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Abstract
Defects in FAM161A, a protein of unknown function localized at the cilium of retinal photoreceptor cells, cause retinitis
pigmentosa, a formofhereditary blindness. Byusing different fragments of this protein as baits to screen cDNA libraries of human
and bovine retinas, we defined a yeast two-hybrid-based FAM161A interactome, identifying 53 bona fide partners. In addition
to statistically significant enrichment in ciliary proteins, as expected, this interactome revealed a substantial bias towards
proteins from the Golgi apparatus, the centrosome and the microtubule network. Validation of interaction with key partners by
co-immunoprecipitation and proximity ligation assay confirmed that FAM161A is a member of the recently recognized
Golgi-centrosomal interactome, a networkofproteins interconnectingGolgimaintenance, intracellular transport and centrosome
organization. Notable FAM161A interactors included AKAP9, FIP3, GOLGA3, KIFC3, KLC2, PDE4DIP, NIN and TRIP11. Furthermore,
analysis of FAM161A localization during the cell cycle revealed that this protein followed the centrosome during all stages of
mitosis, likely reflecting a specific compartmentalization related to its role at the ciliary basal body during the G0 phase.
Altogether, these findings suggest that FAM161A’s activities are probably not limited to ciliary tasks but also extend to more
general cellular functions, highlighting possible novel mechanisms for the molecular pathology of retinal disease.

Introduction
The Golgi apparatus (GA) is classically defined as a fundamental
component of the cellular secretory pathway, where proteins
synthesized in the endoplasmic reticulumare post-translationally
modified prior to their export to the cell membrane or to lyso-
somes. Recent research has shown, however, that this organelle

is also critical for correct microtubule (MT) organization and cilio-
genesis, via mechanisms that are not yet fully understood (1). For
instance, increasing evidences indicate that the GA can integrate
the radial arrays of MTs originating from the centrosome (2) and
may be itself aMTorganizing center (MTOC) acting independently
from the centrosome (3). A number of proteins involved in MT
nucleation are also shared between the centrosome and this
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organelle, suggesting the existence of common functions (1).
Furthermore, it has been shown that preservation of GA ribbons
is necessary for proper ciliogenesis, and that many ciliary compo-
nents are indeed present in the GA (4).

TheMTnetwork is an array of tracks alongwhich intracellular
components are trafficked within the cell body. Additionally, the
MT network establishes communications between different cel-
lular compartments, including the GA and the centrosome (5).
In cells of higher eukaryotes, the GA is placed pericentrosomally.
However, its localization within the cell is significantly altered
during mitosis, when Golgi membranes are fragmented and dis-
persed throughout the cytoplasm to ensure equal redistribution
to the daughter cells (6). At G0, the centrosomemigrates towards
the cell surface and, after docking on the plasma membrane, the
mother centriole of the centrosome is converted into a basal body
from which the primary cilium originates (7).

The cilium is an almost ubiquitous, hair-like organelle in-
volved in several functions, such as signaling (8), cell motility
(9), environment andmechano-sensing (7,10) and embryonic de-
velopment (11). Thesemultifaceted functions render it one of the
most intensively studied subcellular structures over the past few
years (12).

Ciliopathies are an emerging class of diseases caused by
mutations in genes that encode for proteins of the cilium. They
include a broad spectrumof disorders affecting one or several tis-
sues and organs, including kidney, skin, brain, bones and retina
(13). Retinal degeneration is one of the major hallmarks of cilio-
pathies, and sometimes it is the sole phenotype (13–15). Among
retinal ciliopathies, retinitis pigmentosa (RP) is the most preva-
lent condition (16). This disease is characterized in patients by
the progressive degeneration of both rod and cone photorecep-
tors, the light-sensing cells of our eyes. Typically, patients grad-
ually lose vision over many years, initially in the mid-periphery
of their visual field, and subsequently in the periphery and the
center, according to a rod–cone pattern of degeneration. As the
condition progresses, only tiny islands of vision are left, and pa-
tients may eventually become legally or completely blind (17). RP
is a Mendelian disease with a high genetic heterogeneity (18),
caused by mutations in any of over 50 genes, many of which en-
code ciliary components. Examples of those genes include RP1,
C2orf71, RPGR, RPGRIP1, CEP290 and KIZ, all of which code for pro-
teins involved in protein transport and maintenance of the
photoreceptor’s connecting cilium, axoneme and basal body
(15,19–22).

FAM161A is a ciliary protein of unknown function, the loss of
which causes recessive RP (23,24). It contains three coiled-coil re-
gions, two of which are part of the UPF0564 domain, a well-
conserved structure that has been defined by in silico analyses
but that still lacks a precise functional characterization. The
FAM161A gene is frequently mutated in patients from Israel (24),
although it can be associated with the disease in other regions
of theworld aswell (23,25,26). Allmutations in FAM161A identified
so far lead to premature stop codons that seem to trigger non-
sense mediated decay of mutant mRNA and thus result in the ab-
sence of FAM161A in affected patients (25). We and others have
shown that FAM161A localizes at the connecting ciliumand ciliary
basal bodyof rodent andhuman photoreceptors (27,28), and binds
to and possibly stabilizes MTs (28). In addition, FAM161A interacts
with other proteins involved in retinal ciliopathies and localizes at
the basal body in ciliated cell lines (27); recently, mutations in the
basal body protein POC1B were found to disrupt its interaction
with FAM161A (29). Also, the inhibition of FAM161A expression
via siRNApartly impairs formationof the cilium (27). Furthermore,
in Fam161aGT/GT mice photoreceptors showed shortened

connecting cilia, and spread ciliary MT doublets (30). However,
the inclusion and precise positioning of FAM161A within the
ciliary protein network (31), strongly suggested by its role in the
etiology of retinal degeneration, has not yet been determined.

In this work, we unveil the binary interactome of FAM161A by
GAL4-based yeast two-hybrid (Y2H) screening of bovine and
human retinal cDNA libraries, and validate these findings by im-
munoprecipitation and proximity ligation assays. Specifically,we
find that FAM161A directly interacts with several proteins from a
GA-centrosome subcellular pathway, likely to be involved in the
control of MT nucleation and in the transport of cellular compo-
nents along the cytoskeleton, as well as in the regulation of cilio-
genesis and maintenance of cell stability.

Results
Yeast two-hybrid screening assays reveal novel
FAM161A interactors

Previous data have shown that FAM161Amay interact with other
proteins, preferentially via its C-terminal moiety containing
the UPF0564 domain (27,28). However, it is not clear whether
UPF0564 can exert its binding functions in an autonomous way
with respect to the rest of the protein and whether other parts
of FAM161A are involved in interaction processes independently
from this domain. In our Y2H experiments, we therefore used
three distinct FAM161A baits (FAM161A full length, FAM161A-
N-term and FAM161A-C-term, containing the UPF0564 sequence,
Supplementary Material, Fig. S1) (27) to initially screen an oligo
dT-primed human retinal cDNA library.

After yeast transformation, we selected ∼500 positive clones,
which were re-streaked on new plates containing selective me-
dium. Of these, 297 passed the alpha- and/or beta-galactosidase
colorimetric assays, including 247 colonies identified with the
full-length bait, 37 with the C-term bait and 13 with the N-term
bait (Supplementary Material, Table S1). Repeated colony PCRs
on sequences from the prey plasmids yielded amplification
products for more than half of them, giving a total of 162
sequenceable substrates. We revealed 101 (77%) true positives
(prey-encoding sequence in-frame with the GAL4-AD) for the
full-length bait, 18 (78%) for the C-term bait, yet surprisingly,
none for the N-term bait. To enhance the resolution of the
screening towards N-terminal domains that can be sterically
hindered from detection in the oligo dT-primed library screen,
we performed a second round of experiments with the full-
length FAM161A and C-term encoding bait constructs, using a
randomly primed prey cDNA library from bovine retina (Supple-
mentary Material, Table S1).

Sanger sequencing of these colonies and validation of the
reading frame of the detected preys allowed identifying 53 differ-
ent putative interactors of FAM161A (Supplementary Material,
Tables S2 and S3), including FAM161A itself and a number of pro-
teins previously found to be associated with ciliopathies or inter-
acting with ciliary proteins. Twenty-three out of these 53 hits
(43%, Supplementary Material, Table S3) were entries in the cil-
iary proteome database (32). Within the set of FAM161A interac-
tors discovered by Y2H, ciliary proteins showed indeed a highly
statistically significant over-representation (hypergeometic
P-value = 3.6 × 10−7, determined as: 23/53 versus 2726 entries in
the ciliary database/18 523 entries in Swissprot; Fold enrichment =
2.9) (32,33). Network analysis of these interactors using GeneMA-
NIA (34) showed a clear interconnection between many of the
identified proteins, with just a few outliers (Fig. 1 and Supplemen-
tary Material S1).
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Interactors belong to three distinct but interconnected
subcellular components

Gene ontology (GO) analysis (35,36) of the 53 FAM161A interactors
showed an enrichment of proteins that are presentwithin theMT
cytoskeleton, centrosome and cilium, as well as the GA, with

significant P-values. Additionally, GO classification according to
molecular function indicated a clear bias towards MTs, cytoskel-
eton, centrosome and MTOCs (Supplementary Material,
Table S4). A more detailed analysis of the literature revealed
that many of these interactors could be separated in three

Figure 1. Network analysis of FAM161A interactors, following sequencing of positive Y2H clones and the use of the GeneMANIA algorithm. The results obtained show a

dense pattern of relationships. Each circle indicates a gene/protein. Black circles indicate elements identified by the Y2H assay, whereas grey circles indicate interactors

that were not identified by this screening but could link two experimentally determined interactors. Blue lines connect proteins belonging to the same pathway, green

lines show genetic interaction, while grey lines highlight proteins with shared domains. Genes/proteins that could not be integrated in this network are aligned at the

bottom.
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different subgroups: (i) proteins that localize at the GA and are in
strict contact with the MT network, (ii) centrosomal proteins and
(iii) proteins belonging to the cytoskeletal transport network
(Fig. 2). Taken together, these results suggested that FAM161A
is part of the Golgi-centrosomal network.

Based on these data and on previous findings showing
that FAM161A natively co-localizes with the centrosome/basal
body in G0 photoreceptors and in ciliated cells (27), we wanted
to observe the behavior of FAM161A during the cell cycle.
Co-staining of FAM161A and glutamylated tubulin showed that
indeed FAM161A followed the centrosome throughout all phases
of mitosis in hTERT-RPE1 cells (Fig. 3).

Co-immunoprecipitation confirms interaction of
FAM161Awith components of the Golgi apparatus,
cytoskeletal and centrosomal networks

To validate the interactions observedwith the Y2H assay, we per-
formed IP experiments using antibodies that could bind newly
discovered FAM161A partners. We selected proteins for each of
the three different categories of interactors described above,
depending on the commercial availability of antibodies and
whether theywere suitable for IP (based on the information avail-
able in the literature or in products’ data sheets). For these experi-
ments, we used plasmids expressing the same FAM161Aportions
as for theY2H experiments, fused to a Flag tag at their N-terminal
parts (27). As a negative control, we used a plasmid expressing a
flagged non-functional form of the nuclear protein SOX4. All con-
structs yielded significant protein production upon transfection
into HEK293T and HeLa cells.

For each protein of interest, we performed reciprocal co-immu-
noprecipitations (Co-IP), using either an antibody directed against
the FAM161A interactor, or against the Flag epitope of the recom-
binant protein (Fig. 4). Concerning the first group of interactors, i.e.

GA proteins, we efficiently immunoprecipitated GOLGA3 and re-
vealed the presence of FAM161A full length. The reciprocal experi-
ments confirmed these findings, highlighting interaction with the
same construct and with FAM161A-C-term (Fig. 4A).

Representing the centrosomal proteins (second group), we could
reciprocally confirm interaction with ninein (NIN). Signals origi-
nated only from experiments in which full-length FAM161A was
tested, either as a protein to be revealed following IP of NIN or as a
bait protein to be immunoprecipitated and reveal NIN (Fig. 4B).

Proteins from the third group of interactors (cytoskeletal
transport), namely KIFC3 and KLC2, could both co-immunopreci-
pitate FAM161A full length and FAM161A-C-term, as revealed by
anti-Flag reactivity on western blots (Fig. 4C). However, the
reciprocal experiments showed absence of signals in all tests,
probably reflecting a phenomenon of epitope masking by the
anti-Flag antibody (not shown).

Finally, we tested interaction between FAM161A andAKAP9, a
key protein that functionally links the GA with the centrosome
(4), to further support the idea that FAM161A could indeed
be part of the Golgi/centrosomal network. Despite AKAP9’s high
molecular weight, we could efficiently immunoprecipitate it and
clear positive signals were detected in both direct and reciprocal
experiments, when full-length FAM161Awas used (Fig. 4D).

Proximity ligation assay

To circumvent limitations of these IP experiments, due to both
availability of efficient immunoprecipitating antibodies and their
potential stereochemical encumbrance preventing detection of
prey proteins, we adopted an alternative approach to verify bind-
ing between FAM161A and other proteins of the Golgi-centroso-
mal network. Specifically, we used the proximity ligation assay
(PLA), a relatively recent technique that enables the in situ identifi-
cation of protein–protein interaction by detecting physical prox-
imity of antibodies targeting two protein partners.

Using this technology, we found statistically significant DNA
amplification and fluorescence for all eight FAM161A interactors
that were tested, namely AKAP9, FIP3, GOLGA3, KIFC3, KLC2,
PDE4DIP (Myomegalin), NIN and TRIP11 (GMAP210) (Fig. 5, Table 1
and Supplementary Material, Fig. S2), compared with specific
controls (highest P = 4 × 10−3; lowest P < 1 × 10−4; highest n = 258;
lowest n = 126 measured cells per assay per condition).

Discussion
We and others have recently demonstrated that FAM161A is a
new ciliary protein (27,28) interacting with a number of other
proteins associated with human ciliopathies (27). In this work,
we used Y2H screening as a high-throughput technique to iden-
tify additional FAM161A molecular partners in the mammalian
retina. This approach allowed the identification of as many as
53 distinct possible interactors and revealed that FAM161A be-
longs to three functional compartments, i.e. the Golgi/MT, the
cytoskeletal/transport and centrosomal networks.

In our approach, we used three distinct FAM161A sequences
to screen for molecular partners expressed in human or bovine
retinas. Interestingly, we obtained reliable data only when the
full length or the C-terminal portion of FAM161A was used,
with a clear bias for the former construct over the latter one in
terms of the number of positive clones/colonies (132 versus 23
and 94 versus 33 for human and bovine libraries, respectively).
These data suggest that the UPF0564 domain, contained in
the C-term moiety of the FAM161A, is necessary to establish
protein–protein interactions. However, these results also imply

Figure 2. Schematic representation of a cell and localization of FAM161A’s

interactors, as reported in the literature. Separation of interacting proteins

within the Golgi, the centrosomal and the cytoskeletal networks is highlighted.

The thick black straight lines indicate the microtubule network and the

cartoons lying on them schematize microtubule motor proteins.
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Figure 3. FAM161A localization duringmitosis, in hTERT-RPE1 cells. Native FAM161A localization within the cell is indicated by green fluorescence, while GT335 (red) stains the centrosome andmitotic spindlemicrotubules. DAPI blue

fluorescence reveals the presence of cell nuclei. Merged channels are shown in the bottom panels. Scale bar: 10 µm.
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Figure 4. Co-immunoprecipitation of portions of FAM161A and endogenous interactors. Every panel shows the expression of the native protein (top left) and of different

FAM161A Flag-tagged constructs (bottom left) in HEK293T cells, aswell as the presence of the sameproteins in immunoprecipitated samples (right panels). IP:x, protein or

peptide targeted by the antibody used in immunoprecipitation; WB:x, protein or peptide targeted by the antibody used in western blots, NT, N-terminal portion of

FAM161A; CT, C-terminal portion of FAM161A; SOX4, negative control for immunoprecipitation. Numbers on the left of panels indicate molecular weight (in kDa).
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that the presence of the N-terminal portion of FAM161A con-
taining the first coiled-coil domain may be required for
strengthening or perhaps even determining the specificity of
UPF0564-mediated interactions. Indeed, most, but not all the
preys captured by the full-length FAM161A bait were captured
by the C-term construct.

The relatively large number of identified interactors suggests
that FAM161A can act as a scaffold, probably exerting its function
(s) inmultiple protein complexes. In addition, functional classifi-
cation assigns thesemolecular partners a role in cytoskeletal and
microtubular activities, in agreement with previous findings
(27,28,30).

Interestingly, the three major classes of proteins to which
FAM161A interactors belong are themselves interconnected. It
has been clearly shown, for example, how Golgi ribbons are phys-
ically located inproximityof centrosomes in interphase eukaryotic

cells (37). This localization ismediated by several proteins, such as
golgins and GRASPs (38). In agreement with these data, we found
GOLGA3, a protein belonging to the golgin family, as a new
FAM161A interactor. GOLGA3 is thought to accomplish a number
of tasks, including the recruitment of dynein motor proteins to
the GA (39), suggesting that FAM161Amay be involved in intracel-
lular transport.

Furthermore, the formation of the primary cilium requires the
interaction between the GA and the centrosome. In eukaryotes,
during ciliogenesis centrosomes migrate from the Golgi area to
the proximity of the apical plasmamembrane,where they under-
go a transition into a basal body and participate in the genesis of
primary cilium (40). A critical component of ciliogenesis, IFT20,
localizes at the Golgi and interacts with the Golgi protein
GMAP210 (41) (whose gene is called TRIP11), which we identified
as a FAM161A interactor in our study.Moreover, cilium formation

Figure 5. Representative images of proximity ligation assays assessing interaction between Flag-FAM161A and endogenous proteins in HEK293T cells. Black dots indicate

in situ proximity/interaction. The protein assessed for interaction with FAM161A and its respective negative control (ctrl) is reported in each panel. Cells’ nuclei appear in

grey. Scale bar: 20 µm.
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requires proteins that are produced in the Golgi, and Golgi rib-
bons specifically localize in proximity of the centrosome. De-
struction of Golgi ribbons, which are localized in proximity of
the centrosome, impairs ciliogenesis and cell migration (4). One
of the key components for the maintenance of the Golgi ribbon
structure in relationship with the centrosome is AKAP9 (4). We
observed a direct interaction of FAM161A and AKAP9 and con-
firmed this interaction by immunoprecipitation and PLA. It has
recently been observed that AKAP9 is also able to bind to γ-tubu-
lin and participates in the nucleation and elongation ofMTs from
the centrosome and that its depletion also impairs ciliogenesis
(42). In addition, AKAP9 can recruit PDE4DIP, another FAM161A
interactor that we revealed in this study, at the centrosome (43).
Finally, the GMAP210 protein, mentioned above, acts as a homo-
dimeric protein able to bind theminus-end of MTs and γ-tubulin,
which is indispensable for the Golgi architecture (44). Therefore,
the correct localization of AKAP9, GOLGA3 and GMAP210 at the
Golgi and/or centrosome is necessary for the cell to accomplish
the basic functional tasks required during differentiation and cel-
lular polarization.

The second class of FAM161A’s interactors identified in this
screening are bona fide centrosomal proteins and many of
these are involved in mitosis. Among centrosomal FAM161A in-
teractors, two of the main players are NIN and AKAP9, which
are also expressed at the Golgi (45). In association with CEP110
and CEP250, NIN is also fundamental for the formation of the
MTOCs at the centrosome and for centrosome maturation (46).
NIN anchors theminus-end of theMTat the subdistal appendage
of the mother centriole of the centrosome and directly interacts
with γ-tubulin at the same position (47). Moreover, NIN is capable
of anchoring minus-end MTs at non-centrosomal sites, acting
itself as a MTOC (48). NIN also participates in mitosis by directly
interacting with Astrin and the reduction of NIN levels leads to
the formation of an aberrant mitotic spindle (49). Although we
observe the constant co-localization of FAM161A and the centri-
ole during the cell cycle and mitosis, it is unlikely that FAM161A
has an essential role in this latter cellular process at a systemic
level, since the complete absence of this protein in human indi-
viduals is non-fatal (23,24). Therefore, this specific localization
may not indicate per se a real function during cell division, but
simply reflect specific compartmentalization, also observed for
other ciliary proteins without any clear role inmitosis (50,51). Al-
ternatively, specific FAM161A’s function atmitosismay exist, but
could be redundantwith respect to that of other proteins, notably
of its paralogue and UPF0564-containing FAM161B (28).

It has also been shown previously that NIN is crucial for cilio-
genesis (52), and that in cells where cilium formation was pre-
vented NIN did not localize at the basal body (53). Furthermore,
NIN co-localizes with the centrosomal protein CEP250 (46),

another putative interactor of FAM161A, as ascertained in our
Y2H assay. It is interesting to observe that the knockdown of ei-
ther CEP250 or NIN reduce primary cilium formation (54), similar
to that observed with FAM161A depletion (27), and that a non-
sense mutation in CEP250 was identified in patients with Usher
syndrome (55). In addition to AKAP9 and PDE4DIP, three addition-
al proteins involved with MT anchoring at the centrosome
(CDK5RAP2, CAP350 and pericentrin) are associated with the GA
(56–58). It would not be surprising if these proteins, that were not
present in our Y2H screening, would later be revealed as
FAM161A interactors.

Intracellular transport ofmacromolecules is a fundamental cel-
lular function and generally relies onmotor proteins. Kinesins are
MT-associated motor proteins involved in the anterograde trans-
port (from the minus-end to the plus-end) of intracellular compo-
nents (59). In our Y2H study, we were able to identify interactions
between FAM161Aanddifferent kinesins, includingKLC2,which is
a component of the light chain subunit of the heterotetrameric
Kinesin-I subfamily (KIF5A, B and C). Kinesin-I motor proteins
have been shown to participate in the intracellular transport of
neurotrophins intraocularly injected into chicken eyes (60). KLC2
is expressed ubiquitously and has, per se, no motor activity but
binds the SMAD2 cargo following its phosphorylation by GSK3β
(61). Additionally, GSK3β-dependent phosphorylation of KLC2
plays an important role in the trafficking of AMPA receptors (62).
GSK3β is also able tophosphorylateNINpromoting its oligomeriza-
tion (63). Therefore, it seems conceivable that the functions of
FAM161A are either directly or indirectly affected by GSK3β.

By showing that the C-terminal kinesin KIFC3 also interacts
with FAM161A, we demonstrate here that binding of FAM161A to
motor proteins isnot limited tokinesin light chains. C-terminal ki-
nesins are regarded as atypical, because, unlike the other mem-
bers of the family, they are MT minus-end-directed motors (64).
KIFC3 is ubiquitously present throughout the human body (65)
and is abundantlyexpressed in thehuman retinal pigment epithe-
lium and in the outer plexiform layer of the retina (66). KIFC3 is
also important for GA positioning and structure maintenance
(67) and recent research has indicated that KIFC3 might cap and
deliver free MTs to their final destination (68). Remarkably, how-
ever, KIFC3 knockout mice are viable and develop normally (65),
suggesting that other proteins may have overlapping roles or
that other proteins can compensate for the role of KIFC3.

Finally, the Rab11 family interacting protein 3 (FIP3) displayed a
high affinity to a construct containing aflagged version of FAM161A
using the PLA assay. FIP3 is an effector protein of the small GTPase
Rab11 (69) and localizes pericentrosomally during interphase (70)
regulating the endosomal recycling compartment in collaboration
with cytoplasmatic dynein (71,72). Importantly, overexpression of
FIP3 in human epidermal carcinoma provokes fragmentation of
the GA by sequestering cytoplasmatic dynein (73). In addition,
FIP3 plays important roles in membrane trafficking (74). Notably,
it has been proposed that FIP3 facilitates the trafficking of the
photopigment rhodopsin in vesicles from the inner segment to
the outer segments of the photoreceptors (75). According to this hy-
pothesis, FIP3 could recognize the ciliary targeting motif in the
rhodopsin sequence directly on the trans-Golgi network (75).
Taken together, these data strongly support the involvement of
FAM161A in functions related to the setting up of the MTOCs and
transport of intracellular components through MTs as well as in
the preservation of the physiology/homeostasis of photoreceptors.

In summary, our results show that a number of components
of the newly discovered Golgi-centrosomal interactome are
FAM161A’s own partners, indicating that this protein is itself
part of this network. FAM161A’s functions are therefore probably

Table 1. Quantitative results of PLA experiments

Interactor Experimenta Controla P-value

AKAP9 48.98 ± 5.76; 174 15.41 ± 0.67; 159 0.0002
FIP3 98.26 ± 18.15; 175 1.26 ± 0.21; 258 0.0007
GOLGA3 93.71 ± 12.00; 154 19.26 ± 2.37; 239 0.0003
KIFC3 23.57 ± 5.25; 194 2.64 ± 0.19; 171 0.004
KLC2 70.74 ± 13.91; 147 6.73 ± 1.15; 151 0.0018
PDE4DIP 72.17 ± 4.30; 168 7.77 ± 0.83; 209 <0.0001
NIN 45.87 ± 4.38; 126 3.04 ± 0.83; 163 <0.0001
TRIP11 42.50 ± 8.41; 150 2.16 ± 0.31; 205 0.0014

aMeasured events × cell (average ± standard error of the mean); number of cells

measured.
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not limited to structural roles within the connecting cilium or the
cytoskeleton, as originally thought, but likely extend to other pro-
cesses, to be precisely characterized in further experiments, that
are typical of other organelles.

Materials and methods
DNA constructs

All DNA constructs and plasmids for FAM161A were generated
using the gateway system from Invitrogen, using the donor and
destination plasmids described previously (27). The Flag-SOX4
plasmid was generously donated by Dr Luca Bartesaghi (Univer-
sity of Lausanne).

Yeast two hybrid

For Y2H analysis, we used a GAL4-based assay HybriZAP from
Stratagene (La Jolla, CA, USA). Full-length FAM161A and partial
constructs corresponding to N-term and to C-term of FAM161A
were fused to a DNA-binding domain (GAL4-BD) and used as a
bait to screen human and bovine retinal cDNA libraries. These
were obtained by retrotranscribing RNA from fresh tissue using
oligo-dT (human library) or random hexamers (bovine library),
as primers. Both bait and prey plasmids, carrying the HIS3 (histi-
dine), ADE2 (adenine), MEL1 (α-galactosidase) and LacZ (β-galac-
tosidase) reporter genes, were used to transform the yeast strain
PJ69-4A. Interactions were assessed by the activation of reporter
genes, conferring the ability to grow in a selective media (de-
pleted of histidine and adenine), and colorimetric assays (α-ga-
lactoside ‘on plate’ assay and β-galactoside filter lift assay) (76).
A tip was used to collect traces of the colony and a colony PCR
was performed using primers specific for the prey plasmid. Col-
ony yielding no amplification products on the first attempt
were re-picked and re-amplified for a maximum of three times.
PCR products were then purified by the PCRclean kit from Milli-
pore (Billerica, MA, USA) and sequenced using the BigDye termin-
ator reagent v1.1 (Applied Biosystems, Life Technology, Foster
City, CA, USA). Capillary electrophoresis was performed using
the ABI 3130XL sequencer (Applied Biosystems), and electropher-
ograms were analyzed using CLC Bio workbench v.5.0 (Qiagen,
Hilden, Germany). The identity of the protein corresponding to
the DNA sequence carried by the clone was identified by BLAST
analysis (77).

Cell culture

HEK293T (human embryonic kidney) cells were grownunder nor-
mal conditions using Dulbecco Modified Eagle Medium (DMEM)
with Glutamax supplemented with bovine serum (10%), penicil-
lin/streptomycin antibiotics (1%) and all of them purchased from
Gibco (Carlsbad, CA, USA). hTERT-RPE1 cells were cultured using
a mixture of 50% DMEM and 50% F12 supplemented with 10%
bovine serum and 0.01 mg/ml hygromycin B (Gibco).

Immunostaining

For cell cycle immunostaining, cells were plated at low conflu-
ence on glass coverslip and after 24 h fixed in 100% methanol
at −20°C for 15 min. After fixation, cells were washed twice with
1× phosphate-buffered saline pH 7.4 (PBS) and permeabilized
with PBS containing 0.1% Triton X-100 for 10 min. Cells were
then blocked for 1 h in blocking buffer (PBS with 2% bovine
serum albumin). After overnight primary antibody incubation
in blocking buffer, fixed cells were washed with PBS for three

times, 5 min each. Cells were then incubated with secondary
antibody linked to a specific fluorophore for 1 h at room tempera-
ture, washed three times with PBS and mounted on a glass slide
using antifade mounting media Immumont (Thermo Scientific,
Waltham, MA, USA). Images were captured using confocal scan-
ning (see below).

Antibodies

To reveal the Flag-FAM161A constructs, we used either a mouse
monoclonal anti-Flag antibody or a rabbit polyclonal anti-
FAM161A from Sigma-Aldrich (St Louise, MO, USA). Rabbit poly-
clonal anti-NIN antibody (clone Poly6028) was purchased from
Biolegends Inc. (London, UK). To reveal AKAP9, we used a rabbit
polyclonal anti-AKAP9/GC-NAP antibody from Bethyl Lab
(Montgomery, TX, USA) and mouse anti-AKAP9 (BD Biosciences,
St Jose, CA, USA). Rabbit anti-GMAP210 and rabbit anti-KLC2 at
both Bethyl Lab. Rabbit anti-GOLGA3, FIP3, KIFC3 and Myomega-
lin (PDE4DIP) were all purchased by GeneTex (Irvine, CA, USA). As
the secondary antibody for immunoblotting, we used goatmono-
clonal anti-mouse IRDye 680 or goat monoclonal anti-rabbit
IRDye 800 for Odyssey Infrared imaging system (LI-COR, Bad
Homburg, Germany). For cell cycle immunostaining, rabbit poly-
clonal FAM161A antibody (Sigma-Aldrich), mouse monoclonal
anti polyglutamylated tubulin (GT335, kindly provided by Dr Car-
sten Janke) were used as primary antibodies. Fluorophore-conju-
gated Alexa Fluor anti-mouse and anti-rabbit were used as
secondary antibodies and were purchased from Life Technology
(Carlsbad, CA, USA). A complete list of antibodies used is given in
Supplementary Material, Table S5.

Immunoprecipitation

For immunoprecipitation (IP) experiments, HEK293T cells were
grown to 70% confluence in a 150-cm dish and transfected with
Jetprime reagent (Polyplus transfecting reagents, New York, NY,
USA) with one of the four plasmids used for the assay
(Flag-FAM161A, Flag-N-term-FAM161A, Flag-C-term-FAM161A,
Flag-SOX4) (27). Cells were collected 24 h after transfection and
lysed in IP extraction buffer [30 m Tris–HCl (pH 7.4), 150 m

NaCl, 0.1% Triton X100 supplemented with fresh protease inhibi-
tors]. Protein extractwas then clarified bya 20-min centrifugation
at 11 000g and the supernatant protein concentration quantified
by using the Pierce BCA protein assay fromThermo Scientific.We
used 2–4 mg of total protein extract for each assay. To immuno-
precipitate flagged proteins, we used Flag-M2 agarose beads
(Sigma-Aldrich) with overnight incubation. Beads were then
washed four times with IP extraction buffer and incubated for
5 min on a rotating wheel during each wash. After washing,
beads were boiled with loading buffer containing 1% β-mercap-
toethanol for 5 min and then analyzed by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) to separate differ-
ent bands. To immunoprecipitate the native proteins of interest,
3 μg of respective antibody was incubated with Protein G Dyna-
beads (Life Technology) for 1 h on a rotating wheel. Following
this, 2 mg of total lysate was incubated overnight with anti-
body-bound magnetic beads. Beads were then washed three
timeswith IP extraction buffer by simple pipetting and the super-
natant was discarded each time. Beads were finally incubated in
loading buffer and boiled at 70°C for 10 min, prior to loading the
supernatant directly on SDS-PAGE gels. For immunoblotting, pro-
teins were transferred from polyacrylamide gels to nitrocellulose
membranes and then incubated in blocking buffer (5% low-fat
dry milk in 1 × Tris buffered saline Tween 0.1%—TBST) for 1 h.
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Primary antibodies were incubated overnight in blocking buffer
and then the membranes were washed 3 × 10 min in TBST fol-
lowed by a 1-h incubation in secondary antibody blocking buffer
(0.5% low-fat drymilk in TBST). Finally, following 3 × 10 minwash
in TBST and a final 10 min wash in PBS, immunoblotting was re-
vealed by an Odyssey Infrared imaging system (LI-COR) by excit-
ing the fluorophore with 700 and 800 nm wavelength lights.
Acquired two-channel images were then processed by Image
Studio Lite software (LI-COR).

Proximity ligation assay

PLA allows detection of protein–protein interactions by exploit-
ing space proximity of antibodies targeting putative interacting
partners. In short, primary antibodies raised in different species
are bound to target proteins on cell or tissue samples fixed on a
microscope slide. Secondaryspecies-specific antibodies conjugated
with particular DNA sequences are then supplemented to the sys-
tem, along with a ‘connector’ oligonucleotide, complementary to
both sequences andDNA ligase. If target proteins interact (areprox-
imal in space), a DNA loop is formed and incubation with a DNA
polymerase allows rolling circle amplification of the loop. Comple-
mentaryfluorescent probes are thenadded to the systemandfluor-
esce is measured by microscopy. Interacting proteins are indeed
visible as fluorescent signals, allowing not only detecting inter-
action but also (if needed) cellular localization.

To performPLA, HEK293T cells were grownon 8 mmcoverslips
coated with poly--lysine hydrobromide. Cells were transfected
with either Flag-FAM161A (full length) or with the plasmid back-
bone (p3Flag) as a negative control. Cells were seeded to reach
around 80% confluence at themoment of fixation and transfected
contextually using FuGENE (Promega, Madison, WI, USA) trans-
fecting kit (8 μg of plasmidic DNA) according to manufacturer’s
instructions. Transfected cells were fixed in 4% paraformaldehyde
in CB buffer (200 m PIPES pH 6.8, 300 m NaCl, 10 m ethylene
glycol tetraacetic acid pH 8.0, 10 m glucose, 10mMgCl2). Fixing
solution was washed three times in CB buffer supplemented with
50mNH4Cl. Cells were then permeabilized with PBS + 0.05% Tri-
ton X-100 applied for 5 min. After permeabilization, cells were
blocked in blocking solution [from PLA kit, Olink (Uppsala, Swe-
den)] for 30 min at 37°C and incubated with primary antibodies
of interest, in antibody diluent (from PLA kit) overnight at 4°C.
The day after, cells werewashed 3 × 5 min in CB buffer with gentle
shaking and incubatedwith PLAprobes diluted 1 : 5 in antibodydi-
luent. Next, ligation mix (Ligation Stock 1:5 + Ligase 1:40 in high
puritywater) was added and incubated for 30 min at 37°C. Ligation
mix was washed 2 × 2 min with gentle shaking. Amplification-
Polymerase solution (Amplification Stock 1:5 + Polymerase 1 : 80
in high purity water) was incubated for 100 min at 37°C and finally
washed in 1× wash buffer B (Tris–HCl 0.2, pH 7.5; NaCl 0.1 ) 2 ×
10 min and in 0.01× wash buffer B for 1 min. Finally, cells were
then incubated for 5 min in DAPI 1× dissolved in PBS, followed
by 2 × 5 min in CB buffer, and 1 × 5 min wash in high purity
water, and then mounted with Immumont (Thermo Scientific).
Experiments were analyzed by confocal microscopy.

Confocal microscopy

Slides were observed using confocal scanning with a Zeiss LSM
710 Quasar Confocal microscope (Carl Zeiss, Jena, Germany),
with oil immersion objective ×63, NA 1.4. For each channel, the
pinhole was set to the Airy Unit corresponding to a width of
0.9 μm per sample. For each slide the Z-stack was acquired with
an average corresponding to four passages and a sampling in

the XYZ plains according to the criteria of Nyquist. Images were
processed using Fiji (78) and Adobe Photoshop CS5 (Adobe Sys-
tems, San Jose, CA, USA).

Cells quantification

The resulting images were investigated using a script written in
ImageJ macro language (http://rsbweb.nih.gov/ij/). Briefly, the
script first processes the Z-stack with the Maximum Intensity
Projection method, then it conveys the resulting image to a
Gaussian Blur Filter (sigma = 1), a Rolling Ball Background Sub-
traction algorithm (radius = 10 pixels) and to a Water-Shedding
algorithm. Following this, the images were segmented after cal-
culating the threshold with the Max Entropy algorithm and the
PLA foci were assessed using the Analyze Particle ImageJ func-
tion. The nuclei stained with DAPI were manually counted to
quantify the number of cells in each acquisition. On average,
30–60 cells were acquired for each field.

Bioinformatic analyses

GO annotations were performed by using the Database for Anno-
tation, Visualization and Integrated Discovery (DAVID) web inter-
face from National Institute of Allergy and Infectious Disease,
NIH (http://david.abcc.ncifcrf.gov) (35,36). The gene interaction
network was generated using the GeneMANIA web interface
from the University of Toronto (http://www.genemania.org)
(34). Statistical analysis was performed using the Keisan on-
line calculator (http://keisan.casio.com).

Supplementary material
Supplementary material is available at HMG online.
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