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Abstract 

Symptoms of hyperammonemia are age-dependant; some are reversible.  Multiple 

mechanisms are involved.  Hyperammonemia increases the uptake of tryptophan into the 

brain by activation of the L-system carrier; brain glutamine plays a still undefined role.  The 

uptake of tryptophan by the brain is enhanced if the levels of branched-chain amino acids 

competing with the other large neutral amino acids are low in plasma.  Hyperammonemia 

increases the utilization of branched-chain amino acids in muscle when ketoglutarate is low; 

this is further enhanced with glutamine depletion (using phenylbutyrate).  Anorexia, most 

likely a serotoninergic symptom, might further aggravate the deficiency of indispensable 

amino acids (branched-chain and arginine).  The role of increased glutamine production in 

astrocytes and the excitotoxic and metabotropic effects of increased extracellular glutamate 

have been extensively described.  They differ between models of acute and chronic 

hyperammonemia.  Using an in vitro model of cultured embryonic rat brain cell aggregates, 

we studied the role of creatine.  Cultures exposed to ammonia before maturation showed 

impaired cholinergic axonal growth accompanied by a decrease of creatine and 

phosphocreatine, a finding not seen in mature cultures.  By using different antibodies we have 

shown that the phosphorylated form of the intermediate neurofilament protein is affected.  

Adding creatine to the culture medium partially prevents impairment of axonal growth.  The 

presence of glia in the culture is a precondition for this protective effect.  Adequate arginine 

substitution is essential in the treatment of urea cycle defects as creatine is inefficiently 

transported into the brain.  
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Introduction 

Hyperammonemic disorders in pediatrics and especially urea cycle defects (UCD) present 

with both reversible and irreversible disabling symptoms, the mechanisms of which are not 

fully understood.  In patients and in experimental animal models the various mechanisms are 

often additive or interacting, leading to a vicious cycle that renders a therapeutic intervention 

difficult and challenging or makes the interpretation of experimental results tedious.  

Therapeutic schemes and recommendations are useful as a starting point, but a better 

understanding is needed for the interpretation of the dietary history, symptoms and 

biochemical control data and, consequently, for timely changes in the treatment of an 

individual patient to prevent further irreversible damage.  Our aim is to understand the main 

mechanisms of the irreversible, disabling effects of hyperammonemia on the patients during 

their development  and especially those affecting the central nervous system (CNS) that lead 

to the poor long term prognosis of surviving patients even treated by using the actual 

conservative therapy [1].  

  

Ammonia, large neutral amino acids and glutamine 

The pathophysiologic mechanisms of toxicity of ammonia and its metabolites on the brain 

have been reviewed recently [2] [3] [4].  The effects of an acute increase in plasma ammonia 

should be distinguished, both clinically and experimentally, from chronic moderate increases 

[5].  Changes of metabolites other than ammonia in blood also affect the brain.  As 

summarized by Gropman and Batshaw [6] the transport of tryptophan, the precursor of 

serotonin, from blood to brain, is increased in the hyperammonemic brain. This is caused by: 

a) a decrease in large neutral amino acids, mainly branched-chain amino acids (BCAA), that 

compete with tryptophan for the usually saturated transporter (mainly system L1) of large 

neutral amino acids (LNAA). Hyperammonemia decreases BCAA in plasma and muscle as 
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important nitrogen donors for glutamine synthetase. BCAA deficiency and to a lesser extent 

decreased levels of other proteogenic amino acids will hinder protein synthesis by increasing 

excessively insulin like growth factor (IGF) binding protein expression [7] [8] as compared to 

IGF and thus increase catabolism and ammonia load. The clinical observations by Maestri et 

al [9] indicate that the glutamine depletion effected by phenylbutyrate application adds to the 

decrease of BCAA.  This is supported by experimental data [10].  It is not clear whether the 

beta oxidation of phenylbutyrate (medium chain acyl dehydrogenase) is enhancing the leucine 

oxidation in tissue. 

 b) an increased activity/density of the luminal transporter(s) of the brain microvessels.  

The increase of tryptophan leads to an increased synthesis and release of serotonine and thus 

might induce anorexia[11,12]; this symptom often found in UCD patients renders  them prone 

to chronic catabolism and malnutrition and thus to increased ammonia load resulting in a 

vicious cycle. 

 

Is glutamine in plasma and/or in the brain increasing tryptophan uptake at the blood 

brain barrier? 

There is confusion in case reports as to the comparative roles of plasma and brain glutamine.  

Is plasma glutamine solely a marker of the ammonia metabolism in the periphery or is it 

directly involved in the pathogenesis of neurologic symptoms? 

Plasma glutamine can be viewed as the extracellular transport form of glutamate.  The 

increase of plasma glutamine in UCD indicates that its production in tissue might be increased 

and that the capacity of the urea cycle in the liver, located near the portal vessels as first line 

of defense, is insufficient, but that the hepatic perivenous glutamine synthesis as second line 

of ammonia detoxication in the liver is functioning.  This implies that splanchnic blood does 

not bypass the liver and that liver glutamate dehydrogenase is functioning normally.  
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Glutamine in brain is formed mainly within astrocytes from ammonia and intermediates of 

glucose and fatty acids metabolism (octanoate 20%; [13]).  Unidirectional influx from the 

blood in anesthetized rats is only 5 nmol/g per minute as compared to a rate of glutamine 

synthesis within the brain in normal rats of 40 nmol/g per minute that can increase up to 200 

nmol/g [14].  

Experimentally, an increased concentration of glutamine within brain microvessel cells 

enhances the transport of LNAA into the tissue.  This is true (in bovine microcapillaries) for 

L- and for D-glutamine [11] [15] [2].  The use of inhibitors of glutathione synthesis (acivicin, 

methionine sulfoximine, or specifically buthionine sulfoximine) indicates that 

gammaglutamyl transfer, located at the luminal side of brain capillaries, plays a role in the 

transport of tryptophan [16] [2].  Other glutamine transport systems (system N, A and B0,+ [16]) 

are active at the abluminal  side of the blood brain barrier. 

As D-glutamine is a poor substrate for system-L and as - to our knowledge - no racemase 

converting D- into L-glutamine has been shown in mammals, the increased transport of 

LNAA under hyperammonemic conditions does not simply occur by exchange with 

glutamine catalyzed by the system-L transporter(s) but by a mechanism that is not fully 

understood.  

Since there is a net arterio-venous difference in chronic experimental hyperammonemia 

indicating that transport of glutamine out of the brain prevails, it is likely that the 

concentration of ammonia in the brain is more relevant than that in plasma for the stimulation 

of tryptophan uptake into the brain.  This hypothesis is supported by the lack of correlation 

between the plasma concentrations of glutamine and tryptophan in urease-injected rats [17].  

Interestingly, Hammond et al. [18] reported increased concentrations of gamma-

glutamylglutamine in plasma and CSF taken from hyperammonemic patients.  It cannot be 

excluded that in CSF this compound originates from the gamma-glutamyl cycle expressed in 
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the choroid plexus.  It points to the fact that at high concentrations L-glutamine might be an 

acceptor substrate for gamma-glutamyl transferase, provided glutathione is not limiting.   

In models of brain edema, where lethal doses of ammonia are administered, glial fibrillary 

acidic protein (GFAP) is reduced [19] and glutamine is increased in brain [20]; this latter is 

preceded by an increase in cerebral blow flow [21].  Whether nitrous oxide (NO) production in 

brain capillary endothelia plays a role is not clear.  NO could also originate from brain cells, 

as the arginine recycling enzymes are induced in astrocytes by ammonium [22].  The 

constitutive NO synthetase of brain (nNOS) as well as the NO cycle enzyme 

argininosuccinate synthetase are not expressed in astrocytes of normal adult rats; the other 

players in the NO cycle argininosuccinate lyase, arginase2 and the cationic amino acid 

transporter CAT1 are found in neurons and glial cells, but expressed to a variable degree and 

dependent on location.  CAT2B and CAT3 are not expressed in astrocytes [22] [23].  If NO is 

formed in astrocytes at the blood brain barrier then the reaction is catalyzed by the inducible 

NOS (if present).  In contrast to most animal models plasma arginine is very low in patients 

with urea cycle defects (e.g. AL deficiency).  One might thus consider that at low brain 

arginine concentrations the stimulated nNOS in neurons might mainly produce O2
- that 

combines with NO to form the highly toxic peroxynitrite. 

 

Glutamate 

Glutamate is not increased in astrocytes in hyperammonemia because glutamine formation 

from ammonium and glutamate prevails over glutamate synthesis.  Chronic moderate 

hyperammonemia impairs the activation of NMDA receptors and leads to a reduced reuptake 

of extracellular glutamate [25].  After prior exposure to ammonia, rat astrocytes in primary 

culture show a reduced production of free radicals after ammonium load as compared to that 

of an initial acute challenge [26]; cGMP formation in cerebellar neurons appears to be 
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stimulated and cGMP concentrations in brain microdialysate of chronic moderately 

hyperammonemic rats were found lower than in controls [25].  Neither neuronal NOS nor 

NMDA receptor activation was affected under these conditions.  

In contrast, acute hyperammonemia leads to excessive activation of NMDA receptors, 

increased intracellular Ca++, which bound to calmodulin, stimulates NOS; NO activates the 

guanylate cyclase (cerebellum) [27,28].  This difference between chronic and acute 

hyperammonemia might, at least in part, be explained by the neuromodulation of glutamate 

receptors by glutathione (for review see [29]).  In astrocyte cultures glutathione is increased by 

ammonium in a dose and time dependant way [30].  It is readily released from astrocytes [31].  

 

Creatine 

Animal experiments are plagued by the multiple variables that cannot be controlled (effects of 

the decrease of intake of chow and water in hyperammonemic rats, serotoninergic and more 

direct effects of ammonia mentioned above). To investigate the irreversible effects of 

ammonia increase we used aggregates of rat embryonic brain cells cultured in serum-free 

chemically defined medium [32] [33]. This method allows the culture of astrocytes, neurons, 

oligodendrocytes and microglia together and thus also to study intercellular interactions. 

Using this model, we showed that ammonia impairs axonal growth as well as medium weight 

neurofilament (NF-M ) expression and phosphorylation [34]. We have further demonstrated 

that ammonia impairs axons only during their maturation, but not when neurons have gone 

through synaptogenesis [34].   

 

We have shown that exposing brain cells to ammonia may alter the recycling of arginine, 

which plays key roles in CNS not only as substrate for protein synthesis or precursor of NO, 

but also as substrate for creatine synthesis; there is substantial evidence that creatine is 
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essential for axonal elongation [24] [34]. We have thus tested whether creatine metabolism is 

altered by ammonia, and shown that indeed NH4Cl exposure of brain cell aggregates leads to 

a decrease of intracellular creatine and phosphocreatine [34]. When the aggregate cultures are 

co-treated with creatine (1 mM) during NH4Cl (5 mM) exposure, creatine protects the axons 

from growth impairment to a certain extent, in a glial cell dependent manner [34]. 

 

For a better understanding of the protective effect of creatine, we have analyzed the gene 

expression of the creatine synthesis pathway and transporter in the different cell types of 

CNS. This was achieved by in situ hybridization [35] and immunohistochemistry with specific 

antibodies for L-arginine:glycine amidinotransferase (AGAT, supplied by O.Speer and 

T.Wallimann), as well as for S-adenosyl-L-methionine:N-guanidinoacetate methyltransferase 

(GAMT) and for the creatine transporter (CRT1), developed in our laboratory. The anti-CRT1 

antibody was directed against amino acids 15-29 of the sequence [36]. AGAT and GAMT are 

expressed in astrocytes, oligodendrocytes and neurons whereas CRT1 is present in neurons 

and oligodendrocytes but cannot be detected in astrocytes, including those contacting 

capillaries [35]. Thus CRT1 in the brain may function predominantly as an intercellular 

transporter and not for bulk transport from the blood: the brain may thus depend to a large 

extent on local de novo synthesis of creatine. This is in accordance with the clinical 

observation in congenital defects of creatine synthesis or transport or in ornithine 

aminotransferase deficiency where supplementation of creatine at high doses over a prolonged 

period is necessary to increase its brain concentration to some extent without reaching full 

restoration. 

When aggregates were exposed to ammonia a moderate induction of CRT1 was observed in 

astrocytes, including those resembling Alzheimer type II cells. The normally high expression 

of CRT1 in oligodendrocytes was decreased by ammonia exposure. 
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As we have shown that exposing brain cell aggregates to ammonia induces arginine recycling 

enzymes in astrocytes [24], and decrease intracellular levels of creatine and phosphocreatine 

[34] , we further investigated the changes in intracellular concentrations of arginine as one key 

substrate of creatine synthesis  as well as of other amino acids in brain cell aggregates 

exposed to ammonia and/or creatine (13 days of culture, exposure from days 5 to 13; Table 

1). The concentration of arginine (substrate for AGAT) is increased by 1 mM ammonia 

exposure and remains on the same plateau level at higher concentrations (2.5 and 5 mM), 

while ornithine (product of AGAT) increases after exposure to 5 mM ammonia. In contrast 

the concentration of most essential amino acids drops at that level of ammonia as compared to 

lower ammonia concentrations except for branched chain amino acids. Levels of glutamate 

and its precursors, proline and alanine, decrease. The concentrations of most of the amino 

acids are lower with creatine co-treatment (Table 1).  Interestingly, for arginine the ammonia 

and creatine effects are non-additive. It is not clear whether at high ammonia concentrations 

there is competition between arginine and creatine for their transporters. 

 

Brain cell cytoskeletal elements have recently been found to be altered under 

hyperammonemic conditions. The phosphorylation of microtubule associated protein 2 

(MAP-2) is altered in the brain of hyperammonemic rats without liver failure with 

consequences on binding capacity to tubulin and its polymerisation [37] [38] [39] [40]. 

Furthermore we showed that the phosphorylation of NF-M is decreased in aggregates exposed 

to ammonia [34]. These findings must be viewed in the context of a more general alteration of 

protein phosphorylation as summarized recently by Corbalan et al. [41].  

 

As mitogen activated protein kinases (MAPK) are the main cascades linking extracellular 

signals to neuronal differentiation and axonal elongation, we started to investigate the 
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regulation of MAPK pathways in brain cell aggregates exposed to ammonia. Preliminary 

western blot data have been obtained, showing that upon exposure to ammonia  the 

phosphorylation of  Erk1/Erk2 increases in homogenates of mixed cell cultures, but decreases 

in neuron-enriched aggregates. The level of phosphorylation of SAPK/JNK is decreased both 

in mixed cell and neuron enriched cultures [42]. Further work is needed at the histological 

level to assess whether these changes vary uniformly among the cell types involved, or if 

these ammonia effects vary between glial cells and neurons. 

 

As to the link to ammonia and creatine it is of interest that the neuronal calcium-dependant 

reactive oxygen species production depends on a functioning MAPK pathway; this effect can 

be blocked by nerve growth factor application [43]. However whether this applies to NO 

and/or peroxynitrite (mentioned above) is not known. The Erk1/Erk2 and SAPK/JNK signal 

transduction cascades also play a role in gene transcription following NMDA receptor 

stimulation [44] [45].  In vivo, 5-HT1A post-synaptic receptor activation reduces phospho-Erk2 

levels in the hippocampus, but not in the striatum or frontal brain. Interestingly, there is no 

effect on SAPK/JNK or p38 MAPK [46]. 

 

Conclusions 

In clinical practice the first step in the treatment of hyperammonemic crises is to stop the 

nitrogen load, be it nutritional in origin and/or due to catabolism.  When managing patients 

with diagnosed UCD a depletion of arginine and of indispensable amino acids should be 

prevented by replacing if needed a part of natural protein by a special mixture of essential 

amino acids with high branched chain and low aromatic acids.  This will not only improve the 

quality of the limited natural protein ingested but also correct any imbalance with its 

consequences to the brain. 
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Despite the protective action of creatine on axonal development, supplementing creatine as 

such does not seem to be promising, as the brain seems well protected against excessive 

creatine influx.  However its precursor, L-arginine, which is low in the plasma of untreated 

patients with UCD (except for arginase deficiency), must be supplemented in sufficient 

amounts.  It is readily transported into the brain and needed for creatine, protein and NO 

synthesis.  

 

Acknowledgement: Supported by Swiss National Science Foundation (grants n° 3100-63892 

and 3100A0-100778). 



 12

References 

1   C. Bachmann, Outcome and survival of 88 patients with urea cycle disorders: a 

retrospective evaluation., Eur. J. Pediatr. 162 (2003) 410-416. 

2   C. Bachmann, Mechanisms of hyperammonemia, Clin. Chem. Lab. Med. 40 (2002) 653-

662. 

3   V. Felipo, R.F. Butterworth, Neurobiology of ammonia, Progr. Neurobiol. 67 (2002) 259-

279. 

4   R.F. Butterworth, Pathophysiology of hepatic encephalopathy: a new look at ammonia, 

Metab. Brain Dis. 17 (2002) 221-227. 

5   R.F. Butterworth, Glutamate transporter and receptor function in disorders of ammonia 

metabolism, MRDD Res. Rev. 7 (2001) 276-279. 

6   A.L. Gropman, M.L. Batshaw, Cognitive Outcome in Urea Cycle Disorders, Mol. Genet. 

Metab. (2003) in press. 

7   A. Bruhat, C. Jousse, P. Fafournoux, Amino acid limitation regulates gene expression., 

Proc. Nutr. Soc. 58 (1999) 625-632. 

8   Y. Endo, Z. Fu, K. Abe, S. Arai, H. Kato, Dietary protein quantity and quality affect rat 

hepatic gene expression., J. Nutr. 132 (2002) 3632-3637. 

9   N.E. Maestri, D.B. Clissold, S.W. Brusilow, Long-term survival of patients with 

argininosuccinate synthetase deficiency, J. Pediatr. 127 (1995) 929-935. 

10   D. Darmaun, S. Welch, A. Rini, B.K. Sager, A. Altomare, M.W. Haymond, 

Phenylbutyrate-induced glutamine depletion in humans: effect on leucine metabolism, 

Am. J. Physiol. 274 (1998) E801-807. 

11   C. Bachmann, J.P. Colombo, Increased tryptophan uptake into the brain in 

hyperammonemia., Life Sci. 33 (1983) 2417-2424. 

12   C. Bachmann, J.P. Colombo, Increase of tryptophan and 5-hydroxyindole acetic acid in 

the brain of ornithine carbamoyltransferase deficient sparse-fur mice, Pediatr. Res. 18 

(1984) 372-375. 

13   D. Ebert, R.G. Haller, M.E. Walton, Energy contribution of octanoate to intact rat brain 

metabolism measured by 13C nuclear magnetic resonance spectroscopy, J. Neurosci. 23 

(2003) 5928-5935. 



 13

14   J. Xiang, S.R. Ennis, G.E. Abdelkarim, M. Fujisawa, N. Kawai, R.F. Keep, Glutamine 

transport at the blood-brain and blood-cerebrospinal fluid barriers, Neurochem. Int. 43 

(2003) 279-288. 

15   M. Gorgievski-Hrisoho, J.P. Colombo, C. Bachmann, Stimulation of tryptophan uptake 

into brain microvessels by D-glutamine, Brain Res. 367 (1986) 395-397. 

16   W.J. Lee, R.A. Hawkins, J.R. Vina, D.R. Peterson, Glutamine transport by the blood-

brain barrier: a possible mechanism for nitrogen removal., Am. J. Physiol. 274 (1998) 

C1101-1107. 

17   M.L. Batshaw, S.L. Hyman, E.D. Mellits, G.H. Thomas, R. DeMuro, J.T. Coyle, 

Behavioral and neurotransmitter changes in the urease-infused rat: a model of congenital 

hyperammonemia, Pediat. Res. 20 (1986) 1310-1315. 

18   J.W. Hammond, M. Potter, R. Truscott, B. Wilcken, Gamma-Glutamylglutamine 

identified in plasma and cerebrospinal fluid from hyperammonaemic patients, Clin. 

Chim. Acta 194 (1990) 173-183. 

19   M. Belanger, P. Desjardins, N. Chatauret, R.F. Butterworth, Loss of expression of glial 

fibrillary acidic protein in acute hyperammonemia, Neurochem. Int. 41 (2002) 155-160. 

20   A.J. Cooper, Role of glutamine in cerebral nitrogen metabolism and ammonia 

neurotoxicity, MRDD Res. Rev. 7 (2001) 280-286. 

21   F.S. Larsen, J. Gottstein, A.T. Blei, Cerebral hyperemia and nitric oxide synthase in rats 

with ammonia-induced brain edema, J. Hepatol. 34 (2001) 548-554. 

22   O. Braissant, T. Gotoh, M. Loup, M. Mori, C. Bachmann, L-arginine uptake, the 

citrulline-NO cycle and arginase II in the rat brain: an in situ hybridization study, Brain 

Res. Mol. Brain Res. 70 (1999) 231-241. 

23  O. Braissant, T. Gotoh, M. Loup, M. Mori, C. Bachmann, Differential expression of the 

cationic amino acid transporter 2(B) in the adult rat brain, Brain Res. Mol. Brain Res. 91 

(2001) 189-195. 

24 O. Braissant, P. Honegger, M. Loup, K. Iwase, M. Takiguchi, C. Bachmann, 

Hyperammonemia: regulation of argininosuccinate synthetase and argininosuccinate 

lyase genes in aggregating cell cultures of fetal rat brain, Neurosci. Lett. 266 (1999) 89-

92. 

25   C. Hermenegildo, C. Montoliu, M. Llansola, M.D. Munoz, J.M. Gaztelu, M.D. Minana, 

V. Felipo, Chronic hyperammonemia impairs the glutamate-nitric oxide-cyclic GMP 



 14

pathway in cerebellar neurons in culture and in the rat in vivo, Eur. J. Neurosci. 10 (1998) 

3201-3209. 

26   P. Monfort, C. Montoliu, C. Hermenegildo, M. Munoz, V. Felipo, Differential effects of 

acute and chronic hyperammonemia on signal transduction pathways associated to 

NMDA receptors, Neurochem. Int. 37 (2000) 249-253. 

27   E. Kosenko, Y. Kaminsky, E. Grau, M.D. Minana, G. Marcaida, S. Grisolia, V. Felipo, 

Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by 

activation of the NMDA receptor and Na+,K(+)-ATPase, J. Neurochem. 63 (1994) 2172-

2178. 

28   E. Kosenko, Y. Kaminsky, S. I.G., V. Felipo, Alteration of mitochondrial calcium 

homeostasis by ammonia-induced activation of NMDA receptors in rat brain in vivo., 

Brain Res. 880 (2000) 139-146. 

29   S.S. Oja, R. Janaky, V. Varga, P. Saransaari, Modulation of glutamate receptor functions 

by glutathione, Neurochem. Int. 37 (2000) 299-306. 

30   C.R. Murthy, A.S. Bender, R.S. Dombro, G. Bai, M.D. Norenberg, Elevation of 

glutathione levels by ammonium ions in primary cultures of rat astrocytes, Neurochem. 

Int. 37 (2000) 255-268. 

31   M. Yudkoff, D. Pleasure, L. Cregar, Z.P. Lin, I. Nissim, J. Stern, Glutathione turnover in 

cultured astrocytes: studies with [15N]glutamate, J. Neurochem. 55 (1990) 137-145. 

32   P. Honegger, F. Monnet-Tschudi, Aggregating neural cell culture, in: S. Fedoroff,A. 

Richardson (Eds.), Protocols for neural cell culture, Humana Press, Totowa,NJ, 1997, pp. 

25-49. 

33   C. Bachmann, H. Henry, O. Braissant, From Arginine to Creatine: Regional and Cellular 

Gene Expression of Enzymes and Transporters Linking Nitrogen and Energy Metabolism 

in Brain., in: C. Bachmann,B. Koletzko (Eds.), Genetic Expression and Nutrition, Nestlé 

Nutrition Workshop Series. 50, Nestec Ltd./Lipincott Williams & Wilkins, 

Vevey/Philadelphia, 2003, pp. 153-165. 

34   O. Braissant, H. Henry, A.M. Villard, M.G. Zurich, M. Loup, B. Eilers, G. Parlascino, E. 

Matter, O. Boulat, P. Honegger, C. Bachmann, Ammonium-induced impairment of 

axonal growth is prevented through glial creatine, J. Neurosci. 22 (2002) 9810-9820. 

35   O. Braissant, H. Henry, M. Loup, B. Eilers, C. Bachmann, Endogenous synthesis and 

transport of creatine in the rat brain: an in situ hybridization study, Brain Res. Mol. Brain 

Res.  86 (2001) 193-201. 



 15

36   H. Henry, O. Braissant, B. Eilers, E. Matter, C. Bachmann, Identification and expression 

of the rat brain creatine transporter 1 produced by alternate splicing, submitted (2003)  

37   M.D. Minana, V. Felipo, R. Wallace, S. Grisolia, High ammonia levels in brain induce 

tubulin in cerebrum but not in cerebellum., J. Neurochem. 51 (1988) 1839-1842. 

38   V. Felipo, E. Grau, M.D. Minana, S. Grisolia, Activation of NMDA receptor mediates the 

toxicity of ammonia and the effects of ammonia on the microtubule-associated protein 

MAP-2., Adv. Exp. Med. Biol. 341 (1993) 83-93. 

39   V. Felipo, E. Grau, M.D. Minana, S. Grisolia, Hyperammonemia decreases protein-

kinase-C-dependent phosphorylation of microtubule-associated protein 2 and increases its 

binding to tubulin., Eur. J. Biochem. 214 (1993) 243-249. 

40   R. Saez, M. Llansola, V. Felipo, Chronic exposure to ammonia alters pathways 

modulating phosphorylation of microtubule-associated protein 2 in cerebellar neurons in 

culture., J. Neurochem. 73 (1999) 2555-2562. 

41   R. Corbalan, M. Hernandez_Viadel, M. Llansola, C. Montoliu, V. Felipo, Chronic 

hyperammonemia alters protein phosphorylation and glutamate receptor-associated signal 

transduction in brain, Neurochem. Int. 41 (2002) 103-108. 

42   A.M. Villard, P. Honegger, C. Bachmann, O. Braissant, Axonal growth impairment by 

ammonium and protection through glial creatine. Involvement of MAPK pathways, 

USGEB, Davos, Switzerland, 19-21 March 2003. 

43   L.L. Dugan, D.J. Creedon, E.M. Johnson, D.M. Holtzman, Rapid suppression of free 

radical formation by nerve growth factor involves the mitogen-activated protein kinase 

pathway, Proc. Natl. Acad. Sci. U S A 94 (1997) 4086-4091. 

44   Z. Xia, H. Dudek, C.K. Miranti, M.E. Greenberg, Calcium influx via the NMDA receptor 

induces immediate early gene transcription by a MAP kinase/ERK-dependent 

mechanism, J. Neurosci. 16 (1996) 5425-5436. 

45   T. Borsello, K. Croquelois, J.P. Hornung, P.G. Clarke, N-methyl-d-aspartate-triggered 

neuronal death in organotypic hippocampal cultures is endocytic, autophagic and 

mediated by the c-Jun N-terminal kinase pathway, Eur. J. Neurosci. 18 (2003) 473-485. 

46   J. Chen, C. Shen, E. Meller, 5-HT1A receptor-mediated regulation of mitogen-activated 

protein kinase phosphorylation in rat brain, Eur. J. Pharmacol. 452 (2002) 155-162. 

 
 
 
 



 16

 
 

Table 1. Intracellular amino acid concentrations (µmol/g protein) of mixed cultured 

aggregates harvested at 13 days after being exposed from days 5 to 13 to ammonia and / 

or creatine as indicated on top. 

 

Legend to Table 1 

Factorial analysis (n=3 per condition) shows a highly significant ammonia effect (p< 0.001) 

for all amino acids except for arginine, glutamine, serine, aspartate with significance of 

0.001<p< 0.01 and not significant for histidine, valine, ornithine, GABA, cysteine and 

citrulline. The creatine effect was highly significant (p< 0.001) for all amino acids except 

arginine, GABA, glycine and serine reaching a level of 0.001<p<0.01; not significant: 

ornithine, cysteine and citrulline. Significant interactions, i.e. non-additive effects of ammonia 

and creatine, were found for leucine and asparagine (p< 0.05), cystathionine (p=0.026) and 

especially arginine (p=0.020). 
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Creatine (mM) 0 0 0 0 1 1 1 1 

NH4
+ (mM) 0 1 2.5 5 0 1 2.5 5 

Phenylalanine 8.8±0.86 9.0±1.47 9.0±0.18 7.1±0.45 7.6±0.24 7.2±0.25 6.5±0.56 5.6±0.15 

Tyrosine 9.8±0.93 10.2±1.48 9.9±0.36 7.8±0.07 8.6±0.3 8.0±0.2 7.5±0.45 6.1±0.12 

Methionine 2.7±0.26 2.5±0.46 2.5±0.27 2.1±0.19 2.4±0.01 2.2±0.09 2.0±0.09 1.7±0.16 

Leucine 5.9±0.54 6.9±1.45 8.0±0.18 9.4±0.19 5.4±0.34 5.6±0.2 6.1±0.4 6.8±0.23 

Isoleucine 6.1±0.61 7.4±1.6 8.2±0.23 9.1±0.24 5.7±0.32 5.9±0.21 6.3±0.37 6.8±0.29 

Histidine 4.2±0.57 4.6±0.78 4.5±0.54 4.1±0.29 3.9±0.39 3.6±0.17 3.4±0.33 2.9±0.13 

Valine 9.3±0.75 10.3±1.7 10.9±0.35 10.8±0.31 8.4±0.31 8.2±0.03 8.3±0.59 8.0±0.2 

Threonine 46.5±6.15 46.6±5.73 42.5±2.15 32.4±0.82 37.4±1.75 35.2±1.09 29.4±2.39 23.9±0.84 

Arginine 5.4±0.33 6.9±0.78 7.3±0.47 7.3±0.27 6.0±0.68 6.4±0.16 6.7±0.46 6.0±0.32 

Lysine 27.9±3.34 30.7±2.85 29.1±1.83 21.5±0.48 25.6±1.4 24.7±0.54 22.8±1.9 17.5±0.24 

Ornithine 1.0±0.14 1.3±0.48 1.1±0.05 2.7±2.85 1.2±0.54 0.8±0.1 1.2±0.97 0.9±0.42 

Proline 22.2±6.14 19.8±1.36 18.5±1.41 10.5±0.78 14.7±0.24 13.0±0.9 11.4±1.28 8.8±0.6 

Glutamate 94.9±12.7 104.±11.5 93.1±9.19 38.1±0.37 83.9±4.81 85.7±0.76 69.3±6.56 32.9±1.03 

Glutamine 286±34.2 333±34 354±15.3 289±13.1 246±9.2 256±7.1 258±18 228±4.4 

γ-Aminobutyrate 40.8±10.76 42.1±5.05 43.8±2.4 36±3.93 36.1±1.77 34.4±2.93 33.3±4.09 28.2±3.07 

Glycine 39.5±4.73 38.2±4.37 30.1±1.91 22.8±4.29 37.1±2.4 33.3±1.45 24.1±2.44 16.3±0.83 

Taurine 226±37.1 256±23.2 262±11.7 184±8.9 194±4.6 193±4.3 187±14.6 145±12.2 

Cysteine 0.5±0.07 0.4±0.16 0.4±0.23 0.6±0.17 0.4±0.2 0.4±0.27 0.4±0.09 0.6±0.04 

Cystathionine 11.5±1.56 18.0±3.02 19.0±1.77 13.9±0.54 8.2±0.95 10.4±1.38 9.7±0.79 7.0±0.25 

Serine 9.2±1.91 11.4±2.44 11.7±0.93 20.9±8.17 9.7±1.71 10±0.85 10.8±2.35 11.0±1.69 

Alanine 17.7±2 17.1±2.12 13.9±1.98 6.7±3.14 12.7±0.6 11.5±0.72 8.0±1.55 4.2±0.2 

Aspartate 12.1±2.32 11.1±1.79 11.6±0.36 8.1±1.81 8.9±0.68 7.7±1.28 7.8±1.88 5.1±0.46 

Asparagine 3.4±0.46 3.2±0.18 2.7±0.21 1.5±0.28 2.3±0.14 2±0.03 1.4±0.15 1.0±0.26 
 


