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Abstract: In this paper we consider the estimation of the coefficient of tail dependence and of small tail probability
under a bivariate randomly censoring mechanism. A new class of generalized moment estimators of the coefficient of
tail dependence and the estimator of small tail probability are proposed, respectively. Under the bivariate Hall-type
conditions, the asymptotic distributions of these estimators are established. Monte Carlo simulations are performed
and the new estimators are applied to an insurance data-set.
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1 Introduction

Modeling dependence structures underlying rare events is a crucial topic for advanced actuarial applications since
the misidentification of dependence structures can cause a dramatic risk underestimation (cf. Beirlant et al. (2011)
and Haug et al. (2011)). For a given bivariate risk vector (X,Y") with unit Fréchet distributed margins, Ledford and
Tawn (1997) proposed the following tail dependence model

P(X >z,Y >y) =2 %y 2L(x,y), witheci, co2>0. (1.1)

Commonly, the parameter 7; = (c; +c2) ! is referred to as the coefficient of tail dependence, whereas L is a bivariate
slowly varying function, i.e., there exists a function g such that for all z,y > 0 and ¢ > 0

tr,t
tim ZU0) _ ) with gler, cu) = o(e,).

t—oo  L(t,1)
For various insurance and finance applications it is of interest to estimate both 7, and P(X > z,Y > y), see
e.g., Embrechts et al. (1997), Peng (1999), Beirlant and Vandewalle (2002), Einmahl et al. (2012), Goegebeur and
Guillou (2013), and the references therein. Recently, Beirlant et al. (2011) studied model (1.1) by assuming further
that
Llw,y) = g1z, 9) (1+ 2"y ga(@,p)(1+ 0(1) ), @, y = o0, (1.2)

with
gi(x,y) = hi(z/(x+y)), i=1,2, ha#0 and 7 =p;+p2<O0.

Let next 0 < w < l,w = w/(1 — w) and for some positive = define y = z/w. Then the random variable Z =
min(X, wY’), has survival function F' =1 — F such that

F(z) =P(X > 2,Y > z/w) = m_l/”lw”hl(w)(l +w P2 hy(w)z™ (1 + 0(1))) (1.3)
= Cpz~t/m (1 + Dyz™ (1 + 0(1))), T — 00,

which shows that F' belongs to the Hall-class, denoted by F' € Hall(n:,Cy, D1, 71). In the sequel we say that (X,Y)
satisfies the bivariate Hall-type condition with tail dependence parameters (c;, hi, p;, 4 = 1,2) if (1.3) holds. By (1.3),
the coefficient of tail dependence 71 and the small tail probability P(X > z,Y > y) can be estimated on the basis
of univariate extreme value techniques, see e.g., Hill (1975), Dekkers et al. (1989), Gomes et al. (2008), Beirlant et
al. (2009). However, in many insurance and finance applications complete data are rarely available, and censoring of
data is a common phenomenon caused for instance by the existence of deductibles or retention levels. In univariate
settings, different estimators of extreme value index under randomly censoring have been proposed, see e.g., Beirlant
et al. (2007), Einmahl et al. (2008), Gomes and Neves (2011) and the references therein.

1Faculty of Business and Economics, University of Lausanne, 1015 Lausanne, Switzerland
2Southwest University, China, email: pzx@swu.edu.cn



So far there are no contributions in the literature dealing with extreme value problems for censored data in higher
dimensions. Therefore, the aim of this paper is to establish some new estimators of the coefficient of tail dependence
and for the tail probability in the presence of bivariate randomly censoring. Our framework of bivariate randomly
censoring is easily explained if we consider two independent bivariate random vectors (X,Y") and (X Y) Then the

random vector (X,Y") is componentwise randomly censored by (X Y) and we will establish our estimators based
on samples from (X*,Y*) and (6(V),5(?)) defined by

X* =min(X,X), Y*=min(V,Y), V=[x <X}, §?=I{y <Y}, (1.4)
with I{-} the indicator function.

The main restrictions are that both (X,Y’) and ()? , };) have unit Fréchet distributed margins and satisfy the bivariate
Hall-type conditions with tail dependence parameters (c;, h;, p;,¢ = 1,2) and (Ei,ﬁi, Di,4 = 1,2). The principal
challenge in our framework is that all parameters are assumed to be unknown. Qur new estimators are highly
flexible with a tuning parameter (see (2.2) and (3.2) below). With a suitable choice of the tuning parameter, under
certain extreme value conditions our new estimators are asymptotically normal with zero-mean.

The rest of this paper is organized as follows. Section 2 shall introduce some notation and preliminaries. The main
results are presented in Section 3 followed by a section with illustrating examples. Section 5 is dedicated to a small
simulation study and a real life data application, whereas the proofs are deferred to Section 6.

2 Notation and Preliminaries

Let (X;,Y;) and (XT,Y) i = 1,...,n be two independent and identically distributed samples from independent
parents (X,Y) and (X,Y) with unit Fréchet distributed margins. Then by (1.4) the samples X;‘,Y;*,ézgl),éfg),i =
1,...,n are from parents X*,Y* 6(1) and 6%, respectively. Define

Z; =min(X},Y)), 6 =H{X; <Y}, 6 =067 +07(1-67)

for each sample (X;,Y;) and ()N(Z, }7%) Let 27, < Z3, . < Z; , be the associated order statistics of Z;. Write

d[i,n) for the concomitant order statistics w1th respect to ZZ ", in other words, d; ) = o if Z],, = Z3,i=1,...,n

For some intermediate integer sequence k = k(n) satisfying lim, o0 k(n) = lim,_, n/k(n) = oo define
; i ’ k
( ) _ = n—i+1ln . n—i+1l,n . -
) =3 (e e ) - 335 ) s - S s

where j = 1,2 and 8’ < 0. In this paper we propose the following new estimators of 7;

(1) 1y M)*
MOV (k) + a (1 ¢ s
B Pn(k) ’

which we refer to as the generalized moment estimators since they extend the Hill estimator (v = 0) and the moment
estimator (o = 1) in the absence of censoring. In order to establish their asymptotic distribution, the following two
assumptions are needed:

with a € R, (2.2)

Al. (X,Y) and ()Z’ , }7) are independent and satisfy the bivariate Hall-type conditions with tail dependence param-
eters (¢, hi,pi,i = 1,2) and (¢, hi, pi, i = 1,2), respectively.

A2. For a distribution function (df) F € Hall(n;,C1, D1, 71) defined by (1.3), £y () = (C1Dyx™)~ (zV/ M F () —
() is a normalized regularly varying function (see Bingham et al. (1987), p 15).

Next, we present two lemmas which will be used to prove the main results and to deal with the simulation study.
The first one is from Beirlant et al. (2007), p 160.
Lemma 2.1. Denote by F,G and H the dfs of Z = min(X,wY),Z = min(X,wY) and Z* = min(X*,Y*),
respectively. If the assumption A1 holds, then F' € Hall(n,C1,D1,71) and G € Hall(na, Co, Do, o) with

1 1 ~

, C1=hi(w)w®, Di=ho(w)w P2 =—— Cy=h(wuw®, Dy = ho(w)w P2
o+ o 1 1( )f 1 2( )f 72 &+ 0 2 1( )f 2 2( )f

m =



Furthermore, if D1 + Do # 0 for 71 = 1o, then H € Hall(n,C, D, T) with

:%, CZClCQ, D:Dl]l{ﬁ >T2}+D2H{’7'1 <TQ}+(D1+D2)H{T1 :7'2}, T:maX(Tl,TQ).
1 2

For convenience, we assume D # 0 throughout this paper, which holds in most applications (cf. Table 1).
Remark 2.2. Let U(t) = inf{y e R: H(y) > 1 —1/t} fort > 1. If H € Hall(n,C, D, ), then U(t) = t"C"[1 +
nDCPt (1 + o(1))]. Moreover,

U(tx)/U(t) — 2" P —1

. _ .
tlggc b(t) v p (23)

holds locally uniformly for all x > 0. Here p = n1 < 0 and b(t) = n(pDCP)t* =: npt’ (¢f. Lemma 2.4 in Beirlant et
al. (2009)).

From Lemma 2.1, Z* is essentially Z censored independently by Z. To estimate the coefficient of tail dependence 71,
it is sufficient to estimate the uncensored proportion P(Z < Z). Indeed, one may conclude that § = §(§* 462 (1—-§*)
and 0 = I{Z < Z} by straightforward calculations.

We conclude this section with Lemma 2 3 below for the asymptotic expansions of M, J>(k) T(LT)(k) and p,, (k). For
notational simplicity we denote for 7,7 = 1,2

1/(1—p) -1 , . LG+ +1)-TE+ DI +1
Hjp = /( pp) ) UJZZF(2]+1)7F2(.7+1)7 04,5 = ( )0_‘0_(‘/ ) ( )7 (24)
277

with I'(-) the Euler Gamma function. If some estimator say 6, converges in distribution to a N(0, 1) random variable
as n — oo, we shall abbreviate that as H,L ~ ASN(O 1) For two estimators Hn and d)n, denote their asymptotic
covariance by AsC(@n, qﬁn), and set AsV(Gn) = AsC(@n, Hn) for the asymptotic variance. Our notation for equality
in distribution, convergence in distribution and convergence in probability are g, % and 2 respectively. All the
limits are taken as n — oo unless otherwise specified.

Lemma 2.3. Suppose that A1 and A2 hold for an intermediate integer sequence k = k(n) and j,j7' = 1,2.

(a). For P ~ AsN(0,1) such that AsC(Pflj), Péj/)) =0;j

MY (k) 4 o PY b(n/k)
TS r(j+1)\/E+“j’” " (1+0p(1)). (2.5)

(b). For K, ~ AsN(0,1) such that As(C(Kn,P ) V1I=2pI'(j +1)”“’

1 a4 p Lo p b(n/k)
l—p (L=pVI=2pVEk (1-p)(1—-2p) n

ND(k) ~ (1+0p(1)). (2.6)

¢). For J, ~ AsN(0,1) being further asymptotically independent of Pflj) and K,
(c) g y y

/T /T
Pull) £ ”<1+ Z:&*( M) pnBiled) / (") )(1+0p(1>>>.<2.7>

Here i; ,,0; and o are given by (2.4) and

L-pVT-2p 5, (& -1/ -p) | _ vk St it —EGIZ" = Z;_i11.0))
p vk LT, 7 :

with §,1=1,...,n being identically and independent random variables with common df Fe(x) =1—1/z,2 > 1.

K, =



3 Main Results

The aim of this section is to establish the asymptotic normality of the estimations of the coefficient of tail dependence
71 and the tail probability P(X > z,Y > y). These results are stated in Theorem 3.1 and Theorem 3.3 under the
following asymptotic condition

lim Vkb(n/k) = A < oo, (3.1)

n—oQ

which has been utilised for instance in Beirlant et al. (2007) where therein A = 0 is investigated.
Theorem 3.1. Under the assumptions A1 and A2 and suppose further the condition (3.1) holds for an intermediate
integer sequence k = k(n), then

VE@O (k) =m) S 2~ N (1,0%),
where p =n7 < 0 and

ni (a® 4+ mn)
n? '

. Am ( ap  mbDy
H =

+ Km > 7 ) , o’ =
”?1l-p)\1=p D ¢ J
Remark 3.2. (a). For A =0, the results for « =0 and o = 1 coincide with those in Beirlant et al. (2007).

(b). The asymptotic variance is increasing with respect to |a|; its minimum value 03 /1 is obtained at o = 0.

The tuning parameter o renders the estimators given in (2.2) to be highly flexible. With a suitable « even when the
condition (3.1) holds with A # 0, the asymptotic bias of ﬁfla)(k) may become zero.

Next, we consider the estimation of small tail probability

pn =P(X > x,,Y >z, /w) =P(Z > z,) = F(x,)

for given w and sufficiently large x,,. The main inspiration for our estimator of small tail probability (denoted by
Dn below) comes from the recent contribution Beirlant et al. (2011). We retain the notation and the framework
previously introduced, and denote further 7 = ﬁ/M,(ll)(k) and 71 = TI{m > 72} with p a consistent estimator of p,
and thus p,, is given by

b(n/k) _b(n/k) 2\ \ A0
= T, b(n/k) b(n/k T,
=0 (2 )| e |1+ = - = - , 3.2
p (Zn—k,n) Z Pu(k)  Pulk) (Zn_,m) (3.2)
with
1 R n—k 6[ |
b = MWDK (1 -29)1-7)°% 3 ( N (k) — —— Fo(Z5_, . )= 1— o .
b(n/k) n (k)(1—2p)(1—p)°p ( n (k) 1—7) n(Zn—kn) ];[1 _ii1) (3.3)

where ﬁn(k),N,(f)(k) and ﬁfla)(k) are defined by (2.1) and (2.2), respectively. The estimator of the tail empirical

df Fn(Z;‘;_kn) is from Kaplan and Meier (1958), while p, the consistent estimator of p, can be found in Gomes
et al. (2009), de Wet et al. (2012). As in Theorem 5.2 in Beirlant et al. (2009) we assume further the following
condition: For an intermediate integer sequence k = k(n)

Pn D, \/E D,

— 00, asn — oo, (3.4)

= o N — O, =
F(Z; ) log(p/F(Z;_,.,)

which will be utilised for the derivation of the asymptotic distribution of p,.
Theorem 3.3. Under the conditions and notation of Theorem 3.1, if further (3.4) holds, then we have the conver-
gence in distribution

VEk@o/on =1) 4 Z (3.5)

log(p’n/F(Z’r):—k,n)) T




Remark 3.4. (a). Theorem 3.3 shows the following convergence in probability

log D, — logpy,
log(pn/F(Z};_4...))

0.
Hence an equivalent statement of (3.5) is

10g(Pn/Fr(Z;; . 1)) "

VE(Dn/pn — 1) a4 _Z

(b). In the absence of censoring, D, simplifies to the Weissman estimator provided that 71 = 0. In fact, Theorem 5.2
in Beirlant et al. (2009) is a special case of our results.

Theorem 3.3 shows that under some mild conditions the limit distribution of p,, depends only on the asymptotic
distribution of 7™ (k). If the condition (3.1) holds with A = 0 or the asymptotic bias u of 7\ (k) is zero with
a suitable parameter «, then an asymptotic confidence interval of nominal level 1 — 3 is obtained as follows (see
Theorem 3.1)

P B L o) R W BN LYY ) R
n 2 sy Mn - 2 )
VE k) VE 7w

where & and 23/, are respectively the estimation of o and the (1 — /2)-quantile of the standard normal distribution.

Due to the censoring mechanism and all unknown parameters, common bias-reduction methods for instance Caeiro
et al. (2005) and Beirlant et al. (2009) can not be employed. Another approach to reduce bias is to adjust the bias
term on the basis of B(n/k:) in (3.3), which is however not in the scope of this contribution. From the simulations
in Section 5 below, we see that our new estimators with suitable tuning parameter are highly flexible and perform
very well.

4 Examples

In the following @ denotes the joint df of (X,Y) with unit Fréchet distributed margins, i.e., Q1(z) = Qa2(z) =
e~'/% 2 > 0. The corresponding copula of Q with one parameter 0 is denoted by Cy(u,v) = Q(Q7*(u), Q5 *(v)).
Our examples below show that Z = min(X,wY") belongs to Hall(n1,71,C1, D1) with 11,71, C1, D listed in Table 1
below.

Example 4.1. Farlie-Gumbel-Morgenstern (FGM (0)). Cyp(u,v) = wv 4+ Quv(l — u)(1 — v),0 € [—1,1] and further

P(X >z Y >y)=1—e Vo —o /¥ e l/2"1/y (1 +0(1 —e Y2y (1 - efl/y)> , x,y>0.

(a). For 0 = —-1/3
POC> 0. > 3) = —gi(e.0) (1 + L)1+ o<1>>) ,

with
g1(z,y) = 2’ go(z,y) = _7/6(33/:(} +2y/x) —1—9/4.
(b). For 6 = —1
P(X>J?Y>y): 1 g(xy)<1+ 1 g(m y)(1+0(1)))
, xY/TY 1 N 2(T, ,
with

91(1'73/) = \/fﬁ‘ \/37 92($7y) — _7/6(1./21"’(';//2;) +9/4

(c). For 0 # —1/3,—1



P@>LY>m—;mmwO+m@m¢%ﬂ+dm)

gi(z,y) =140, g(z,y) =— 1+30 (\/> \/>> (4.1)

Example 4.2. Gumbel copula (Gumbel(6)). Co(u,v) = exp(—((—logu)? + (—logv)?)1/?),0 € [1,00), which is not
only an extreme value copula but also an Archimedean copula. For all z,y > 0

with

P(X >z,Y >y)=1—e /" —c MV 4 e (@Y

In the following we exclude the case § = 1 for which X and Y are independent since it is covered by the previous
example.

(a). For 8 =2 we have

P(X >z,Y >y = \/iiygl(x,y) (1 + %gg(x,y)(l + 0(1))) , X,y — 00,

_fE oy v E @) /) = (afy /)
gl($7y)_\/;+\/; 2ty e = Gg1(x, y) '

(b). If 6 ¢ {1,2}, then

with

P(X >z,Y>y) =

mewlmmmum@,w%m

1
Ve Ve

g(z,y) = \/§+ \/g— \/3 (1 + (§>9>1/9, polay) = Sy HY/ _231/&(11; (z/y)*)*"*

Example 4.3. Survival Clayton copula (S-clayton(6)). Clayton copula Cy is defined by

with

—0
Co(u,v) = (max(u—1/9 po /O 1,0)) ., 0e[=1,0)U(0,00).

Its survival copula Cp is given by @(w v)=u+v—14Cp(l —u,1—wv). Consequently, if Q) has survival copula Co
with 6 > 0, then as z,y — oo

P(X >2,Y >y) =1-Qi(x) - Q2(y) + Qz,y) = Co(Q1(2), Qx(y))

1(2,9) =1} , {6 < 1} {6 > 1}
- 20 (1 (A gy e + L o + B siton)) 0 o)

JTy 2
Y e\ 1
g1(z,y) = (y) + (E) . gs(zy) = L

L/ g (gl 2 0
— s g (E7y = .
2 (a/y)V 1 (y)a) D 2 (/) 7D 4 (/) D

Hence if 6 € (0,00), then 71 = 1 and lim, o g1(z,2) # 0, implying its asymptotic dependence (cf. Ledford and
Tawn (1997)).

Example 4.4. Gaussian copula (Gauss(0)). Cg(u,v) = ®o(®~(u),® 1(v)),0 € (—1,1). The Gaussian copula does
not satisfy the assumption A1, since ¢y = co = 1/(1 4+ 6),p1 = p2 = 0,71 = 0,¢1(z,y) is ray independent and
lim, o0 g1(z, ) = 1, see Embrechts et al. (1997) and Hashorva (2010, 2012).

where

gh(x,y) = —



Copula 0 n € (0, 1] 1 C:1 >0 Dy 7é 0
-1/3 1/2 -2 2y — T[0T+ D+o/4w
~ 2 w
FGM -1 1/3 -1 w(w + 1) ,W
14w
(-1,-1/3) U (-1/3,1] 1/2 ~1 w(l +0) — 3t 1y
1/2 -1 w —3(w+1)
wi4+1—(w?+1 3/2
Gumbel 2 1 -9 w + 1— \/ﬁ #1)2/9
(1,2)U(2,00) 1 -1 M+1_(M0+1)1/0 _%
1 1 -2 ) —Lw
- 0 _ 0)\ — 1/(260) ,,1—1/(26)
S-clayton 0,1) 1 -1 Vu (Ml/@ ) a1/ )) _%Mﬁ
(1,00) 1 -1/ TR
Gauss (-1,1) (1+6)/2 0 wl/A+0) __

Table 1: Examples Z = min(X,wY) € Hall(n,C1,D1,11) with (X,Y) ~ Cp(Qi(x),Q2(y)) with unit
Fréchet margins @1, Q2 and copula Cl.

5 Simulation Studies and Application to Insurance Data

In this section, we illustrate the finite sample properties of our estimations of the coefficient of tail dependence 7;
and the joint tail probability P(X > x,Y > y) via Monte Carlo simulations and a real-life example. The estimations
of joint tail probability as well as conditional probabilities of the form P(X > z|Y > y) are proceeded in both
simulations and applications.

We first perform small Monte Carlo simulations with 100 samples of size n = 1000 from the bivariate random vectors
discussed in Section 4. For comparison, we mainly simulate our generalized moment estimators 777({1) (k) (abbreviated

as ﬁ&,“), the same for other estimators below) with different o, and compare them with H ;c) and fL(Lc) defined by
+5(c) _ ~0) B (n)ﬁ 77(0) 1.y — ~(0) 1 B(n/k)
H, (k)=n"k)|1-——=(~+ , HY(k)=n" (k) — ——=—= , 5.1
<>n<>< e (k) =2(h) ~ 55 (51)

where p and 3 are respectively the estimators of p and 3 given by Gomes et al. (2009), and p, (k) and g(n/k) are
defined by (2.1) and (3.3), respectively. Caeiro et al. (2005) and Beirlant et al. (2009) studied estimators (5.1) in the
absence of censoring, which are rather attractive in the sense of minimal variance reduced bias (MVRB) extreme
value index estimators.

As showed below in Table 2 and Figure 1 ~ Figure 4, our new estimators of the coefficient of tail dependence with
suitable a are comparable with FELC ) and flr(f). For comparison, we also simulate all estimators without censoring,
which are respectively superior to those in the presence of censoring. Next we simulate samples from (X,Y) ~
Gumbel(2) censored by (X,Y) ~ S-clayton(1) with w = 0.2,0.5,0.6 and 0.8. It turns out that no big discrepancy
appears with different w, so we take w = 0.5 for the rest of simulations unless otherwise stated. Finally, we make
comparisons for the cases 7 = 71,72 and 7 = 0. For 7y > 7» we take samples from FGM(0.5) censored by Gumbel(2),

our estimator with a = 1 is comparable to I;f,(f). While for 7 > 71, we draw samples from Gumbel(2) censored by

FGM(0.5) and S-clayton(2), respectively. Our estimator with o = 0.5 (1) for the former (the latter) and HS) are
better than the others for the case (cf. Table 2 and Figure 3). For 7 = 75 < 0, we take samples from Gumbel(2)
censored by Gumbel(2) and S-clayton(1), respectively. The simulation shows that all estimators show good finite
sample behaviors. As an exceptional case 7 = 0 with samples from S-clayton(1) censored by Gauss(0), our estimator
with o = 0.5 is the best one among all simulated estimators, see Figure 4.

Next, we shall focus on the finite sample behaviors of p,, in (3.2), the estimators of small tail probability P(X >
Zn,Y > x,/w), and the estimator of conditional probability P(X > z,|Y > z,/w), which is obtained by p,, divided
by the Kaplan—Meier estimation of survival df of Y (cf. (3.3)). Motivated by Theorem 3.3 and the simulation results
above, we mainly consider our tail probability estimators with o = 0,0.5,1 and 7 = —1,77 = 0, —1 due to the
unknown parameters 7 and 7». To this end, we take samples {rom Gumbel(2) censored by S-clayton(1l) and draw
the sample paths in Figure 5 for 7; = 0 and Figure 6 for 7; = —1, respectively. The results show that our estimators
with @« = 1,73 = 0 and a = 0.5,77 = —1 are quite stable. For the conditional probability Figure 7 and Figure 8



illustrate the similar finite sample behaviors as those for the estimations of tail probability.

Finally, we consider an application of Loss-ALAE data-set examined by Beirlant et al. (2011). There are 34 data
points censored out of 1500 data points. First we transform the original data to be unit Fréchet distributed margins
by using the Kaplan-Meier estimation of survival df as follows (cf. Kaplan and Meier (1958))

X; = —1/log(1 - Fx(X})), Yi=—1/log(1— Fy(¥;)),

with
N n 5[(1) N n 5[(2)
F _ 1 ,Nn F _ 1 ,Mn
s =1 (1720, s ) | Frw =TT 1 s, <o

Now we apply our censoring mechanism into the transformed data. Figure 9 draws sample paths of our estimators
Aﬁlo) and nn) for the coefficient of tail dependence of (Loss, ALAE) with w = 0.5, which shows that 77( ) is more

stable than H i) and H. Next, we estimate the tail probability P(Loss > 200000, ALAE > 100000) by our tail
probability estimators (3.2) plugged in the estimator (2.2) of the coeflicient of tail dependence with w = 2/3. Figure
10 shows that our tail probability estimators with a = 1,73 = 0 and @ = 0.5,7; = —1 are rather stable and close

to the empirical tail probability 0.006. Figure 11 shows similar behaviors for estimations of the conditional tail
probability P(ALAE > 100000|Loss > 200000).
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Figure 1: Finite behaviors of mean values (left) and mean squared errors (right) of 7, 77n 7777(L ) 7Y H”. Random

samples are from (X,Y’) ~ Gumbel(2) without censoring. Here 7; = 1.
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Figure 2: Finite behaviors of mean values (left) and mean squared errors (right) of 777(L )7777(L ), H, " ,HY). Random
samples are from (X,Y") ~ FGM(0) censored by Gumbel(1). Here m; = 1/2 and 7y = —1, 75 = 1
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Figure 3: Finite behaviors of mean values (left) and mean squared errors (right) of ﬁﬁ?lﬁﬁﬁ,ﬁﬁf),ﬁ#)

samples are from (X,Y) ~ Gumbel(2) censored by S-clayton(2). Here 7y =1 and 71 = —2, 75 = —1/2.
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Figure 4: Finite behaviors of mean values (left) and mean squared errors (right) of %0)’ ﬁr(LO'5),F£LC), HY. Random
samples are from (X,Y’) ~ S-clayton(1) censored by Gauss(0). Here n; = 1 and 74 = =2, 72 = 0.
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Figure 5: Mean values (left) and mean squared errors (right) of the estimation of P(X > 40,Y > 160) = 0.0054 with
71 = 0. Samples are from Gumbel(2) censored by S-clayton(1).
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Figure 6: Mean values (left) and mean squared errors (right) of the estimation of P(X > 40,Y > 160) = 0.0054 with
71 = —1. Samples are from Gumbel(2) censored by S-clayton(1).
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Figure 7: Mean values (left) and mean squared errors (right) of the estimation of P(Y > 160|X > 40) = 0.2219 with
71 = 0. Samples are from Gumbel(2) censored by S-clayton(1).

6 Proofs
PrROOF OF LEMMA 2.1 By the assumption A1 we have
F(x) =P(Z > z) = P(min(X,wY) > )
=P(X > 2,Y > a/w) = (o/w) " ha(w) (1427 (/w)" ha(w)(1 + o(1)))

— x7(61+c2)h1(w)w‘22 (1 + xpﬁmhg(w)w*p?(l + 0(1)))

=: 5(:_1/771 & (1 + Dx™ (1 + 0(1)))

Consequently, F' € Hall(n,C1, Dy, 71). Similarly,

G(z) =P(Z > z) = 2~ %)y (w)w™ (1 + 2P P g (w)w P2 (1 + 0(1)))

= ZIJ—l/n2CQ (]. + DQiETz(]. + 0(1))>’

i.e., G € Hall(nz,Ca, D2, 72). Finally, note that Z* = min(X*, wY™*) = min(Z, 2) and Z, Z are independent of each
other,

H(z) = F(2)G(z) = 2~ V/m+1n) 0y 0y ((1 + Diz™)(1 + Daa™)(1 + 0(1)))
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Figure 8: Mean values (left) and mean squared errors (right) of the estimation of P(Y > 160|X > 40) = 0.2219 with
71 = —1. Samples are from Gumbel(2) censored by S-clayton(1).
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Figure 9: Estimations of the coefficient of tail dependence of (Loss, ALAE) considering the censoring case (left) and
neglecting the censoring case (right).
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Figure 10: Estimations of the tail probability of P(Loss > 200000, ALAE > 100000)) by estimators (3.2) with 71 =0
(left) and 7y = —1 (right). The empirical tail probability 0.006 is indicated by the horizontal line.
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Figure 11: Estimations of the tail probability of P(ALAE > 100000|Loss > 200000)) by estimators (3.2) with 73 = 0
(left) and 73 = —1 (right). The empirical tail probability 0.1428 is indicated by the horizontal line.

— gfl/ﬂc(1 + D2 (1 + 0(1))),

with

D = Dil{my >} + Dol{m < 7} + (D1 + D2)I[{11 = 12} # 0, 7 =max(7i, ),
i.e., H € Hall(n,C, D, 1) and thus the proof is complete. o
PrOOF OF LEMMA 2.3 Let &1, < ... < &, be the associated order statistics of {§;}7, from { ~ Fe(z) =

1—1/z,z > 1. Tt follows from de Haan and Ferreira (2006) that (k/n)&, &, — 1 and

d [ d
UEn—iv1m) ti=1,k =2 ivinti=t,kr &n—itin/Sn—knti=1,...k = {Ek—it1,k}i=1,...k
independent of &,_g . By Lemma 2.1, H € Hall(n,C, D, ) and thus H satisfies the second-order condition (2.3),
implying that

Zp_it1in d U(én—it1,n)
Z:; k,n U(€n7k+1,n)

P _
S & i (1 + Wb@/k)(l + op<1>>> =1k (6.1)

By the uniform convergence theorem of regular varying function (cf. Theorem 2.3.9 in de Haan and Ferreira (2006))

n—i+1,n k—i+1,k
<10g Z*) ~ Z (77 log &k—it1,k + #b(n/k)(l + Op(l))>

i=1 n—k,n i=1

j k ) i1 k
= T > (og &)’ + T Z log i1 )11 ShmtLh 1y o Lbn/B) (1 + 0p(1))

i F ) , — o) — n
TG+ 1)+ 2 Y (tog &) 1+ 1)+ or( + L= g, 1)
i=1

o o; PY b(n/k)
=T +1) <1+F(j+1) NG + 1ip o (1+0p(1))>7

with 0% = T(2j + 1) = T2(j + 1), 1y, = LA==1 ang

\FZ (log&) —T(j +1)) ~ AsN(0,1).

Similarly, for N(T)( k) defined in (2.1), we have

™) (1 i 1 fllc)fz#l,k —1 ’
NP £ g 2 i | 14 b/ B+ op(1)
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1< &hivip— 1
~k Zfz—iﬂ,k (1 + %b(”/kﬂ(l + Op(l))>

_ Ly p_ b(n/k)
S ) e

_ 1 p K, P b(n/k)
T T AV Zo vk T (- p)(1-2p)

(1+0p(1)),

with p = n7 and

K, = MZG”

) ~ AsN(0,1).

By the Cramér—Wold device and Liapounov’s theorem (cf. Chung (1974), p200) for 7,5’ = 1,2,

o TG4+ 1) -TG+ DI + 1
asc(p), puy = LUHTHD = LG DG+ - ) o py = A3,

O’jO’j/

Therefore, it remains to prove the asymptotic distribution expansion of p, (k) as in (2.7). For that we shall use that
E(5|7* = t) = ni(l n (thT - nlnDltﬁ)(l + 0(1))) (6.2)
1

for large t, where E(6|Z* = t) = lim.,0E(0|Z* € A.) with A. = (t,t +¢) or A, = (t —¢,t). In fact, since
F € Hall(m,Cy1,Dy,m), H € Hall(n,C,D,7) and £y p(t) = (C1D1t™) "L (tY/"F(t) — C}) is a normalized regularly
varying function, as t — oo

dlog F(tz) 1 Dyt x™ by p(tx) + talf p(tx)] B

m 1
Ox ma + 1 +D1(t1})71£0,F(t$) (TlDl(tw) (1 +0(1)) ) ,

m

S

}]{[((t;) =z7/m (1 + Dt (2" - 1)(1 + 0(1)))7 Hg(ge) L+ ((thT - 2% (1 + 717>) (1+0(1)) - 1)

holds locally uniformly for all # > 1 and € € (0,1). Recall that § = 616" +6(3)(1 — ) is the indicator function of
the event {Z < Z}, hence for large ¢

E(32" = 1) = lim P(6 = 1|2" € A.)

L BZ<Z2 €M) fea C@APW) o, (k) dlogFta)
=0 P(Z* e A,) =0 P(Z* € A,) e—0 —P(Z* € A,)

L L fren a7 (1 LD (e —1)(1+ 0(1))) (TlDltTlel(l +o(1)) — 1/771) da

~ 5o “P(ZF € A)/(cH (1))

_ % (1 4 pDE (1 + 0(1))) (1 — Dyt (1 + o(l)))

= % (1 + (thT - n1T1D1tTl>(1 + 0(1))>

thus, (6.2) is proved. Substituting ¢ with Z; ., , in (6.2) for i =1,...,k, we have

1k
“k Z 012" = Z5_it1.0)
= Ql k M . T _ M h T 71 )
=0 k; <1+ (( U(emrn) ) pD(U ({n—kyn)) ( U(Enrm) > mm1D1(U(&n—k.n)) )(1+ p(1)>>
: n T n /T
- nﬂl% Z <1 + <5Z¢+1,kb( n/k) - fzzliﬂ,k (ZlD;i)/lT (b( n/k)> > (1+ op(l))> (6.3)

o 1 b(n/k) 1 mnD; [(bn/K)\™"
m<1+<1—p n _1—7771(,0D)71/T< n ) >(1+Op(1))>
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,'72

mmn2 '

—_

k k
1 * * * * * *
Vn<k) = % ZASV((S'Z n i+1, n - % Z 6|Z n i+1, n))E((SIZ n i+1, n) £>

i=1
Note that the concomitant order statistics {5[n7i+1,n]}i:1,4..,k is independently Bernoulli distributed with successful
probability E(§|Z* = Z_, 4 ,,), it follows that

k
. 1 n  Ja
(k) = En (k) + = Stn—iv1n — B0 Z* = Z5_;11,)) = En(k) + 2
Pn (k) (k) k§1([ +1,n — E(9] +1n) (k) T R

_ m a1 bn/k)  mnDi(pD) T (b(n/k)\™T
_m<1+\/;x/ﬁ+<1—p n 1—nm ( 7 ) >(1+OP(1))>’

_ Vn(k) Z;C:l (6[71,—i+1,n] - ]E((S‘Z* - :; i+1, n))
/172 Vi (F)

Finally, note that ZZ 1 n—i+1,n] relates only to Z;_, ,, independent of Mflj)(k) and N, T)( k). On the other hand,
by the Cramér—Wold device and Liapounov’s theorem (cf Chung(1974) p200), E, (k) is asymptotic independent

of M(J)(k) and N(T)(k) (see (6.3)), thus J, is independent of MY (k‘) and N(T)(k), hence the proof is complete. O

with

~ AsN(0,1).

ProOOF OF THEOREM 3.1 Lemma 2.3 implies

-1
1 L) k) n
1k = =—— [ | MY E) —n+all-2[1- 20 — <Ank—>
(1) 2)
m My (k) My™ (k) (A U >
= = — 2« -1+« 1] - n(k) — — 14 0,(1
n((n )( p o M ( Pn(k) 0 (L+0p(1))
_m [ =20)P" +VBaP® —ny/ni/na T,
n Vi
1 mmDi(pD)"™/ (b(n/k)\™ T b(n/k)
—2 - — 1 1 .
+ <(77 )+ apz,p —n (1—;) [ ) (L+0p(1)) p
(6.4)
In view of condition (3.1) we obtain further
AsV ((77 —20) PV + V5aP® — ny 7)1/772Jn) =a’® +m,
VEkb(n/k) L o Dy(pD) T (b(n/k)\ T
o (0= 2} apizp =1 l-p 1—nm ( n ) (1+o(1)
p A ( ap m Dy )
- = + {m >
g \T=p T a-pp =
and thus the claim follows. O

BROOF OF THEOREM 3.3 We treat the cases 71 > 7 and 7 < 79 separately. For the case 71 > 7o, by Lemma 2.1
F € RV_y,,, it follows from the condition (3.4) that

Yn = Z*len 5 . (6.5)

n—k,n

Let p, = F(Z*

n—k,n

>§n vy (Yn) With G 5-(2) =1 —[z(1 46 — (53@7)]_1/”. Rewrite

1, ’1/771 sT1

Vk(logp, —logp,)  Vk(logp, —logp,) = Vk(logp, — logpn)
IOg(pn/F( n— kn)) log(p"/F( n— kn)) log(p"l/F( n— kn))

We treat the two terms on the right-hand side separately. For the first summand term, it follows from Proposition
2.3 in Beirlant et al. (2009) that

\/E(l()gﬁn log pn) _ Vk el 1o F( nLpy— kn) D
loa(pn/ F(Zs_1.0) 1%@MF<nkp>QgG’?ﬁ”(%)lg Rz, >>ﬁ&

n—k,n
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For the second summand term, rewrite

V(08 7 — logFn) _ VE Fu(Zy 4, . Caow i s On)

log(pn/F( n— k-n)) log(pn/F( n— k, n)) F(Z;:—k 71) Gn 171(]7/174’1“)77—1 (yn)

[Rd 1,

It follows from Csorgs (1996) that I, % 0. Next we rewrite J, as follows
~ ~ 1/38(
= vk log (yn <1 + bﬁn/k) - bﬁn/k)yﬂ>> — log ( <
log(pn/F(Z,_.,)) Pn(k)  Pn(k) ™"
Vklog yn 1 1 Vi 1 b(n/k) b(n/k) .
 log(pa/F(Z: ) (771_ ﬁfﬁ”(k)) T log(pn/F (22 Z ) (771 %“) ) ( n/m n/m y")
) _

VE (n/k) b(n/k) =\ b(n/k) b(n/k)
A (k) log(pa/F(Zi_) <l (Hpn“f) ﬁn<k>y"> ° ( afm nfm >>

= Jln + J2n - J3n-

bk e/, ))

It follows from Theorem 3.1 and the fact that F € RV_y,,,

log(F(yn n— kn)/F( n— kn)) Uit U&a)(k) n
Similarly, note that b(n/k) — 0 and the condition (3.4) holds, it follows that

VE@GS (k) = m) b(n/k)(1 —y3)

in =

We consider next Js3,. We have
_ VE (b/R) o bm/k) oz
"= logy, (ﬁn(m TR )> (1-+0,(1)) 0. (63)

In view of condition (3.1) and the proved result (6.5), it is sufficient to prove that \/@(n/ k) is bounded. Note that
7 is a consistent estimator of 7 and

Ba/b) £ (1= 2000 = % (NP0 - 4 2 1)

l—n7 1-—-m7 1-—p

=11 =21 (MO - 2= P00 - )

=200 =p) (=0 (L) (M)
B p? ( p <N" (k) 177?) < 7 Y

Consequently, by Lemma 2.3, \/Eg(n/k) is bounded. Consequently, combining (6.6), (6.7) and (6.8) the claim follows
for the case 7 > 7.
For the case 71 < 7o, one can follow the line of the proof for the case 7 > 75, we leave it to the readers. O
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