal expression, but the partial correlation between
median expression and CDS length is weakly positive. Curiously, the partial correlation with
intron number is opposite, indicating that genes with high maximum expression tend to have
more introns than expected given their CDS length.

Differences between human and mouse, and between datasets
In general correlations in human are slightly weaker than in mouse, but very consistent
(Figure C in S1 File). The strongest difference is between the correlations of GC content and
stage number; and of GC content and maximal expression.

There are also noticeable differences between mouse and human in the partial correlations
among ω0, p1 and ΔlnL (evidence for positive selection). In human ΔlnL correlates negatively
with p1 and positively with ω0, indicating that genes with high proportion of neutrally evolving
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sites and weak purifying selection show little evidence for positive selection. In mouse the cor-
relations are in the opposite directions, and not significant between ΔlnL and p1, but the corre-
lation between ω0 and p1 is much stronger. GC content and paralog number also have stronger
correlations to purifying selection in human than in mouse.

We repeated our analyses with large microarray experiments (see Methods, and S1 File), to
control for putative biases in RNA-seq data. There are a few differences, although they do not
change our biological conclusions. First, with microarrays tissue-specificity τ appears overall
lower, and the correlations between expression parameters (τ, maximal expression, median
expression) are stronger. This might be due to the better detection of lowly expressed genes by
RNA-seq than by microarray, whereas there seems to be less difference for highly expressed
genes [54]. Conversely, correlations of expression parameters with all other parameters are
much stronger for RNA-seq. The correlation between ω0 and expression in each tissue sepa-
rately is stronger with microarrays then with RNA-seq, and significant for all tissues, but the
same tissues have the strongest (resp. weakest) correlation between ω0 and expression with
both techniques. Inversely, the evidence for positive selection has almost no significant correla-
tions with expression in single tissues with microarray data.

We also reproduced our analysis using the precomputed "MI" score for most conserved
exon [26,27] instead of the branch-site model ω0, and all results are similar despite the differ-
ences in multiple sequence alignment and in evolutionary model (Figure D in S1 File): e.g.,
phyletic age is the strongest correlation to MI and median expression has a weak positive par-
tial correlation.

Finally, we repeated our analysis with the RNA-seq data for human and mouse 6 tissues
from Brawand et al. [24]; results are extremely similar to those with the large RNA-seq experi-
ments used in our main results (S1 File), with less detail of tissues, and less resolution for τ, due
to the smaller sampling.

Overall, our results appear quite robust across species and experimental techniques.

Discussion

Technical limitations and generality of observations
We use partial correlations to hopefully detect non-spurious relations. Of note, the lack of par-
tial correlation between two parameters does not mean that they are not correlated in practice,
but that the correlation is not directly informative, or insufficiently to be detected.

Our analysis was performed on approximately half of the known protein coding genes
(9509 for human and 9471 for mouse), for which evolutionary rate could be computed reliably.
While this may introduce some bias, it does not appear to have a large influence, since correla-
tions other than to evolutionary rate are very similar on the other half of the coding genes
(S1 File).

Global study of evolutionary rate
Our aim is to understand the causes of variation in evolutionary rates among protein-coding
genes in mammals. In yeast or bacteria, the major explanatory feature is the relation between
the level of gene expression and purifying selection [1–3]. In mammals, firstly levels of expres-
sion are more complex to define, due to multicellularity and tissue-specificity, and secondly
several other features have been reported to correlate as much or more with evolutionary rate,
in studies which did not necessarily incorporate all alternative explanations.

In this study, we have focused on the dN/dS ratio, or ω, and distinguished further the three
forces which affect this ratio, under the classical assumption that dS is overwhelmingly neutral
(although see [55–57]). The intensity of purifying selection is clearly the main component of
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the overall ω: on average more than 85% of codons are in the purifying selection class of the
evolutionary model used. Analyzing separately neutral evolution and purifying and positive
selection, we find that (i) these three forces do not affect protein coding genes independently,
and (ii) they have different relations to gene expression and to other features. Notably, genes
which are under stronger purifying selection have fewer codons predicted under neutral evolu-
tion. Importantly, we computed evolutionary rates on filtered alignments [25] (see Material
and Methods), which probably eliminates mostly neutrally evolving sites, thus underestimating
p1. Still, it appears that to the best of our knowledge these two forces act in the same direction.
The relation is less clear concerning the evidence for positive selection, with opposite correla-
tions in human and mouse. But we are limited by the weak evidence for positive selection on
the branches tested, at the human-chimpanzee and mouse-rat divergences. Overall, these rela-
tions between forces acting on ω0 deserve further investigation with more elaborate evolution-
ary models (e.g., [58,59]). Despite the limitations of the estimation of positive selection, this is
the component of evolutionary rate which has the strongest partial correlation with the level of
gene expression, both with the median expression over all tissues, and with expression in brain
tissues. This implies that when expression patterns constrain the protein sequence, they also
strongly limit adaptation (strong purifying selection and very low positive selection).

So what explains evolutionary rate? The strongest partial correlation of ω0 is with phyletic
age: older genes evolve under stronger purifying selection. While the use of partial correlation
allows us to correct for some obvious biases in detecting distant orthologs, such as gene length,
we cannot exclude that results be partially caused by the easier detection of orthologs in distant
species for proteins with more conserved sequences [45,46,60]. I.e., genes with weak purifying
selection may be reported as younger than they are, because the orthologs were not detected by
sequence similarity. We obtain similar results with an exon-based index of sequence conserva-
tion, MI (Figure D in S1 File). Whatever the contributions of methodological bias and biologi-
cal effect, this correlation is not very informative about causality, since stronger selection will
not be caused by the age of the gene.

The next strongest partial correlation with ω0 is the GC content of the gene. In mammals,
the variation in GC content of genes seems mostly due to GC-biased gene recombination [61],
and this in turn has been show to impact estimation of dN/dS [62]. But while GC-biased gene
recombination is expected to lead to high GC and an overestimation of ω, we find a negative
correlation between ω0 and GC content, consistent with previous observations in Primates
[63]. Of note, estimating the actual biased recombination rate rather than GC content is limited
by the rapid turn-over of recombination hotspots [64], and recombination rate appears to have
only a very weak effect on dN/dS in Primates once GC content is taken into account [63]. This
could be seen in our study, as recombination rate did not show any significant correlation to
any of the parameters, except GC content (S1 File). The previously reported relation between
dN/dS and intron length seems to be mostly an indirect effect of the strong correlation between
GC content and intron length [61,65].

The significant, although weaker, partial correlation of ω0 to paralog number is consistent
with previous observations that genes under stronger purifying selection are more kept in
duplicate [9,47–49].

The level of gene expression has been reported repeatedly to be the main explanatory vari-
able for dN/dS [4–6,66,67], notably in S. cerevisiae. Our first observation is that no aspect of
expression in human and mouse adult tissues is as strong an explanatory factor for any compo-
nent of evolutionary rate as what was reported in yeast. Our second observation is that three
aspects of expression influence evolutionary rate most strongly: breadth of expression τ; num-
ber of developmental stages (Fig 1 and Table 1); and expression in brain tissues (Fig 2). The
third, surprising, observation is that median expression is positively correlated with ω0: taking

Tissue-Specific Evolution of Protein Coding Genes

PLOS ONE | DOI:10.1371/journal.pone.0131673 June 29, 2015 9 / 15



into account other parameters, genes which have higher expression on average are under
weaker purifying selection; whereas the correlation with maximal expression is negative, as
expected. Thus in mammals the negative correlation between median expression and evolu-
tionary rate appears to be an indirect effect of stronger selection on broadly expressed genes
and on genes with high maximal expression in at least one tissue (this is also true if we take the
mean instead of median expression, see S1 File).

We confirm previously reported observations that expression breadth is more important
then expression level itself in mammals [13]. dN was previously found to be threefold lower in
ubiquitous than in tissue-specific genes, while dS did not vary with expression specificity [12].
Other studies indicate that genes expressed in few tissues evolve faster then genes expressed in
a wide range of tissues [13,67,68], or that tissue-specific genes have more evidence for positive
selection [69]. In mouse, but not human, τ is weakly negatively correlated to evidence for posi-
tive selection: broadly expressed genes seem to be more affected by positive selection, contra
Haygood et al [69]. We also notice that tissue-specificity and maximal expression are corre-
lated, i.e. more tissue-specific genes have higher maximum expression in one tissue. Thus these
two forces appear to act on different genes: some genes are under strong purifying selection
because they are broadly expressed, suggesting an important role of pleiotropy, while other
genes are under strong purifying selection because they are highly expressed in few tissues, sug-
gesting an important role of the tissue-specific optimization of protein sequences.

Some studies have reported that expression level and tissue specificity are less important
than gene compactness and essentiality in mammals [10]. Liao et al. [10] reported that compact
genes evolve faster, but this correlation is very weak in our study. We could not either confirm
that highly expressed genes are shorter [11,51,70]. We have used the longest transcript for each
protein coding gene, as evolutionary parameters (ΔlnL, ω0, p1) were calculated for the tran-
script. But this might not be the transcript most expressed and used in all tissues [71]. We
repeated calculations with the most expressed transcript (S1 File), but results were unchanged;
we show these results only in supplementary materials, as the estimation of transcript-level
expression does not yet appear to be very reliable [72,73]. Finally, we tried to investigate the
impact of essentiality, but we found no significant effect (Figure E in S1 File); we note that we
have very low power to test this effect, especially in human.

The analysis was also performed adding connectivity and recombination data, for mouse
only. This reduced the number of analyzed genes to 4599 (S1 File). Correlations were mostly
unchanged, with the largest difference being for the correlation between stage number and
phyletic age, from 0.11 to 0.093. No notable change of correlations with ω0 was detected, and
connectivity and recombination rate do not show any significant correlation to evolutionary
rate.

The largest partial correlations that we observed for components of evolutionary rate are
between brain expression level and evidence for positive selection, at -0.203 to -0.188 in mouse
(for different brain parts), and -0.168 in human (whole brain). For purifying selection we find
weaker but significant partial correlations with brain expression and with the number of stages,
between 0.065 and 0.119. And brain tissues also have the strongest partial correlation over
expression in tissues for neutral evolution (Fig 2). It has been previously reported that brain
expression is a major component of evolutionary rate in mammals and other animals
[12,14,40,41], and here we confirm the dominance of this component, even taking other effects
into account. Importantly we show that this affects all forces acting on protein evolutionary
rate: purifying selection, neutral evolution, and positive selection. Thus the median expression
of genes over more than 20 tissues is a poor explanation of protein evolutionary rate, relative to
brain expression.
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Tissue specific patterns
There are striking differences between tissues in the extent of the correlations with structural
and evolutionary parameters. As already mentioned, brain tissues present the strongest par-
tial correlations with evolutionary rate; results are consistent when only tissue-specific
genes are used. We observe this for the three evolutionary forces estimated. In most compari-
sons, the correlation is stronger for brain expression than for any global measure of expres-
sion. This is consistent with the translational robustness hypothesis, which proposes that
highly expressed genes are under stronger pressure to avoid misfolding caused by transla-
tional errors, thus these genes are more conserved in evolution [4], and that neural tissues are
the most sensitive to protein misfolding [14]. This slow evolution of genes expressed in neu-
ral tissues has been repeatedly reported [12,40,74], especially for the brain [13]; it has also
been related to higher complexity of biochemical networks in the brain than in other tissues
[40].

Fast evolution of genes expressed in testis is also well documented [24,41,74], and could be
due to lower purifying selection, an excess of young genes and leaky expression, or to positive
selection due to sexual conflict. We observe neither a stronger correlation between expression
in sexual tissues and evidence for positive selection, nor a stronger correlation between expres-
sion in sexual tissues and the proportion of sites evolving neutrally. What we do observe is
that the weakest partial correlation between expression in a tissue and purifying selection is
for testis, and that it is also quite weak for placenta, with even a surprising positive correlation
between ω0 and expression in human testis, which remains when only tissue-specific genes
are used. This is consistent with the "leaky expression" model: being expressed in the testis
does not appear to be an indicator of function carried by the protein sequence. Interestingly,
expression in testis is negatively correlated with the number of paralogs, significantly so in
mouse: genes which are more expressed in testis have less paralogs, after correcting for other
effects.

While the strong correlation of ω0 with expression in the brain, and the weak correlation
with expression in testis are expected, we also observe less expected patterns. Most notably,
liver expression has the next weakest correlation with ω0 after testis (and placenta in mouse).
Although it was reported before that liver expressed genes are evolving faster [12,41], it
was reported with much fewer tissues, and not highlighted. Liver expression is also positively
correlated with the proportion of neutral sites, unlike brain or testis expression, although
this is not significant. Interestingly, liver has the strongest correlation of expression with phy-
letic age, implying that despite low purifying selection, old genes are more expressed in liver.
In any case, this outlier position of liver has important practical implications, since liver is
often used as a "typical" tissue in studies of gene expression for molecular evolution (e.g.,
[75–78]).

Conclusion
The main result of our study is that average adult gene expression is quite lowly informative
about protein evolutionary rate, while purifying selection on genes highly expressed in the
brain and breadth of expression are our best bets for a causal factor explaining evolutionary
rates. A practical consequence is that great care should be taken before using expression from
other tissues, including widely used ones such as liver, as proxies for the functional importance
of mammalian genes. Finally, all calculations were performed with expression in adult tissues.
It is possible that expression in embryonic development be more important for evolutionary
constraints in mammals, and this should be explored further.
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