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1. Approach

The weighted likelihood approach proposed by Agostinelli and

Markatou (1998) provides high breakdown point and fully efficient

estimators in situations where the errors are i.i.d. variables.

→ Weights are constructed by comparing the empirical distribution

of the residuals to a theoretical distribution

The method we propose allows to apply weighted likelihood

estimation in situations where the distribution of the errors is

dependent on the covariates, like Poisson regression, or negative

binomial regression.
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2. The model

We consider the following negative binomial regression framework:
Let NBα,µ be the family of negative binomial distributions and
Yα,µ ∼ NBα,µ. Then

• E(Yα,µ) = µ

• var(Yα,µ) = µ+ αµ2

Regression model:
Response Yα0,µ0(x) ∼ NBα0,µ0(x), where

• x is a covariate vector and µ0(x) = h−1(βT
0 x)

• h is a given link function

• β0 is a vector of unknown parameters

→ The errors Yα0,µ0(x) − µ0(x) are not i.i.d. and depend on x

→ They cannot be standardized as in the normal model

We propose a method to estimate α0 and β0.
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3. The method

The method is a weighted likelihood procedure.

Let (x1, y1), ..., (xn, yn) be a random sample and use θ = (α, β) and

zi = (xi, yi).

We construct weights w(zi, θ) and define the estimator of θ as the

solution of
n∑
i=1

w(zi, θ)s(θ, zi) = 0,

where s(θ, z) is the vector of usual score functions.
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Construction of the weights

We define the “tail probabilities” as

pθ(zi) = P (Yα,µ(xi)
≤ yi)− uiP (Yα,µ(xi)

= yi),

where u1, . . . , un are random numbers generated from the uniform

distribution on [0,1].

Key feature: if θ = (α0, β0) then pθ(zi), i = 1, . . . , n is a sample

from a uniform distribution on [0,1].
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Next, we consider the following transformation of the tail

probabilities:

Define qθ(zi) as

qθ(zi) = Φ−1(pθ(zi)),

where Φ is the standard normal cdf.

If θ = (α0, β0), then qθ(zi), i = 1, . . . , n is a sample from a standard

normal distribution.

The weights will be based on a measure of discrepancy between

the empirical distribution of the qθ(zi) and the standard normal

distribution.

The observations with a large discrepancy will receive small weights.
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The weights are defined following a procedure proposed by

Agostinelli and Markatou (1998):

Let F̂θ(.) denote the empirical cdf of qθ(z1), ..., qθ(zn); let

f∗θ (s) =
∫
k(s, t, h)dF̂θ(t)

be a kernel density estimator of the density of qθ(zi), and define

ϕ∗(s) as

ϕ∗(s) =
∫
k(s, t, h)dΦ(t).

As a local measure of the discrepancy between f∗θ (s) and ϕ∗(s),

consider, for each observation, its Pearson residual δ(zi, θ), defined

as

δ(zi, θ) =
f∗θ (qθ(zi))

ϕ∗(qθ(zi))
− 1
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The transformation qi = Φ−1(pi) is important for robustness
purposes. To get a high breakdown point and small contamination
biases: the less likely an observation under the model, the smaller
its weight.
→ Need an unlikely observation to have large discrepancy i.e. small
theoretical density.
Unlikely observations have pi close to 0 or 1. For such pi, u(pi) = 1
is not small, however ϕ(qi) is small.
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The weights are then defined as

w(zi, θ) = min

1,
[A(δ(zi, θ)) + 1]+

δ(zi, θ) + 1

 ,
where A(.) is a residual adjustment function (Lindsay, 1994), e.g.

the negative exponential residual adjustment function

ANE(δ) = 2− (2 + δ) exp(−δ).
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If the model is correct, δ(zi, θ) =
f∗θ (qθ(zi))
ϕ∗(qθ(zi))−1 converges to 0 and so

the weights converge to 1, in which case we recover the maximum

likelihood estimator.

This confers high efficiency to the weighted likelihood estimator

(WLE), defined through

n∑
i=1

w(zi, θ)s(θ, zi) = 0.
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The initial estimator

The calculation of θ̂ is done via an iterative algorithm which needs

a starting value. In case the estimating equation has multiple roots,

we need a robust starting value to avoid convergence to a bad root.

We use a combination of two existing methods:

1. The maximum rank correlation estimator (Han, 1987)

• Maximizes the Kendall correlation Gn(β) between the re-

sponse vector y and the predictor βTx:

Gn(β) =
1

n(n− 1)

∑
i 6=j

{yi > yj}{βTxi > βTxj}

• Intercept and dispersion parameter α are not identified

• Slopes are identified up to a scale coefficient
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2. An M-Type estimator proposed by V. Yohai

• Extension to the regression context of the optimal robust

estimate using the Hellinger distance (Marazzi and Yohai,

2010)

• Used to estimate the intercept, the dispersion parameter and

the scale coefficient on the slopes

Desirable properties of the initial estimator:

•
√
n-consistency facilitates the proof of the asymptotic normality

of the WLE.

• High breakdown point: the WLE generally inherits the

breakdown point of the initial estimator.



4. Empirical results
Without outliers

We performed simulations with

Yα0,µ0(x) ∼ NBα0,µ0(x); µ0(x) = exp(βT
0 x)

in the 2 following models:

• βT
0 = (1,1.5); α0 = 1.2

• βT
0 = (0.5,0.85,0.85); α0 = 0.8

In both models, β01 is the intercept.

In each case we performed a simulation with 1000 replications, for

sample sizes ranging from 50 to 4000.

We consider two performance criteria:

• Efficiency measure: Ceff =

∑
j mse(βMLE

j )+mse(αMLE
j )∑

j mse(β̂j)+mse(α̂j)

• Goodness of fit measure: Cfit = meanrepl

(
meani

(
|yi−µ0(xi)|√

µ0(xi)+α0µ0(xi)
2

))

13



Ceff =

∑
j mse(βMLE

j )+mse(αMLE
j )∑

j mse(β̂j)+mse(α̂j)
Cfit rel = Cfit(MLE)

Cfit(estimator)
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Ceff =

∑
j mse(βMLE

j )+mse(αMLE
j )∑

j mse(β̂j)+mse(α̂j)
Cfit rel = Cfit(MLE)

Cfit(estimator)
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In the presence of outliers

In order to test the estimators’ resistance to outliers, we generated
100 samples of size 150 and replaced an increasing fraction of the
observations by outliers. The outliers were placed at the edge of
the point cloud with respect to x, and further and further from it
in the y direction.

We used the model βT
0 = (0.5,0.85,0.85); α0 = 0.2.
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Robustness assessment for each outlier rate and position:

• β’s: goodness of fit measure

Cfit = meanrepl

meani

 |ŷi − µ0(xi)|√
µ0(xi) + α0µ0(xi)

2




• α: mean absolute error Mabs = meanrepl(|α̂− α0|)
The graphs show the largest Cfit and Mabs obtained for each
contamination fraction (over outlier position).
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5. Example

We consider hospital length of stay (LOS) data in the state of

Lausanne, Switzerland.

23 stays in 2010 for neonates classified into Diagnosis Related

Group entitled “Neonate, birth weight >2499g, without significant

operating room procedures, with other problems”.

We model the LOS with two independent variables:

• Age of mother

• Pregnancy duration

Younger mothers and longer pregnancy durations are known to imply

shorter LOS.
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Result:

Red surface: MLE Blue surface: WLE
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6. Conclusion and perspectives

• We propose a new robust and efficient estimation method for

negative binomial regression

• The simulation results are promising, showing high robustness

and efficiency performances

• Consistency, efficiency and robustness theory are being devel-

oped

• The central idea is to use “tail probabilities” in order to get

i.i.d. residuals to which the weighted likelihood method can be

applied

• This idea could be applied to a large variety of regression

frameworks where the errors are not necessarily i.i.d. and can

involve shape parameters
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