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Abstract

Importance—The association of rare copy number variants (CNVs) with complex disorders is 

almost exclusively evaluated using clinically ascertained cohorts. As a result, the contribution of 

these genetic variants to cognitive phenotypes in the general population remains unclear.

- To investigate the clinical features of genomic disorders in adult carriers without clinical 

pre-selection.

- To assess the genome-wide burden of rare CNVs on carriers’ educational attainment and 

intellectual disability prevalence in the general population.

Design, Setting, and Participants—The population biobank of Estonia (EGCUT) contains 

52,000 participants, or 5% of the Estonian adults, enrolled in 2002-2010. General practitioners 

examined participants and filled out a questionnaire of health- and lifestyle-related questions, as 

well as reported diagnoses. As EGCUT is representative of the country's population, we 

investigated a random sample of 7877 individuals for CNV analysis and genotype-phenotype 

associations with education and disease traits.

Main Outcomes and Measures—Phenotypes of genomic disorders in the general population, 

prevalence of autosomal CNVs, and association of the latter variants with decreased educational 

attainment and increased prevalence of intellectual disability.

Results—We identified 56 carriers of genomic disorders. Their phenotypes are reminiscent of 

those described for carriers of identical rearrangements ascertained in clinical cohorts. We also 

generated a genome-wide map of rare (frequency ≤0.05%) autosomal CNVs and identified 10.5% 

of the screened general population (n=831) as carriers of CNVs ≥250kb. Carriers of deletions 

≥250kb or duplications ≥1Mb show, compared to the Estonian population, a greater prevalence of 

intellectual disability (P=0.0015, OR=3.16, (95%CI: 1.51-5.98); P=0.0083, OR=3.67, (95%CI: 

1.29-8.54), respectively), reduced mean education attainment (a proxy for intelligence; 

P=1.06e-04; P=5.024e-05, respectively) and an increased fraction of individuals not graduating 

from secondary school (P=0.005, OR=1.48 (95%CI: 1.12-1.95); P=0.0016, OR=1.89 (95%CI: 

1.27-2.8), respectively). The deletions show evidence of enrichment for genes with a role in 

neurogenesis, cognition, learning, memory and behavior. Evidence for an association between rare 

CNVs and decreased educational attainment was confirmed by analyses in adult cohorts of Italian 

(HYPERGENES) and European American (Minnesota Center for Twin and Family Research) 

individuals, as well as in the Avon Longitudinal Study of Parents and Children (ALSPAC) birth 

cohort.
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Conclusions and Relevance—Our results challenge the assumption that carriers of known 

syndromic CNVs identified in population cohorts are asymptomatic. They also indicate that 

individually rare but collectively common intermediate-size CNVs contribute to the variance in 

educational attainment. Refinements of these findings in additional population groups is warranted 

given the potential implications of this observation for genomics research, clinical care, and public 

health.

Keywords

genomic disorders; CNV; 16p11.2; population biobanks; education; intelligence; EGCUT; 
ALSPAC

Introduction

Recent studies showed that two human individuals differ on approximately 0.8% of their 

genome1. The Database of Genomic Variants catalogs ~2.4 million DNA copy number 

variants (CNVs), i.e. stretches of DNA that display altered copy-numbers, mapping to 

~200,000 unique loci that cover 72% of the human genome2. With such an extent of 

genomic sequences concerned, CNVs contribute to inter-individual variation3-6. Large 

recurrent CNVs were found to be associated with complex disorders, particularly 

developmental delay and intellectual disability7,8 characterized by limited intellectual 

functioning and impaired adaptive behavior in everyday life. These CNVs are listed in 

DECIPHER, a database for genomic variants and phenotypes in humans9 and are often 

regrouped under the term “genomic disorder”8.

Since associations of large rare CNVs with pathologies were almost exclusively evaluated 

using clinically ascertained, often pediatric, cohorts, it is unclear whether these structural 

variants affect health in the general adult population. For example, the reports of seemingly 

asymptomatic (reviewed in10), but not fully evaluated, control individuals and transmitting 

parents underscored their possible incomplete penetrance. Here we investigated the 

phenotypic profiles of adult carriers of known pathological CNVs who were not clinically 

pre-selected and assessed the burden of rare intermediate-size autosomal CNVs on 

educational attainment and intellectual disability.

Methods

EGCUT cohort

The Estonian Genome Centre of the University of Tartu (EGCUT) cohort is a population 

biobank containing 5% of the Estonian adult population11. Samples have been collected in 

all 15 Estonian counties and diverse social groups by 454 general practitioners (GPs; i.e. 

56% of the GPs in the registry of the Estonian Health Board). The age, sex and geographical 

distribution of the 52,000 participants closely reflect those of the Estonian adult population. 

The detailed description of the EGCUT cohort was previously published 11. At baseline, 

GPs performed a standardized objective examination of the participants and filled out a 

questionnaire that encompassed >1000 health- and lifestyle-related questions, as well as 

provided the diagnoses of diseases present in the medical history of the participating 
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individual using the format of the WHO international classification of diseases (WHO 

ICD-10)11 (see details in eMethods). The data are continuously updated through periodic 

linking to national electronic health registries. The wide range of phenotypes, ages and 

social groups makes the cohort ideally suited to population-based studies. See eFigure 1 and 

eMethods for details on the EGCUT phenotype data. EGCUT is conducted according to the 

Estonian Human Genes Research Act and managed in conformity with the standard ISO 

9001:2008. The Ethics Review Committee on Human Research of the University of Tartu 

approved the project. Written informed consent was obtained from all participants for the 

baseline and follow-up investigations.

The relevant phenotype traits of EGCUT individuals identified as carriers of DECIPHER-

listed syndromic CNVs (eTable 1) were obtained from the baseline questionnaire and 

compared with the reviewed characteristics of corresponding syndromes (eTable 2). To 

further investigate the clinical features of adult carriers not clinically pre-selected, we 

invited back all 16p11.2 600kb BP4-BP5 (breakpoint) deletion and reciprocal duplication 

carriers identified in EGCUT for follow-up investigations. These CNVs were selected 

because of their relatively high prevalence and variable phenotype. These carriers were 

phenotyped using the standardized clinical and neuropsychological protocol we developed 

previously to specifically study 16p11.2 syndrome patients ascertained through clinical 

cohorts10,12. In agreement with the known population prevalence of 16p11.2 600kb BP4-

BP5 CNVs12, we identified 4 deletion (0.05%) and 7 duplication carriers (0.09%) in the 

EGCUT set.

The EGCUT cohort (and Estonian population in general) is an outbred population with no 

substantial regional or ethnic differences. SNP allele frequencies and linkage disequilibrium 

patterns are similar to those found in populations with European ancestry13. We did not find 

small series of non-recurrent CNVs and/or inflation of recurrent rearrangements typical of 

founder effects14,15 (eMethods). Accordingly, EGCUT samples have been successfully 

used to discover or replicate hundreds of SNP associations, which are vulnerable to 

population frequencies and stratification differences (e.g.16-18). See eMethods and eFigure 
2 for details on the Estonian population makeup and stratification.

CNV calling—The genomic DNA of 8110 subjects (7020 for discovery and 1090 for 

replication cohort; eTable 3), randomly selected among the 52,000 EGCUT participants, 

was subjected to CNV analysis. A third cohort of 1066 individuals (“high-functioning 

replication cohort”) was used to further assess the significance of the signal obtained 

regarding education attainment. SNP-genotyping and CNV calling were performed using 

Illumina platforms and the Hidden Markov Model-based software PennCNV according to 

the manufacturer's and developer's protocols 19, respectively. The 6819 discovery, 1058 

replication and 993 “high-functioning” replication samples that passed the quality control 

parameters were retained (see eMethods for details).

Genotype-phenotype correlations—We analyzed the difference of studied phenotypes 

between CNV carriers and population. A two-sided Fisher's exact test and Welch two-

sample t-test were used for statistical analysis in The R Project for Statistical Computing 

environment (http://www.r-project.org, R version 3.0.2). Odds ratios (OR), 95% confidence 
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intervals and P-values were calculated; a threshold of P≤0.05 was set to indicate statistical 

significance. See eMethods for assessment of phenotype and determination of the 

prevalence of recurrent genomic syndromes. Briefly, intellectual disability (F70-79 of the 

WHO ICD-10) is defined in the DSM-IV as a deficit in overall cognitive functioning along 

with limitations in adaptive behavior. All diagnoses, including intellectual disability, were 

diagnosed according to diagnostic standards throughout the participant medical history and 

reported to the EGCUT database by the participant's GP at the moment of recruitment. 

Intellectual disability prevalence is estimated at 1-3% in developed countries20, which is 

consistent with the prevalence found in the EGCUT discovery cohort (1.7%).

Education levels were uniformly coded at the time of enrollment according to the Estonian 

education curriculum from 1 to 7, i.e. from less than primary school to scientific degree, 

respectively (details in eMethods). In both discovery and replication cohorts the mean 

education attainment (MEA) corresponded to secondary education (MEA=4.09 and 4.0, 

respectively) in agreement with the country's MEA. See eMethods for details on the 

Estonian population religiousness, school curriculum organization and education system 

performance.

Function of CNV-embedded genes—We used three previously published datasets to 

functionally annotate genes embedded in rare CNVs and assess if we could use those 

characteristics to predict CNV deleteriousness (eMethods): (i) the neurodevelopmental gene 

list21,22; (ii) the haploinsufficiency scores (HiS), i.e. the probability that a given gene 

maintains its normal function with only one functional copy23, and (iii) the list of ohnologs, 

i.e. paralogous genes resulting from ancestral whole-genome duplication events24. Since a 

CNV may preserve a gene's integrity yet indirectly affect it through changes in the copy-

number of its regulatory elements4,5,25, we also tested the potential contributions of the 

latter by stratifying CNVs using the number of encompassed regulatory elements identified 

in 26 (eMethods). To further assess the functions of imbalanced genes we used Thomson 

Reuters MetaCore™, an integrated software suite for data-mining and pathway analysis 

based on a manually-curated biological knowledge database (eMethods).

ALSPAC cohort

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a birth cohort based in 

Bristol, UK 27. 14,541 pregnant women with expected delivery dates between 1st April 1991 

and 31st December 1992 were initially enrolled. 13,988 children who were alive at 1 year of 

age, and additional families were enrolled in later phases. Detailed phenotypic information 

on the children and their parents were collected during clinic visits and by completion of 

questionnaires, as well as from linkage with external data sources (eMethods). Ethical 

approval for the study was obtained from the ALSPAC Ethics and Law Committee and the 

Local Research Ethics Committees.

The Illumina HumanHap550 Quad platform was used to genotype 9912 children in 

ALSPAC. CNVs were called with PennCNV19. After quality control (eMethods), the subset 

of 5218 unrelated individuals with education information were retained for analysis (eTable 
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3). Log R Ratio (LRR) and B Allele Frequency (BAF) metrics were derived from raw data 

using published guidelines 28.

Within ALSPAC, educational attainment was assessed using data from the UK-based Key 

Stage 3 National Curriculum Tests in English and Mathematics, taken at age 13-14 years, 

also known as Standard Assessment Tests (SATs). A discrete level is awarded for these 

tests, but to further account for i) the exact mark received, and ii) the fact that the maximum 

and minimum level achievable for Mathematics was dependent upon the tier of examination 

for which the child was entered, results were scaled and adjusted as described 

previously 29,30. Due to non-normal distribution of the data, these two variables were then 

inverse-rank normal transformed, and then standardized. Furthermore, tertiles of the 

untransformed English and Mathematics scores were created (eTable 4). Differences in 

means of educational attainment according to rare CNV carrier status (frequency ≤0.05%) 

were compared using a Welch two-sided t-test. This was performed separately for each of 

the inverse-rank transformed, standardized English and Mathematics educational attainment 

scores. To obtain an interpretable estimate of effect univariable logistic regression models 

were assessed separately for English and Mathematics. The top tertile was coded as the 

reference group, and the bottom tertiles as the risk group. Separate odds ratios were 

estimated for membership of the risk group, comparing CNV carriers corresponding to 

increasing size groups against baseline (no large CNVs at a given frequency, 0.0005). The 

binary educational outcome was then regressed against CNV carrier status as an ordered 

variable, including all four size-categories, and the P value was reported as an assessment of 

trend.

MCTFR cohort

Participants from two studies conducted by the Minnesota Center for Twin and Family 

Research (MCTFR) were used as replication samples: the Sibling Interaction and Behavior 

Study (SIBS), and the Minnesota Twin Family Study (MTFS). MTFS is a longitudinal study 

of a community-based sample of same-sex twins born between 1972 and 1994 in the State of 

Minnesota (USA) and their parents 31. SIBS is an adoption study of sibling pairs and their 

parents32; its community-based sample contains families where both siblings are adopted, 

where both are biologically related to the parents, or where one is adopted and one is 

biologically related. In the current analyses, only a single random individual was selected for 

inclusion in analyses in order to create a dataset of unrelated participants (n=2390, eTable 
3). The collection, genotyping, and analysis of DNA samples for both studies were approved 

by the University of Minnesota Institutional Review Board's Human Subjects Committee. 

Written informed assent or consent was obtained from all participants; parents provided 

written consent for their minor children.

Genotyping was performed using the Illumina 660W-Quad array. Whole-blood extracted 

DNA samples were only analyzed if the participant was i) white non-Hispanic and the 

standard deviation of the GC-corrected 33 autosomal log R ratios was less than 0.20. CNVs 

were called using PennCNV and then processed and filtered. Adjacent CNVs were merged 

if they had the same copy number and if the number of markers in the intervening gap was 
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less than 20% of the number of total markers spanning the called CNVs. Rare (frequency 

≤0.05%) deletions ≥250kb and duplications ≥1Mb were retained in the burden analysis.

Full-Scale IQ (FSIQ) was estimated using an abbreviated form of either the Wechsler 

Intelligence Scale for Children-Revised (WISC-R; for children 16 years and younger) or the 

Wechsler Adult Intelligence Scale-Revised (WAISR; for individuals older than 16). The 

short forms consisted of two Performance subtests (Block Design and Picture Arrangement) 

and Verbal subtests (Information and Vocabulary) and were prorated to determine FSIQ. 

Estimates from this short form have been shown to correlate 0.94 with FSIQ from the 

complete test 34. Samples with multiple FSIQ measurements were averaged together for 

analysis (mean=104.52±14.27; range=67-150).

Italian HYPERGENES cohort

The Italian follow-up is based on 451 individuals belonging to the cohort ascertained as 

controls for genome-wide association studies of hypertension (HYPERGENES)35 (eTable 
3). Years of Schooling were defined in accordance with the ISCED 1997 classification, 

leading to seven categories of educational attainment that are internationally comparable 

(see details in eMethods). SNPs were genotyped using Illumina Human 1M-Duo BeadChips 

and CNVs called with PennCNV as for the discovery cohort. Differences in means of 

educational attainment were compared using a Welch two samples one-tailed t-test and 

Wilcoxon rank-sum test in R. Both tests returned comparable results.

Results

Prevalence and phenotypes of pathological CNVs in EGCUT

To investigate the medical burden of rare CNVs in the general population we opted for a 

genotype-first approach and analyzed a random sample cohort from EGCUT. Within a 

combined discovery and replication sample of 7877 unrelated individuals, we identified 56 

carriers of known recurrent autosomal genomic disorders (0.7%; eTable 1). While the 

prevalence of each genomic disorder is lower than previously reported in clinical 

cohorts36,37, it is only slightly lower than the 67 individuals expected according to the 

reported population prevalence of the 57 autosomal syndromes listed in the DECIPHER 

database of genomic disorders9 (eTable 2, eTable 5 and eMethods). EGCUT is depleted (6 

observed carriers/17 expected, P=0.03, OR=0.35, CI95%(0.11; 0.94)) of the most 

deleterious CNVs (graded 1-2 by DECIPHER), while the frequency of CNVs graded 3 and 

ungraded is as expected (50/50, P=1, OR=1, CI95%(0.66; 1.51)).

The clinical features of EGCUT carriers of DECIPHER-listed CNVs are comparable to 

those reported in disease cohorts. 31 (55%; including only formal diagnosis) and 39 out of 

56 (70%; including self-reported problems) carriers recruited from the general population 

with no prior awareness of their genetic disorder present phenotypes previously associated 

with their genomic lesion in the literature (see eTable 1 for the phenotypes identified in the 

56 EGCUT carriers and eTable 2 for phenotypes associated with DECIPHER-listed CNVs). 

For example, carriers of the 16p11.2 600kb BP4-BP5 deletions and reciprocal duplications 

identified in clinical cohorts show opposite phenotypes on body weight, head size and 
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volume of specific cortico-striatal structures. They exhibit reduced full-scale intellectual 

quotient (FSIQ), as well as neuro-psychiatric problems and congenital 

abnormalities10,12,38-44. Correspondingly, the baseline questionnaires of the 4 deletion 

(cases no 41-44 in eTable 1) and 7 duplication (no 45-51) carriers identified in EGCUT 

indicated high and low body mass indexes, respectively, as well as neuropsychiatric traits, 

learning and developmental problems. The follow-up evaluation of these carriers uncovered 

additional similarities in the spectrum and severity distribution of phenotypic features found 

in 16p11.2 BP4-BP5 rearrangement carriers identified through pan-European recruitment 

via clinical genetics center (eTable 6).

Rare intermediate size CNVs and educational attainment

We then generated the genome-wide map of rare autosomal CNVs in the discovery set of 

6819 individuals (eTable 3) and identified a total of 216 deletion and 509 duplication 

carriers (≥250kb with carrier frequency ≤0.05%; eTable 7). The underrepresentation of 

deletions compared to duplications (P=2.2e-16) is consistent with previous reports and 

concordant with the hypothesis that the former are more deleterious1,14. We found evidence 

for an association between carrier status and prevalence of intellectual disability (3.2% 

(n=23) in rare CNV carriers vs 1.7% (n=114) in EGCUT; P=0.007, OR=1.93 (95%CI: 

1.17-3.06)). This effect was mainly driven by deletions (5.1% of intellectual disability, 

n=11; P=0.0015; OR=3.16 (95%CI: 1.51-5.98)) and remained even after exclusion of 

carriers of DECIPHER-listed CNVs (2.8% n=19; P=0.05, OR=1.64 (95%CI: 0.95-2.71), 

8.9% of which were diagnosed with intellectual disability (n=4, P=0.0072, OR=5.74 

(95%CI: 1.47-16.22)).

We next assessed the correlation between CNV size and intellectual disability, as it was 

previously reported that in comparison to controls, cohorts of affected patients show an 

excess of CNVs and that this excess is larger for longer CNVs7. The frequency of 

intellectual disability increases with CNV size (4.3% (n=6, P=0.033, OR=2.65 (95%CI 

0.94-6.11)) in 250-500kb versus 8.3% for ≥1Mb deletions (n=36, P=0.023, OR=5.34 

(95%CI: 1.03-17.42)), while associations with duplications are only detectable when 

rearrangements exceed 1Mb in size (5.9% n=102; P=0.0083, OR=3.67; (95%CI: 1.29-8.54); 

Table 1). Smaller deletions (125kb≤CNV<250kb; n=275) had no apparent impact on this 

prevalence (2.5% (n=7, P=0.24, OR=1.5 (95%CI: 0.59-3.28)).

The diagnosis of intellectual disability is binary; thus to assess with greater granularity the 

effect of rare CNVs, we investigated if their occurrence and size are related to achieved 

education levels, a proxy for global cognition45,46. For this purpose we used the scale of 

seven sublevels of the Estonian education curriculum (eMethods). While 25.3% (n=1729) 

of sampled EGCUT individuals fail to complete secondary school (level 4; EGCUT mean 

education attainment (MEA)=4.09, similar to the Estonian population11), this proportion is 

higher in carriers of DECIPHER-listed genomic disorders with 48.9% (n=22) of them only 

reaching elementary or basic education (P=0.0008, OR=2.8 (95%CI: 1.49-5.3); MEA=3.71, 

P=0.028; Figure 1). The fraction of carriers that fail to reach secondary education increases 

with CNV size (e.g. ≥1Mb CNV carriers have a MEA=3.65 (P=4.6e-07) and 40.6% (n=56) 

of them do not complete secondary school (P=0.0001, OR=2.01 (95%CI: 1.40-2.87)); 
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Figure 1). Deletions are responsible for the bulk of the outcome with MEA decreasing to 

3.5 (P=0.0004) and 47.2% (n=17) of 1Mb deletion carriers not completing secondary 

education (P=0.006, OR=2.63 (95%CI: 1.28-5.36); Figure 1). A decrease is already seen in 

the 250-500kb CNV carrier group with MEA=3.86 (P=0.017) and 29.5% (n=41) of carriers 

not graduating from secondary school (P=0.28, OR=1.23 (95%CI: 0.83-1.80)). In agreement 

with the intellectual disability results, smaller deletions (125kb≤CNV<250kb: n=275) were 

not associated with changes in education attainment (MEA=4.11 (P=0.80), less than 

secondary education 26.2% (n=72, P=0.78, OR=1.04 (95%CI: 0.78-1.38))), while 

duplications were associated only with rearrangements ≥1Mb (MEA=3.71; P=0.00015 and 

38.2% (n=39) of carriers failing to complete secondary school; P=0.0042, OR=1.82 (95%CI: 

1.19-2.77); Figure 1).

EGCUT ancestry principal components are not associated with CNV burden (eFigure 2), 

indicating that genetic stratification is likely not confounding the association with 

educational attainment. Likewise, differences in education possibilities due to religion or 

ethnicity could not account for the observed associations as the OECD “Program for 

International Student Assessment” and “for International Assessment of Adult 

Competencies” surveys showed that the “free education for all” Estonian system is among 

the best in the world in term of results and equal opportunity (eMethods).

Estonian replication

We conducted a replication of the education analysis on a non-overlapping random set of 

1058 unrelated EGCUT individuals recruited similarly (eTable 3), but sampled at a different 

time-point and genotyped using a different array platform (replication cohort: MEA=4.00, 

25.6% (n=271) failing to complete secondary school). In agreement with the discovery 

cohort, we noted a diminished education attainment in 250kb≤CNV<500kb deletion carriers 

(MEA=3.68, P=0.056; 36% (n=9) with only basic education or less, P=0.25, OR=1.63 

(95%CI: 0.63-3.98)) and ≥1Mb duplication carriers (MEA=3.54, P=0.15; 46.2% (n=6), 

P=0.11, OR=2.49 (95%CI: 0.68-8.72). The joint analyses of these two random cohorts 

confirmed the negative effect of rare deletions ≥250kb (MEA=3.81; P=1.06e-04; less than 

secondary 33.5% (n=83); P=0.005, OR=1.48 (95%CI: 1.12-1.95) and duplications ≥1Mb 

(MEA=3.69; P=5.024e-05; less than secondary 39.1% (n=45); P=0.0016, OR=1.89 (95%CI: 

1.27-2.8) on educational attainment (see full details in Figure 1 and Table 2). To challenge 

our results further, we then used a non-overlapping set of 993 unrelated individuals that, due 

to different ascertainment criteria (eTable 3 and eMethods), were biased towards higher 

than average socio-cognitive functioning (high-functioning replication cohort: MEA=4.77, 

lower than secondary education 9.4% (n=93)). Even in this group that is probably partially 

depleted of severe impact CNVs, we observe a lowering of the MEA of 250kb≤CNV<500kb 

deletion and ≥1Mb duplication carriers of the same order of magnitude (MEA=4.36, Δ=

−0.41 and 4.44, Δ=−0.33, respectively). Combining both independent replication cohorts 

confirmed our results (replication cohorts MEA=4.36; 250kb≤CNV<500kb deletion carriers 

MEA=3.91 (P=0.004); ≥1Mb duplication: MEA=3.79 (P=0.057)); the same holds true if all 

three Estonian cohorts were analyzed together (eTable 8).
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ALSPAC, HYPERGENES and MCTFR follow-up

We sought to strengthen the inference from our results using the ALSPAC birth cohort and 

SATs scores at the age of 13-14 years as an alternative measure of education attainment 

(n=5218; eTable 3). When mean education attainment was studied using the transformed 

variables, Mathematics scores were decreased in carriers of rare intermediate-size deletions 

compared to controls (250kb≤CNV<500kb: Welch two-sided t-test comparing means 

P=0.019), and English scores were decreased in carriers of large deletions (≥1Mb, Welch 

two-sided t-test comparing means P=0.020)(eTable 9). Mean educational attainment in 

English and Mathematics was decreased in those who carried large duplications (≥1Mb; 

P=0.020 and P=0.049 respectively, Welch two-sided t-test). These results confirm the 

association between education attainment and rare CNVs using a different education metrics 

in a geographically distinct and differently ascertained cohort of adolescents.

Larger CNV size increased the odds of individuals belonging to the lowest tertile of SATs 

score (compared to the top, reference tertile) for both English and Mathematics. This was 

apparent both for carriers of deletions (English: 250kb≤CNV<500kb, OR 1.26 [95%CI 0.81, 

1.95]; 500kb≤CNV<1Mb, OR 1.69 [95%CI 0.88-3.30]; ≥1Mb, OR 4.18 [95%CI 1.48, 

14.87]; trend [p=0.002]; Mathematics: 250kb≤CNV<500kb, OR 1.42 [95%CI 0.91, 2.21]; 

500kb≤CNV<1Mb, OR 2.21 [95%CI 1.01, 5.06]); ≥1Mb, OR 3.69 [95%CI 1.51, 10.29], 

trend [p=0.0002]) and duplications, albeit in this analysis, substantive evidence for an 

association of duplications and educational attainment was only observed for English results 

(English: 250kb≤CNV<500kb, OR 1.14 [95%CI 0.81, 1.61]; 500kb≤CNV<1Mb, OR 1.19 

[95%CI 0.76,1.87]; ≥1Mb, OR 2.22 [95%CI 1.07, 4.84]; trend [p=0.035]; Mathematics: 

250kb≤CNV<500kb, OR 1.10 [95%CI 0.78, 1.54]; 500kb≤CNV<1Mb, OR 1.03 [95%CI 

0.68, 1.55]; ≥1Mb, OR 1.54 [95%CI 0.80, 3.01]; trend [p=0.273]) (Table 3).

Our results were followed-up in two separate cohorts of healthy individuals with normal 

cognitive functioning (eMethods). Consistent with this ascertainment, both Italians and 

European Americans recruited for the HYPERGENES and MCTFR cohort, respectively, 

showed evidence of paucity of DECIPHER-listed CNVs [1 observed vs. 4 expected 

(P=0.37; OR=0.25, CI95% 0.005-2.53) and 14 vs. 20 (P=0.39, OR=0.7, 95%CI 0.32-1.46, 

respectively (eTable 2)]. Of note, the HYPERGENES analysis was restricted by small 

sample size (n=451; eTable 3) resulting in both a limited statistical power and limited CNV 

frequency calculation (≥0.25%). At this 5-fold higher level of prevalence, the MEA was 

reduced in carriers of deletion 500kb≤CNV<1Mb (ΔMEA=−0.26; P=0.39, Wilcoxon test) 

and the ≥1Mb duplications (ΔMEA=−0.66; P=0.11, Wilcoxon test)(eTable 10). A 

consistent, but similarly underpowered, decrease of FSIQ was found in MCTFR carriers of 

rare deletions (500kb≤CNV<1Mb: Δ=−4.23 IQ points, P=0.43; ≥1Mb: Δ=−13.82 IQ points, 

P=0.09) and duplications (500kb≤CNV<1Mb: Δ=−5.56, P=0.01; ≥1Mb: Δ=−6.03, P=0.16) 

(eTable 11).

Female mutation burden

In contrast to duplication carriers (male:female ratio=1.06 (303:285), we observe an excess 

of female carriers in every deletion size class ≥250kb separately and together within the 

combined Estonian discovery and replication cohort [M:F=0.78 (109:139); P=0.14, 
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OR=1.22 (95%CI: 0.94-1.59)]. Female deletion carriers also show a more severe decrease in 

MEA than males in EGCUT [Female MEA=4.13 vs. Female del 250kb≤CNV<500kb 

MEA=3.71 (P=0.0003); Male MEA=4.02 vs Male del 250kb≤CNV<500kb MEA=4.00 

(P=0.847); Figure 1). The joint analysis of the three Estonian cohorts confirmed that female 

deletion carriers are responsible for the majority of the decrease in education attainment 

(EGCUT combined female MEA=4.22, 250kb≤CNV<500kb deletion female MEA=3.71, 

P=3.9e-08; less than secondary education 20.3% (n=920), deletion female 33.6% (n=49), 

P=0.00024, OR=1.99 (95%CI: 1.37-2.85) (eTable 8). Consistent with the Estonian results in 

the MCTFR cohort deletions ≥500kb had a stronger effect on FSIQ in females (Δ=−13.73; 

P=0.03) compared to males (Δ=−0.12; p=0.98; eTable 11).

Assessment of CNV deleteriousness and function

Investigating the functions of the 642 protein-coding genes encompassed in the identified 

rare ≥250kb deletions, we found evidence of enrichment for genes with a role in 

neurogenesis, cognition, learning, memory and behavior (29 out of the top 50 GO processes 

with strongest evidence; all with FDR<2.45e-05; eTable 12). We then assessed if we could 

use gene characteristics to more accurately predict CNV deleteriousness. We stratified 

CNVs by the number of embedded i) protein-coding and non-coding genes, ii) 

neurodevelopmental (ND) genes22, iii) ohnologs24, or by iv) the sum of imbalanced genes’ 

probability score for haploinsufficiency (HiS)23, and v) the highest HiS in the CNV. A 

decrease of cognitive abilities was present in carriers of deletions encompassing ≥2 genes 

(MEA=3.82, P=0.003) and duplications including ≥11 genes (MEA=3.74, P=0.0003) 

(eFigure 3). When genes were present in the rearranged interval, deleteriousness was 

associated with the presence of at least one protein-coding gene (intellectual disability 

prevalence 5.3% (n=8), P=0.0046; OR=3.31 (95%CI: 1.37-6.93); MEA=3.79, P=0.0014; 

33.3% (n=50) not reaching secondary education, P=0.029, OR=1.47 (95%CI: 1.02-2.1) in 

agreement with the observation that the majority of Mendelian pathogenic mutations disrupt 

coding sequences 47. Prevalence of intellectual disability was best correlated with the 

presence of at least one ND-gene in the deleted interval (prevalence 8.8% (n=6), P=0.001, 

OR=5.69 (95%CI: 1.97-13.47); MEA=3.76, P=0.03) and the sum of HiS (Highest quartile of 

HiS sums: 8.9% (n=4), P=0.0072, OR=5.74 (95%CI: 1.46-16.22; MEA=3.91, P=0.27). 

Presence of an ohnolog in the deletion is associated with a higher prevalence of intellectual 

disability, however to a lesser degree (5.9% (n=6), P=0.008, OR=3.7 (95%CI: 1.29-8.54). 

Neither separately nor together did the numbers of promoters, enhancers, transcriptional 

elements and insulators within a CNV correlate with intellectual disability and educational 

attainment.

Discussion

While various large pathogenic CNVs are known, the vast majority of rare CNVs of 

intermediate size (250-500kb) were thought to be non-deleterious. In the current report we 

show that the presence of both recurrent syndromic and rare intermediate-size non-recurrent 

CNVs, which are cumulatively frequent in the general population (10.5%), correlates 

positively with prevalence of intellectual disability and negatively with educational 

attainment. Our results are likely to be underestimated through i) exclusion of the most 
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severely affected patients, ii) inclusion of patients with CNVs known to have no impact on 

cognition and iii) incorrect inclusion of carriers of large somatic/tumorigenic genomic 

lesions.

The link between impaired cognitive functioning and lower academic achievement in CNV 

carriers parallels the recognized correlation between health and education48. This health-

education gradient was postulated to result from the combination of i) heritable factors 

impacting both traits, ii) poor early-life health that affects learning, and iii) health-related 

behaviors being modulated by education. While recurrent CNVs conferring risk of autism 

spectrum disorders or schizophrenia were associated with a decrease in IQ of individuals 

from the general population49 and phenotype mining of carriers of genomic variants in the 

Northern Finland 1966 Birth Cohort revealed an excess of lower IQ, school grade retention 

before age 14 and impaired hearing among individuals carrying deletions >500kb previously 

implicated in neurodevelopmental disorders14, both studies failed to recognize that other 

CNVs, in particular non-recurrent ones, were also associated with decreases in cognitive 

capabilities.

Although 40-80% of the variance in intelligence and 20-40% in educational attainment are 

explained by genetic factors 50-53 studies failed to find major contributors to this heritability. 

For example, three individual SNPs each with an approximate effect size of one month of 

schooling per allele have been identified in a GWAS encompassing >126,000 individuals 

(largest estimated effect = 0.02%) 17 and only a polygenic model including ~300,000 

common SNPs genome-wide explained 28-29% of variation in general cognition 54. While 

earlier studies failed to identify common CNVs as major contributors to the above 

heritabilities 55-58, our results suggest that rare structural variants ≥250kb for deletions and 

≥1Mb for duplications are associated with complex social-science traits in population 

cohorts. About 2% of the analyzed biobank participants carry a rare CNV ≥1Mb. Even 

without considering other health problems, a fifth of them appear to be linked with 

decreased life quality as the fraction reaching secondary education level is lowered by 15% 

when comparing CNV carriers to the general population. This reduction results in a MEA 

that is half a level lower. If we add to this fraction of rare ≥1Mb CNVs both the smaller 

intermediate-size CNVs associated with decreased educational attainment identified in this 

report (at least 0.2% of the population), and the highly pathogenic anomalies absent from 

EGCUT (0.15%), the life quality of 1 of 40 people might be negatively affected by rare 

CNVs. These variants may account for a sizable portion of the heritability of the complex 

“educational attainment” measure52.

The observed excess of females carrying rare genomic deletions supports the recently 

described female-biased mutational burden 21,59. Females appear “protected” from 

neurodevelopmental disorders. This potentially allows females to be enrolled in general 

population cohorts despite the fact that they carry rare CNVs, while their male counterparts 

who likely present more severe phenotypes are excluded from such recruitment. 

Consequently and corroboratively, female deletion carriers mostly drove the signal on 

education attainment.
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While intellectual disability prevalence was increased with presence of a 

neurodevelopmental or ohnolog gene in the deleted interval or a high haploinsufficiency 

score of imbalanced genes, none of the assessed evaluators correctly capture the variation in 

education attainment, possibly because they are limited to protein-coding genes. 

Investigation of the function of the encompassed protein-coding genes revealed that they 

were enriched for genes involved in neurogenesis, cognition, learning, memory and 

behavior. This is consistent with the hypothesis that these rearrangements are rare because 

they impact genes important for neurodevelopment and thus are rapidly purged from the 

population.

While none of the carriers of known syndromic CNVs identified in EGCUT were previously 

diagnosed with a genetic disease, many suffered from major clinical problems (e.g. 

intellectual disability, congenital anomalies, neuropathies, neuropsychiatric disturbances, 

extreme obesity and reproductive problems). As the latter are most likely caused by the 

newly-found genetic alterations, it suggests that these individuals have escaped the attention 

of the medical genetics system and thus not received proper examination and counseling.

Conclusions

Our results suggest that population carriers of known syndromic CNVs identified in the 

general population are not asymptomatic. They also indicate that individually rare, but 

collectively common, intermediate-size CNVs negatively contribute to the variance in 

educational attainment. Validation of this finding in additional population groups is 

warranted given the potential implications of this observation for genomics research, clinical 

care, and public health.
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Figure 1. Rare intermediate-size CNVs are associated with decreased education metrics
The education attainment decreases with CNV size. The different panels compare the 

distribution of achieved education levels of the assessed general population (EGCUT) with 

carriers of DECIPHER-listed rearrangements (DECIPHER) or with carriers of CNVs 

(frequency ≤ 0.05%), deletions, deletion females and duplications segregated by size. 

Asterisks placed above the stacked columns specify different distributions, while the ones 

positioned at the boundary between basic and secondary education levels (levels 3 and 4, 

respectively) denote differences in the fraction of individuals who reached at least secondary 

education. P-values ≤ 0.05, ≤ 0.01 and ≤ 0.001 are indicated by *, ** and ***, respectively. 

The actual P-values are mentioned in the main text and Table 3. Education levels are coded 
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according to the Estonian education curriculum: 1 - less than primary; 2 - primary; 3 – basic; 

4 – secondary; 5 – professional higher/college; 6 – university/academic degree; 7 – scientific 

degree (see eMethods for details). Note that while 21.2% of EGCUT females (n=855) hold 

college or academic degrees, the presence of a rare deletion is associated with a decreased 

ability to achieve these highest education levels (del 250-499kb: 12.9% (n=12) of female 

with levels 5-7; P=0.05, OR=0.55 (95%CI:0.27-1.02)). For example, only one (a carrier of 

the 17p12 deletion causative for HNPP peripheral neuropathy, OMIM #162500) of 20 

females carrying deletions ≥1Mb reached an education level above secondary school.
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Table 1

Prevalence of intellectual disability diagnosis in EGCUT

Cohort Sample size Intellectual disability prevalence (nb of cases) OR (CI95%) P-value

EGCUT all samples 6819 1.7% (114)

DECIPHER CNV carriers 45 8.9% % (4)** 5.74 (1.47; 16.22) 0.0072

DEL carriers ≥ 1 Mb 36 8.3% (3)* 5.34 (1.03; 17.42) 0.023

DEL carriers ≥ 500 kb 77 6.5% (5)** 4.08 (1.26; 10.25) 0.01

DEL carriers ≥ 250 kb 216 5.1% (11)** 3.16 (1.51; 5.98) 0.0015

500 kb ≤ DEL carriers < 1 Mb 41 4.9% (2) 3.02 (0.35; 11.9) 0.1522

250 kb ≤ DEL carriers < 500 kb 139 4.3% (6)* 2.65 (0.94; 6.11) 0.0326

DUP carriers ≥ 1 Mb 102 5.9% (6)** 3.67 (1.29; 8.54) 0.0083

DUP carriers ≥ 500 kb 235 3.4% (8) 2.07 (0.86; 4.29) 0.066

DUP carriers ≥ 250 kb 509 2.4% (12) 1..42 (0.71; 2.6) 0.285

500 kb ≤ DUP carriers < 1 Mb 133 1.5% (2) 0.87 (0.11; 3.38) 1.0000

250 kb ≤ DUP carriers < 500 kb 274 1.5% (4) 0.87 (0.23; 2.32) 1.0000

Carriers of rare deletions are indicated as DEL and rare duplications as DUP. The results are presented as cumulative or as size-separated groups. 
DECIPHER CNV correspond to all CNV listed within the DECIPHER database (see text for details).

Significant results are highlighted in bold; P-values ≤ 0.05, ≤ 0.01 and ≤ 0.001 are pinpointed by *, ** and *** respectively.

1For both deletions and duplications, ‘Controls’ are those individuals carrying neither a deletion nor a duplication ≥250kb.
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