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The use of antifungal drugs in the therapy of fungal diseases can lead to the devel-
opment of antifungal resistance. Resistance has been described for virtually all anti-
fungal agents in diverse pathogens, including Candida and Aspergillus species. The 
majority of resistance mechanisms have also been elucidated at the molecular level in 
these pathogens. Drug resistance genes and genome mutations have been identified. 
Therapeutic choices are limited for the control of fungal diseases, and it is tempting 
to combine several drugs to achieve better therapeutic efficacy. In the recent years, 
several novel resistance patterns have been observed, including antifungal resistance 
originating from environmental sources in Aspergillus fumigatus and the emergence of 
simultaneous resistance to different antifungal classes (multidrug resistance) in different 
Candida species. This review will summarize these current trends.
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iNTRODUCTiON

Progresses in the therapy of human diseases have increased the survival of critically ill patients or 
patients with impaired function of their immune system. As a consequence, risk factors accumulate 
and favor the progression of other diseases, such as infectious diseases. Among these diseases, 
invasive fungal infections in humans represent a significant proportion. The most frequent fungal 
pathogens are Candida, Aspergillus, Pneumocystis, and Cryptococcus spp. It is estimated that these 
fungal species cause at least 1.4 million deaths worldwide per year (1). Compared to other microbial 
pathogens causing bloodstream infections, Candida spp. are ranked fourth among the most common 
agents of bloodstream infections, after other common bacterial pathogens (2). Aspergillus infections 
are the most common microbial infections in hematopoietic stem cell transplant (HSCT) recipients 
(3). About 30–50% of invasive aspergillosis patients still die, and the mortality from candidemia also 
remains high at ~50% (4).

There are only four major classes of antifungal drugs available to treat invasive fungal infec-
tions. They include polyenes, pyrimidine analogs, echinocandins, and triazoles (5). A fifth class 
(allylamines) is also existing; however, compounds of this class (for example, terbinafine) are used 
only for treating superficial dermatophytic infections (6). Polyenes, such as amphotericin B (AmB), 
have the ability to bind ergosterol and act as a sterol “sponge,” thus destabilizing membrane functions 
(7). Ergosterol is a major sterol of fungal membranes and is required for maintaining cell membrane 
integrity. AmB may exert intrinsic toxic effects in humans; however, this negative effect can be 
avoided by using liposome formulations (5). Pyrimidine analogs, such as 5-fluorocytosine (5-FC), 
are metabolized by fungal cells into fluorinated pyrimidines, which destabilize nucleic acids (RNA, 
DNA) and therefore result in growth arrest. 5-FC is used mainly for the treatment of Cryptococcus 
spp. meningitis and in combination with AmB (8). Echinocandins block the catalytic subunit of 
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TABLe 1 | eCOFF and CBP of different antifungal agents and fungal species.a

Species Method eCOFF (μg/ml) CBP (μg/ml)

Fluconazole Anidulafungin Micafungin Fluconazole Anidulafungin Micafungin

Sb Rb S R S R

C. albicans CLSI 0.5 ≤0.12 ≤0.03 2 4 0.25 0.5 0.25 0.5

EUCAST 1 0.03 0.015 2 4 0.03 0.03 0.016 0.016

C. glabrata CLSI 32 ≤0.25 ≤0.03 0.002 32 0.12 0.25 0.06 0.12

EUCAST 32 0.06 0.03 0.002 32 0.06 0.06 0.03 0.03

C. parapsilosis CLSI 2 ≤4 ≤4 2 4 2 4 2 4

EUCAST 2 4 2 2 4 0.002 4 0.002 2

C. tropicalis CLSI 2 ≤0.12 ≤0.12 2 4 0.25 0.5 0.25 0.5

EUCAST 2 0.06 0.06 2 4 0.06 0.06 NAc NA

C. krusei CLSI 64 ≤0.12 ≤0.12 –d – 0.25 0.5 0.25 0.5

EUCAST 128 0.06 0.25 – – 0.06 0.06 NA NA

aData obtained from published studies (11, 13, 15–18).
bCategorical discrimination between resistant (R) and susceptible (S).
cNA, not available. EUCAST indicates that there is not yet available evidence that the species in question is a good target for therapy with the drug.
d“–” indicates that susceptibility testing is not recommended as the species is a poor target for therapy with the drug.
ECOFF, epidemiological cut-off; CBP, clinical breakpoint.
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the β-1,3 glucan synthase and thus inhibit cell wall biosynthesis 
(9). In medical practice, triazoles are still the most used antifun-
gals. These compounds target a specific step in the biosynthesis 
of ergosterol that catalyzes lanosterol 14α-demethylation (5). 
Fluconazole is the major triazole in clinical settings, probably due 
to its high oral availability and tolerability by patients.

ANTiFUNGAL ACTiviTY AND 
ANTiFUNGAL ReSiSTANCe

The physical measure that determines antifungal activity is the 
reduction of growth in vitro as compared to drug-untreated cells. 
Antifungal activity is usually measured with standard dilutions 
in liquid media, although solid surface agars with drug gradients 
can be used as well (10). Two major protocols are currently used, 
both originating from major antifungal susceptibility testing 
subcommittees (CLSI, Clinical Laboratory Standards Institute; 
EUCAST, European Committee on Antimicrobial Susceptibility 
Testing). The protocols yield so-called minimum inhibition con-
centration (MIC) values (given in microgram per milliliter) as 
measures of antifungal activity. Although these protocols differ in 
several technical aspects, the agreement between the two meth-
ods in terms of antifungal activities is generally high (Table 1) 
(11). If a collection of isolates from the same species (for example, 
Candida albicans) is tested for susceptibility with a single agent 
(fluconazole), the resulting MICs will be distributed in a Gaussian 
bell-shaped manner. Such distribution helps to identify isolates 
(non-wild type isolates) differing from the general population of 
wild type isolates (12). The distinction between the two groups 
can be made with the help of the so-called epidemiological cut 
off (ECOFF) values. The ECOFF value is defined as the upper 
limit of the wild type population and in general will encompass 
about 95–99% of a given population for a specific agent. The 
ECOFF helps to detect non-wild type isolates that can typically be 
assigned as resistant isolates and may exhibit specific antifungal 

resistance mechanisms (13). In vitro resistance (or microbiologi-
cal resistance) may be predictive of in vivo resistance (or clinical 
resistance). In order to achieve this, several studies have estab-
lished clinical breakpoints (CBPs) for specific agents and specific 
fungal pathogens using several clinical parameters, including 
in  vivo drug pharmacokinetics, resistance mechanisms, and 
clinical response. With MICs above CBPs, the success of therapy 
with a given agent is limited. For example, CBPs for fluconazole 
and C. albicans are declared as 2 and 4 μg/ml by EUCAST and 
CLSI, respectively. In a study in which candidemia episodes 
were enrolled (217) and treated with fluconazole monotherapy,  
infection-related mortality was significantly increased in C. 
albicans episodes with an MIC ≥2 μg/ml compared with those 
below this MIC target (20.6 versus 4.9%) (14). These results sup-
port well the proposed fluconazole CBPs of both EUCAST and 
CLSI. Table 1 gives an overview of current CBP of five important 
Candida spp. and currently available antifungal agents.

A number of fungal species are not perturbed by specific anti-
fungal agents at any concentrations. The absence of drug activity 
in a species that was not pre-exposed to the tested agent is also 
known as intrinsic resistance. Taking as example the response of 
Candida and Aspergillus spp. to fluconazole, it is known that wild 
type C. albicans is susceptible to fluconazole, whereas Aspergillus 
fumigatus and C. krusei are intrinsically resistant to this drug (19). 
It is reported that Cryptococcus neoformans is resistant to echino-
candins, even if the target of these drugs, a β-1,3 glucan synthase, 
is in vitro highly sensitive to these drugs (20). It is thought that 
echinocandin resistance is rather due to the high content of other 
sugar polymers (β-1,6 glucans) in Cr. neoformans, since their 
biosynthesis is not affected by echinocandins (21). Nevertheless, 
antifungal resistance can be acquired in vitro by drug exposure or 
during therapy. Antifungal resistance can measured by elevated 
MICs as compared to those of a wild type population. Acquired 
antifungal resistance has been reported virtually for all existing 
antifungal agents and major fungal pathogens (22).

http://www.frontiersin.org/Medicine
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There are variable accounts on the frequency at which antifun-
gal resistance occurs in hospitalized patients. The epidemiology 
of invasive fungal infections and associated resistance is based 
on data collected by sentinel and population-based surveillance 
programs. Here, we will review some data available for major 
fungal pathogens, including C. albicans, C. glabrata, A. fumigatus, 
and Cr. neoformans. Rates of resistance that are calculated from 
available data depend on the values that are used as CBP for given 
agents as was reported recently (23). The CBP recommended by 
the CLSI and EUCAST committees used to be very divergent for 
specific agents (for example, for fluconazole in C. albicans), but 
now tend to be more harmonized (Table 1). Given these diver-
gences, it is sometimes difficult to make comparisons between 
old and more recent epidemiological studies (23). In any case, 
antifungal resistance rates in C. albicans are in general low. In a 
study from two different areas between 2008 and 2011, resistance 
to agents, such as fluconazole (CBP: ≥64 μg/ml) or echinocan-
dins (CBP: ≥4 μg/ml), ranged between 1 and 2% in bloodstream 
isolates (24). Resistance rates in C. glabrata are higher than in  
C. albicans. According to data available in the ARTEMIS 
Antifungal Surveillance Program, C. glabrata increased as a cause 
of invasive candidiasis from 18% of all BSI isolates in 1992–2001 
to 25% in 2001–2007. Fluconazole resistance rates in C. glabrata 
increased over the same period from 9 to 14% (CBP: ≥64 μg/ml) 
(25, 26). Resistance of C. glabrata to the class of echinocandins 
also reaches significant proportions. It was reported that, within 
a 10-year survey (2001–2010) in an US hospital (Duke University 
Hospital), echinocandin resistance rate increased from 4.9 to 
12.3% (27). Similar trends are reported in Europe, although 
resistance rates range between 1 and 4% (28).

Antifungal resistance in A. fumigatus from clinical origin is 
mainly reported for the class of azoles, including itraconazole, 
voriconazole, and posaconazole. Rates of resistance are geograph-
ically variable. In general, resistance occurs when MIC values are 
above the ECOFF. These values are 1 μg/ml for itraconazole and 
voriconazole and 0.25 μg/ml for posaconazole (9). For example, 
resistance reached levels varying between 6 and 27% in the UK 
between 1997 and 2009, while it is up to 8% and only 0.6% in the 
Netherlands and USA, respectively (29).

Cryptococcus neoformans antifungal resistance is known for 
fluconazole (MIC ≥ 16 μg/ml). Fluconazole resistance has been 
described mostly in AIDS patients suffering cryptococcal men-
ingitis. Although resistance rates were up to 28% in the early 90s 
(1990–1994), which corresponds to a period before the introduc-
tion of highly active anti-retroviral therapy (HAART), the current 
trends are around 1% (30, 31).

MeCHANiSMS OF ANTiFUNGAL 
ReSiSTANCe

Mechanisms of antifungal resistance have been resolved at the 
molecular level for most antifungal agents and fungal pathogens. 
In principle, these mechanisms fall into distinct categories, 
including (1) decrease of effective drug concentration, (2) drug 
target alterations, and (3) metabolic bypasses. The major features 
for each of these principles are summarized below (Figure 1).

 (1) Decreased effective drug concentrations can be achieved 
itself by several distinct mechanisms:

 (a) The drug intracellular concentrations can be decreased 
by active efflux.

  It is known that drug resistance can be mediated by the 
activity of several efflux transport systems, including 
ATP-binding cassette (ABC) transporters and tran-
sporters of the major facilitator superfamily (MFS). The 
analysis of fungal pathogen genomes has identified va-
rying numbers of ABC transporters and MFS transpor-
ters with different topologies. C. albicans is predicted 
to contain 28 ABC proteins and 96 potential MFS tran-
sporters (32–34), whereas C. glabrata has at least 18 ABC 
transporters (35) and 33 MFS transporters (deduced 
from http://www.ebi.ac.uk/interpro/entry/IPR011701/
taxonomy). Larger numbers of ABC and MFS proteins 
are found in A. fumigatus (45 and 275, respectively) and 
Cr. neoformans (29 and 192, respectively) (36, 37) (data 
available at http://www.membranetransport.org). ABC 
transporters are arranged in different subfamilies; howe-
ver, they all contain membrane spanning domains and 
use ATP hydrolysis for drug transport. MFS transporters 
are transmembrane proteins, which use the electroche-
mical proton-motive force to mediate drug efflux. MFS 
are involved in multidrug resistance (MDR) (MFS–
MDR transporters) function as proton antiporters and 
are classified into two groups: the drug:H+ antiporter-1 
DHA1 family and the drug:H+ antiporter-2 DHA2 fa-
mily (32, 38).

  Fungal ABC transporters have been arranged into se-
veral classes; however, only ABC transporters of the 
pleiotropic drug resistance (PDR) class are relevant 
for antifungal drug resistance. In C. albicans, the PDR 
class comprises the major transporters involved in 
azole resistance, including CDR1 (for Candida drug 
resistance) and CDR2, and also other transporters 
not shown yet to be involved in antifungal resistan-
ce (CDR3, CDR4, CDR11, and SNQ2). Basically, the 
upregulation of both CDR1 and CDR2 mediates azole 
resistance by enhanced drug efflux and reduces azo-
le accumulation in some C. albicans clinical strains 
(39). Several other ABC transporters known to be in-
volved in azole resistance by their upregulation are the  
C. glabrata CgCDR1, CgCDR2, CgSNQ2 genes, and 
AFR1 from Cr. neoformans (40). In A. fumigatus, the 
association between azole resistance and transporter 
upregulation is less clear. The ABC transporter atrF was 
shown as upregulated in an azole-resistant clinical isola-
te; however, this could not be firmly attributed as a cause 
of resistance (41). AfuMDR4 was strongly upregulated 
in several itraconazole-resistant laboratory-derived mu-
tants (42). Transcriptional profiling revealed transpor-
ter genes whose expression was induced in response to 
voriconazole (43). These included five ABC transporter 
genes (designated abcA–E) and three MFS transporter 
genes (designated mfsA–C). The abcA gene, renamed 
cdr1B, is the only known transporter gene with a direct 
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FiGURe 1 | The three basic resistance mechanisms to antifungal drugs. They include (as listed in the text) (1) decrease of effective drug concentration with 
specific mechanisms including increased drug efflux, increased number of targets, drug sequestration of extracellular and intracellular origins, and poor pro-drug 
conversion; (2) drug target alterations; and (3) metabolic bypasses. Genome mutations are generally responsible for these three basic principles. Drug sequestration 
can be mediated by the formation of matrix polymers in biofilms, a state of cells that is not dependent on the occurrence of genome mutations. Wild type proteins 
are represented by blue circles catalyzing cellular functions; blue-shaded circles represent proteins blocked by drugs in which cellular functions are blocked causing 
decreased growth or death. Mutant proteins are represented by red circles. Drugs are represented with different symbols. Symbols: WT, wild type; M, mutant.
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role in azole resistance in A. fumigatus (44). AfuMDR3, 
a MFS transporter in A. fumigatus, was found as upre-
gulated in a collection of itraconazole-resistant la-
boratory-derived mutants; however, its participation 
in azole resistance of clinical isolates remains elusive 
(42). MFS involved in the development of azole resi-
stance in clinical isolates are restricted to MDR1 from  
C. albicans and C. dubliniensis. MDR1 is upregulated in 
specific strains, which results in enhanced azole efflux 

(45, 46). FLU1 (for Fluconazole resistance) from C. albi-
cans is another MFS, and heterologous expression in S. 
cerevisiae revealed that it served as a fluconazole efflux 
transporter (47). Until now, however, no studies have 
shown the participation of FLU1 in azole resistance in 
clinical isolates.

  Upregulation of ABC and MFS transporters is mediated 
by specific regulators in resistant fungal pathogens. In 
C. albicans, CDR1 and CDR2 are known to be regulated 
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by a zinc cluster finger transcriptional regulator called 
TAC1 and MDR1 by another regulator called MRR1 (48, 
49). Mutations (gain-of-function or GOF mutations) in 
these regulators have been described, and they confer 
an hyperactivation state that does not require additional 
stimulation, thus explaining the inherent high expres-
sion levels of the transporters in drug-resistant isolates 
(50, 51). Other transcriptional regulators of drug tran-
sporters relevant to azole resistance, such as PDR1, have 
been described in C. glabrata (52, 53).

 (b) The drug target is overexpressed.
  By increasing the number of drug targets, the effective 

drug concentration needs to be also increased to saturate 
all target molecules, which results in drug resistance. For 
example, ERG11 upregulation has been associated with 
azole resistance in C. albicans. This transcriptional regu-
lation is mediated by a zinc cluster finger transcription 
factor called UPC2. As in the case of other drug resistan-
ce transcriptional regulators, GOF mutations in UPC2 
have been described and result in upregulation of va-
rious genes, among which is ERG11 (54). Upregulation 
of Cyp51A is also known in azole-resistant A. fumigatus 
isolates; however, the upregulation is mediated by du-
plication of 34- and 42-bp elements (trans-regulation) 
in the Cyp51A promoter. This duplication is associated 
with specific Cyp51A mutations (L98H, Y121F/T289A) 
(55). These combined mutation signatures are enriched 
in azole-resistant A. fumigatus isolates originating from 
the environment that probably arose from the use of 
azoles in the agriculture (29).

 (c) The drug is sequestered in extra- or intracellular com-
partments.

  Fungal pathogens have the ability to sequester drugs 
within extracellular compartments. Several fungal pa-
thogens, including Candida and Aspergillus spp., are 
able to form biofilms in specific growth conditions (56). 
Biofilms are multicellular structures in which cells form 
a dense network that is covered by the so-called matrix. 
The matrix is composed of different elements in C. al-
bicans biofilms, including several cell wall polymers 
(57). Biofilm formation is known to be associated with 
resistance to several drugs, including azoles, polyenes, 
and pyrimidine analogs (58). Interestingly, recent data 
showed that the matrix participates to this process by its 
capacity to sequester antifungal agents. This process has 
been clearly documented for fluconazole (57, 59) and 
was suggested for AmB in C. albicans (60).

  Much less is known in drug sequestration in intracel-
lular compartments. A single report document the ac-
cumulation in C. albicans of fluconazole in organelles 
that were described as vesicular vacuoles. Whether or 
not this type of mechanism could occur in other isolates 
remains unknown (61).

 (d) A pro-drug is poorly converted to an active drug.
  Poor drug metabolization as a principle of antifungal re-

sistance is also observed when 5-FC resistance occurs. 
5-FC is a pro-drug, which is metabolized by cells into 

fluorinated pyrimidine analogs, thus inhibiting nucleic 
acid and protein biosynthesis. After import into cells, 
cytosine deaminase converts 5-FC into 5-fluorouridine 
(5-FU) and therefore the deficiency of this step decre-
ases further processing and toxicity of the drug. Muta-
tions in cytosine deaminase in C. albicans (FCA1) (62) 
and C. glabrata (FCY1) have been reported, resulting in 
5FC resistance (63, 64).

 (2) Drug target alterations have been reported for at least two 
classes of antifungal agents, including azoles and echino-
candins. The targets of these two drugs are a 14α-lanosterol 
demethylase and a β-1,3 glucan synthase, respectively. 
Lanosterol demethylase is encoded by ERG11 in C. albicans 
and Cyp51A and Cyp51B in A. fumigatus. Mutations in 
ERG11 resulting in non-synonymous amino acid substitu-
tions that are present in azole-resistant C. albicans isolates 
are numerous and were shown to decrease the affinity of the 
target to azoles (65). The effects of ERG11 mutations have 
different outcomes on azole MICs that depend on structural 
features of azole drugs. Although most known mutations 
decrease affinity to fluconazole, they have only a moderate 
effect on posaconazole affinity (66). In many cases, simulta-
neous ERG11 mutations can be present on the same ERG11 
allele and be accompanied by drug transport modifications, 
thus resulting in azole-resistant isolates with high MIC val-
ues against azoles (for example, fluconazole MIC > 128 μg/
ml) (67). Mutations in lanosterol demethylase genes from 
azole-resistant A. fumigatus isolates have been only reported 
in Cyp51A until now. Single Cyp51A mutations are sufficient 
to confer high level resistance to azoles in this species (68). 
As in the case of ERG11, Cyp51A mutations have different 
impact on MICs that depend on the azole structure (69).

  Decreased affinity to the target is also known for echino-
candins. β-1,3 glucan synthases are encoded by FKS ge-
nes in different fungal species. Up to now, echinocandin 
resistance has been attributed to specific mutations lea-
ding to amino acid substitutions in two different regions 
of these genes (Hot spot 1 and 2 or HS1 and HS2). FKS1 
mutations have been reported in these two regions (HS1: 
region 640–650 and HS2: 1345–1365) in clinical isola-
tes of C. albicans (70). Equivalent mutations in the HS1 
of FKS2 (an homolog to FKS1) of C. glabrata and FKS1 
of Candida lusitaniae (71, 72), C. tropicalis, and C. kru-
sei (73) have been reported. Some Candida species (the 
Candida parapsilosis family, including C. parapsilosis,  
C. orthopsilosis, and C. metapsilosis) exhibit intrinsic low su-
sceptibilities to echinocandins. FKS1 genes in these species 
contain a natural polymorphism (P660A at the 3′-extremi-
ty of HS1) enabling decreased affinity of the β-1,3 glucan 
synthase to echinocandins. However, this natural FKS1 
polymorphism of these species has less impact than those 
acquired by mutations, since these Candida species still re-
spond to echinocandin therapy (74).

 (3) Metabolic bypasses occur when given metabolic pathways 
are perturbed by loss or strong decrease of specific func-
tions. Metabolic bypass can be compared to compensatory 
mechanisms in which cells divert the toxic effects exerted 
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by some antifungal agents. For example, resistance to azoles 
can be mediated by loss-of-function mutations in the gene 
ERG3 that encodes a sterol Δ5,6 desaturase. If active, the gene 
product converts 14α-methylated sterols that arise from azole 
exposure into a toxic 3,6-diol derivative (75). Fungi unable 
to produce this metabolite acquire azole resistance. Several 
studies have reported ERG3 loss-of-function mutations to 
account for azole resistance (76–79). Due to a deficiency in 
ergosterol biosynthesis, these isolates can be, however, less 
competitive than wild type isolates in conditions encoun-
tered in the host. As a result of loss-of-function of ERG3 in 
specific mutants, ergosterol is absent from cell membranes. 
This way, the mutants escape the toxic effect of AmB, which 
normally acts as a “sponge” for ergosterol to rapidly destabi-
lize membrane functions (7). Several other mutations in the 
ergosterol biosynthesis pathway (ERG6, ERG24, and ERG2) 
lead to the same effect and have also a compensatory effect 
(80–82).

   A mutation in the gene FUR1 encoding uracil phosphori-
bosyltransferase decreases the conversion of 5-FU, which is 
produced from 5-FC deamination (see above), into a toxic 
metabolite (5-FC monophosphate). Thus, the toxic effect of 
5-FC cannot be exerted (83).

ANTiFUNGAL ReSiSTANCe FROM 
eNviRONMeNTAL ORiGiN

Azole antifungal agents are not only widely used in medicine 
but they also largely contribute to crop protection in agriculture 
and are used to preserve materials from fungal decay (84). 
Therefore, A. fumigatus, as a ubiquitous fungus, is likely to 
come into contact in the environment with the same substance 
class that is used in medicine. A first report on azole resistance 
from environmental isolates was published in 2007 from the 
Netherlands (85). In this study, the authors were able to identify 
a mutation in the azole target Cyp51A (a L98H substitution), 
which was associated with a 34-bp tandem repeat (TR34) 
in the gene promoter. Interestingly, the same mutation was 
recovered from patient samples, strongly suggesting that the 
Cyp51A L98H/TR34 mutation was acquired from environmen-
tal isolates. This mutation results in resistance to all medical 
azoles (pan-azole resistance). One argument that is crucial to 
support environmental acquisition of azole resistance is that 
between 64 and 71% of patients with IA due to an azole-resistant  
A. fumigatus isolate had never received azole treatment before 
(86). There are concerns that azole resistance could become a 
global public health threat, since fungal spores can disperse 
easily by circulating air flows across long distances (84). 
Currently, environmental resistance is documented in several 
other European and Asian countries and America (29, 87, 88). 
Other Cyp51A mutations than the L98H/TR34 are now also 
reported from environmental isolates, including TR46/Y121F/
T289A (89), as well as others (G54A and M220I) that were until 
now exclusively recovered from clinical isolates (90). These 
data suggest that systematic surveillance programs should be 

initiated worldwide. The use of azoles in the environment will 
be difficult to restrict, unless scientists raise better public and 
political awareness on this problem.

MULTiDRUG ReSiSTANCe: A PATTeRN OF 
CONCeRN

Antifungal resistance has been observed in most occasions as a 
process involving resistance to single classes of drugs. Within the 
same class, several different agents can exist. Examples are for the 
classes of azoles (fluconazole, itraconazole, voriconazole, posa-
conazole, and isavuconazole) and echinocandins (caspofungin, 
micafungin, and anidulafungin).

Specific resistance mechanisms can result in cross-resistance 
to several drugs of the same class. It is known that the expres-
sion of ABC transporters (i.e., CDR1 or CgCDR1) mediate 
cross-resistance to all azoles used in medicine (66). Likewise, 
specific FKS1 mutations in C. albicans (F641S, S645Y) yield cross-
resistance to all echinocandins (91).

Multidrug resistance is the simultaneous resistance to at least 
two different classes of antifungal agents. In the recent years, 
reports documenting cases of MDR in fungal pathogens have 
been published. We will give here an overview of the latest trends 
in the emergence of MDR.

MDR BeTweeN AZOLeS AND 
AMPHOTeRiCiN B

Many fungal infections are treated with different antifungal 
agent classes, including azoles and polyenes. MDR between these 
two classes could be mediated expectedly by different genomic 
mutations; however, it has been reported that it is sufficient to 
harbor only loss-of-function mutations in ERG3 to result in 
simultaneous MDR against azoles and AmB. Such mutations 
have been reported in C. albicans (79, 92–94) and C. dubliniensis 
(95). Other ERG gene defects may also confer MDR to both drug 
classes, such as the loss-of-function mutation in ERG2 observed 
in C. albicans (82).

Nevertheless, some specific isolates may show simultaneous 
mutations in several genes as a cause of MDR. This was reported 
in C. tropicalis by ERG3/ERG11 loss-of-function mutations (77, 
82) and in C. albicans by ERG11/ERG5 mutations (92).

MDR BeTweeN AZOLeS AND 
eCHiNOCANDiNS

Echinocandins are being increasingly used for the therapy of fun-
gal infections, especially those caused by Candida spp. Resistance 
to echinocandins logically appeared soon after its introduction 
in medicine in 2005 (96). A first report of MDR to caspofungin 
and azoles in C. glabrata isolated from blood cultures was made 
in 2010 after caspofungin therapy (97). Resistance mechanisms 
were combining mutations in the β-1,3 glucan synthase FKS2 
(S663P) and ABC transporters upregulation. Closely related 
isolates became resistant to 5-FC after therapy with this drug; 
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however, it was still susceptible to the two other drugs. These iso-
lates exhibited a non-synonymous mutation (G190D) in FUR1, 
which probably accounted to decrease 5-FC toxicity.

The current trends show that the highest proportion of resistant 
isolates is from the species C. glabrata (70). Other observations 
were made recently on MDR with both azoles and echinocandins 
in C. glabrata. Among echinocandin-resistant isolates sampled 
between 2008 and 2013 in two US surveillance hospital sites, 
36% were also resistant to azoles (98). Similar observations were 
reported in another US site between 2005 and 2013, in which 
10.3% C. glabrata isolates from cancer patients were resistant 
to caspofungin and from which about 60% had a MDR pheno-
type with azoles (99). The data of this study also indicated that 
caspofungin exposure alone could induce MDR without azole 
exposure. Here, resistance mechanisms were not systematically 
investigated in these isolates; however, they are likely to involve 
FKS1/FKS2 and PDR1 mutations. This MDR pattern is therefore 
of concern, especially when considering that very few therapeutic 
alternatives are available.

MDR BeYOND TwO DRUG CLASSeS

Combining resistance for more than two drug classes is not a fre-
quent observation in clinical isolates. However, a few cases have 
emerged recently and highlight the capacity of specific pathogens 
to adapt to strong antifungal selective pressure.

A recent case illustrated the evolution of MDR in C. albicans 
sequential isolates taken from a patient at different sites (orophar-
ynx, esophagus, feces, and colon) treated over time (100). The 
isolates were related to each other as confirmed by genotyping 
methods. The evolution of drug resistance followed the course 
of drug treatments. Fluconazole treatment induced first a GOF 
mutation in TAC1 with corresponding azole resistance (MIC 
fluconazole >16  μg/ml). Caspo- and anidulafungin treatment 
resulted in resistance (MIC caspofungin >32  μg/ml) with a 
corresponding FKS1 mutation (S645P). Lastly, AmB treatment 
established AmB resistance (MIC  >  32  μg/ml) with a loss-of-
function mutation in ERG2. All three mutations were conserved 
in the final MDR strain (100). MDR evolution took place within 
a time lapse of 5 years.

Another example originates from a C. lusitaniae infection in 
a young immunocompromised patient with severe enterocolitis 
and visceral adenoviral disease (71). C. lusitaniae isolates were 
recovered from blood cultures and stools over a period of 
3 months. Very early at onset of therapy, fully susceptible isolates 
were recovered. Caspofungin regimen resulted in detection of 
resistance (MIC = 4 μg/ml) with a corresponding FKS1 mutation 
in HS1 (S638Y). This resistance coincided with AMB resistance, 

although not administered simultaneously. The therapy was 
continued by fluconazole from which resistance rapidly emerged 
(MIC  =  32  μg/ml). Fluconazole resistance could be associated 
with upregulation of a MFS transporter (MFS7) but was also 
accompanied by 5-FC resistance, even if no 5-FC was adminis-
tered. Combination therapy with caspofungin and voriconazole 
was next attempted, and isolates with simultaneous resistance 
to caspofungin, fluconazole, and 5-FC were detected. These 
isolates exhibited another FKS1 mutation (S631Y) and MFS7 
upregulation. This study highlighted a very dynamic property of 
C. lusitaniae, which responded quickly to antifungal exposure. 
In this specific type of abdominal disease, it is believed that a 
reservoir of fungal cells was present with mixed MDR genotypes, 
and, depending on the drug treatment regimen, dominant popu-
lations could emerge (71).

CONCLUSiON AND PeRSPeCTiveS

A consequence of the use of antifungal agents in the therapy of 
fungal diseases is to face antifungal resistance in fungi. The extent 
of the problem is variable and depends on the type of fungus, 
the type of antifungal agent and on the geographical location of 
hospitals. In the recent years, however, reports on novel resist-
ance profiles have appeared, and one of the most problematic is 
the development of MDR. It seems that, up to now, MDR occurs 
mostly in the species C. glabrata, especially since the introduction 
of echinocandins in the clinic. The reasons behind MDR in this 
pathogen are still unclear. Since C. glabrata harbors a haploid 
genome, single genetic events are sufficient to express pheno-
types, which are less the case for diploid organisms (for example, 
C. albicans). One other reason is that the genome context of C. 
glabrata may facilitate the occurrence of genetic events. Very 
recent data from the laboratory of D. Perlin suggest that some 
C. glabrata exhibit much higher mutations rates than others 
(hypermutator phenotype) (101). With the appearance of these 
novel resistance profiles, alternative therapeutic approaches are 
required and novel antifungal agents need to be identified.
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