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ABSTRACT  Pneumocystis species are fungal parasites of mammal lungs showing host specificity. Pneumocystis jirovecii colo-
nizes humans and causes severe pneumonia in immunosuppressed individuals. In the absence of in vitro cultures, the life cycle
of these fungi remains poorly known. Sexual reproduction probably occurs, but the system of this process and the mating type
(MAT) genes involved are not characterized. In the present study, we used comparative genomics to investigate the issue in P. ji-
rovecii and Pneumocystis carinii, the species infecting rats, as well as in their relative Taphrina deformans. We searched sex-
related genes using 103 sequences from the relative Schizosaccharomyces pombe as queries. Genes homologous to several sex-
related role categories were identified in all species investigated, further supporting sexuality in these organisms. Extensive in
silico searches identified only three putative MAT genes in each species investigated (matMc, matMi, and matPi). In P. jirovecii,
these genes clustered on the same contig, proving their contiguity in the genome. This organization seems compatible neither
with heterothallism, because two different MAT loci on separate DNA molecules would have been detected, nor with secondary
homothallism, because the latter involves generally more MAT genes. Consistently, we did not detect cis-acting sequences for
mating type switching in secondary homothallism, and PCR revealed identical MAT genes in P. jirovecii isolates from six pa-
tients. A strong synteny of the genomic region surrounding the putative MAT genes exists between the two Pneumocystis species.
Our results suggest the hypothesis that primary homothallism is the system of reproduction of Pneumocystis species and T. de-

formans.
IMPORTANCE

Sexual reproduction among fungi can involve a single partner (homothallism) or two compatible partners (het-

erothallism). We investigated the issue in three pathogenic fungal relatives: Pneumocystis jirovecii, which causes severe pneumo-
nia in immunocompromised humans; Pneumocystis carinii, which infects rats; and the plant pathogen Taphrina deformans.
The nature, the number, and the organization within the genome of the genes involved in sexual reproduction were determined.
The three species appeared to harbor a single genomic region gathering only three genes involved in sexual differentiation, an
organization which is compatible with sexual reproduction involving a single partner. These findings illuminate the strategy

adopted by fungal pathogens to infect their hosts.
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neumocystis species constitute a group of fungi belonging to

the Taphrinomycotina subphylum of the Ascomycota which
colonize the lungs of mammals. Genetic and transmission analy-
ses revealed that each Pneumocystis species infects specifically a
single mammalian host species. Pneumocystis jirovecii, the species
colonizing humans, can turn into an opportunistic pathogen in
immunosuppressed individuals and cause severe, sometimes fatal
pneumonia (Pneumocystis pneumonia [PCP]). PCP is nowadays
the second most frequent life-threatening invasive fungal infec-
tion worldwide, with above 400,000 annual cases (1). Compara-
tive genomics suggested the loss of synthesis and assimilation
pathways in Pneumocystis species and thus that these fungi are
obligate parasites without free-living forms (2—4). The character-
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istics of these fungi suggest that they are biotrophs of mammals,
i.e., parasites retrieving energy and compounds from host cells
without killing them (4-7).

The life cycle of Pneumocystis species remains poorly known,
mostly because of the absence of a method for long-term culture
in vitro. During the infection, two types of cellular structures are
observed: the trophic cells and the asci (also called trophs and
cysts, respectively). Microscopic and cytological studies suggested
that the trophic cells may undergo binary fission but also dip-
loidization upon conjugation, followed by meiosis and mitosis to
produce asci containing eight haploid ascospores (8, 9). The ob-
servation of synaptonemal structures within Prneumocystis cells
(10, 11) and the demonstration of the expression of sex-related
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genes (5, 12) further confirmed that the reproduction of these
fungi probably includes a sexual phase. Quantitative experiments
suggested that the main mode of reproduction of Pneumocystis
species might be meiotic division, whereas the contribution of
mitotic division of trophic cells is still unclear (8, 13, 14). There-
fore, the sexual phase might be obligatory for the growth of these
fungi. Obligate sexuality is also consistent with the fact that the
asci might be the only particles aerially transported and responsi-
ble for transmission between hosts (14, 15). Obligate sexuality
would imply that trophic cells of compatible mating types must
always be present within host lungs in order to allow sexual repro-
duction.

There are two main systems of sexual reproduction among
fungi: heterothallism, involving two compatible mating types, and
homothallism, involving a single self-compatible mating type. In
heterothallic ascomycetes, the MAT loci contain divergent genes
(idiomorphs) in opposite mating types (16). In so-called primary
homothallic species, the genes of the two idiomorphs are present
in the same genome, closely located or not. Another form of ho-
mothallism, called secondary, is observed in ascomycetous yeasts
such as Saccharomyces cerevisiae and Schizosaccharomyces pombe.
In this case, the homothallic behavior results from mating type
switching and the presence of three MA T loci in the same genome:
one active and two silent. In S. pombe, the MAT loci are flanked by
cis-acting sequences that are involved in a switching mechanism
which exchanges the expressed cassette. Primary homothallism is
observed in many filamentous ascomycetes (Pezizomycotina or
Euascomycetes). As far as Pneumocystis species are concerned,
their particular system of reproduction is still unknown. The
genomic region surrounding the pheromone receptor ste3 gene
has been postulated to constitute a MAT locus in these fungi. It
would also include genes encoding the protein kinase Ste20 and
the homeodomain transcriptional regulator Stel2 and thus, sur-
prisingly, would resemble the MAT locus of the basidiomycete
Cryptococcus neoformans (17).

In the present study, we investigated the system of reproduc-
tion of P. jirovecii and Pneumocystis carinii, the species infecting
rats, by the analysis of their genome content and comparative
genomics. We also investigated the issue in the Taphrinomycotina
relative Taphrina deformans, a plant pathogen whose sexual re-
production is also poorly characterized. In order to identify the
sex-related genes present in the genomes of these species, genes
from the well-annotated Taphrinomycotina member S. pombe
were used as homology references.

RESULTS

Identification of sex-related genes. Due to the low conservation
and great diversity of the sex-related genes among fungi, the iden-
tification of homologs of sex-related S. pombe proteins within the
genomes of P. jirovecii, P. carinii, and T. deformans was done using
the bioinformatics strategy shown in Fig. S1 in the supplemental
material. The procedure relied on tBLASTn search and recogni-
tion by manual inspection of specific domain architecture (see
details in Materials and Methods). The 103 S. pornbe genes used in
sequence queries were selected on the basis of their annotation in
UniProt and Gene Ontology (GO) terms, as well as of their be-
longing to relevant protein complexes (see Table S1 in the supple-
mental material). Genes were classified in one or two of seven role
categories: cell fusion, signal transmission, signal transduction,
signal regulation, meiosis, mating type locus silencing (RNA in-
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terference pathway), and mating type locus switching. Using this
strategy, we established the presence or absence of sex-related
genes within the genomes of the three fungi (see Table S2 in the
supplemental material; the locus reference or genomic location of
the genes identified is given in Table S3 in the supplemental ma-
terial).

Genes homologous to all seven role categories of sex-related
S. pombe proteins were present in the three genomes investigated
(see Table S2 in the supplemental material, green areas). In agree-
ment with their notoriously difficult identification, the presence
or absence of the pheromone precursor genes could not be as-
sessed (map2, mfml, mfm2, and mfm3). The genes encoding the
two pheromone receptors (mam2 and ste3) and the elements of
the pheromone-induced signaling cascade (e.g., gpal, byr2, byrl,
spkl, and stell) were present in all three genomes investigated,
except that T. deformans lacked mam2. There was a remarkable
similarity of the presence and absence of the genes in the three
species investigated, with 51 genes present (see Table S2 in the
supplemental material, green areas), and 25 absent (brown areas).
Twelve genes were absent only in the two Pneumocystis species,
suggesting specific features of this genus (signal transmission,
pmadl; signal transduction, ste4; signal regulation, rst2, sxal, and
sxa2; mating type silencing: agol, arbl, arb2, chpl, dcrl, hst2, obrl,
and rdrl). Thus, more genes were detected in T. deformans than in
the two Pneumocystis species. The Argonaute small interfering
RNA chaperone (ARC) complex was absent in the Pneumocystis
species (mating type silencing: agol, arbl, and arb2), a feature
which we already reported (4). The presence or absence of the
gene products of the three species within the reconstructed path-
ways of S. pombe is shown in the supplemental material (see Fig. S2
in the supplemental material).

MAT genes. Genes homologous to the four S. pombe MAT
genes were sought in the three species investigated (see Table S2 in
the supplemental material, boxed genes). Extensive in silico
searches using our bioinformatics strategy (see Fig. S1 in the sup-
plemental material) revealed the presence of only three genes in
each Pneumocystis species and in T. deformans, namely, the ho-
mologs of S. pombe matMc, matMi, and matPi. The gene matMc
encodes a transcription factor with the high-mobility-group do-
main (PTHR10270:SF176 or PTHR10270:SF159), matMi encodes
a mating type M-specific polypeptide, and matPi encodes a tran-
scription factor with a homeobox domain (PTHR11850 or
PTHR11850:SF31). The matMi-encoded proteins have no known
domains and are poorly conserved between species, so that their
identification did not rely on domain architecture as for the other
genes but on their localization close to matMc and opposite ori-
entation relative to matMec.

Multiple sequence alignment revealed a fair degree of similar-
ity of the matMc-encoded proteins identified, in particular at the
high-mobility-group domain, with 27% overall identity with the
S. pombe protein for all three P. jirovecii, P. carinii, and T. defor-
mans proteins (Fig. 1A). The degree of similarity was lower be-
tween the matPi proteins and concentrated at the homeobox do-
main present at the end of the proteins, with 19% overall identity
with the S. pombe protein for P. jirovecii and 18% for both P. cari-
niiand T. deformans (Fig. 1B). Reasonable alignment of the matMi
proteins could not be generated because of their low similarity, the
identity with the S. pombe protein being only 12, 15, and 20% for
P. jirovecii, P. carinii, and T. deformans proteins, respectively. De-
spite this low similarity, the phylogeny of the three putative MAT
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FIG1 Multiple sequence alignment of S. pombe matMc (A) and matPi (B) proteins against homologs identified in P. carinii, P. jirovecii, and T. deformans. The
identical, strongly, and weakly conserved residues identified using T-Coffee (47) are indicated by asterisks, double points, and single points, respectively. Dashes
indicate gaps. The high-mobility group and homeobox domains are shown in panels A and B, respectively.

genes was inferred using the maximum likelihood method
(Fig. 2). Although the bootstrap values were low because of the
diversity of these proteins, the trees were consistent with the phy-
logeny of the species that we observed previously by concatenation
of 458 orthologs (3). Manual inspection failed to detect putative
cis-acting sequence motifs homologous to those which flank the
S. pombe MAT loci and which are involved in mating type switch-
ing (H1, H2, and H3 [Fig. 3]).

Synteny of MAT loci. The genomic region surrounding the
MAT genes appeared to be fully syntenic between the two Preu-
mocystis species with six genes conserved (Fig. 3). The three puta-
tive MAT genes were located on a single contig in P. jirovecii and
thus on a single DNA molecule in the genome. These genes are on
two contigs in P. carinii and T. deformans, but this may result from
DNA fragmentation during genome sequencing and assembly,
especially in P. carinii because of its overall high synteny with
P. jirovecii. Limited synteny existed between the other species,
with only one gene conserved in addition to the MAT genes (yoxI
between Pneumocystis species and T. deformans; rga7 between
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S. pombe and T. deformans). The finding of rga7 next to the
matMc/matMi gene pair in T. deformans is particularly relevant
since this arrangement is conserved in all Schizosaccharomyces
species (18).

Analysis of the putative MAT genes of several P. jirovecii
isolates. The putative MAT genes matMc, matMi, and matPi were
amplified from the P. jirovecii isolates present in six different pa-
tients with PCP and sequenced. The sequences of all isolates were
exactly the same as that present in the P. jirovecii genome se-
quence, except in the isolates of three patients where a deletion of
5 bp was located between the putative matMc and matMi
genes (CCTTG at positions 57275 to 57279 in sequence
CAKMO01000262.1 of the P. jirovecii genome [contig 262]). One of
the three patients harbored at least two coinfecting genotypes, one
in the majority which presented the deletion and one in the mi-
nority which did not.

Genomic region surrounding the gene encoding the phero-
mone receptor Ste3. We analyzed the genomic region sur-
rounding the ste3 gene because it has been postulated to constitute
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FIG2 Phylogeny of the MAT genes of S. pombe, P. jirovecii, P. carinii, and T. deformans. The maximum likelihood method based on the JTT matrix-based model
(48) was used to infer the evolutionary history of matMc, matMi, and matPi genes.

a MAT locus in P. carinii (17). This genomic region was reported
to include the protein kinase Ste20 and the homeodomain
transcriptional regulator Stel2. In both P. carinii and P. jirovecii,
BLAST analyses using S. pormbe sequences as queries revealed that
the so-called ste20 gene was in fact an shk2 homolog with a pleck-

strin homology-like domain (IPR011993) and the so-called stel2
gene was a truncated version of stel I, a signal transduction kinase
gene. We identified ste3 and shk2 on the same contig in P. carinii,
whereas shk2 was on the same contig as the three putative MAT
genes in P. jirovecii but fairly distant (ca. 80 kb). The complete
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FIG 3 Schematic representation of the MAT loci of S. pombe, P. jirovecii, P. carinii, and T. deformans. Genes are shown in green, and their synteny with those
of the other species is shown by the yellow rectangles. The sequence contigs carrying the genes are shown as gray lines. The centromere-homologous sequence
(cenH) is shown in blue. The cis-acting sequence motifs H1, H2, and H3 involved in mating type switching in S. pombe are shown in light brown. The gene name

or detected domain name is indicated for each identified open reading frame.

4 mBio mbio.asm.org

January/February 2015 Volume 6 Issue 1 €02250-14


mbio.asm.org

stel ] gene was identified in distinct locations in the two Preumo-
cystis genomes (see Table S3 in the supplemental material).

DISCUSSION

In order to better characterize the life cycle of Pneumocystis species
and T. deformans, we searched for sex-related genes in their ge-
nomes. We detected many genes involved in various sex-related
processes, such as mating, pheromone signalizing, and meiosis.
Some of these genes have been previously identified in P. carinii
(17,19-23) and T. deformans (24), but we report them in P. jirove-
cii for the first time. The expression of several putative mating or
meiosis genes in P. carinii has been documented elsewhere (5, 12).
Together, these observations strongly support the hypothesis that
a sexual phase occurs in the life cycle of the Pneumocystis species
and T. deformans.

Our analyses reveal a conserved syntenic genomic conforma-
tion of the MAT locus between the two Pneumocystis species, de-
spite a high level of divergence between the MAT genes. This sug-
gests that the conservation of the locus configuration might be
more critical for sexual reproduction than that of the mating
genes. The most striking feature of our findings was that only three
genes homologous to the four S. pormbe MAT genes were identified
in each Pneumocystis species, as well as in T. deformans (matMc,
matMi, and matPi). It must be stressed that the matMi genes iden-
tified remain hypothetical because of their low similarity with that
of S. pombe. It is likely that no other MAT genes were present
because (i) the results were similar in the two Pneumocystis species
and (ii) the genomic and transcriptomic data analyzed are ex-
pected to cover most of the genomes. Moreover, we did observe
the same synteny and three MAT genes also in the Pneumocys-
tis murina genome, but our data are unpublishable because this
genome sequence was released prior to publication under specific
terms (see Preumocystis murina Sequencing Project, Broad Insti-
tute of Harvard and MIT, http://www.broadinstitute.org/). One
limitation of our study is that MAT genes too divergent from those
of S. pombe would not have been detected. However, S. pombe
harbors two different types of DNA binding domains (high-
mobility group and homeobox), which increased the probability
of detecting such genes. The proximity of three putative MAT
genes identified in the Pneumocystis species and T. deformans is
atypical and suggests a fusion of two MAT loci, one of type minus
(M) with matMc and matMi and one incomplete of type plus (P)
with only matPi. Consequently, the transcription factors encoded
by matMc (high-mobility group) and matPi (homeobox) would
be sufficient to trigger sexual development. Such fusion of two
MAT loci has been previously observed in other fungi, for exam-
ple, in the Stemphylium genus (25), and the loss of MAT transcrip-
tion factors occurred in Candida species other than C. albicans
(26). A similar fusion of the two MAT loci M and P is also present
in three Schizosaccharomyces species other than S. pombe, with
only matMec in their type M loci (18).

The number and the organization of the putative MAT genes in
the Pneumocystis species and T. deformans allow formulation of a
hypothesis concerning the system of sexual reproduction of these
fungi. First, the presence of only three MAT genes seems incom-
patible with secondary homothallism. Indeed, this system re-
quires generally more genes, i.e., six corresponding to three MAT
loci in S. pombe and S. cerevisiae and four corresponding to two
MAT loci in some methylotrophic yeasts, as recently described
(27). This is consistent with the fact that we did not detect any
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cis-acting sequences for mating type switching flanking the puta-
tive MAT genes. Second, the three MAT genes in P. jirovecii are
present on a single DNA molecule (Fig. 3), and this is also the case
in P. murina (our unpublishable findings). The close proximity of
these genes on a single DNA molecule is particularly important
because it is not compatible with heterothallism. Indeed, if the
genome sequences had been derived from a mixture of two com-
patible heterothallic mating types, two MAT loci would have been
observed located on two distinct DNA molecules, not on a single
one. The alternative possibility, i.e., that the genome sequences
correspond to a single heterothallic mating type, is also unlikely.
First, the MAT locus identified appears to include both types, M
and P. Second, asci are present in most Pneumocystis infections, if
not all, i.e., sexuality appears obligatory. In particular, this was the
case in the clinical specimen used for P. jirovecii genome sequenc-
ing because the diagnosis was made by silver staining of the walls
of asci (3).

The loss of the transcription factor gene matPc (high-mobility
group) in the Pneumocystis species and T. deformans suggests that
the P-specific genes may not be expressed and that P cells may be
lacking. Thus, these species may use a single mating type for sexual
reproduction, a system previously observed in C. neoformans (28)
and Candida albicans (29). An alternative hypothesis is that ex-
pression of the P-specific genes, including that encoding the
P-factor, is ensured thanks to a rewiring of the MAT pathways, a
phenomenon frequently observed in fungi (30, 31). The latter
hypothesis would be consistent with the presence of the receptor
mam2 to the P-factor in the Pneumocystis species. The presence of
matPiin all three genomes investigated might reflect that both this
gene and the matMi gene seem necessary for the expression of
mei3 and thus for entry into meiosis (32). Further experiments are
required in order to decipher the system of sexual reproduction in
the Pneumocystis species and T. deformans.

Our results do not allow us to ascertain that the genes identified
are bona fide MAT genes of these species, because we cannot rule
out the possibility that there are other transcription factors in-
volved in mating type determination elsewhere in the genomes.
Also, one cannot formally exclude secondary homothallism.
However, the close vicinity and arrangement of the putative MAT
genes are consistent with primary homothallism in the Preumo-
cystis species as well as in T. deformans. The latter system of repro-
duction implies the presence of the same MAT locus in all isolates
of each species that we investigated. This is what we found in the
P. jirovecii isolates of six patients, further supporting the hypoth-
esis of primary homothallism. This hypothesis is also compatible
with the T. deformans cell cycle. Indeed, single haploid yeast cells
inoculated on peach leaves are able to produce, without cell-cell
conjugation, dikaryotic hyphae that give rise to asci containing
eight ascospores (33, 34).

Primary homothallism has been hypothesized to be advanta-
geous for pathogens (35), including Pneumocystis species (28, 29).
Our results are compatible with this hypothesis. Although it in-
volves a single strain, primary homothallism has been shown in
C. neoformans to avoid accumulation of deleterious mutations, as
well as to increase genetic diversity and virulence (36). In the case
of P. jirovecii, the fact that the majority of infections involve two or
more distinct genotypes (37) suggests that the genetic diversity
may be further increased by mating among these genetic variants.

The presence of many genes that we classified in the silencing
and switching categories in the Pneumocystis species and T. defor-
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mans appears contradictory to the putative absence of secondary
homothallism. Nevertheless, their presence could be simply due
to their involvement in other cellular or metabolic processes. For
example, some swi-encoded proteins are known to be necessary
for DNA metabolism. On the other hand, the absence of two si-
lencing (clrl and swi6) and two switching (sapI and swi2) genes in
all three species investigated might be significant because these
genes are apparently dedicated to silencing or switching of MAT
genes (see Table S1 in the supplemental material).

As far as P. carinii is concerned, we confirmed the location of
ste3, the so-called ste20 gene, and the so-called stel2 gene within
the genomic region which was postulated to be a MAT locus re-
sembling those of the basidiomycete C. neoformans (17). How-
ever, the so-called ste20 and stel2 genes turned out to be shk2 and
a truncated version of stel I, respectively. These different findings
may result from the constant improvement of the databases, the
increase in knowledge about these genes since 2001, and the fact
that in this study we dealt with more than one genome. The con-
fusion between stel2 and stel1 probably results from the fact that
S. cerevisiae stel2 is the ortholog of S. pombe stel 1. Consequently,
the genomic region surrounding ste3 in the Prneumocystis species
may constitute a cluster of sex-related genes, rather than a MAT
locus resembling that of C. neoformans.

The computational observation of putative MAT genes does
not prove conclusively that a species is sexual, because these genes
may have been conserved from a sexual ancestor. In conclusion,
our analyses suggest the working hypothesis that primary ho-
mothallism is the system of reproduction of the Pneumocystis spe-
cies as well as of T. deformans.

MATERIALS AND METHODS

Source data. The annotated genome sequences of P. jirovecii and T. defor-
mans were obtained from the European Nucleotide Archive (38)
(CAKMO00000000 and CAHR00000000, last accessed on 14 May 2013).
The P. jirovecii transcriptome assembly (HAAA01000001 to
HAAA01003261) was downloaded from EBI (http://www.ebi.ac.uk,
last accessed 11 November 2013). These genome sequences and tran-
scriptome correspond to the data that we published previously (3, 24).
P. carinii assembled contigs were downloaded from the project site
(http://pgp.cchmc.org/, last accessed 14 April 2013) and correspond to
data published by Slaven et al. (39). The S. pombe protein sequences were
obtained from the annotated proteome present in UniProt (http://
www.uniprot.org, last accessed 30 July 2014) and correspond to the data
published previously (40).

Search for candidate genes and manual curation. The bioinformatics
strategy used to identify homologs of S. pormbe proteins within P. jirovecii,
P. carinii,and T. deformans genomes is shown in Fig. S1 in the supplemen-
tal material. Each S. pombe sequence used as a query was characterized in
order to identify specific domains or domain architecture using the Inter-
ProScan4 tool (41), with a particular consideration for the PANTHER
subfamilies (42). tBLASTn analyses (Blast+ suite, NCBI, version 64bit)
(43) with relaxed parameters (E value from 1E—4 down to its default
value) were used in order to obtain a list of candidate genomic regions
within the target genome, which presumably included the genes of inter-
est. The already existing annotation of the genes was considered, and
existing collinear coding sequences (CDSs) were retained after assessment
using the InterProScan4 tool. When no CDSs were already annotated, a
CDS was proposed based on the alignment of the S. pombe query protein
against the genomic region using GeneWise (44). Only GeneWise global
alignments matching most of the query were retained. The start and stop
codons of the CDSs were assessed, and the respective exons were corrected
manually to obtain the longest CDSs possible. Both existing and newly
derived CDSs translated using the EMBOSS_transeq program (45) were
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submitted to the InterProScan4 tool. The predicted domains and their
architecture were compared to those retained for the corresponding
S. pombe protein. When strong domain evidence was detected, the CDS
was considered the valid homolog. When no or ambiguous domain archi-
tecture was detected, the CDSs from all the investigated species were com-
pared in multiple sequence alignments and associated phylogenetic trees.
The latter analysis permitted us to validate some homologs whose domain
architecture was ambiguous. The overall synteny between the genomic
region of interest and that of S. pombe was also taken into account. If no
CDS could be validated, it was assumed that no homolog existed in the
genome investigated. Whenever possible, the original genome annotation
was retained, but a complete reappraisal of the CDS definition and of its
annotation was required in several cases (see Table S3 in the supplemental
material).

Phylogeny analysis. To address specific cases of domain architecture
ambiguity, formal phylogeny analysis was carried out using MEGAG6 (46)
on alignments made by T-Coffee (47). The resulting topologies were cho-
sen on consensus between the results of the different methods and the
statistical support for branching. All positions containing gaps and miss-
ing data were eliminated. For the inference of the evolutionary history of
matMc, matMi, and matPi genes, the maximum likelihood approach was
used. Initial trees for the heuristic search were obtained by applying
Neighbor-Join and BioN]J algorithms to a matrix of pairwise distances
estimated using the JTT model (48). The discrete gamma distribution was
used to model the evolutionary rate differences among sites, and the dis-
tribution parameter value was determined through maximum likelihood
based on the sequence alignment. For every analysis, appropriate out-
group sequences were chosen based on length, similar domain architec-
ture, and distinct function.

Synteny analysis. The assessment of the degree of synteny between the
relevant genomic regions was carried out using the ACT tool (49). When-
ever necessary, sequences were trimmed and/or concatenated. BLASTN
comparisons were used for less divergent genomes (Pneumocystis),
whereas tBLASTn was used for comparison of the other genomes.

PCR amplification and sequencing of the putative MAT genes from
P. jirovecii isolates. A genomic region of 1,240 bp encompassing the
putative P. jirovecii matMc and matMi genes was amplified using primers
5" ATC CGA TAA ATA CAT ACA CG 3’ (positions 56360 to 56379 in
sequence CAKMO01000262.1 of P. jirovecii genome [contig 262]) and
5" GAG GCT GTA AAA AGC ATA AG 3’ (positions 57581 to 57600). The
template was genomic DNA extracted as previously described (37) from
the bronchoalveolar lavage samples of patients with PCP. The PCR began
by an initial denaturation step of 3 min at 94°C, which was followed by 35
cycles consisting of 30 s at 94°C, 30 s at the annealing temperature of 56°C,
and 90 s at 72°C. The last reaction cycle was terminated with 10 min of
extension at 72°C. The final MgCl, concentration in the PCR mixtures
was 4.5 mM. A region of 889 bp including the putative P. jirovecii matPi
gene was amplified using primers 5' ATG TTA CTATAT ATAAGA CC 3’
(positions 47271 to 47290) and 5" ATG AAT TAG AAG GCA AAA AG 3’
(positions 48141 to 48160). The PCR conditions were exactly the same as
for amplification of matMc and matMi, except that the annealing temper-
ature was 54°C. Sequencing of both strands of the PCR products was
performed with the two primers used for PCR amplification, as well as the
BigDye Terminator DNA sequencing kit and the ABI Prism 3100 auto-
mated sequencer (both from PerkinElmer Biosystems, Rotkreuz, Switzer-
land).

Data accessibility. Curated annotations and scripts are in the folder
Pneumocystis_Mating available from GitHub (https://github.com/ocisse/
Pneumocystis_comparative).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org
/lookup/suppl/doi:10.1128/mBi0.02250-14/-/DCSupplemental.

Table S1, DOCX file, 0.03 MB.

Table S2, DOCX file, 0.03 MB.

Table S3, DOCX file, 0.02 MB.

January/February 2015 Volume 6 Issue 1 €02250-14


http://www.ncbi.nlm.nih.gov/nuccore?term=CAKM00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=CAHR00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=CAKM01000262.1
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.02250-14/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.02250-14/-/DCSupplemental
mbio.asm.org

Figure S1, PPTX file, 0.1 MB.
Figure S2, TIF file, 1.7 MB.

ACKNOWLEDGMENTS

This work was supported by the Swiss National Science Foundation grant
310030-146135 to P.M.H. and M.P. O.H.C. is supported by the Swiss
National Science Foundation fellowship grant 151780.

We thank Sophie Chevalley for excellent technical assistance.

REFERENCES

1. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC.
2012. Hidden killers: human fungal infections. Sci Transl Med 4:165rv13.
http://dx.doi.org/10.1126/scitranslmed.3004404.

2. Hauser PM, Burdet FX, Cissé OH, Keller L, Taffé P, Sanglard D, Pagni
M. 2010. Comparative genomics suggests that the fungal pathogen Pneu-
mocystis is an obligate parasite scavenging amino acids from its host’s
lungs. PLoS One 5:el15152. http://dx.doi.org/10.1371/
journal.pone.0015152.

3. Cissé OH, Pagni M, Hauser PM. 2012. De novo assembly of the Pneu-
mocystis jirovecii genome from a single bronchoalveolar lavage fluid spec-
imen from a patient. mBio 4(1):e00428-12. http://dx.doi.org/10.1128/
mBio0.00428-12.

4. Cissé OH, Pagni M, Hauser PM. 2014. Comparative genomics suggests
that the human pathogenic fungus Pneumocystis jirovecii acquired obligate
biotrophy through gene loss. Genome Biol Evol 6:1938-1948. http://
dx.doi.org/10.1093/gbe/evul55.

5. Cushion MT, Smulian AG, Slaven BE, Sesterhenn T, Arnold J, Staben
C, Porollo A, Adamczak R, Meller J. 2007. Transcriptome of Pneumo-
cystis carinii during fulminate infection: carbohydrate metabolism and the
concept of a compatible parasite. PLoS One 2:e423. http://dx.doi.org/
10.1371/journal.pone.0000423.

6. Cushion MT, Stringer JR. 2010. Stealth and opportunism: alternative
lifestyles of species in the fungal genus Preumocystis. Annu Rev Microbiol
64:431-452. http://dx.doi.org/10.1146/annurev.micro.112408.134335.

7. Hauser PM. 2014. Genomic insights into the fungal pathogens of the
genus Pneumocystis: obligate biotrophs of humans and other mammals.
PLoS Pathog 10:e1004425. http://dx.doi.org/10.1371/
journal.ppat.1004425.

8. Aliouat-Denis CM, Martinez A, Aliouat EM, Pottier M, Gantois N,
Dei-Cas E. 2009. The Pneumocystis life cycle. Mem Inst Oswaldo Cruz
104:419—426. http://dx.doi.org/10.1590/S0074-02762009000300004.

9. Chabé M, Aliouat-Denis CM, Delhaes L, Aliouat EM, Viscogliosi E,
Dei-Cas E. 2011. Pneumocystis: from a doubtful unique entity to a group
of highly diversified fungal species. FEMS Yeast Res 11:2-17. http://
dx.doi.org/10.1111/j.1567-1364.2010.00698.x.

10. Matsumoto Y, Yoshida Y. 1984. Sporogony in Pneumocystis carinii: syn-
aptonemal complexes and meiotic nuclear divisions observed in precysts.
J Protozool 31:420-428. http://dx.doi.org/10.1111/j.1550-
7408.1984.tb02989.x.

11. Peters SE, English K, Rana A, Akter S, Malik S, Warburton NC, Duckett
JG. 2001. Synaptonemal complexes in the pre-cyst of Pneumocystis carinii.
J Eukaryot Microbiol 48:134s. http://dx.doi.org/10.1111/j.1550-
7408.2001.tb00485.x.

12. Vohra PK, Park JG, Sanyal B, Thomas CF, Jr. 2004. Expression analysis
of PCSTE3, a putative pheromone receptor from the lung pathogenic
fungus Pneumocystis carinii. Biochem Biophys Res Commun 319:
193-199. http://dx.doi.org/10.1016/j.bbrc.2004.04.154.

13. Martinez A, Aliouat EM, Standaert-Vitse A, Werkmeister E, Pottier M,
Pingon C, Dei-Cas E, Aliouat-Denis CM. 2011. Ploidy of cell-sorted
trophic and cystic forms of Pneumocystis carinii. PLoS One 6:e20935.
http://dx.doi.org/10.1371/journal.pone.0020935.

14. Martinez A, Halliez MC, Aliouat EM, Chabé M, Standaert-Vitse A,
Fréalle E, Gantois N, Pottier M, Pinon A, Dei-Cas E, Aliouat-Denis CM.
2013. Growth and airborne transmission of cell-sorted life cycle stages of
Pneumocystis carinii. PLoS One 8:€79958. http://dx.doi.org/10.1371/
journal.pone.0079958.

15. Cushion MT, Linke M]J, Ashbaugh A, Sesterhenn T, Collins MS, Lynch
K, Brubaker R, Walzer PD. 2010. Echinocandin treatment of Prneumo-
cystis pneumonia in rodent models depletes cysts leaving trophic burdens
that cannot transmit the infection. PLoS One 5:e8524. http://dx.doi.org/
10.1371/journal.pone.0008524.

January/February 2015 Volume 6 Issue 1 e02250-14

16.

17.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Primary Homothallism of Pneumocystis Species

Ni M, Feretzaki M, Sun S, Wang X, Heitman J. 2011. Sex in fungi. Annu
Rev Genet 45:405-430. http://dx.doi.org/10.1146/annurev-genet-
110410-132536.

Smulian AG, Sesterhenn T, Tanaka R, Cushion MT. 2001. The ste3
pheromone receptor gene of Pneumocystis carinii is surrounded by a clus-
ter of signal transduction genes. Genetics 157:991-1002.

. Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N,

Wapinski I, Roy S, Lin MF, Heiman DI, Young SK, Furuya K, Guo Y,
Pidoux A, Chen HM, Robbertse B, Goldberg JM, Aoki K, Bayne EH,
Berlin AM, Desjardins CA, Dobbs E, Dukaj L, Fan L, FitzGerald MG,
French C, Gujja S, Hansen K, Keifenheim D, Levin JZ, Mosher RA,
Miiller CA, Pfiffner J, Priest M, Russ C, Smialowska A, Swoboda P,
Sykes SM, Vaughn M, Vengrova S, Yoder R, Zeng Q, Allshire R,
Baulcombe D, Birren BW, Brown W, Ekwall K, Kellis M, Leatherwood
J, Levin H, Margalit H, Martienssen R, Nieduszynski CA, Spatafora JW,
Friedman N, Dalgaard JZ, Baumann P, Niki H, Regev A, Nusbaum C.
2011. Comparative functional genomics of the fission yeasts. Science 332:
930-936. http://dx.doi.org/10.1126/science.1203357.

. Vohra PK, Puri V, Kottom TJ, Limper AH, Thomas CF, Jr. 2003.

Pneumocystis carinii STE11, an HMG-box protein, is phosphorylated by
the mitogen activated protein kinase PCM. Gene 312:173-179. http://
dx.doi.org/10.1016/S0378-1119(03)00614-0.

Vohra PK, Puri V, Thomas CF, Jr. 2003. Complementation and char-
acterization of the Pneumocystis carinii MAPK, PCM. FEBS Lett 551:
139-146. http://dx.doi.org/10.1016/S0014-5793(03)00914-1.

Burgess JW, Kottom TJ, Limper AH. 2008. Pneumocystis carinii exhibits
a conserved meiotic control pathway. Infect Immun 76:417—425. http://
dx.doi.org/10.1128/IA1.00986-07.

Krajicek BJ, Kottom TJ, Villegas L, Limper AH. 2010. Characterization
of the PcCdc42 small G protein from Pneumocystis carinii, which interacts
with the PcSte20 life cycle regulatory kinase. Am J Physiol Lung Cell Mol
Physiol 298:1.252-L260. http://dx.doi.org/10.1152/ajplung.00191.2009.
Kutty G, Achaz G, Maldarelli F, Varma A, Shroff R, Becker S, Fantoni
G, Kovacs JA. 2010. Characterization of the meiosis-specific recombinase
Dmcl of Pneumocystis. ] Infect Dis 202:1920-1929. http://dx.doi.org/
10.1086/657414.

Cissé OH, Almeida JM, Fonseca A, Kumar AA, Salojérvi J, Overmyer K,
Hauser PM, Pagni M. 2013. Genome sequencing of the plant pathogen
Taphrina deformans, the causal agent of peach leaf curl. mBio 4(3):e00055-
13. http://dx.doi.org/10.1128/mBi0.00055-13.

Inderbitzin P, Harkness J, Turgeon BG, Berbee ML. 2005. Lateral
transfer of mating system in Stemphylium. Proc Natl Acad Sci U S A 102:
11390-11395. http://dx.doi.org/10.1073/pnas.0501918102.

Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro
CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud
MB, Bates S, Brown AJ, Brunke S, Costanzo MC, Fitzpatrick DA, de
Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard
N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J,
Santos MC, Schmitzberger FF, Sherlock G, Shah P, Silverstein KA,
Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MP, Sudbery PE,
Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NA,
Lorenz MC, Birren BW, Kellis M, Cuomo CA. 2009. Evolution of
pathogenicity and sexual reproduction in eight Candida genomes. Nature
459:657—662. http://dx.doi.org/10.1038/nature08064.

Hanson SJ, Byrne KP, Wolfe KH. 2014. Mating-type switching by chro-
mosomal inversion in methylotrophic yeasts suggests an origin for the
three-locus Saccharomyces cerevisiae system. Proc Natl Acad Sci U S A
111:E4851-E4858. http://dx.doi.org/10.1073/pnas.1416014111.

Lin X, Hull CM, Heitman J. 2005. Sexual reproduction between partners
of the same mating type in Cryptococcus neoformans. Nature 434:
1017-1021. http://dx.doi.org/10.1038/nature03448.

Alby K, Schaefer D, Bennett R]. 2009. Homothallic and heterothallic
mating in the opportunistic pathogen Candida albicans. Nature 460:
890—893. http://dx.doi.org/10.1038/nature08252.

Reedy JL, Floyd AM, Heitman J. 2009. Mechanistic plasticity of sexual
reproduction and meiosis in the Candida pathogenic species complex.
Curr Biol 19:891-899. http://dx.doi.org/10.1016/j.cub.2009.04.058.
Sherwood RK, Scaduto CM, Torres SE, Bennett R]J. 2014. Convergent
evolution of a fused sexual cycle promotes the haploid lifestyle. Nature
506:387-390. http://dx.doi.org/10.1038/nature12891.

Kelly M, Burke J, Smith M, Klar A, Beach D. 1988. Four mating-type
genes control sexual differentiation in the fission yeast. EMBO ]
7:1537-1547.

mBio mbio.asm.org 7


http://dx.doi.org/10.1126/scitranslmed.3004404
http://dx.doi.org/10.1371/journal.pone.0015152
http://dx.doi.org/10.1371/journal.pone.0015152
http://dx.doi.org/10.1128/mBio.00428-12
http://dx.doi.org/10.1128/mBio.00428-12
http://dx.doi.org/10.1093/gbe/evu155
http://dx.doi.org/10.1093/gbe/evu155
http://dx.doi.org/10.1371/journal.pone.0000423
http://dx.doi.org/10.1371/journal.pone.0000423
http://dx.doi.org/10.1146/annurev.micro.112408.134335
http://dx.doi.org/10.1371/journal.ppat.1004425
http://dx.doi.org/10.1371/journal.ppat.1004425
http://dx.doi.org/10.1590/S0074-02762009000300004
http://dx.doi.org/10.1111/j.1567-1364.2010.00698.x
http://dx.doi.org/10.1111/j.1567-1364.2010.00698.x
http://dx.doi.org/10.1111/j.1550-7408.1984.tb02989.x
http://dx.doi.org/10.1111/j.1550-7408.1984.tb02989.x
http://dx.doi.org/10.1111/j.1550-7408.2001.tb00485.x
http://dx.doi.org/10.1111/j.1550-7408.2001.tb00485.x
http://dx.doi.org/10.1016/j.bbrc.2004.04.154
http://dx.doi.org/10.1371/journal.pone.0020935
http://dx.doi.org/10.1371/journal.pone.0079958
http://dx.doi.org/10.1371/journal.pone.0079958
http://dx.doi.org/10.1371/journal.pone.0008524
http://dx.doi.org/10.1371/journal.pone.0008524
http://dx.doi.org/10.1146/annurev-genet-110410-132536
http://dx.doi.org/10.1146/annurev-genet-110410-132536
http://dx.doi.org/10.1126/science.1203357
http://dx.doi.org/10.1016/S0378-1119(03)00614-0
http://dx.doi.org/10.1016/S0378-1119(03)00614-0
http://dx.doi.org/10.1016/S0014-5793(03)00914-1
http://dx.doi.org/10.1128/IAI.00986-07
http://dx.doi.org/10.1128/IAI.00986-07
http://dx.doi.org/10.1152/ajplung.00191.2009
http://dx.doi.org/10.1086/657414
http://dx.doi.org/10.1086/657414
http://dx.doi.org/10.1128/mBio.00055-13
http://dx.doi.org/10.1073/pnas.0501918102
http://dx.doi.org/10.1038/nature08064
http://dx.doi.org/10.1073/pnas.1416014111
http://dx.doi.org/10.1038/nature03448
http://dx.doi.org/10.1038/nature08252
http://dx.doi.org/10.1016/j.cub.2009.04.058
http://dx.doi.org/10.1038/nature12891
mbio.asm.org

Almeida et al.

33.

34.

35.

36.

37.

38.

39.

40.

Mix AJ. 1935. The life history of Taphrina deformans. Phytopathology
25:41-66.

Kramer CL. 1960. Morphological development and nuclear behavior in
the genus Taphrina. Mycologia 52:295-320. http://dx.doi.org/10.2307/
3756013.

Heitman J. 2010. Evolution of eukaryotic microbial pathogens via covert
sexual reproduction. Cell Host Microbe 8:86-99. http://dx.doi.org/
10.1016/j.chom.2010.06.011.

Roach KC, Heitman J. 2014. Unisexual reproduction reverses Muller’s
ratchet. Genetics 198:1059-1069. http://dx.doi.org/10.1534/
genetics.114.170472.

Nahimana A, Blanc DS, Francioli P, Bille J, Hauser PM. 2000. Typing of
Pneumocystis carinii f. sp. hominis by PCR-SSCP to indicate high fre-
quency of co-infections. ] Med Microbiol 49:753-758.

Brooksbank C, Bergman MT, Apweiler R, Birney E, Thornton J. 2014.
The European Bioinformatics Institute’s data resources 2014. Nucleic Ac-
ids Res 42:D18-D25. http://dx.doi.org/10.1093/nar/gkt1206.

Slaven BE, Meller J, Porollo A, Sesterhenn T, Smulian AG, Cushion
MT. 2006. Draft assembly and annotation of the Pneumocystis carinii
genome. ] Eukaryot Microbiol 53(Suppl 1):589-S91. http://dx.doi.org/
10.1111/j.1550-7408.2006.00184.x.

Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A,
Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K,
Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R,
Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N,
Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S,
Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S,
McDonald S, McLean ], Mooney P, Moule S, Mungall K, Murphy L,
Niblett D, Odell C, Oliver K, O’Neil S, Pearson D, Quail MA, Rabbi-
nowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S,
Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K,
Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J,
Volckaert G, Aert R, Robben ], Grymonprez B, Weltjens I, Vanstreels
E, Rieger M, Schifer M, Miiller-Auer S, Gabel C, Fuchs M, Diisterhoft
A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck
A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler
H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dréano S, Gloux S,

8 mBio mbio.asm.org

41.

42.

43.

44,

45,

46.

47.

48.

49.

Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K,
Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A,
Thode G, Daga RR, Cruzado L, Jimenez J, Sanchez M, del Rey F, Benito
J, Dominguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL,
Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski
GV, Ussery D, Barrell BG, Nurse P. 2002. The genome sequence of
Schizosaccharomyces pombe. Nature 415:871—880. http://dx.doi.org/
10.1038/nature724.

McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley
AP, Lopez R. 2013. Analysis tool web services from the EMBL-EBI. Nu-
cleic Acids Res 41:W597-W600. http://dx.doi.org/10.1093/nar/gkt376.
Mi H, Muruganujan A, Thomas PD. 2013. PANTHER in 2013: modeling
the evolution of gene function, and other gene attributes, in the context of
phylogenetic trees. Nucleic Acids Res 41:D377-D386. http://dx.doi.org/
10.1093/nar/gks1118.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL. 2009. BLAST +: architecture and applications. BMC Bioin-
formatics 10:421. http://dx.doi.org/10.1186/1471-2105-10-421.

Birney E, Durbin R. 2000. Using GeneWise in the Drosophila annotation
experiment. Genome Res 10:547-548. http://dx.doi.org/10.1101/
gr.10.4.547.

Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European Molecular
Biology Open Software Suite. Trends Genet 16:276-277. http://
dx.doi.org/10.1016/S0168-9525(00)02024-2.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGAG6:
Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:
2725-2729. http://dx.doi.org/10.1093/molbev/mst197.

Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: a novel method
for fast and accurate multiple sequence alignment. ] Mol Biol 302:
205-217. http://dx.doi.org/10.1006/jmbi.2000.4042.

Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of
mutation data matrices from protein sequences. Comput Appl Biosci
8:275-282. http://dx.doi.org/10.1093/bioinformatics/8.3.275.

Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG,
Parkhill J. 2005. ACT: the Artemis Comparison Tool. Bioinformatics
21:3422-3423. http://dx.doi.org/10.1093/bioinformatics/bti553.

January/February 2015 Volume 6 Issue 1 €02250-14


http://dx.doi.org/10.2307/3756013
http://dx.doi.org/10.2307/3756013
http://dx.doi.org/10.1016/j.chom.2010.06.011
http://dx.doi.org/10.1016/j.chom.2010.06.011
http://dx.doi.org/10.1534/genetics.114.170472
http://dx.doi.org/10.1534/genetics.114.170472
http://dx.doi.org/10.1093/nar/gkt1206
http://dx.doi.org/10.1111/j.1550-7408.2006.00184.x
http://dx.doi.org/10.1111/j.1550-7408.2006.00184.x
http://dx.doi.org/10.1038/nature724
http://dx.doi.org/10.1038/nature724
http://dx.doi.org/10.1093/nar/gkt376
http://dx.doi.org/10.1093/nar/gks1118
http://dx.doi.org/10.1093/nar/gks1118
http://dx.doi.org/10.1186/1471-2105-10-421
http://dx.doi.org/10.1101/gr.10.4.547
http://dx.doi.org/10.1101/gr.10.4.547
http://dx.doi.org/10.1016/S0168-9525(00)02024-2
http://dx.doi.org/10.1016/S0168-9525(00)02024-2
http://dx.doi.org/10.1093/molbev/mst197
http://dx.doi.org/10.1006/jmbi.2000.4042
http://dx.doi.org/10.1093/bioinformatics/8.3.275
http://dx.doi.org/10.1093/bioinformatics/bti553
mbio.asm.org

	RESULTS
	Identification of sex-related genes. 
	MAT genes. 
	Synteny of MAT loci. 
	Analysis of the putative MAT genes of several P. jirovecii isolates. 
	Genomic region surrounding the gene encoding the pheromone receptor Ste3. 

	DISCUSSION
	MATERIALS AND METHODS
	Source data. 
	Search for candidate genes and manual curation. 
	Phylogeny analysis. 
	Synteny analysis. 
	PCR amplification and sequencing of the putative MAT genes from P. jirovecii isolates. 
	Data accessibility. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

