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Abstract: We consider Wald’s sequential probability ratio test for deciding whether a sequence of inde-
pendent and identically distributed observations comes from a specified phase-type distribution or from
an exponentially tilted alternative distribution. In this setting, we derive exact decision boundaries for
given Type I and Type II errors by establishing a link with ruin theory. Information on the mean sample
size of the test can be retrieved as well. The approach relies on the use of matrix-valued scale functions
associated to a certain one-sided Markov additive process. By suitable transformations the results also
apply to other types of distributions including some distributions with regularly varying tail.
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1. Introduction

Consider Wald’s sequential probability ratio test [12] of a simple hypothesis against a simple alternative. Let
ζ1, ζ2, . . . be a sequence of independent and identically distributed random variables (observations) with density
f , where either f = f0 (hypothesis H0) or f = f1 (hypothesis H1). The log-likelihood ratio Λk for the first k
observations is then given by

Λk =

k∑
i=1

log
f0(ζi)

f1(ζi)
, Λ0 = 0,

and its first exit time N from the interval (a, b) by

N = inf{k ≥ 0 : Λk /∈ (a, b)}, (1)

where a < 0 < b. At time N the sampling is stopped and a decision is made: accept H0 if ΛN ≥ b, and accept
H1 if ΛN ≤ a. The corresponding errors are given by α0 = P0(reject H0) and α1 = P1(reject H1), where Pi
indicates that hypothesis Hi is valid.

One now wants to choose decision boundaries a and b so that the errors are below prespecified thresholds.
If it is possible to find a and b, such that the errors coincide with their respective thresholds, then Wald’s test
with such boundaries is known to be optimal (i.e. the expected number of observations (under both hypotheses)
is minimal) among all tests respecting these thresholds, see [13] and [10, Thm. IV.4]. Such a pair (a, b) of
boundaries is unique under very weak assumptions [14], which do hold in our setting below. Usually, a pair
(a, b) resulting in the prespecified errors exists, unless the problem is ‘too easy’, in which case an optimal test
will use zero observations with positive probability, cf. [16] for an analysis of a more general test.

The following simple bounds on the decision boundaries are known, see [12]:

a ≥ log
α1

1− α0
, b ≤ log

1− α1

α0
. (2)
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In practice these bounds are often used as actual decision boundaries. As a result, N increases and one of the
errors may surpass its threshold, however usually not by a large amount for small errors, see [12].

If the errors α0 and α1 can be determined for any fixed pair (a, b), then the optimal decision boundaries can
be found by a numerical search for any given pair of errors α0, α1 of interest. This inverse problem is however
hard even for simple cases. Some tractable examples can be found in Wald [12] and Teugels & Van Assche [11],
where the latter assume f0 and f1 to be densities of exponential distributions. Some strong asymptotic results
were obtained in [8], but they still require identification of the Wiener-Hopf factors corresponding to the random
walk Λk, which can be done explicitly only in some cases.

In the present work we assume that f0 and f1 are densities of phase-type distributions where one can be
obtained by exponential tilting of the other. This includes the case of two exponential densities, as well as two
Erlang densities with identical shape parameter. After translating the inverse problem of Wald’s test into a
two-sided exit problem embedded in classical ruin theory (Section 2), we use techniques for Markov additive
processes (Section 3) to establish a surprisingly simple identity, which leads to explicit formulas in Section 4. The
approach simplifies the proof for the exponential case developed in [11] and extends the results to phase-type
densities (taking monotone transformations of the original observations, the results are also applicable for other
distributions, such as distributions with regularly varying tails obtained from exponentiating phase-type random
variables). In Section 5 we discuss the Erlang case in more detail, for which a very explicit treatment is possible.
Section 6 provides a general formula for the expected number of observations in Wald’s test. Section 7 studies
the uniqueness issue further and considers an extension to a Bayesian version, where an a priori probability for
the correctness of H0 is available. Finally Section 8 provides some numerical illustrations.

2. Wald’s test and ruin theory

Let f0 be a probability density function of some positive random variable ζ, and let P0 be the corresponding
probability measure. Consider the Laplace-Stieltjes transform G0(θ) = E0e

−θζ , θ ≥ 0 of ζ and define a new
tilted measure P1 according to dP1

dP0
= 1

G0(θ)e
−θζ . Then, under P1, ζ has a probability density function f1 given

by

f1(x) =
1

G0(θ)
e−θxf0(x). (3)

Consider Wald’s test for densities f0 and f1, where θ > 0, and observe that

log
f0(x)

f1(x)
= θx+ logG0(θ).

Hence the log-likelihood ratio Λk is a random walk with increments distributed as θζ−d, where d = − logG0(θ) >
0 and ζ has density f0 (under H0) or f1 (under H1). Define the closely related continuous-time stochastic process

Xt = θt−
Nt∑
i=1

d, t ≥ 0, (4)

where Nt is a renewal process with inter-arrival times distributed as ζ, see Figure 1. One can interpret Xt as
a surplus process of an insurance portfolio under a Sparre Andersen risk model with initial capital 0, where
premiums are collected at constant rate θ, and claims of (deterministic) size d arrive according to the renewal
process Nt (see e.g. [2]). Importantly, one can recover the random walk Λk from the continuous-time process
Xt by considering it at the epochs of jumps. Letting

τ−a = inf{t ≥ 0 : Xt ≤ a}, τ+
b = inf{t ≥ 0 : Xt ≥ b}
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Fig 1: Sparre Andersen risk process

for a < 0 < b, we observe that

α0 = P0(τ−a < τ+
b+d), α1 = P1(τ+

b+d < τ−a ), (5)

which is an artifact of the deterministic jumps. Thus we have arrived at a pair of two-sided exit problems for
the risk process Xt – one under H0 and the other one under H1.

3. Phase-type distributions and Markov additive processes

In this section we present a solution of the two-sided exit problem for the process Xt under the assumption
that the generic interarrival time ζ has a phase-type (PH) distribution, i.e. the distribution of the life time of a
transient continuous-time Markov Chain (MC) on finitely many states 1, . . . , n, see e.g. [2]. A PH distribution
is parametrized by the transition rate matrix T of the corresponding MC and the row vector ν representing the
initial distribution. Denoting by t = −T1 the column vector of killing (absorption) rates, one can express the
density of ζ as

f(x) = νeTxt. (6)

The Erlang distribution of rate λ is retrieved for ν = (1, 0, . . . , 0) and choosing T as a square matrix with −λ
on the main diagonal, λ on the upper diagonal, and 0 elsewhere. Note that the class of PH distributions is dense
in the class of all distributions on (0,∞).

Consider now a bivariate process (Xt, Jt), where Xt is the risk process defined in (4), and Jt tracks the phase
of the current interarrival time, which has PH distribution. It is not hard to see that Jt is a MC with transition
rate matrix T + tν, i.e. the transitions can happen due to phase change or due to arrival of a claim (kill and
restart). Furthermore, (Xt, Jt) is a simple example of a Markov Additive Process (MAP) without positive jumps,
see [2] for a definition. Such a process is characterized by a matrix-valued function F (s), s ≥ 0, which satisfies
E(esXt1{Jt=j}|J0 = i) = (eF (s)t)ij for all t ≥ 0 and i, j ∈ {1, . . . , n}. In our case we have the identity

F (s) = T + θsI + tνe−ds, (7)

where I is the identity matrix. The diagonal elenments θs represent the linear evolution of Xt with slope θ (the
same value in every phase) and tν is a matrix of transition rates of Jt causing the jump in Xt with transform
e−ds, see [2, Prop. 4.2].

The two-sided exit problem for MAPs without positive jumps was solved in [6], and the solution resembles the
one for a Lévy process without positive jumps [7, Thm. 8.1]. According to [6], the matrix of probabilities with
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ijth element P(τ+
b < τ−a , Jτ+

b
= j|J0 = i) is given by W (−a)W (−a + b)−1, where W (x), x ≥ 0 is a continuous

matrix-valued function (called scale function) characterized by the transform∫ ∞
0

e−sxW (x)dx = F (s)−1 (8)

for s large enough. It is known that W (x) is non-singular for x > 0 and so is F (s) in the domain of interest.
Since J0 has distribution ν, we write

P(τ+
b < τ−a ) = νW (−a)W (−a+ b)−11, (9)

with 1 = (1, . . . , 1). Note that the scale function is given in terms of its transform, and the only known explicit
examples assume that all jumps of Xt have PH distributions. In the present setting the jumps are not PH but
deterministic, which nevertheless gives some hope for the inversion problem. Indeed, in the case of an Erlang
distribution for ζ we obtain an explicit representation of W (x), see Section 5.

4. Identification of the errors

In the following we assume that f0 is a density of a PH distribution with parameters T0,ν0 and t0 = −T01,
see (6). Its transform is known to be G0(θ) = ν0(θI − T0)−1t0. Consider the density f1, defined in (3), of the
corresponding exponentially tilted distribution with the tilt parameter θ > 0. In [1] it is shown that this tilted
distribution is again PH, and the parameters are given by

T1 = ∆−1T0∆− θI, ν1 = ν0∆/G0(θ), t1 = ∆−1t0, (10)

where ∆ is a diagonal matrix with (θI−T0)−1t0 on the diagonal. These diagonal elements are all in (0, 1), which
can be seen from the representation of G(θ) ∈ (0, 1) for different initial distributions ν0.

Since both f0 and f1 correspond to PH distributions, we can combine (5) and (9) to obtain

α0 = P0(τ−a < τ+
b+d) = 1− ν0W0(−a)W0(−a+ b+ d)−11,

α1 = P1(τ+
b+d < τ−a ) = ν1W1(−a)W1(−a+ b+ d)−11, (11)

where W0(x) and W1(x) are the (matrix-valued) scale functions corresponding to the MAP (Xt, Jt) for f = f0

and f = f1, respectively. Interestingly, W0 and W1 are intimately related:

Proposition 1. The scale functions W0(x) and W1(x) satisfy

W1(x) = ex∆−1W0(x)∆

for all x ≥ 0.

Proof. We establish that

∆−1F0(s− 1)∆ = ∆−1(T0 − θI + θsI + t0ν0/G0(θ)e−ds)∆ = T1 + θsI + t1ν1e
−ds = F1(s),

by using (7), (10) and recalling that d = − logG0(θ). Now we can check that the proposed matrix-valued
function indeed gives the desired transform, see (8):∫ ∞

0

e−sx
(
ex∆−1W0(x)∆

)
dx = ∆−1

∫ ∞
0

e−(s−1)xW0(x)dx∆ = ∆−1F0(s− 1)−1∆ = F1(s)−1

for s sufficiently large. The result follows, because the transform identifies the continuous W1(x), x ≥ 0 uniquely.
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Remark 1. This curious relation – revealed by an application in sequential testing – would be hard to obtain by
simple tailoring of parameters - the corresponding quantities simplify in an intriguing way. It also paves the way
for further interesting relations between the two processes, which, however, are outside the scope of the present
paper.

Combining (11) and Proposition 1, we obtain the following result.

Theorem 1. Let f0 be a density of a PH distribution with parameters T0,ν0, t0, and f1 be the corresponding
exponentially tilted density with the tilt parameter θ > 0. The errors α0 and α1 corresponding to the decision
boundaries a < 0 < b in the Wald test of f0 against f1 are given by

α0 = 1− ν0W0(−a)W0(−a+ b+ d)−11,

α1 = e−bν0W0(−a)W0(−a+ b+ d)−1(θI− T0)−1t0,

where d = − logG0(θ) > 0, G0(θ) is the Laplace transform of f0, and the continuous matrix-valued function
W0(x), x ≥ 0, is identified by ∫ ∞

0

e−sxW0(x)dx =
(
T0 + θsI + t0ν0e

−ds)−1

for large s.

The transform of W0(x) can be inverted in certain cases. In Section 5 we provide an explicit expression of
W0(x) when f0 (and then also f1) is the density of an Erlang distribution. In other cases one can use numerical
methods.

In addition, Theorem 1 provides simple bounds for the level b. First, observe that ν0W0(−a)W0(−a+b+d)−1

is a vector of probabilities, and recall that all the entries of (θI− T0)−1t0 are in (0, 1). Then we can write

m(1− α0) ≤ α1e
b ≤ (1− α0)M,

where m and M are the minimal and the maximal entries of (θI− T0)−1t0. Hence also

log
1− α0

α1
+ logm ≤ b ≤ log

1− α0

α1
+ logM, (12)

where both logm and logM are negative. This provides an improvement (for the PH case) of the widely used
general Wald bound b ≤ log 1−α0

α1
.

Example 1. If f0 is the density of an exponential distribution with rate λ0, then f1 is a density of an exponential
distribution with rate λ1 = λ0+θ. Here the matrix T0 reduces to a scalar −λ0, and hence m = M = λ0/(λ0+θ) =
λ0/λ1 leading to b = log 1−α0

α1
− log λ1

λ0
. This simple identity for exponential densities was already established

in [11]. Computation of the boundary a < 0 is more involved, and relies on the identity

W0(−a)/W0(−a+ log
1− α0

α1
) = 1− α0,

where W0(x) will be identified in Section 5.

In general, we do not have a closed form solution for b, and hence the two equations in Theorem 1 need to
be solved simultaneously.
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5. Erlang against Erlang

Throughout this section we consider the case when f0 is the density of an Erlang distribution with n phases

and rate λ0, i.e. f0(x) = λn0x
n−1e−λ0x/(n − 1)!, which has Laplace transform G0(θ) =

(
λ0

λ0+θ

)n
. Exponential

tilting of f0 with the tilt parameter θ > 0 results in f1, which is another Erlang density on n phases, but with
rate λ1 = λ0 + θ. Hence our setup allows to consider two arbitrary Erlang distributions with the same number
of phases.

Under the Erlang assumption, the jump size d = −n log(λ0/λ1) only depends on the ratio ρ = λ0/λ1 of the
two rates, not on their absolute values. Also, since θ · Erlang(n, λi)∼Erlang(n, λi/θ), a scaling of θ down to 1
simply stretches the process Xt of (4) in the horizontal direction by the factor θ (under both hypotheses) and
the law of the random walk Λk is unchanged. Hence Wald’s test only depends on the ratio ρ and w.l.o.g. we can
choose θ = 1, i.e. λ1 = λ0 + 1, leading to λ0 = ρ/(1− ρ) and λ1 = 1/(1− ρ) for the ratio ρ = λ0/λ1 ∈ (0, 1).

Consider the PH parameters T0,ν0 and t0 of the density f0, where T0 is an n × n matrix with −λ0 on
the diagonal, λ0 on the upper diagonal and 0 elsewhere; ν0 = (1, 0, . . . , 0) = e1 and t0 = (0, . . . , 0, λ0)′. Some
algebraic manipulations show that the vector (θI−T0)−1t0 simplifies to (ρn, ρn−1, . . . , ρ1)′, and so by Theorem 1
we have

α0 = 1− e1W0(−a)W0(−a+ b+ d)−11, (13)

α1 = e−be1W0(−a)W0(−a+ b+ d)−1(ρn, ρn−1, . . . , ρ1)′,

where d = −n log ρ, the transform of W0(x) is given by F0(s)−1, and according to (7)

F0(s) =


s− λ0 λ0 0 . . . 0

0 s− λ0 λ0 . . . 0
. . .

λ0e
−sd 0 0 . . . s− λ0

 (14)

for n ≥ 2, whereas F0(s) = s− λ0 + λ0e
−sd for n = 1. The bounds (12) for b now simplify to

log
1− α0

α1
− n log ρ−1 ≤ b ≤ log

1− α0

α1
− log ρ−1, (15)

where log ρ−1 > 0. It turns out that W0(x) has a relatively simple expression as a sum of bx/dc terms.

Theorem 2. Consider a MAP with n phases characterized by F0(s) given in (14) for an arbitrary d > 0. Then
the ijth element of the scale function W0(x) for x ≥ 0 is given by

W0(x)ij =

bx/dc∑
k=1{i>j}

g(λ0(x− dk), kn+ j − i), i, j = 1, . . . , n (16)

where g(y,m) = (−y)m

m! ey.

Proof. In the proof we drop the subscript 0. We need to invert the transform
∫∞

0
e−sxW (x)dx = F (s)−1.

Application of Cramer’s rule and careful computation of co-factors yields

(
F (s)−1

)
ij

=
1

(s− λ)n − (−λ)ne−sd
×

{
(−λ)l(s− λ)n−l−1, i ≤ j
(−λ)l(s− λ)n−l−1e−sd, i > j

,
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where l = (j−i) mod n. Note that the fraction in front can be written as (s−λ)−n
∑∞
k=0(−λ)kn(s−λ)−kne−sdk

for sufficiently large s. Hence

(
F (s)−1

)
ij

=

∞∑
k=0

(−λ)kn+l

(s− λ)kn+l+1
e−sd(k+1{i>j}).

Using
∫∞

0
e−sx x

n

n! e
λxdx = 1

(s−λ)n+1 we invert (−λ)kn+l

(s−λ)kn+l+1 to obtain (−λx)kn+l

(kn+l)! eλx = g(λx, kn + l). The factor

e−sd(k+1{i>j}) amounts to shifting x to x− d(k + 1{i>j}). Hence for j ≥ i

W (x)ij =

∞∑
k=0

g(λ(x− dk), kn+ j − i)1{x≥dk} =

bx/dc∑
k=0

g(λ(x− dk), kn+ j − i).

Similarly, for j < i we have

W (x)ij =

∞∑
k=0

g(λ(x− d(k + 1)), kn+ n+ j − i)1{x≥d(k+1)} =

bx/dc∑
k=1

g(λ(x− dk), kn+ j − i),

which concludes the proof.

The quantity (16) is intimately connected with the waiting time distribution in an E(n)/D/1 queue, see for
instance [3]. In a risk theory context, for the case n = 1 (which refers to the compound Poisson model with
deterministic jumps), formula (16) can already be found in [9, Sec.3.3.2.1], see also [4].

6. On the number of observations

In this section we determine EzN under both hypotheses, where N is the number of observations leading to
a decision, see (1). To that end, some further exit theory of MAPs [6] can be used (and the present context
provides an interesting illustration of the applicability of the latter). We will also utilize the concept of killing,
see e.g. [5].

Suppose we kill our MAP (Xt, Jt) right before every jump −d with probability 1 − z, where z ∈ (0, 1] (i.e.,
the process is sent to an additional absorbing state). Write Pz for the corresponding probability measure. Then

Pz(τ−a < τ+
b+d) = E(zN1{ΛN≤a}),

because the process has to survive N independent killing instants. Similarly,

zPz(τ+
b+d < τ−a ) = E(zN1{ΛN≥b}),

where prefactor z comes from the fact that the MAP should not be killed at the jump following its first passage
time over b+ d. Adding these two equations we obtain EzN .

Importantly, all exit identities still hold for the killed MAP, which is characterized by F z(s) = T + θsI +
tνze−ds. In particular, Pz(τ+

b+d < τ−a ) = νW z(−a)W z(−a+b+d)−11, where the transform of the scale function
W z(x) evaluates to F z(s)−1. Furthermore, from Corollary 3 in [6] we have

Pz(τ−a < τ+
b+d) = ν

(
Zz(−a)−W z(−a)W z(−a+ b+ d)−1Zz(−a+ b+ d)

)
1,
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where Zz(x) = I−
∫ x

0
W z(y)dyF z(0). Therefore,

EzN = ν
(
Zz(−a)−W z(−a)W z(−a+ b+ d)−1Zz(−a+ b+ d) + zW z(−a)W z(−a+ b+ d)−1

)
1.

Noting that F z(0)1 = (z − 1)t, differentiating with respect to z and letting z ↑ 1 we get

EN = −
∫ −a

0

νW (y)tdy + νW (−a)W (−a+ b+ d)−1

(∫ −a+b+d

0

W (y)tdy + 1

)
, (17)

where W (x) corresponds to the case of no killing (z = 1). Here we also used differentiability of W z(x) and Zz(x)
in z, which can be shown using further fluctuation identities. Formula (17) provides both E0N and E1N , where
the latter can be expressed through the quantities associated to hypothesis H0 using Proposition 1 and (10).

7. Variational and Bayesian formulation

7.1. Variational formulation: the optimality region

So far we have focused on the variational formulation of Wald’s test. According to this formulation, for given
errors α0 and α1 one needs to determine the decision boundaries a < 0 < b resulting in these errors. For that
purpose one can solve the two equations of Theorem 1 using numerical methods. When such boundaries exist,
they are unique and they define the optimal test minimizing both E0N and E1N . The following algorithm can
be used to determine the region R of (α0, α1) in [0, 1] × [0, 1], for which the decision boundaries (resulting in
the errors) exist, and hence Wald’s test is optimal. This algorithm can be analyzed using monotonicity results
from [15]. We omit its thorough discussion.

Algorithm 1. Determination of the optimality region R:

1. Find the errors α∗0 and α∗1 corresponding to a = b = 0.
2. Fix b = 0; for all α0 in [0, α∗0) determine a which results in α0 and then find the corresponding α1 > α∗1.
3. Fix a = 0; for all α1 in [0, α∗1) determine b which results in α1 and then find the corresponding α0 > α∗0.

These two continuous curves (α0, α1), the point (α∗0, α
∗
1), and the axis provide the boundary of the optimality

region R.

We provide an example for the optimality region R in Section 8. It indicates that R is large enough to include
most cases of practical interest. If the pair of errors lies outside of R, then the problem of testing is ‘too easy’,
i.e. a certain test, which uses zero observations with positive probability, will perform better than any Wald’s
test with a < 0 < b.

7.2. Bayesian formulation

In the Bayesian formulation, it is assumed that H0 has some prior probability π ∈ [0, 1], see e.g. [10]. For fixed
constants c, c0, c1 > 0 one defines a penalty (or average loss)

γ = π(cE0N + c0α0) + (1− π)(cE1N + c1α1), (18)

which is to be minimized. It turns out that there always exists a test which is optimal for all π, i.e. it minimizes
the penalty among all tests. The rule is to stop when the posterior probability of H0 exits some interval (a∗, b∗),
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where 0 ≤ a∗ ≤ b∗ ≤ 1, with the obvious decision. Expressing the posterior probability through Λk, one observes
that an equivalent rule is to stop when Λk exits

(a, b) = (log
a∗

1− a∗
+ log

1− π
π

, log
b∗

1− b∗
+ log

1− π
π

), (19)

see [10]. Recall that for a given pair (a, b) we can find α0, α1 and E0N,E1N using Theorem 1 and (17) respectively,
and so we can calculate the penalty γ for a fixed prior π. Hence to find an optimal (a, b), corresponding to the
minimal penalty, we only need to run a numerical optimization routine. If this (a, b) is the unique pair minimizing
the penalty, then (a∗, b∗) can be recovered from the above relation.

8. Numerical illustrations

In this section we provide an illustration of the applicability of our results for both the variational and Bayesian
formulation. For simplicity we choose an Erlang distribution with 2 phases and rate λ, and consider Wald’s
test of the simple hypothesis λ = λ0 against the simple alternative λ = λ1, where λ0 < λ1. In Section 5 it was
shown that in such a situation Wald’s test depends only on the single parameter ρ = λ0/λ1 ∈ (0, 1) and the
scale function W0(x) has an explicit representation.

Let us first consider the variational formulation. We choose errors α0 = 0.05 and α1 = 0.025, and find the
decision boundaries a < 0 < b by solving (13) numerically. Figure 2a depicts a and b as functions of ρ (solid
lines), as well as their Wald bounds (2) (dashed lines) and the improved upper and lower bounds for b from (15)
(dotted lines). Figure 2b depicts max(E0N,E1N) for the exact boundaries (solid line) and their Wald bounds
(dashed line), respectively.
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(a) Decision boundaries and their bounds
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(b) max(E0N,E1N)

Fig 2: Decision boundaries and the maximal expected number of observations

Let us briefly comment on the case when ρ is close to 1, i.e. the test problem is very hard. In this case
the increments of the random walk Λk decrease in absolute value. This implies that ΛN is very close to a or
b (depending on the side of exit), which makes the Wald bounds very tight (see also a discussion in [12]). In
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Fig 3: Optimality region R for ρ = 1/6 (shaded), ρ = 1/2 (below dashed line) and ρ = 5/6 (below solid line)

Figures 2a and 2b one can see that the boundaries get indeed closer to their Wald bounds and the expected
number of observations increases as ρ → 1. When ρ gets close to 1, also numerical problems arise, as due to
small d the number of terms in the representation of W0(x) becomes large (cf. Theorem 2).

On the other hand, when ρ decreases to 0, the test problem becomes simpler. When one of the boundaries
hits 0, the Wald test stops being optimal (cf. Algorithm 1). Figure 3 depicts optimality regions of the Wald test
for different values of ρ for the above Erlang(2) example.

Let us turn our attention now to the Bayesian formulation, see Section 7. We choose c = 0.1, c0 = 1 and
c1 = 2 for the penalty γ in (18) and two different values π = 0.3 and π = 0.7 for the prior. Figure 4a depicts
the optimal boundaries a and b (minimizing the penalty). These boundaries are used to compute the optimal
boundaries a∗ and b∗ for the posterior probability by virtue of (19), which can only be done if (a, b) is a unique
pair achieving the minimal penalty. The result is depicted in Figure 4b. Recall that the latter boundaries do not
depend on the prior π, and hence the lines for both π should coincide. This is indeed the case up to ρ ≈ 0.38, at
which point a (corresponding to π = 0.3) hits level 0 and uniqueness is lost (in this case, b can be any positive
number). The correct values of a∗ and b∗ follow the solid lines corresponding to π = 0.7.

Note that the behavior of the boundaries a and b as functions of ρ is substantially different for the variational
and the Bayesian formulation. For increasing ρ, the distance between the decision boundaries increases in the
former case and decreases in the latter, where controlling the number of observations becomes the dominant
issue.
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Fig 4: Decision boundaries for the Bayesian formulation
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