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Abstract 

 
The impact of Alzheimer’s disease is devastating for the daily life of the affected patients, 
with progressive loss of memory and other cognitive skills until dementia. We still lack 
disease modifying treatment and there is also a great amount of uncertainty regarding the 
accuracy of diagnostic classification in the early stages of AD. The anatomical signature of 
AD, in particular the medial temporal lobe (MTL) atrophy measured with neuroimaging, can 
be used as an early in vivo biomarker in early stages of AD. However, despite the evident 
role of MTL in memory, we know that the derived predictive anatomical model based only 
on measures of brain atrophy in MTL does not explain all clinical cases. Throughout my 
thesis, I have conducted three projects to understand the anatomy and the functioning of 
MTL on (1) disease’s progression, (2) memory process and (3) learning process. I was 
interested in a population with mild cognitive impairment (MCI), at risk for AD. The objective 
of the first project was to test the hypothesis that factors, other than the cognitive ones, 
such as the personality traits, can explain inter-individual differences in the MTL. Moreover, 
the phenotypic diversity in the manifestations of preclinical AD arises also from the limited 
knowledge of memory and learning processes in healthy brain. The objective of the second 
project concerns the investigation of sub-regions of the MTL, and more particularly their 
contributions in the different components of recognition memory in healthy subjects. To 
study that, I have used a new multivariate method as well as MRI at high resolution to test 
the contribution of those sub-regions in the processes of familiarity and recollection. Finally, 
the objective of the third project was to test the contribution of the MTL as a memory 
system in learning and the dynamic interaction between memory systems during learning. 

The results of the first project show that, beyond cognitive state of impairment observed in 
the population with MCI, the personality traits can explain the inter-individual differences in 
the MTL; notably with a higher contribution of neuroticism linked to proneness to stress and 
depression. My study has allowed identifying a pattern of anatomical abnormality in the MTL 
related to personality with measures of volume and mean diffusion of the tissue. That 
pattern is characterized by right-left asymmetry in MTL and an anterior to posterior gradient 
within MTL. I have interpreted that result by tissue and neurochemical properties differently 
sensitive to stress.  
Results of my second project have contributed to the actual debate on the contribution of 
MTL sub-regions in the processes of familiarity and recollection. Using a new multivariate 
method, the results support firstly a dissociation of the subregions associated with different 
memory components. The hippocampus was mostly associated with recollection and the 
surrounding parahippocampal cortex, with familiarity type of memory. Secondly, the 
activation corresponding to the mensic trace for each type of memory is characterized by a 
distinct spatial distribution. The specific neuronal representation, “sparse-distributed”, 
associated with recollection in the hippocampus would be the best way to rapidly encode 
detailed memories without overwriting previously stored memories. 
In the third project, I have created a learning task with functional MRI to sudy the processes 
of learning of probabilistic associations based on feedback/reward. That study allowed me to 
highlight the role of the MTL in learning and the interaction between different memory 
systems such as the procedural memory, the perceptual memory or priming and the working 
memory. We have found activations in the MTL corresponding to a process of episodic 
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memory; the basal ganglia (BG), to a procedural memory and reward; the occipito-temporal 
(OT) cortex, to a perceptive memory or priming and the prefrontal cortex, to working 
memory. We have also observed that those regions can interact; the relation type between 
the MTL and the BG has been interpreted as a competition. In addition, with a dynamic 
causal model, I have demonstrated a “top-down” influence from cortical regions associated 
with high level cortical area such as the prefrontal cortex on lower level cortical regions such 
as the OT cortex. That influence decreases during learning; that could correspond to a 
mechanism linked to a diminution of prediction error. My interpretation is that this is at the 
origin of the semantic knowledge. I have also shown that the subject’s choice and the 
associated brain activation are influenced by personality traits and negative affects. 

Overall results of this thesis have brought me to propose (1) a model explaining the possible 
mechanism linked to the influence of personality on the MTL in a population with MCI, (2) a 
dissociation of MTL sub-regions in different memory types and a neuronal representation 
specific to each region. This could be a cue to resolve the actual debates on recognition 
memory. Finally, (3) the MTL is also a system involved in learning and that can interact with 
the BG by a competition. We have also shown a dynamic interaction of « top –down » and 
« bottom-up » types between the pre-frontal cortex and the OT cortex. In conclusion, the 
results could give cues to better understand some memory dysfunctions in aging and 
Alzheimer’s disease and to improve development of treatment. 
 
 

Résumé 

 
L'impact de la maladie d'Alzheimer (MA) est dévastateur pour la vie quotidienne de la 
personne affectée, avec perte progressive de la mémoire et d'autres facultés cognitives 
jusqu’à la démence. Il n’existe toujours pas de traitement contre cette maladie et il y a aussi 
une grande incertitude sur le diagnostic des premiers stades de la MA. La signature 
anatomique de la MA, en particulier l’atrophie du lobe temporal moyen (LTM) mesurée avec 
la neuroimagerie, peut être utilisée comme un biomarqueur précoce, in vivo, des premiers 
stades de la MA. Toutefois, malgré le rôle évident du LMT dans les processus de la mémoire, 
nous savons que les modèles anatomiques prédictifs de la MA basés seulement sur des 
mesures d’atrophie du LTM n'expliquent pas tous les cas cliniques. Au cours de ma thèse, j’ai 
conduit trois projets pour comprendre l’anatomie et le fonctionnement du LMT dans (1) les 
processus de la maladie et dans (2) les processus de mémoire ainsi que (3) ceux de 
l’apprentissage. Je me suis intéressée à une population avec déficit cognitif léger (« Mild 
Cognitive Impairment », MCI), à risque pour la MA. Le but du premier projet était de tester 
l’hypothèse que des facteurs, autres que ceux cognitifs, tels que les traits de personnalité 
peuvent expliquer les différences interindividuelles dans le LTM. De plus, la diversité 
phénotypique des manifestations précliniques de la MA  provient aussi d’une connaissance 
limitée des processus de mémoire et d’apprentissage dans le cerveau sain. L’objectif du 
deuxième projet porte sur l’investigation des sous-régions du LTM, et plus particulièrement 
de leur contribution dans différentes composantes de la mémoire de reconnaissance chez le 
sujet sain. Pour étudier cela, j’ai utilisé une nouvelle méthode multivariée ainsi que l’IRM à 
haute résolution pour tester la contribution de ces sous-régions dans les processus de 
familiarité (« ou Know ») et de remémoration (ou « Recollection »). Finalement, l’objectif du 
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troisième projet était de tester la contribution du LTM en tant que système de mémoire 
dans l’apprentissage et l’interaction dynamique entre différents systèmes de mémoire 
durant l’apprentissage.  
Les résultats du premier projet montrent que, en plus du déficit cognitif observé dans une 
population avec MCI, les traits de personnalité peuvent expliquer les différences 
interindividuelles du LTM ; notamment avec une plus grande contribution du neuroticisme 
liée à une vulnérabilité au stress et à la dépression. Mon étude a permis d’identifier un 
pattern d’anormalité anatomique dans le LTM associé à la personnalité avec des mesures de 
volume et de diffusion moyenne du tissu. Ce pattern est caractérisé par une asymétrie 
droite-gauche du LTM et un gradient antéro-postérieur dans le LTM. J’ai interprété ce 
résultat par des propriétés tissulaires et neurochimiques différemment sensibles au stress.  
Les résultats de mon deuxième projet ont contribué au débat actuel sur la contribution des 
sous-régions du LTM dans les processus de familiarité et de remémoration. Utilisant une 
nouvelle méthode multivariée, les résultats supportent premièrement une dissociation des 
sous-régions associées aux différentes composantes de la mémoire. L'hippocampe est le plus 
associé à la mémoire de type remémoration et le cortex parahippocampique, à la mémoire 
de type familiarité. Deuxièmement, l’activation correspondant à la trace mnésique pour 
chaque type de mémoire est caractérisée par une distribution spatiale distincte. La 
représentation neuronale spécifique, « sparse-distributed», associée à la mémoire de 
remémoration dans l'hippocampe serait la meilleure manière d’encoder rapidement des 
souvenirs détaillés sans interférer les souvenirs précédemment stockés.  
Dans mon troisième projet, j’ai mis en place une tâche d’apprentissage en IRM fonctionnelle 
pour étudier les processus d’apprentissage d’associations probabilistes basé sur le 
feedback/récompense. Cette étude m’a permis de mettre en évidence le rôle du LTM dans 
l’apprentissage et l’interaction entre différents systèmes de mémoire comme la mémoire 
procédurale, perceptuelle ou d’amorçage et la mémoire de travail. Nous avons trouvé des 
activations dans le LTM correspondant à un processus de mémoire épisodique; les ganglions 
de la base (GB), à la mémoire procédurale et la récompense; le cortex occipito-temporal 
(OT), à la mémoire de représentation perceptive ou l’amorçage et le cortex préfrontal, à la 
mémoire de travail. Nous avons également observé que ces régions peuvent interagir; le 
type de relation entre le LTM et les GB a été interprété comme une compétition, ce qui a 
déjà été reporté dans des études récentes. De plus, avec un modèle dynamique causal, j’ai 
démontré l’existence d’une connectivité effective entre des régions. Elle se caractérise par 
une influence causale de type « top-down » venant de régions corticales associées avec des 
processus de plus haut niveau venant du cortex préfrontal sur des régions corticales plus 
primaires comme le OT cortex. Cette influence diminue au cours du de l’apprentissage; cela 
pourrait correspondre à un mécanisme de diminution de l’erreur de prédiction. Mon 
interprétation est que cela est à l’origine de la connaissance sémantique. J’ai également 
montré que les choix du sujet et l’activation cérébrale associée sont influencés par les traits 
de personnalité et des états affectifs négatifs. 

Les résultats de cette thèse m’ont amenée à proposer (1) un modèle expliquant les 
mécanismes possibles liés à l’influence de la personnalité sur le LTM dans une population 
avec MCI, (2) une dissociation des sous-régions du LTM dans différents types de mémoire et 
une représentation neuronale spécifique à ces régions. Cela pourrait être une piste pour 
résoudre les débats actuels sur la mémoire de reconnaissance. Finalement, (3) le LTM est 
aussi un système de mémoire impliqué dans l’apprentissage et qui peut interagir avec les GB 
par une compétition. Nous avons aussi mis en évidence une interaction dynamique de type 
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« top –down » et « bottom-up » entre le cortex préfrontal et le cortex OT. En conclusion, les 
résultats peuvent donner des indices afin de mieux comprendre certains 
dysfonctionnements de la mémoire liés à l’âge et la maladie d'Alzheimer ainsi qu’à améliorer 
le développement de traitement. 
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INTRODUCTION 

 

In our society, we now live longer, but as a consequence we must confront age-related 

diseases such as dementia in particular Alzheimer’s disease (AD). Today, more than 24 

million people in the word are affected by dementia and this number is going to double 

every 20 years. Western Europe has an overall prevalence rate of 5.4% for the over 60’s, 

which increases exponentially with age (Hebert, Scherr, Bienias, Bennett, & Evans, 2003; 

Mayeux & Stern, 2012).  

The impact of this disease is devastating for the affected person, with the progressive loss of 

memory and other cognitive faculties prior to the onset of dementia. The consequences of 

this disease however, are also heavily borne by family and caregivers. We lack disease 

modifying treatement and there is still a great amount of uncertainty regarding the accuracy 

of diagnostic classification in the early stages of AD. Mis-diagnosis are due to several 

different factors including underlying heterogeneity in etiologies and the inter-individual 

differences in the manifestations of the disease.  

 

In this thesis, I investigate the use of neuroimaging to identify the anatomical signature of 

AD in particular the medial temporal lobe (MTL) atrophy, which can be used as an early in 

vivo biomarker in early stages of AD. However, we know that derived predictive anatomical 

model based only on measures of brain atrophy does not explain all clinically identified cases 

of AD (e.g. on the basis of deficits in memory function). We also need an improved 

knowledge of the memory associated with the MTL to better understand the mechanisms of 

AD.  The medial temporal lobe (MTL) is composed of structures that have a central role in 
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declarative memory. Memory decline and brain atrophy in the MTL are hallmarks of AD 

(Dubois et al., 2010). It has been suggested that neurofibrillary tangles (NFT) begin in the 

enthorinhal/perirhinal cortex (E. J. Barbeau, Pariente, Felician, & Puel, 2010; E. Barbeau et 

al., 2004; H Braak & Braak, 1991; Heiko Braak, Alafuzoff, Arzberger, Kretzschmar, & Del 

Tredici, 2006) before spreading to other MTL regions. Critically, the limited knowledge of 

memory and learning processes in terms of brain anatomy and function in interaction with 

other factors in healthy brain could prevent a full understanding of AD. 

 

In my thesis, I used structural neuroimaging to first study individuals at risk for AD with Mild 

Cognitive Impairment (MCI). Secondly, I used functional neuroimanging in healthy controls 

to study the processes related to memory and learning in the temporal cortex. I also 

describe how the brain regions in the MTL can be modulated by inter-individual differences 

such as personality, emotions and other cognitive factors. The primary goal of the thesis is to 

build a personalised predictive model of AD that combines the existing anatomical brain 

biomarkers with theoretically driven functional mapping as well as taking into account the 

impact of idiosyncratic factors.  

The thesis is subdivided in three main parts on: (1) AD, (2) memory and (3) learning 

processes (Figure 1). 

 

The first part of this thesis is on AD and its pre-clinical stage using structural neuroimaging. 

 I use a voxel based morphometry analysis of structural data in the Medial Temporal 

Lobe (MTL), a critical region affected by AD, to study the interaction between 

cognitive state (i.e. Mild Cognitive Impairment vs No Cognitive Impairment) and 

individual difference factors such as personality traits, in an elderly population.  



         

20 
 

 

The second part of this thesis is on memory models using functional neuroimaging. 

 I employ the well-established fMRI paradigm Remember/Know, which assumes that 

distinct memory functions (i.e. recollection and familiarity) can separate structures in 

the MTL, in particular the hippocampus, the parahippocampal cortex and the 

perirhinal cortex. 

 

The third part of this thesis is on learning using functional neuroimaging. 

 I use the Multiple Cue Probabilistic Learning (MCPL) fMRI paradigm to investigate 

large-scale memory networks and to study the functional connectivity between local 

(within temporal cortex) and distant cortical (frontal cortex) and subcortical nodes. 

 To further understand inter-individual variability in MCPL, I also associate parameters 

of learning with individual factors such as personality and depressive/anxiety 

symptoms.  

 

Part 1 

Personality effect  in Mild 

Cognitive Impairement 

Part 2 

Recollection, 

 Familiarity 

Part 3 

Probabilistic learning 

Structural MRI fMRI at 7T 
fMRI with virtual game 

environment 

Classical Multivariate Multivariate Bayes Causal Modelling 

Patients Healthy Healthy 

Figure 1. Plan of the thesis subdivided in three main parts on (1) Mild Cognitive Impairment, 
Alzheimer’s disease and personality effect, (2) memory and (3) learning processes.The next raws 
describe the neuroimaging MRI  technique, the statistical method used and the population studied for 
each of the three parts. MRI: Magnetic Resonance Imaging.T: Tesla. 
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1.  ALZHEIMER’S DISEASE STATE AND 
PERSONALITY TRAITS 
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1.1. Alzheimer’s disease definitions 

 

1.1.1. A Dual entity 
 

There is a consensus in the Inernational Working Group for New Reserch Criteria for the 

Diagnosis of AD to define Alzheimer’s disease as having a dual entity, with clinical and 

pathological features defined by (1) a broad clinical spectrum including a predominant 

worsening of functional episodic memory that is followed or accompanied by other 

cognitive, behavioral and neuropsychiatric deficits and by (2) in-vivo biomarkers of AD 

pathology. Those biomarkers support the presence of AD pathological changes and can be 

detected in the cerebro-spinal fluid (CSF) or in the brain by means of MRI and PET 

neuroimaging techniques. However, diagnosis of AD is only certain with histopathological 

post-mortem analysis 

 

Clinical aspects: The clinical classification of AD and the early stages of the disease are still 

highly debated. This can be explained by the fact that various aetiologies can lead to the 

same phenotype of disease; that AD pathology can begin well before subjective or cognitive 

deficits manifest; and that a true AD diagnosis is only confirmed post-mortem. Clinical 

classification is further complicated by the fact that some brains containing post-mortem 

neuropathological changes, have been observed in people without cognitive impairment 

during life (Dubois et al., 2010; Hyman et al., 2012a). Memory deficits in AD are 

characterized by predominant episodic memory impairment such as forgetting meetings or 

recent events. Autobiographical memory impairment also appears in AD patients with the 

more recent memories relating to their own life more quickly forgotten than older ones. 
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They also recall fewer details of events (i.e. less recollection), but can still have a feeling of 

familiarity with that initial event. A deficit in semantic memory, evaluated for example with 

verbal fluency, is also detected early on in AD, although it is more age-resistant.  Deficits in 

working memory seem inconsistent between patients in the beginning of AD. In contrast, 

perceptual memory, tested by the perceptual priming effect (i.e. influence of one stimulus 

on the response on another stimulus) (Keane, Gabrieli, Fennema, & Growdon, 1991) and the 

procedural memory, evaluated mainly with visuo-motor or verbal tasks, are preserved in AD. 

These above mentioned types of memory are investigate through the different experimental 

works of the thesis  (Amieva, Belliard, & Salmon, 2014). 

Pathological aspects: The AD pathology consists of neurofibrillary tangles (NFTs), due to 

intraneural abnormal phosphorylation of tau protein, and senile plaques, mainly due to 

extraneural amyloid beta (Aβ) deposits with some possible deposits of phosphorylated tau. 

AD pathology can also be manifested by synaptic loss and vascular amyloid deposits in the 

brain (Dubois et al., 2010). Braak et al. have defined stages of neurodegeneration based on 

the typical AD lesions found during autopsy. The density and localization of extracellular 

amyloid deposits are not consistent enough between patients to determine the stages of 

neurodegeneration, however the six stages scale is well defined by the distribution of 

neurofibrillary tangles (NFT) and hyper-phosphorylated Tau protein. The stages are 

characterized by an expansion of the presence of NFT and hyper-phosphorylated Tau protein 

in the following regions: 1) the transentorhinal and perirhinal cortices; 2) the entorhinal 

cortex; 3) the hippocampus; 4) the limbic system and insular cortex; 5) the inferior occipito-

temporal cortex (or fusiform gyrus) and the Heschl’s gyrus; 6) the isocortortical association 

cortices (Figure 2) (H Braak & Braak, 1991; Heiko Braak et al., 2006). The distribution of NFT 
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also correlates more with the neurodegeneration and cognitive deficits, compared to the 

distribution of amyloid beta (E. Barbeau et al., 2011; H Braak & Braak, 1991; Heiko Braak et 

al., 2006; Thal et al., 1998). 

 

 
Figure 2. Schema of the main stages of the cortical neurofibrillay pathology distribution in the brain 
(Heiko Braak et al., 2006). 

 

 

The identification of in-vivo biological markers of AD by means of different neuroimaging 

techniques such as Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) 

and by means of biological sampling in the cerebro-spinal fluid (CSF) has considerably 

developed our knowledge of the disease. These biomarkers have mostly been used to 

exclude brain treatable causes, but are now recognized as promising tools to support 

diagnosis, to predict clinical outcome, to help the disease management and aid in new 
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treatment development. High resolution structural MRI can detect subtle brain changes  

considered as diagnostic markers for the identification of Mild Cognitive Impairment (MCI), 

for the prediction of conversion to AD and, critically, for the exclusion of a differential 

diagnosis (Frisoni, Fox, Jack, Scheltens, & Thompson, 2010; Scheltens, Fox, Barkhof, & Carli, 

2002). Measurement of hippocampal and entorhinal cortal volumes using MRI can efficiently 

distinguish MCI from healthy state as although hippocampal atrophy is between 15 and 48% 

with normal aging, it is much more pronounced in MCI and AD, with a change of 78 and 96% 

respectively. Structural abnormalities located in the MTL can separate MCI converters from 

non-converters and predict the future conversion to AD in a time of 12 to 77 months 

(Chételat et al., 2005). These MTL structural abnormalities observed in MCI spread to other 

temporo-parietal cortices such as the posterior hippocampus, the inferior, middle, superior 

temporal cortices, the insula, the precuneus and the posterior cingulate (Apostolova & 

Cummings, 2008). Changes in brain volume using MRI have even been detected 4 to 10 years 

before any cognitive impairment (Tondelli et al., 2011). Functional neuroimaging has also 

allowed investigation of synaptic activity and functional, cognitive and affective aspects of 

AD. PET radiological-contrast compounds are also still developed to trace brain molecules in-

vivo such as inflammatory mediators and neurofibrillary tangles tracers (Johnson, Fox, 

Sperling, & Klunk, 2012; Perrin, Fagan, & Holtzman, 2009a; Villemagne & Okamura, 2014). 

During neurodegeneration, there are changes in different pathological and topographical 

biomarkers. Despite some controversies on the sequence of biomarker change due in part to 

the unknown time of disease onset, a decreased concentration of Aβ42 in the CSF or Aβ42 

PET tracer in the brain is usually the first detectable AD biomarker. Increased CSF levels of 

phosphor-tau and changes in the fluoro-deoxy-D glucose (FDG) metabolism follow the Aβ42 

decrease. MRI biomarkers associated with atrophy in the MTL are closely linked to cognitive 
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deficit, but are the last observable marker. There are cases however, where tau pathology is 

present in the MTL of elderly healthy individuals and even prior to Aβ plaques in younger 

age. Structural MRI and tau protein levels detected in cerebro-spinal fluid (CSF) are strong 

predictors of the progression to Mild Cognitive Impairment (MCI) and AD (Toledo et al., 

2014). However, development of an in vivo selective noninvasive imaging of tau proteins 

would aid the discovery of its role in AD and frontotemporal lobar degeneration (Villemagne 

& Okamura, 2014). New discoveries suggest that tau and amyloid lesions appear 

independently, although they can also have a common upstream and/or a synergistic 

toxicity depending on certain conditions such as in young, elderly people or early-, late-onset 

AD. Another recent study described, without taking into account any a priori clinical 

diagnostic knowledge or any biomarker cutoff, the sequence of biomarker changes with the 

conversion from healthy population to MCI and AD. The first change occurred in CSF 

markers, beginning with changes in total tau protein, then phosphorylated tau, followed by 

amyloid β1-42, followed by changes in the rate of brain atrophy and cognitive deficits and 

finally a change in brain volume. However, the sequence of CSF biomarker changes is 

inverted for carriers of one or more APOE-4 genetic alleles or that have a certain amount of 

CSF amyloid markers (Young et al., 2014). 

 

1.1.2. Mild Cognitive impairment and Subtypes of Alzheimer’s disease 
 

The exact cause of Alzheimer’s disease still remains unclear, but, in addition to age, multiple 

other factors including genes and environment (Mayeux & Stern, 2012), gender and 

education level have been shown to influence disease onset and progression (Ganguli et al., 

1991; Y. Stern, Gurland, Tatemichi, Wilder, & Mayeux, 2013; Zhang et al., 1990). Recently, 
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research has focused on a stage at risk for AD, called Mild Cognitive Impairment (MCI). It 

can be considered at a stage of evolving to  AD, as the conversion rate of MCI to AD lies 

between 6 and 25% (Petersen, 2004a). There is a strong interest in finding the earliest 

biomarker of the MCI in order to develop therapeutic intervention and disease managment 

(Apostolova & Thompson, 2008). MCI defines a state of individuals who manifest cognitive 

decline and/or subjective cognitive complaints, but who are neither heathy aged nor 

demented. This is a heterogeneous clinical condition, with various possible aetiologies and 

cognitive profiles: with memory impairement or with single nonmemory or even with 

multiple cognitive domains. They refer to people suspected of having AD, but who do not 

fulfil all the described characteristics (Winblad et al., 2004). They can have memory 

symptoms not specific to prodromal AD or they can be biomarker negative (Dubois et al., 

2010).  

The stages of progression to AD, defined by the National Institute on Aging-Alzheimer’s 

Association (NIA-AA) in 2012, were described as a continuum in time, from preclinical, MCI 

to dementia (Hyman et al., 2012). The International Working Group for New Research 

Criteria for the Diagnosis of AD has defined a new lexicon for AD: Prodromal AD  is 

characterized by episodic memory impairment of  hippocampal type (i.e. verbal free recall 

deficit) and CSF biomarker or imaging evidence, without any impairment in daily living; AD 

dementia is defined by cognitive symptoms with deficits in episodic memory impairment and 

at least one other cognitive domain, that interfere with social functioning and daily living 

activities. There are also different variants of AD phenotypes: Typical AD (Figure 3) is 

defined by progressive episodic memory impairment associated or accompanied by other 

cognitive impairments, neuropsychiatric changes and the presence of in vivo biomarkers of 

AD pathology;  Atypical AD refers to patients showing in vivo biomarkers specific to AD but 
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with other clinical symptoms than typical AD. These cases can refer to logopenic variant of 

primary progressive aphasia with verbal short-term memory deficit and anomia. Frontal AD 

refers to individuals with deficits in executive functions and posterior cortical atrophy, to 

individuals with complex visuo-spatial deficits (Figure 3). The clinical features of each of 

these above described groups are predicted by the regional distribution of pathology in their 

brains as well as by genetic factors (Dubois et al., 2010; Warren, Fletcher, & Golden, 2012). 

In another study, AD was classified by limbic predominant and hippocampal sparing cases, 

characterized by the different location of neurofibrillary tangles (NFT) and atrophy in the 

brain. NFT are more present in the hippocampus than in cortical areas in the first case and 

vice versa in the second case. The hippocampal sparing cases had also less hippocampal 

atrophy, were younger and included more women than the other group (Murray et al., 

2011).  
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Figure 3. Schema of (a) the typical and (b-d) atypical AD (i.e. Frontal AD, logopenic variant primary 
progressive aphasia and posterior cortical atrophy) and the associated cognitive deficit compared 
with healthy age-matched controls (indicated by dotted lines). The radius (representing percentile 
scores) is shorter for more loss of function. Cognitive deficits are associated with specific brain regions 
(with the same color), but are not always related to the AD phenotype (Warren et al., 2012). 

 

 

Mixed AD refers to a full typical AD diagnosis, but with other in vivo evidence of comorbid 

disorders such as cerebrovascular or Lewy Body diseases.  Preclinical states of AD refer to 

stages of AD pathology, with brain lesions, but without any cognitive changes. These are 

often defined post-mortem but can also refer to living patients: notably those with 

presymptomatic AD that include individuals with AD monogenic mutations or asymptomatic 

at-risk for AD, and those with in-vivo biomarkers of AD, but with no evidence that predicts 

AD development.  
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1.1.3. Inter-individual differences in Mild Cognitive Impairment and 
Alzheimer’s disease 
 

There are a lot of debates on classifications of individuals with MCI because of the 

heterogeneity of this population. Indeed, persons with MCI can convert to AD, can stay 

stable or can recover (Winblad et al., 2004).  

In addition, beyond the brain decline commonly described in AD, clinical evidence shows 

inter-individual differences between observed brain pathology and cognition. Different 

patients with the same level of AD brain pathology can be at high or low risk of MCI 

depending on genotype, cognitive reserve or life style (Jack et al., 2013). 

The multifaceted nature of AD can lead to wide inter-individual differences in disease 

manifestation. The lack of understanding of phenotypic diversity in AD also arises from the 

limited knowledge of the anatomo-functional network of memory and learning in the 

healthy brain, but also from the difficulty in understanding the integration of different levels 

of network organization (i.e. genes, neurons, synapses, anatomical regions, functions, and 

physiology) and in inclusion of other information such as neuropsychiatric characteristics 

(e.g. depression, apathy, anxiety and sleep disturbance), personal history, information about 

general health or subjective cognitive complaints in a coherent model (Belleville, Fouquet, 

Duchesne, Collins, & Hudon, 2014; Lebedeva et al., 2014; Winblad et al., 2004). Diagnostic 

error can also come from the main emphasis on memory to assess the onset of dementia 

(Warren et al., 2012).  

 

In this context, other factors, such as personality traits, can be very informative markers of 

early disease stage. It is known that personality can affect cognition, behavioral and 
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psychiatric symptoms and ways to cope with difficulty, which could help to manage the 

disease manifestations and to alleviate the related burden (Donati et al., 2013; von Gunten, 

Pocnet, & Rossier, 2009). The concept of personality will be explained in more detail in the 

next chapters.  
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1.2. Personality and depression/anxiety effects on cognition 

 
1.2.1. Personality definition and measure 

 

Personality is defined as a long-tem, stable, individual characteristic resulting from the co-

adaptation between emotion and cognitive information processing. To investigate 

personality using objective measure, different models exist, but here I focused on a model 

that has been constructed based on a factorial analysis of language samples and 

psychological tests. It is structured in five orthogonal personality dimensions and is called 

the “Big Five” model. The dimensions of that model are well concordant with other existing 

models of personality, for example with the P-E-N three factors model from Eysenck, and 

have a robust stability in time in adults. They also remain stable between self and external 

rating. The labels of these dimensions or domains can differ, but they generally refer to traits 

of Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. To better 

explain inter-individual variability, 6 facets subdivide each of those five dimensions  

(Goldberg & Rosolack, 1994).  Neuroticism is related to the general tendency to feel distress 

or a negative affect such as anger, anxiety, envy, guilt and a depressed mood. The level of 

neuroticism is based on a continuous scale. The two extremes of this scale represent 

emotional stability against a low control of impulse in stressful situations and may also be 

linked to risks of psychiatric problems. The depression facet of neuroticism measures the 

tendency to feel sadness, guilt, despondency and loneliness. Extraversion refers to a 

tendency towards sociability and liveliness, openness, to a tendency to be open to new 

experiences, agreeableness, to be cooperative, altruistic and trusting, and 

conscientiousness, to be careful, dutiful and responsible () (P. Costa & MacCrae, 1992).  
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The five personality traits can be measured with the Revised NEO Personality inventory 

(Neo-Pi-R). They are hierarchically organized in five domains containing six facets (Figure 4)  

(Bienvenu et al., 2004a). This questionnaire contains 240 items and is assessed by a five-level 

scale from “strong disagreement” to “strong agreement”. This is used as a hetero-evaluation 

by close proxy. A high score on one domain means a higher probability of expressing that 

trait relative to a normal distribution. This test is known to have a very good test-retest 

reliability, and internal/external validity for long periods and with age (P. Costa & MacCrae, 

1992; Roepke, McAdams, Lindamer, Patterson, & Jeste, 2001). 

 

 

 

 

 

 

Figure 4. NEO Personality inventory (NEO-Pi-R) is hierarchical construct composed of 5 domains and 6 
facets in each domain. 

 

 

1.2.2. Personality and cognition/memory 
 

A personality trait or temperament generally refers to non-cognitive component (or “what 

we generally do”) and can be measured with self-report inventories whereas intelligence is 

mainly measured with objective tests (or “what we can do”). However, some psychologists 

such as Cattell and Eysenck have tried to assess intelligence as a cognitive component of 

personality. Further, in a meta-analysis, crystallized intelligence, or acquired knowledge, was 

correlated with neuroticism, extraversion and openness, but cognitive speed related to fluid 
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intelligence was only correlated with extraversion (Ackerman & Heggestad, 1997). In a study 

by Chamorro et al., 2006 (Chamorro-premuzic & Furnham, 2006), “measured intelligence”  

and “actual intelligence” slightly differed with the former referring to effects of personality 

on cognitive test performance; for example anxiety could impair cognitive performance. The 

latter referred not only to the effect of personality on intelligence, but also to the inverse 

relation. For example, the positive link between openness and crystallized intelligence can 

be explained by the fact that more intellectual curiosity is associated with higher cognitive 

experience and the acquisition of more knowledge. However, it is not clear which is the 

cause and the consequence, as it could be the acquisition of more knowledge that has an 

impact on openness. 

Personality has also been related to choice of learning strategy such as task or effort/ego-

orientated-learning and to cognitive styles such as rumination (i.e. thinking about an idea 

such as causes, meanings and consequences of symptoms in a sustained and repetitive way) 

(E. Roberts, Gilboa, & Gotlib, 1998; Vermetten, Lodewijks, & Vermunt, 2001). Personality has 

been shown to affect efficacy of working memory training ( Chamorro-premuzic & Furnham, 

2006b , Studer-Luethi, Jaeggi, Buschkuehl, & Perrig, 2012), emotional memory (Richards & 

Gross, 2006), prospective memory (Uttl, White, Wong Gonzalez, McDouall, & Leonard, 2013) 

and subjective complaints of memory in elderly subjects (Merema, Speelman, Foster, & 

Kaczmarek, 2012; Naghavi, Lind, Nilsson, Adolfsson, & Nyberg, 2009a).  
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1.2.3. Neurobiology of personality 
 

The five dimensions of personality have been studied as biological substrates at different 

levels, from molecular genetics to psychophysiology and brain systems (Deyoung, Hirsh, 

Shane, & Papademetris, 2010). Personality is thought to be around 50% determined by 

genetics with gene-environment interaction or individual temporal environment having 

equal influence (Loehlin, McCrae, Costa, & John, 1998). Heritability of the anxious trait is 

between 40 and 50% (Montag, Reuter, Jurkiewicz, Markett, & Panksepp, 2013). 

A neuroimaging study (Deyoung et al., 2010) correlated the five domains of personality with 

Gray Matter Volume (GMV) in 116 healthy adults. As personality reveals frequent behavioral 

tendencies that could be related to the regular functioning of specific brain systems, 

personality could be anatomically associated with those systems. They found that 

neuroticism was associated with volumes of frontal and temporal brain regions (i.e the right 

dorsomedial pre-frontal cortex, the left mid temporal lobe, the posterior hippocampus, the 

globus pallidus and the bilateral subthalamic nuclei) regions involved in processing of 

negative and threatening information. Extraversion was associated with the medial 

orbitofrontal cortex, which is involved in reward processing and agreeableness, along with 

the posterior cingulate cortex and superior temporal cortex, which are concerned with the 

processing of mental states of others. Finally, conscientiousness was positively associated 

with the lateral pre-frontal cortex and negatively with inferior occipito-temporal cortex and 

the lateral prefrontal cortex, involved in control of behavior (Deyoung et al., 2010). 

 In another study, neuroticism was also associated with the volume of frontal and temporal 

brain regions (Montag et al., 2013). The prefrontal cortex is related to top-down regulation 

of anxiety and rumination, meaning related to high-level cognitive interpretation or 
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reappraisal of an anxious stimulus. In contrast, perception of anxiety and emotional affects is 

associated with low-level processes that generate quick, bottom-up affective analysis of the 

stimulus in the amygdale or the hippocampus (Ochsner et al., 2010). The orbitofrontal cortex 

is relatd to reward hedonic processing. In addition, a negative association has been found 

between neuroticism and fractional anisotropy (measuring fiber density using Diffusion 

Tensor Imaging (DTI), cf. more details in the appendix, chapter 6.3. “Neuroimaging”) in white 

matter fibre tracts of the uncinante fasciculus, which connects the ventral medial prefrontal 

cortex and the amygdale. It is speculated that this connection is involved in top down 

processes for emotion regulation (Montag et al., 2013; Ochsner et al., 2004; Zuurbier, 

Nikolova, Åhs, & Hariri, 2013). In the review of Montag et al., 2013 (Montag et al., 2013), it is 

highlighted that the associations between brain regions and personality are only 

correlations. In general, it is not clear which factor is the cause and which is the consequence 

and not all brain changes are related to personality. In addition, in a study, a distinction was 

also made between the trait of anxiety, related to neuroticism, and the state or behaviour of 

anxiety. Anxiety is a response to an uncertain environment related to self-safety.  State and 

trait differ in the fact that the first is more transient than the second, though an overlap can 

exist. Indeed, repetition of the same state over time correlates with trait, indicating that a 

transient state can become a trait if it is maintainated over time. It is also argued that 

anatomical brain measures may be better suited to testing the effect of personality trait, 

whereas functional brain measure may be better to test the effect of states (Montag et al., 

2013). 

Openness, associated with intellectual engagement and imagination, was shown to be 

related to a decreased annual rate of GMV over the course 6 years, in the right inferior 

parietal lobules, regions involved in working memory and creativity (Taki et al., 2013). 
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In Gray’s theory, introverts are more sensitive to punishment and to the frustration coming 

from no reward than extraverts (Gray, 1970). In Eyeseck’s model, introverts, who experience 

lower arousal, are more efficient than extraverts in an environment with low arousal 

potential (Eysenck HJ, 1967). In the brain, introversion is thought to involve inhibitory 

systems called the “Ascending Reticular Activating System” that includes the orbital frontal 

cortex, the medial septal area and the hippocampus (Gray, 1970). A recent study confirmed 

that a high extraversion score was associated with a greater change in BOLD MRI signal, or 

greater cortical arousal, in the dorsolateral prefrontal cortex and the anterior cingulate 

cortex in a task demanding attention (Kumari, Ffytche, Williams, & Gray, 2004). Inter-

individual differences in extraversion are explained by the sensitivity to positive incentive 

and by motivation for behavioural approach. Processing of the saliency of incentive 

information depends on the medial prefrontal cortex, the amygdala and the hippocampus, 

whereas the processing of stimuli intensity promoting motivation would depend on 

dopaminergic structures such as the nucleus accumbens, the ventral pallidum and the 

ventral tegmental area. Finally, the generation of motivation to move is associated with the 

motor system (Depue & Collins, 1999). In a recent study, the magnitude of brain activation 

related to the reward system in the left medial orbitofrontal cortex and the right nucleus 

accumbens was predicted by both extraversion and presence of a specific allele on a 

dopaminergic receptor gene (M. Cohen, Young, Baek, Kessler, & Ranganath, 2005). 

It has also been shown that the revised 7 factors measuring personality temperaments and 

characters by Cloninger’s Tridimensional Personality Questionnaire (TPQ) were  

independently heritable and dependant on monoaminergic pathways (Cloninger, 1986; 

Gillespie, Cloninger, Heath, & Martin, 2003). For example, novelty-seeking, a tendency to be 

explorative and more sensitive to novel and rewarded stimuli, is linked to dopaminergic 
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neurotransmission and dopaminergic genes (Benjamin et al., 1996). People with a high 

novelty seeking trait and low harm avoidance traits, as measured by the Clooniger’s 

temperament test, showed a greater sensitivity in the hippocampal region upon the 

presentation of novel stimuli, which is the inverse for the opposite personality profile 

(Naghavi et al., 2009).  

Personality trait related to anxiety has also been associated with genetics. For example, 

genetic marker of serotonin neurotransmitter could contribute to explain 3 to 4% of the 

anxiety-related personality trait (K. Lesch et al., 1996; Sen, Burmeister, & Ghosh, 2004). 

 

 

1.2.4. Depressive/anxiety symptoms related to learning and memory 
 

Some aspects of memory and leaning are affected by a subset of depressive patients (Burt, 

Zembar, & Niederehe, 1995), showing the diversity of mechanisms that can appear. 

However, in different studies, depressed patients improved in learning and memory 

performance after drug treatment (Weingartner HG, 1981).  

Depressive symptoms are associated with less efficient processing in effortful learning tasks. 

This can be explained by a diminished level of arousal and concentration, by negative 

ruminative thoughts,  by deficit of control and maintenance of attention on relevant aspects 

and by a deficit to remove irrelevant information from their working memory (Channon, 

1996; R. Cohen, Ph, Lohr, Paul, & Boland, 2001; Hammar et al., 2011). Depression also leads 

to an impairment in autobiographical memory, more particularly for positive memories 

(Brittlebank et al., 1993). Depression symptoms also have an impact on cognitive emotion 

regulation strategy such as rumination, positive reappraisal, self-blame or catastrophizing 
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(Garnefski & Kraaij, 2006). In the elderly, the level of depression is correlated with memory 

complaints but not with performance (Robert L. Kahn, PhD; Steven H. Zarit, PhD; Nancy M. 

Hilbert, MA; George Niederehe, 1975). Stress has also been associated with increased 

learning of stimuli with positive valence (Lighthall, Gorlick, Schoeke, Frank, & Mather, 2013). 

 

 

1.2.5. Personality and non-cognitive factors related to Mild Cognitive 
Impairment and Alzheimer’s disease 
 

The actual debate on personality and AD is on whether personality change represents a loss 

or accentuation of traits or whether a “universal Alzheimer personality” exists. Personality is 

defined as a stable characteristic of a person when reacting to different situations, such as 

how they cope with adversities. However, high score of neuroticism is associated with higher 

risk of experiencing stressful and negative events, the occurrence of psychiatric problems 

such as depression and anxiety disorders, comorbidity with other mental disorders, a lower 

quality of life, less social support and a shorter life expectancy (Lahey, 2009). Even if a 

personality represents a more stable concept than a state, which is temporary and 

fluctuating, there is still controversy over their relation with psychopathologies. A decreasing 

enthusiasm and energy are consistently found in AD (Montag et al., 2013; Robins Wahlin & 

Byrne, 2011; von Gunten et al., 2009). It has also been shown that personality, more 

particularly an increase in neuroticism and a decrease in conscientiousness, can discriminate 

between healthy individuals and those with a very mild AD dementia (Robins Wahlin & 

Byrne, 2011). Low level of conscientiousness can also predict MCI and AD (R S Wilson, 

Schneider, & Boyle, 2007). In other studies, neuroticism has also been shown to be 
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predictive of cognitive impairment and AD (Balsis et al., 2005; Duchek et al., 2007; Wilson et 

al., 2004; 2006b; 2011; 2012). A 12 years follow-up study (Kuzma et al. (2011) showed that a 

high score of neuroticism increased the probability of cognitive decline more than two-fold. 

Semantic memory or the feeling of self-identity may be impaired between mild and severe 

AD, because past personality profile seems to be more reported by patients when asked to 

describe their current one (Donati et al., 2013). Investigation of personality by the 

surrounding of the patient seems thus a more objective measure. 

Other non-cognitive factors such as behavioral and psychological symptoms (BPS) referring 

to affective, behavioural or psychotic disorders can also be part of some personality 

dimensions, but the relation between them is not fully established. However, a change of 

personality and BPS are co-determinants in the prediction of a future decline in MCI (Rouch 

et al., 2014; von Gunten et al., 2009). In addition, the inclusion of neuropsychiatric 

symptoms such as depression, apathy, anxiety, irritability and sleep disturbance can also 

increase the prediction of conversion from MCI to AD (Belleville et al., 2014) and could 

represent a higher risk for rapid cognitive deterioration and institutionalization. Some 

studies have also shown associations between depression and a higher risk of developing 

cognitive impairment and AD (Chung & Cummings, 2000; Jones, Fitzpatrick, Breitner, & 

Dekosky, 2012; Vicini Chilovi et al., 2009; von Gunten et al., 2009). For example, 85% of 

amnesic MCI and 43% of persons with MCI or dementia manifest neuropsychiatric symptoms 

with depression and then apathy or anxiety (Jones et al., 2012a; Rozzini et al., 2008). Other 

studies suggest that in late-life, depression may be an early manifestation of dementia 

rather than increasing risk for dementia (Scale, National, & Discharge, 2011). However, it is 

not clear whether BPS are persistent changes of personality or ephemeral manifestations. 

One study suggested the existence of a spectrum between personality and psychopathology 
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in which all phenotypes/behaviours could be explained by external factors such as genes and 

environment (Krueger et al., 2002).  

 

1.3. Open questions 
 

Personality traits are clinical predictors of Alzheimer’s disease in the same way as cognitive 

impairment. The identification of biological markers associated with personality in Mild 

Cognitive Impairment (MCI) would advance the early detection and understanding of AD 

mechanisms. The aim of the first project (Figure 5) is to quantify the interaction between 

personality traits, state of cognitive impairment and MRI-based anatomical biomarkers 

within the Medial Temporal Lobe (MTL). State refers to temporary feelings, but trait, to 

more stable characteristic. This will be investigated in chapter 1.4 entitled “Experiment 1 - 

Traits of neuroticism, depression and anxiety exacerbate state of cognitive impairment and 

hippocampal vulnerability to Alzheimer’s disease”.  

 

 

 
Part 1 

Personality effect  in Mild 
Cognitive Impairement 

Structural MRI 

Classical Multivariate 

Patients 

Figure 5. Plan of the first part  of the thesis. The raws describe the 
research topic, the neuroimaging MRI technique, the statistical 
method used and the population studied. MRI: Magnetic 
Resonance Imaging. 
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1.4. Experiment 1 - Traits of neuroticism, depression and anxiety 
exacerbate state of cognitive impairment and hippocampal 
vulnerability to Alzheimer’s disease 

 

1.4.1. Objective 

 

Translational research in Alzheimer’s disease (AD) relied mostly on tests based on 

assessment of cognitive state for the identification of individuals at risk - Mild Cognitive 

Impairments (MCI) - and for the detection of biomarkers - Medial temporal Lobe (MTL) 

atrophy (Apostolova & Thompson, 2008b; Dubois et al., 2010; Perrin, Fagan, & Holtzman, 

2009b; Petersen, 2004b; Scheltens et al., 2002; Winblad et al., 2004). Looking beyond the 

unidimensional concept of MCI, current research aims to identify other important factors 

(genetic, environmental…) and to model their interactions for explaining disease 

progression. The main key challenge for improving the prognostic accuracy of the current 

tests is explaining the high degree of individual variability in MTL atrophy not associated with 

cognitive decline. Considering that in AD, personality changes, perhaps more than cognitive 

decline, are also salient feature of the disease (Donati et al., 2013; Dubois et al., 2010; 

Petersen, 2004b; Robins Wahlin & Byrne, 2011; Terracciano et al., 2013; von Gunten et al., 

2009; R S Wilson et al., 2007; Robert S Wilson et al., 2006; Winblad et al., 2004), our study 

aims to test whether pre-clinical and normal facets of personality might explain individual 

differences within MTL. Interest in personality traits and AD  in previous studies (Kuzma, 

Sattler, Toro, Schönknecht, & Schröder, 2011b; R S Wilson et al., 2004; Robert S Wilson et al., 

2011) were motivated by the fact that personality traits are stable in adulthood (Hampson & 

Goldberg, 2006; B. W. Roberts & DelVecchio, 2000) with genetic underpinnings (Jönsson et 

al., 2003; K.-P. Lesch et al., 1996; Van Gestel & Van Broeckhoven, 2003) and predictive of 
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late life events such as  cognitive dysfunction (R S Wilson et al., 2007), psychiatric symptoms 

(Lahey, 2009). However, the influence of personality traits on disease causation and 

biological manifestations  still remains unclear (Apostolova & Thompson, 2008; Duron et al., 

2014; Terracciano et al., 2013; Robert S Wilson et al., 2006, 2011). To quantify MTL atrophy, 

we used structural magnetic resonance imaging (sMRI) and the derived measure of gray 

matter volume (GMV) and gray matter mean diffusivity (GMMD). GMMD is considered as 

more subtle markers of brain tissue properties related mainly to water diffusivity in MCI 

(Matthias et al., 2007). 

We used a multivariate strategy (Kawasaki et al., 2007; Kherif et al., 2002) to provide a 

comprehensive explanation of the association between personality traits (P. Costa & 

MacCrae, 1992), cognitive state and brain anatomy. The method (Figure 6C) is data-driven, 

unbiased, take into accounts the multidimensional and hierarchical nature of personality 

traits at domain level (neuroticism, extraversion, openness, agreeableness and 

conscientiousness) and facet level (P. Costa & MacCrae, 1992) (Figure 6A) and used 

anatomical constraint to decompose the different sources of variability (Figure 6B).  

 

We hypothesized first that cognitive state (i.e. Mild Cognitive Impairment (MCI) vs No 

Cognitive impairment (NCI)) would explain differences in the MTL for both GMV and GMMD. 

Our main hypothesis is that reduced set of personality traits with a precise spatial effect 

along known functional organization within the MTL (e.g. gradient along the longitudinal 

axis) (Bryan a. Strange, Witter, Lein, & Moser, 2014) would explain the anatomical inter-

individual variance between the two groups not already explained by cognitive state. We 

predict that neuroticism and the underlying facets -anxiety, depression and stress- have the 

most contributive effect in the disease progression models.    
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1.4.2. Materials and methods 
 

Neuropsychological, psychological and psychiatric measures 

 

Participants. The study included older adults selected from a longitudinal cohort recruited 

from the psychogeriatric and geriatric memory clinics of the Lausanne University hospital. 

The local ethics committee gave permission for the research protocol and all participants 

gave written informed consent before taking part in the study. All participants completed 

comprehensive clinical, psychiatric and cognitive assessments with a psychologist or 

neuropsychologist before a session of MRI scanning. Participants with psychiatric or 

neurological CNS disorders (stroke, tumor), dementia and alcohol or drug abuse were 

excluded. The 97 participants included in the study were divided in two groups, MCI and NCI, 

according to the conventional Winblad’s criteria (Winblad et al., 2004), in which MCI is 

defined as not normal and do not fulfill the diagnostic criteria for dementia with Clinical 

Dementia Rating scale (CDR) (Morris, 1993)  score  being 0.5. 29 participants were MCI (age 

mean: 68 years, SD: 8 years, Male:Female (8:21), MMSE: 27.7±1/ range [25-29], CDR=0.5) of 

whom 23 were MCI with amnesic syndrome (Winblad et al., 2004),  and 68 were NCI (age 

mean: 66 years, SD: 6 years, Male:Female (18:50), MMSE: 29.1±1/range [26-30], CDR=0). 

MMSE measures the cognitive state (Folstein, 1983). The cued-recall RI-48-item task was 

also used to test episodic memory (Buschke H, Sliwinski MJ, Kulansky G, 1997). 

 

Personality and neuropsychological/psychiatric assessments. Aiming to obtain reliable 

measures of current personality profile, the relatives of participants we asked to complete 

the 240-items Neo-Pi-R personality questionnaire (P. Costa & MacCrae, 1992). This 
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questionnaire, rated on a 5-point agreement scale, is based on the Five-Factor Model of 

personality derived from statistical factorial analysis of various personality inventories. It is 

hierarchically divided into five broad domains: neuroticism (a tendency to feel negative 

affects and to be susceptible to psychological distress), extraversion (a tendency to be 

sociable and lively), openness (a tendency to be open to new experiences), agreeableness (a 

tendency to be cooperative, altruistic and trusting), and conscientiousness, (a tendency to 

be careful, dutiful and responsible). Each domain contains six facets (Figure 6A). The facets 

of the neuroticism domain are anxiety, angry hostility, depression, self-consciousness, 

impulsiveness, and vulnerability to stress. The test NEO-PI-R has a high test-retest reliability 

in the elderly (P. Costa & MacCrae, 1992), and high inter-rater reliability in patients with AD 

(Strauss M, Pasupathi M, 1993). 

Internal reliability of the NEO-PI-R scores was estimated with Cronbach’s alpha.  In our 

sample the values ranged from 0.63 to 0.68 for the NEO-PI-R domains and from 0.79 to 0.87 

for the facets of  neuroticism (a nominal value of 0.7 denotes internal consistency (Boyle J 

Gregory, Matthews Gerald, 2008)). TPQ-Novelty Seeking score was also calculated with a 

weighted combination of NEO-FFI-R five personality traits. The scale is -0.09*neuroticism + 

0.32*extraversion + 0.17*openness - 0.1*agreeableness - 0.6*conscientiousness. High score 

of novelty-seeking mean high excitement by novel stimuli (P. Costa & MacCrae, 1992; 

Jonathan Benjamin, Lin Li, Chavis Patterson, Benjamin D. Greenberg, Dennis L. Murphy, 

1996). To measure anxiety and depressive symptoms, the Hospital Anxiety and Depression 

Scale (HADS-A and HADS-D respectively) was used (Zigmond, AS, Snaith, 1983) . 
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Figure 7. Design matrix including the 
factor of cognitive state (MCI/NCI), the 
confounding factors age and Total 
Intracranial Volume (TIV) and the five 
personality trait scores as regressors 
for each group. The first two columns 
represent subject’s scans. 

MRI sequences  

 

Data was acquired using whole-brain MRI T1-weighted (T1w) structural images (sMRI 

protocol-1mm isotropic resolution with a matrix of 256*256 voxels, TR 2.3s, TE 2.91s) and 

diffusion weighted MR images (DWI) (1.8x1.8x2 mm3 resolution, with a matrix of 128x128 

voxels, 30 directions, high b of 1000s/mm2) on a 3T MRI scanner (Siemens Trio).  

 

Univariate statistical analysis: Voxel-based Quantification 

 

We first conducted an univariate regression analysis to test for differences in the brain 

measures (GMV and GMMD) between MCI and NCI groups. The model included the 

cognitive state stratification factor and age and total intracranial volume (TIV) as confound 

variables. In a second model, the personality scores were included as parametric modulators 

of each group to test the interaction of cognitive state with personality traits (Figure 7). 
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Multivariate Linear analysis of Medial Temporal Lobe abnormality associated with 

personality   

 

Secondly, we used a multivariate model (Kherif et al., 2002) to address the question 

whether, beyond cognitive factors, there are specific personality profiles that can explain 

anatomical differences between MCI and NCI in the MTL. In the literature, multivariate 

factorial analysis (MFA) has often been used in studies of personality to extract significant 

factorial structures (P. Costa & MacCrae, 1992; Goldberg, 1990; Roepke et al., 2001). We 

used a variant, the multivariate linear method (MLM), which is similar to standard MFA, but 

it additionally integrates anatomical information together with the cognitive variables and 

confounds. The MLM procedure is based on singular value decomposition (SVD) which 

summarizes covariance between the anatomical data and personality scores. The output of 

the MLM is pairs of spatially distributed brain patterns associated with a set of linear 

combinations of personality traits that are maximally correlated with brain patterns. The 

significance of the personality profiles is assessed with a multivariate F-test (based on partial 

averages of the eigenvalues) that defines the spaces of interest for the five personality 

domains, beyond those of the cognitive and other confounding factors. Post-hoc univariate 

analyses were then performed with identified profiles to determine their mapping at the 

voxel level. Note that the proper test is based on multivariate analysis (Kherif et al., 2002). In 

addition, we performed a MLM analyses at the facet level within the whole search volume of 

interest.  

The detailed mathematical formula of MLM method can be found in articles from Kherif et 

al.  (Kherif et al., 2002, and Worsley et al., 1997) and in appendix in the chapter “6.5. 

Multivariate Linear Method”. The number of significant personality profiles is assessed with 

a multivariate F-test (based on partial average of the eigenvalues).  
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In our case of multi-dimensional predictors (with many personality traits and many voxels in 

the MTL), the usage of MLM is particularly suited, not only because of the high-dimensional 

data, but also because the analysis is performed on effect of interest only (i.e. personality 

model) and the interpretation is easier. It is also faster to build a concise model that includes 

the most contributive predictors than doing multiple univariate analysis. As a post-hoc test, 

there is the possibility to apply a standard univariate, voxel-wise, statistical analysis of the 

effect of the extracted particular personality profile in the MTL. Here, instead of only testing 

where MCI shows more atrophy associated with each personality scores compared to NCI 

(e.g. with contrast 1 for NCI and -1 for MCI for neuroticism score), we inserted the weight 

extracted from the MLM. 

 

1.4.3. Results 

Demographic, personality traits and neuropsychological/psychiatric results 

 

In summary (see details in table 1), there were no statistical differences between MCI and 

NCI groups for all demographic variables (age, gender). As expected, the MMSE and CDR 

scores were significantly different between the two groups although the mean MMSE score 

was high in the MCI group. There were also no statistical differences in HADS-D for 

depressive symptom and HADS-A for anxiety symptom scores. The memory scores measured 

with the RI-48 memory item task were significantly lower in the MCI group. Neuroticism trait 

scores were also significantly higher in MCI patients (Table 1). 

 Instead of testing each personality trait separately, we did a multiple regression analysis 

with all traits scores in one model to take into account correlation between traot scores. In 

this case, the analysis revealed that personality could significantly explain 27.8% of the 
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variability (R2=0.278) in cognitive state (p<0.001, F=7.02, df=5, n=97). The significant 

domains were agreeableness (p=0.04, Beta=-0.21, T=-2.06), conscientiousness (p<0.001, 

Beta=-0.43, T=-4.1), but not neuroticism (p=0.19, Beta=-0.14, T0-1.32), extraversion (p=0.28, 

Beta=-0.11, T=-1.08) or openness (p=0.065, Beta=-0.05, T=-0.44). 

 

Table 1. Demographic variables and neuropsychological scores 

  

 

NCI MCI T- or χ2-statistic (df) P Value 

(mean±SD) (mean±SD)  

Demographic variables 

n 68 29    

CDR 0 0.5    

MMSE 29.1±1 27.7±1 5.4  (95) <0.001 

Age 66±6 68 ±8 -1.6 (95) 0.1 

Gender (F/M) 0.7 0.7 0.01 (95) 0.9 

Education  level   2 2 0.4 (2) 0.8 

Personality: Domain  scores (NEO PI-R)      

Neuroticism  77.6±23 88.8±27 -2 (95) 0.04 

Extraversion 105.7±18 94.72±17 2.7 (95) 0.007 

Openness 109.9±19 98.9±16 2.6 (95) 0.01 

Agreeableness 135.2±17 123.2±17 3 (95) 0.003 

Conscientiousness 134.5±19 111.5±22 5 (95) <0.001 

Other neuropsychological scores 

Cued recall (RI-48)  29.2±4 27.27 -40.83 <0.001 

Depression score (HADS-D) 2.1±2 3.3±3 -1.8 (95) 0.07 

Anxiety score (HADS-A) 4.7±3 5±3 -0.3 (95) 0.7 

Table 1. Demographic characteristics and neuropsychological score for MCI and NCI.  
Score differences between groups were tested with an independent Student T-test. Differences in 
gender and education level were tested a Pearson Chi-square test. Level 1, 2 and 3 of education 
corresponds to 11, 12-13 and > 13 years of education. Df: Degree of freedom. 
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Univariate analysis of brain abnormality associated with MCI  

 

Using a whole-brain family-wise error correction, we found no significant differences in 

GMV. However, with the same stringent level of correction for multiple comparisons, GMMD 

was significantly different between the two groups in several regions. In the MTL,  local 

maxima for these differences (Table 2A, Figure 8) were located in both parahippocampal and 

hippocampal sub-regions (cornu ammoni, dentate gyrus and subiculum, according to  

probabilistic cytoarchitectonic map (Eickhoff et al., 2005). At whole brain level, GMMD 

differences were significant in the left middle temporal cortex (Z=5.06, xyz = [-57,-13.5,-3]), 

right superior temporal cortex (Z=4.74, xyz = [54,0,-3], Z=3.83, xyz = [-32, -23, -5]), left insula 

(Z=4.84, xyz = [-41,12,-14]; Z=4.83, xyz = [-41,3,-9]), left lingual cortex (Z=4.65, xyz = [-12,-

36,0]) and right postcentral gyrus (Z=4.79, xyz = [53,-24,56]). Inclusion of education level and 

gender did not add contributive information from the brain measures. 

 

 

Figure 8. Statistical parametric map for the comparison between MCI and NCI groups for GMMD, 
with a statistical threshold of p<0.05 corrected. GMMD = Gray Matter Mean Diffusivity. 
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Multivariate analysis of Medial Temporal Lobe abnormality associated with personality 

profile at domain level in MCI 

 

The multivariate analysis of GMV showed that there was a significant contribution of 

personality domains to alterations of brain structure. The first component identified, related 

to personality traits (Figure 9A), was significant (F=3.77, p<e-5) and explained 54.39% of the 

between group covariance in the MTL (Figure 9B). Neuroticism and agreeableness were 

identified as the main domains contributing to this component. No other regions showed 

significant differences between the two groups. 

Post-hoc univariate regression analyses of GMV were performed with the first component of 

the MLM analysis at the domain level as predictor. This revealed significant structural 

differences located in both parahippocampal cortices (in entorhinal cortex and subiculum) 

(Table 2B). 

MLM analysis of GMMD also showed a significant contribution of personality traits (Figure 

9C) in the first component (F=5.32, p<e-1), which explained 69.24% of the between group 

covariance in the search volume of interest (Figure 9D). The domains neuroticism and 

agreeableness had more weight than the three other and a distributed spatial pattern of 

brain differences was revealed in the right hippocampal and parahippocampal cortices 

(Figure 9D). 

Post-hoc univariate analyses of GMMD with the first component of the MLM analysis 

revealed significant brain differences between MCI and NCI in the right subiculum, cornu 

ammonis, dentate gyrus and in a part of the right hippocampal-amygdala transition area 

(Table 2B). Outside this region, GMMD was also significantly higher in MCI compared to NCI 

in the right inferior temporal cortex (at 2 significant sites:  Z=5.77, xyz = [39,9,-43.5]); Z=4.54, 
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xyz = [61.5,-31.5,-16.5]), the right temporal pole (Z=4.23, xyz = [36,18,-33]), the right 

temporal cortex (at 2 significant sites: Z=4.21, xyz = [46.5,-51,-4.5]; Z=4.12, xyz = [58.5,-9,-

19.5]) and in the right rolandic operculum (Z=4.52, xyz = [52.5,10, 3]).  

 

Multivariate analsis of Medial Temporal Lobe abnormality associated with neuroticism 

profile at facet level in MCI  

 

The multivariate MLM analysis of GMV showed contributions from the neuroticism facets 

profile (Figure 9E) in the MTL region, mainly in the right hemisphere (Figure 9F). The first 

component was significant (F=8.84, p=0) and explained 72.71% of the covariance.  

MLM analysis of GMMD again revealed a significant contribution of personality facets profile 

(Figure 9G) with the first component significant (F=3.52, p<0.0005) explaining 46.72% of the 

variance in the MTL, mainly in the anterior part (Figure 9H). 
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Table 2.  Neuroimaging results 

A. Summary of VBM results 

GMMD: MCI>NCI 

Cluster (Voxels) Region (Label) X  Y  Z  Z statistic  

621  Left hippocampus  -14 -35 2 4.57 
   -29 -27 -11 4.27 
   -15 -39 5 4.17 
   -17 -33 -1 4.07 
  Left parahippocampal   -23 -36 -6 3.72 
96 Left parahippocampal   -23 7 -23 4.26 
   -18 4 -20 4.08 
1645 Right hippocampus  38 -24 -7 3.94 
   30 -6 -14 3.93 
   38 -8 -20 3.85 
   27 -32 -3 3.84 
   17 -33 3 3.77 
  Right parahippocampal cortex  17 -35 -4 3.31 
   33 -21 -24 3.25 
112 Right parahippocampal cortex 27 11 -23 3.77 

B. Post hoc MLM analysis on the five domains of personality 

GMV: Interaction with disease: MCI<NCI  

Cluster  (Voxels) Region (Label) X  Y  Z  Z statistic  

209 Left parahippocampal  -24 -22.5 -22.5 3.98 
77 Right parahippocampal  24 -27 -19.5 3.91 
    24 -31.5 -13.5 3.74 

(GMMD) Interaction  with disease: MCI>NCI  

905 Right hippocampus 15 -30 -3 4.1 
  Right parahippocampal  22.5 -39 -3 4.02 
   28.5 -31.5 -13.5 3.78 
96 Right parahippocampal  30 10.5 -31.5 4.07 
  Right hippocampus 16.5 -31.5 1.5 3.86 
   36 -22.5 -9 3.8 
   22.5 -31.5 3 3.71 
   28.5 -30 -3 3.69 
   15 -27 -6 3.5 
   13.5 -34.5 6 3.35 
90 Right hippocampus 18 -9 -13.5 3.79 
154 Right hippocampus 30 -7.5 -12 3.35 
    28.5 -6 -21 3.33 

Table 2. (A) Significant regions showing greater GMMD in MCI compared to NCI (PFWE<0.05). (B) Post-
hoc univariate analyses of GMMD and GMV with the first component of the MLM analysis (PFWE<0.05, 
with SVC). Coordinates [X, Y, Z] are reported in the Montreal Neurological Institute (MNI) space. 
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In post-hoc analysis at facet level with GMV, the maximal difference in brain structure was 

identified by domain analysis in the left parahippocampal cortex (xyz = [-24, -22.5,-22.5]) 

(Figure 10B) and was dominated by the depression facet (Figure 10A). With GMMD, the 

maximal difference in brain structure was found in the right parahippocampal cortex (xyz = 

[15,-30,-3]) (Figure 10D). The depression facet was the dominant contributor (Figure 10C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  (A) Contrast estimate of the 6 facets of neuroticism associated with (B) the peak maxima 
of the first MLM eigencomponent located in the left parahippocampal cortex (xyz=[-20, -24, -27]) 
(statistical threshold of p<0.05 corrected), for the comparison between MCI and NCI groups in GMV. 
(C) Contrast estimate of the 6 facets of neuroticism associated with (D) the peak maxima for GMMD 
located in the right parahippocampal cortex (xyz=[6, -27, -6]) and the associated contrast. Abbrev: 
Anx=Anxiety, Host= Hostility, Depress= Depression, S-Consc= Self-Conscientiousness, Impuls= 
Impulsiveness, Self-Consciousness, Stress= Vulnerability to stress. Y axis is an arbitrary unit (AU). 
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Personality profile modulates structural brain whithin MCI subtypes 

 

Our MCI sample is heterogeneous and is composed of 12 individuals with amnesic MCI – 

single domain (1D) (i.e. with memory deficit only), 11 with amnesic MCI - multiple domains 

(MD) (i.e. with memory and another cognitive deficit) and 6 with non-amnesic MCI (without 

memory deficits).  

Post-hoc univariate analyses of GMV with the first component of the MLM analysis revealed 

significant brain differences between MCI amnesic (1D and MD) and MCI non-amnesic in the 

right hippocampus (Z=5.41, xyz = [37,-5,-25]) and the in left anterior cingulate gyrus (xyz = 

[Z=5.09, xyz = [-12,39,12] ). The same brain regions were found for the comparisons between 

MCI amnesic 1D and non-amnesic MCI (Right hippocampus: Z=5.41, xyz = [37,-5,-25], left 

cingulate gyrus: Z=5.06, xyz = [-12,39,12]) and also between MCI amnesic MD and non-

amnesic MCI (Right hippocampus: Z=5.42, xyz = [37,-5,-25], left cingulate gyrus: Z=5.08, xyz = 

[-12,39,12]). 

Post-hoc univariate analyses of GMMD with the first component of the MLM analysis 

revealed significant brain differences between MCI amnesic (1D and MD) and MCI non-

amnesic in the right parahippocampal cortex (Z=4.37, xyz = [30,-11.-31]). The same brain 

regions were found for the comparisons between MCI amnesic 1D and non-amnesic MCI 

(Z=4.19, xyz = [31,-11,-31]) and also between MCI amnesic MD and non-amnesic MCI 

(Z=4.23, xyz = [28,-9,-31]). 
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1.4.4. Discussion 
 

Neuropsychological, psychiatric and personality measures  

 

In our study, patients with MCI were comparable to those with No Cognitive Impairment 

(NCI) in terms of demographic information such as age, gender and education level. If those 

factors were significantly different, they could have a confounding effect on cognition (Crum, 

1993) and dementia (Hebert et al., 2003; Mayeux & Stern, 2012; Stern et al., 2013; Zhang et 

al., 1990). MCI differed from NCI in MMSE score and in memory task RI-48.  

All personality traits differed in MCI compared with NCI group. MCI have higher neuroticism 

score, lower extraversion, lower openness, lower agreeableness and lower 

conscientiousness scores. This is in accordance with the view that personality change can 

appear well before cognitive and emotional alteration of dementia (Wahlin et al., 2011). In 

addition, difference in neuroticism trait cannot be confounded with depressive states and 

anxiety symptoms because MCI does not manifest more of those symptoms than the NCI 

group on HADS test. This is in line with a study showing that, after adjusting for depressive 

symptoms, stress proneness related to chronic tendency to feel negative emotions as 

anxiety and depression was associated with 40% higher risk of higher risk of MCI and also 

with a more rapid cognitive decline (R S Wilson et al., 2007). High score of neuroticism is 

often reported to be predictive of cognitive impairment in AD (Kuzma et al., 2011a; R S 

Wilson et al., 2007; Robert S Wilson et al., 2006, 2011) and is related to the occurrence of 

neuropsychiatric problems (e.g. depression and anxiety symptoms) in persons with MCI and 

NCI, higher comorbidity of mental disorders, lower quality of life and shorter life expectancy 

(Lahey, 2009; Mendez Rubio, Antonietti, Donati, Rossier, & Gunten, 2013). Premorbid 
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agreeableness is linked to agitation and irritability in AD (Archer et al., 2007; von Gunten et 

al., 2009). Low levels of conscientiousness also predict conversion of MCI to AD (Robert S 

Wilson, Schneider, Arnold, Bienias, & Bennett, 2007). Personality alteration  in openness and 

extraversion (Robins Wahlin & Byrne, 2011; von Gunten et al., 2009) have also been 

associated with early AD and MCI. 

 

 

Univariate analysis of brain abnormality associated with MCI  

 

We identified a spatial pattern of anatomical alteration in MCI that extended beyond the 

temporal cortex to the left insula, the left lingual cortex and the right postcentral gyrus in 

GMMD. We also observed that diffusion-based measures are more sensitive than volumetric 

ones for detecting brain abnormality in MCI in line with recent findings (Fellgiebel & 

Yakushev, 2011; Kantarci et al., 2005; Matthias et al., 2007; Scola et al., 2010; van Norden et 

al., 2012). GMMD differences might be caused by modifications of intra/extracellular space 

due to pre-atrophic changes (Fellgiebel & Yakushev, 2011; Fellgiebel et al., 2004). Indeed, 

changes in the neuronal, axonal, synaptic and glial compartments or in intra-cortical white 

matter may reflect the earliest effects of underlying pathophysiological mechanisms e.g. 

amyloid and/or tau deposition (Fellgiebel & Yakushev, 2011; Fellgiebel et al., 2004). 

In addition, alterations in GMMD could reflect the regional progression of atrophy in MCI 

patients who convert to AD (Bakkour, Morris, & Dickerson, 2009; Chételat et al., 2005; B. C. 

Dickerson et al., 2009; Hämäläinen et al., 2007). This could also indicate the existence of a 

“specific cortical large-scale signature” in MCI and/or in the early phase of AD, not only 

focalized in the temporal cortex (Bakkour et al., 2009; B. C. Dickerson et al., 2009).  
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Multivariate analysis of Medial Temporal Lobe abnormality associated with personality 

profile at domain and facet level in MCI  

 

Our multifactorial and multivariate analysis decomposes the complex relationship between 

three risk markers of Alzheimer’s disease, namely the two state makers of (1) anatomical 

atrophy, (2) cognitive decline and (3) personality traits and revealed clinical and 

topographical signature in MCI and have direct implications for refining current models of 

AD.  

Our findings highlight neuroticism, agreeableness and facets of anxiety, stress, hostility and 

depression as key explanatory variables of anatomical changes in MTL. Our results are 

important because with a few exceptions, there is a paucity of data linking personality to 

neurobiological mechanisms of disease. A few neuropathological studies (Rapp et al., 2006; 

Terracciano et al., 2013; Robert S Wilson et al., 2011, 2007) of confirmed AD cases have 

provided evidence of a role for neuroticism, and depression in relation to disease symptoms, 

but provide ambiguous evidence for any direct link with lesions observed at autopsy 

(neurofibrillary tangles and neuritic plaques).  

In detail,  a study has shown that patients with AD and a major depression in their life had 

more pronounced AD neuropathologic lesion such as plaques and neurofibrillary tangles in 

hippocampus compared to those without depression (Rapp et al., 2006). In contrast, Wilson 

et al., 2007 (Robert S Wilson et al., 2011, 2007) did not find link between neuroticism, 

conscientiousness and postmortem AD lesions. However, high conscientiousness was 

associated with the negative interaction between pathological tangles changes and global 

cognition (Robert S Wilson et al., 2007). With the same AD neuropathology, a resillient 
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personality profile, with lower neuroticism and higher conscientiousness, was associated 

with delayed clinical dementia (Terracciano et al., 2013). 

Neuroimaging studies of personality have been mainly conducted in healthy adults and have 

found significant associations between neuroticism and structural differences in frontal and 

temporal regions (Bienvenu et al., 2004b; Deyoung et al., 2010).  A recent study showed 

that, in MCI, the severity of white matter lesions in the MTL, and not the atrophy, was 

associated with higher neuroticism and lower conscientiousness (Duron et al., 2014).  

Critically, our study investigates the multivariate relationship between personality and MTL 

and provides a link with a vast majority of neuroimaging studies in AD that report consistent 

effects of stress and depressive symptoms, or AD state on the hippocampus (Barnes, 

Alexopoulos, Lopez, Williamson, & Yaffe, 2006; Egger et al., 2008; Gianaros et al., 2007; Lee 

et al., 2011; Videbech, Ravnkilde, & Ph, 2004). 

The link between depression and AD has been reported clinically (Andersen, Lolk, Kragh-

Sørensen, Petersen, & Green, 2005; Chung & Cummings, 2000; Jones et al., 2012; Rozzini et 

al., 2008; R S Wilson et al., 2007). Biologically, our results, supported by these studies, 

converge to suggest that depression and AD share biological substrates in the hippocampus 

that are stress-related (Rothman & Mattson, 2010; Sotiropoulos et al., 2008). Indeed, 

depression can be  strongly linked to neuroticism’s facets, because they share some genetic 

risk factors and some items of neuroticism scale overlap with symptoms  of depression and 

anxiety (Bienvenu et al., 2004b; Geda, 2006; Kendler, 1993; Lahey, 2009). Moreover, a high 

score of neuroticism can show great health significance in the risk and prediction of 

psychiatric problems such as depression and anxiety disorder (Lahey, 2009). In animal’s 

studies, stress and depression have a well established impact on hippocampus vulnerability. 
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The mechanisms described at the cellular level can be linked to glucocorticoids effects 

(Sapolsky, 2000) or mineralocorticoid receptors, those last receptors being more present in 

humans than in rats. Effects of glucocorticoids may lead to cell death, atrophy and/or 

hypometabolism (Davidson, Pizzagalli, Nitschke, & Putnam, 2002a; Bruce S McEwen, 2005a; 

Sagi et al., 2012), making the hippocampal formation and its associated cognitive/memory 

performance more vulnerable to injuries. Other mediators such as neurotrophic factors 

downregulation, vascular or cell deterioration due to toxic substances related to stress could 

be involved. It is also possible that early pre- or post- natal stressful life events would make 

the hippocampus more vulnerable to some diseases.  In animal models, proneness to 

distress or chronic stress can affect the hippocampal formation by decreasing dendritic 

branching, spines, neurogenesis (Bruce S McEwen, 2005a) or LTP (Davidson, Pizzagalli, 

Nitschke, & Putnam, 2002b; Frodl et al., 2002; Gianaros et al., 2007; Gross & Hen, 2004; 

Lucassen et al., 2013; B S McEwen, 2000; Bruce S McEwen, 2005b; Montag et al., 2013; 

Müller et al., 2003; Sagi et al., 2012; Sapolsky, 2000; Videbech et al., 2004; R S Wilson et al., 

2007). It is however unclear whether specific disease mechanisms such as ischemia, long-

term inflammation, epigenetic factors related to genetic makeup such as Apo-lipoprotein e4 

homozygosity lead to different types of disease (AD or depression), or whether it is their 

precise anatomical distribution that determines which clinical features are manifested 

(Andersen et al., 2005). 

 

Topographical signature of personality traits. We identified a specific anatomical pattern 

associated with the personality traits. The MLM analysis of GMMD revealed an asymmetry 

between right and left MTL at domain level, and a gradient from the anterior to posterior 
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parts of the MTL at facet level of neuroticism. For GMV, the asymmetry was also observed at 

facet level of neuroticism.  

The antero-posterior gradient has been related to the specific role of the anterior 

hippocampus in stress and emotion-related behavior and in genes expression related to 

regions involved in stress. NMDA receptors related to hypoxic excitotoxicity are also 

differently distributy along the anterior to posterior gradient (Fanselow & Hong-Wei, 2010; 

Sahay & Hen, 2007; Bryan a. Strange et al., 2014; Szeszko et al., 2006; Willard, Friedman, 

Henkel, & Shively, 2009). In contrast, the posterior part would be more related to cognitive, 

memory retrieval processes (Fanselow & Hong-Wei, 2010; Sahay & Hen, 2007; Szeszko et al., 

2006; Willard et al., 2009). 

Other studies on stress effect also reported differences between left and right hippocampus  

that can be explain by neurochemical and brain tissue property differences (Bremner et al., 

2000; Frodl et al., 2002; Madsen et al., 2012; Spasojevic, Jovanovic, & Dronjak, 2013). An 

animal study showed for example that stress, induced by isolation, was associated with 

decreased noradrenaline content in the right hippocampus and this did not affect spatial 

learning and memory (Spasojevic et al., 2013). In human, higher level of basal cortisol was 

found in the left compared with the right hippocampus mean diffusion (MD), but not in the 

volume. As they did not observe any correlation between MD and volume in the 

hippocampus, they concluded for different biological properties of MD and volume 

measures. They also explained the asymmetry by a different hypothalamic-pituitary-adrenal 

axis (HPA) regulation or individual differences in cortisol level between right and left 

hippocampus. The role of HPA axis is to control stress reaction or other processes such as 

immune system or digestion (Madsen et al., 2012). This is supported by studies showing a 
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smaller left than right hippocampus volume in depressive patients or in males with first 

episode of depression (Bremner et al., 2000; Frodl et al., 2002). 

 

Implication for refining current models of AD. Our data suggest that personality is a critical 

feature that needs to be taken into account when defining temporal biomarkers or models 

of the pathophysiological processes leading to AD (Jack et al., 2013; R S Wilson et al., 2007). 

Recently, a new model has been proposed by Jack et al. (Jack et al., 2013) in which different 

state biomarkers of AD (e.g., brain atrophy, tau, abeta, memory, clinical function) follow 

each a sigmoid shaped curve (Figure 11). The authors argue that for AD the most informative 

parameters in this model are the onset of curves on the horizontal time axis, their slopes and 

their temporal ordering. We suggest a model, based on the psychopathology literature, in 

which a specific personality trait, such as proneness to stress or depression, can affect the 

shape and the temporal ordering of state biomarker curves by two main mechanisms. The 

first mechanism is predisposition/vulnerability, where a personality trait profile increases the 

risk of disease and impacts the onset of biomarker curves. The second exacerbating 

mechanism is pathoplasticity, where a personality trait has an additive or multiplicative 

effect on the course of disease and hence impacts the slopes of the temporal curves (Figure 

12). We believe that modeling the interaction between state and trait will capture the 

causes of inter-individual variability in disease trajectories. 

In addition, other features, such as behavioral and psychological symptoms (Apostolova & 

Thompson, 2008b; Archer et al., 2007; Chung & Cummings, 2000), genetic susceptibility 

factors such as serotonin (Assal & Alarcón, 2004; Beaumont, Fiocco, Quesnel, Lupien, & 

Poirier, 2013; Gross & Hen, 2004; Meltzer CC, Smith G, DeKosky ST, Pollock BG, Mathis CA, 

Moore RY, Kupfer DJ, 1998; O’Hara et al., 2007), and  personality, as demonstrated here and 
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elsewhere (Donati et al., 2013; Mendez Rubio et al., 2013; Robins Wahlin & Byrne, 2011) 

may help better clarify mechanisms more than at present  explaining the association 

between cognitive decline and hippocampus in ageing.  

 

 

Figure 11. Model of biomarkers change from cognitively normal to MCI and then dementia state. MCI 
(Mild Cognitive Impairment, Aβ: Amyloid β) (Jack et al., 2008). 

 

 
Figure 12. Hypothetical model of state marker in Alzheimer’s disease (AD) influenced by personality 
profile. The curves show the time evolution of state marker abnormality of AD. X axis represents the 
time, and Y axis, the state biomarker abnormality of AD such as cognitive or brain decline. Individuals 
characterized with a different personality profile (e.g. with lower neuroticism score) can show 
different onset (A, vulnerability) or rate (B, pathoplasticity) of decline.  
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1.4.5 Limitations and perspectives 
 

Limitations. There are still many unknowns in the understanding of the transition from 

normal cognitive function to symptomatic manifestations of AD. MCI as a concept is highly 

debated (Dubois et al., 2010). Even if MCI represents a greater risk of conversion to AD, 

more particularly for the amnesic MCI, as a clinical category it is very heterogeneous. In our 

results, there is even a differential impact of personality in MTL abnormality depending on 

the type of cognitive deficit (MCI vs NCI, MCI amnestic vs MCI non-amnestic) (Cf. results in 

chapter “Personality profile modulates structural brain in MCI subtypes”).  

Beside personality, behavioral and psychological symptoms (BPS) of anxiety and depression 

are also found to be critical factors that accompany MCI and worsen the risk of AD and 

institutionalization (Apostolova & Thompson, 2008a; Jones et al., 2012; Mendez Rubio et al., 

2013; von Gunten et al., 2009). Those features and others such as genes (Beaumont et al., 

2013) or life events (Johansson et al., 2013; Lahey, 2009) as demonstrated here and 

elsewhere (Donati et al., 2013; Mendez Rubio et al., 2013; Robins Wahlin & Byrne, 2011) 

may help clarify mechanisms more than at present.  

In other limitations, we can also highlight that the sample is less representative than the 

whole population knowing that recruitment is not community-based. Moreover, neuroticism 

personality trait and the corresponding depression, anxiety and stress facets could reflect 

depression and anxiety symptoms themselves instead of stable traits; however this potential 

bias was attenuated by the fact that MCI was not different from NCI group in depressive or 

anxiety symptoms revealed by scores in the HADS test. On the neuroimaging side, it could be 

possible that the difference in Gray Matter Mean Diffusivity (GMMD) detected in the 

hippocampus and parahippocampal cortex is contaminated by the proximity of the signal 



         

68 
 

coming from the CSF in the lateral ventricles or by presence of potential WM  lesions 

(Matthias et al., 2006b). Nevertheless, theses limitations have been minimized by imposing 

an a priori mask allowing constraining analysis only in the GM tissue of hippocampus and 

parahippocampal regions. In a future study, WM lesion measure could provide more 

information on the impact of such lesions on AD progression as it has been shown that 

periventricular WM lesions were correlated with lower cognitive score in MCI (Defrancesco 

et al., 2013), and that the severity of white matter lesions in the MTL was associated with 

higher neuroticism and lower conscientiousness (Duron et al., 2014). 

Perspectives. Regarding the limitations of our study, a model including a combination of 

multiple factors, and their interactions, more specifically those which are the most sensitive 

predictors of AD could help refine MCI model and increase prediction to AD conversion or 

other age-related diseases. For example, it has recently been shown that the severity of 

white matter lesion, and not MTL atrophy, was associated with lower conscientiousness and 

higher levels of neuroticism in MCI subjects (Duron et al., 2014). In addition, as MCI 

represents a very heterogeneous group in composition and in evolution, a longer follow-up 

than 2 years with larger sample size could give much more information on disease 

progression and on identification of different subpopulations at risk for the disease. On top 

of that, studies on earlier stage of MCI, more specifically on individuals with subjective 

cognitive impairment (SCI), could reveal important cues on progression to age-related 

diseases. For example, it has been shown that increased SCI was correlated with higher rate 

of objective memory decline and with higher risk of dementia when additional factors such 

as worries about decline are included in the model (Belleville et al., 2014). 
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2. MEMORY  
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2.1. Memory and learning processes and models 

The main models of memory and learning throughout history. They are presented in figure 

13. The details of this schema are described below. 

 

 

 

 

 

 

 

 

Figure 13  Schema of the main memory and learning models throughout history.  

 

 

2.1.1. Psychometrics and behaviorism 

 

Mental faculties such as memory have been investigated since the ancient times by 

philosophers and physicists. They tried to explain the functioning of the soul or the spirit and 

its interaction with the body and the universe. However, it is only in the nineteenth century 

that psychometrics first appeared, a field in which objective measures of mental activity, 

such as the test of free association by F. Galton, were developed. Introspection was then 

used by W. Wundt to allow measuring conscious auto-observation of thoughts, emotions 

and desires (Boring, 1953). However, this was refuted by J.B. Watson who declared that only 
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observable behavior is science, leading to the field of behaviorism. I.P. Pavlov discovered 

that all complex behaviors can be broken down into simple reflexes. Behaviors are learned 

according to classical conditioning, in which a neutral stimulus can provoke a conditioned 

response, when it is repeatedly followed by an unconditioned stimulus that naturally causes 

an unconditioned response.  

For E.L. Thorndike, conditioning was not sufficient to explain the learning of all complex 

behaviors. He affirmed that behaviors are also reinforced or weakened by consequences, 

both positive and negative. This is also known as trial-and-error learning, which is 

incremental and not consciously processed. This train of thought influenced B.F. Skinner 

who defined instrumental conditioning. This is learning dependent on the association 

between the response and the consequence/reinforcement (i.e. the unconditioned 

stimulus), in contrast to the conditioning described by Pavlov in which the consequence was 

received independently of whether the response was learned or not. The frequency of a 

particular behavior can be modulated by this reinforcement.  

Later on, E.C. Tolman stated that learning is not only influenced by stimulus-response, but 

also by expectations, attitudes and objectives of the individual. At the end of the nineteenth 

century, H. Ebbinghaus was the first to describe learning and forgetting rates by means of 

repeated syllables lists. F. Bartlett introduced schema, which are organized patterns of 

thought and behavior to perceive and organize the world. Here, memory is not only a 

repetition, but also a transformation of the perceived world (M. A. Gluck & Myers, 2008). 
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2.1.2. Cognitive revolution and models of memory 

 

In 1950, the cognitive revolution appeared with the aim of understanding the 

transformation between stimulus and response, with the help of computers as models of the 

human brain and with more and more specific measures in some tests. G.A. Miller measured 

human capacities of information processing and the natural limit of seven digits span in 

short term memory. 

Later on, new paradigms of memory appeared such as free and cued recall. There is 

increasing evidence showing that a person is active while learning to organize information or 

using pre-existing knowledge for example. Numerous other paradigms of contextual 

memory, recognition and priming also appeared (M. A. Gluck & Myers, 2008). W. James 

dissociated memory into primary and secondary forms of memory corresponding to short 

and long term memory as described in today’s terms (Nadel & Hardt, 2011). In the modal 

model of memory by Atkinson and Schifrin, there are three types of memory that work in 

serial. First, information is processed in the sensory or iconic memory, which retains all 

sensory information after presentation, but information is lost after a delay. Then the 

information is transmitted to short-term, temporary, memory before passing to long term, 

permanent, memory after repetition of the same information (Atkinson & Shiffrin, 1968). In 

the level of processing model of memory, stronger and longer term memory is promoted by 

a deeper level of processing such as the semantic one compared with a more superficial, 

perceptual, one (Craik & Lockhart, 1972).  

Later on, Tulving  dissociated functionally independent memories: episodic memory, the 

processing of specific events with awareness of the spatial and temporal context in which 
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the event has been encountered, and semantic memory, the processing of general 

knowledge without contextual information (Tulving, 1972).  

A. Baddeley then developed a three component model of working memory that allows the 

simultaneous maintainence and manipulation of information. This model contains a 

phonological loop and visuo-spatial sketchpad, two independent short-term memory 

buffers, and a central executive that distributes resources/attention to pertinent information 

between the two aforementionned components. In that model, there is also an episodic 

buffer, with limited storage capacity, that links to long term memory and can bind 

information coming from different modalities to form integrated episodes. This buffer is able 

to group items into meaningful classes (also called “chunking”) and to expand the memory 

span. In the model proposed by Norman and Shallice, schema control units allow the 

representation of routines or usual activities. When a schema is no longer adaptive, e.g. in a 

new situation, a contention scheduling system resolves the conflict (Norman & Shallice, 

1986). In P. Barouillet model, the capacity of the central administrator is shared between 

the processing and the maintenance of information by a switching mechanism (Barrouillet, 

Bernardin, & Camos, 2004). 

 

2.1.3. Cognitive neuroscience of memory 

 

Cognitive neuroscience of memory aims to understand memory from psychological and 

neurobiological views. Memory is characterized by the combined use of experimental 

analysis in healthy or brain-damaged individuals, animal models and more recently 

computational models.  Jerry Fodor, an influent researcher in the cognitive sciences, 

suggests a theory of modularity of mind affirming that each mental faculty is partly 
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structured in modular and non-modular ways. A module is characterized by its specificity in 

one domain of information; its independence from the other modules; and its unconscious 

or fast way of processing information. The functioning of these modules would also be 

innate (Fodor, 1983).  

At the neuronal level, the Hebbian theory describes the association of two neuronal cells 

that fire nearly at the same time. The weight or synaptic strength between these neurons 

will increase with the activity of one cell facilitating the other. This weight can also decrease 

if they do not fire together. The repetition of the same activity, also called reverberatory 

activity or trace, will induce cellular and structural changes. The same mechanism happens 

at the cell assembly or system level. Hebbian learning explains that the repetition of an 

input, which causes the same pattern of activity in a system, will tend to strengthen the 

association of each element of this pattern, but to weaken the association of elements that 

are not active upon the presentation of the same input.  

This allows the formation of engrams, which represent ways that memory traces are stored 

in the brain. Reverberatory activity supports short term memory, and with enough 

repetition, this creates structural change and allows consolidation and formation of long 

term memory (M. A. Gluck & Myers, 2008; Nadel & Hardt, 2011). 

At the system or neural network level, literature in the cognitive neuroscience of memory 

has mainly focused on dissociation of memory systems in different brain regions. In the 

serial-parallel-independent (SPI) model by Tulving and Gazzaniga (1995), the three main 

memory systems, related to encoding, storage and retrieval, work in a serial, parallel and 

independent fashion respectively. This means that each system has a different memory trace 

and retrieval can occur independently of the information in the other systems.  
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Tulving defines recognition memory as two types of subjective memory judgments, 

recollection and familiarity, that are associated with specific brain regions, i.e. the 

hippocampus and the parahippocampal cortex respectively. The first is related to event 

retrieval with the context in which it has been firstly encountered, whereas the second is 

related to the feeling that an event has been met in the past without retrieval of any 

contextual detail related to it. In the SPI model, recognition memory includes recollection, 

which is the retrieval form of episodic memory, and familiarity which the retrieval form of 

semantic memory. Priming is the process in which a preceding stimulus influences the 

response to a subsequent stimulus. It is defined as a retrieval form of perceptual memory. 

The episodic memory, mainly dependent on the hippocampus, binds items with context into 

a single event, whereas semantic memory, mainly dependent on the anterior temporal 

cortex, extracts combinations of perceptual features with repeated events. Modality-specific 

perceptual memory, mainly supported by higher sensory cortices, processes sensory 

information into more abstract representations (Richard N Henson & Gagnepain, 2010). In 

studies on amnesic patients, information was shown to be transiently stored in the 

hippocampus and then, with consolidation, stored elsewhere in the neocortex. Animal 

models have allowed the exploration of how different processes of memory, such as storage, 

consolidation and retrieval can be differentially affected by the type of learning involved 

(Nadel & Hardt, 2011).  

The dissociation between recollection and familiarity is not always clear or a one-to-one 

mapping, meaning that one process maps only one brain region. Recently, some authors 

suggest that most of the time there is a dynamic interaction between memory systems 

(Richard N Henson & Gagnepain, 2010). A pathway between perceptual and episodic 
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systems has even been shown to explain that the semantic system (or familiarity) can be 

impaired, but not the episodic memory (or recollection). This also shows that information 

does not need always to be processed in semantic memory to create episodic memory 

(Graham, Simons, Pratt, Patterson, & Hodges, 2000).  

In the Multiple Inputs Model (MIM), other memory systems are described such as 

procedural memory related to motor skill learning and autobiographical memory related to 

episodes from an individual’s life. In this later memory, there would be episodic and 

semantic memory components related to the self (Eustache & Desgranges, 2008). In the 

predictive interactive multiple memory systems (PIMMS) framework of Henson and 

Gagnepain, there are at least three different memory systems of episodic, semantic and 

modality-specific perceptual systems that can interact through forward and backward flows 

of information. In this model, memory encoding and retrieval are mainly influenced by the 

difference between predictions coming from backward connections and forward sensory 

information, also called Prediction Error (PE). Reducing PE also refers to maximizing “free 

energy” according to the “predictive coding” (K. Friston, 2010; Richard N Henson & 

Gagnepain, 2010). Recent neurimaging studies also show that learning and memory are 

dependent on multiple brain memory systems, associated with episodic and procedural 

memories, and that they can interact in parallel or competitive manner under 

neuromodulatory influences (Russell a Poldrack & Packard, 2003). Since 1950, those types of 

observations were mainly studied in humans and animals with a paradigm called 

probabilistics classification learning which consist of learning probabilistic associations 

between cues and outcome (Foerde, Race, Verfaellie, & Shohamy, 2013; Hopkins, 2004; 

Knowlton, Squire, & Gluck, 1994; Russell a Poldrack & Packard, 2003; Daphna Shohamy, 

Myers, Hopkins, Sage, & Gluck, 2008). 
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2.2. Role of the Medial Temporal Lobe in memory 

 
The medial temporal lobe (MTL) is composed of structures that have a central role in 

declarative memory. Understanding the segregation of the MTL could help define the 

mechanisms behind brain diseases.  

Anatomy. The hippocampal formation includes the hippocampus proper and the 

surrounding cortex, the parahippocampal gyrus. The regions located along this gyrus are 

named the parahippocampal cortex, and the most anterior and inferior part, the perirhinal 

cortex (Figure 14). The enthorinal cortex is part of both the parahippocampal cortex and the 

perirhinal cortex.  

 

 

 

Figure 14. Figure of the three subregions of the medial temporal lobe in MNI standard space: the 
hippocampus (in red), the parahippocampal cortex (in yellow) and the perirhinal cortex (in green). 

 

The enthorinal cortex is directly connected to different hippocampal subregions of the 

hippocampus such as the granule cells of the dentate gyrus (DG) through the perforant 

pathway. The hippocampus proper includes the CA3, CA1 and the subiculum (Figure 15). The 

DG projects to the pyramidal neurons of the cornus ammonis CA3 through the mossy fibres. 

The CA3 and DG have a function in pattern separation to differentiate memories or 

representation (or outputs) from similar events (or inputs), allowing less interference 

between memories. The DG has sparse coding, meaning that an “event is encoded with 
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strong activation of a small set of neurons” (Deng, Aimone, & Gage, 2010). The CA3 is an 

auto-associative network that contains pattern separated representations and is also 

associated with pattern completion. The CA3 is able to retrieve memories from partial cues, 

e.g. in a context of perceptual uncertainty, by activation of a set of neurons related to a 

memory that will activate neurons that store that specific memory. This would be possible 

by means of connection within the CA3 network. This region also has a role in integration of 

spatial and non-spatial information. The CA3 projects to the CA1 through the Schaffer 

collateral. The role of the CA1 is to compare sensory inputs with internal representations 

and reactivate the distributed cortical memory trace (Bonnici et al., 2012; Deng et al., 2010; 

Hasselmo, 2005). The CA1 in turn projects to the subiculum. From the subiculum, the 

connection goes back to the entorhinal cortex and then to the neocortex. Another 

connection, through the fornix, goes from the subiculum to the mammillary body and the 

“Papez circuit” (Figure 15) (Henke, 2010). This circuit is a pathway that includes the limbic 

system, including the hippocampal formation, the amygdala, the hypothalamus, the 

cingulum, the mammilo-thalamic tracts and the prefrontal cortex. This was originally 

thought to be involved in the emotional system, but is now also now considered as a 

memory system (Rajmohan & Mohandas, 2007). 

 

 

 

 

Figure 15.Schema of hippocampal formation (source (Henke, 2010)). 
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Functions. The main function of the MTL system is to encode new information and to 

rapidly store it temporarily as a “trace” in the hippocampus and cortical network. The 

hippocampus and the neocortex, important for the episodic memory, have a role in the 

rapid encoding of events, in associations and in binding an item with a context in a single 

trial. Then, with repetition of multiple learning trials, there is the reinstatement of 

hippocampal neural replay related to the encoded information. This information is then 

transferred and stored long term in the neocortex. The hippocampus can also transiently 

retrieve information in multiple ways, e.g. by association or binding of this information with 

other aspects of the episode such as sensory, conceptual informations or spatial and 

temporal context of the episode and by activation of different brain regions. This flexibility 

for integration of multiple informations (“what-where-when”) in one unique episode allows 

using that knowledge to travel back in time, to make inferences, to adapt in novel situation, 

to plan or even to create. In addition, the MTL can support a slower process for the 

consolidation of information in semantic memory by the extraction of regularities of 

multiple episodic memories accompanied by abstraction and loss of details of those 

memories. This new emerging information leads to neorcorticalization; the recall of a trace 

in the neocortex, which then becomes independent of the MTL. However, the neocorex is 

not involved in the recall of details surrounding the encountered event; the hippocampus is 

required for the retrieval of episodic memories that preserve details of the context and stay 

flexible or adaptable to new knowledge after the time of encoding. The hippocampus can 

then encode new information in an interleaved manner, allowing the storage of new 

information into pre-existing network without damaging existing structures of memory in 

the neocortex. This would be possible with development of schema (e.g. learning of 

association between two items that allow inference and novel judgment about items that 
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are not directly related to the schema structure learned) and a process of update of this 

schema with integration of new information. This interleaved encoding facilitates then 

consolidation of schema (Frankland & Bontempi, 2005; Henke, 2010; McClelland, 

McNaughton, Bruce, & O’Reilly, 1994; L R Squire & Zola-Morgan, 1991). The update of 

schema also depends on the interaction of the hippocampus with the prefrontal cortex 

which would accumulates informations such as location in which an event was encountered 

and accommodate pre-existing schema (Preston & Eichenbaum, 2013).  

In the context of a subtype of declarative memory called recognition memory, a prominent, 

yet debated, view is that the hippocampus is mainly involved in the binding of items with 

episodic contexts and recollection, a type of subjective memory judgment consisting of the 

retrieval of an event and the precise context in which it was first encountered. In contrast, 

the extrahippocampal region of the MTL is more involved in familiarity, another type of 

subjective memory judgment, which requires the awareness of the previous occurrence of 

an event and a feeling of familiaritiy with that event, but without retrieval of the contextual 

details it was encoutered. The perirhinal cortex would also be associated with familiarity 

with its role in processing unitized item. The hippocampus and the extrahippocampal region 

would also have a role in the qualitative and quantitative processing of information 

respectively (J P Aggleton & Brown, 1999; Bowles et al., 2007; Diana, Yonelinas, & 

Ranganath, 2007; Eichenbaum H. Yonelinas A.R., 2007; Richard N Henson & Gagnepain, 

2010; Wolk, L., Dickerson, Aizenstein, & Dekosky, 2011; Yonelinas, Aly, Wang, & Koen, 2010). 

In addition, the actvation of some regions of the parahippocampal cortex (i.e. in the occipito-

temporal cortex) depends on the type of stimulus. For example, the fusiform face area (FFA) 

is specifically activated for human face perception and expertise (Gauthier, Tarr, Anderson, 
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Skudlarski, & Gore, 1999) and the parahippocampal place are (PPA), for recognition of 

stimuli of scenes (Köhler, Crane, & Milner, 2002). The hippocampus also works with other 

brain regions during memory and learning, as described previously with updating of schema. 

For example, the activation of both the hippocampus and the prefrontal cortex at encoding 

is correlated with recall success (Grön et al., 2001; Kirchhoff, Wagner, Maril, & Stern, 2000). 

Recent studies investigate the neural signature of recognition memory traces though 

multivariate and predictive analysis from distributed brain activity patterns. This approach 

explores the process and the encoding type of information rather than the content itself. For 

example, MTL would process enough distributed pattern of activity to decode rich episodic 

memories. The hippocampus would have less episodic information than the cortex 

surrounding the hippocampus (Rissman, Greely, & Wagner, 2010; Rissman & Wagner, 2012) 

and  would contain a distributed pattern of localized neural activity associated with episodic 

memory (Wixted et al., 2014). 

Another form of memory, called priming/perceptual memory, is described as the rapid 

encoding of a single and unitized item. Priming and the feeling of familiarity can share 

mechanisms, but can also be distinct. Priming means the facilitation, repetition suppression 

and neural adaptation related to the repeated exposure to information and mainly depends 

on low level sensory cortices and then high level brain cortical regions surrounding the 

hippocampus. In contrast, familiarity depends only upon the higher level of information 

processing in the perirhinal cortex, a cortical region surrounding the hippocampus (Henke, 

2010). An interaction between the two mechanisms has also been found in a study showing 

that repetition suppression was greater with familiar face stimuli compared to unfamiliar 

face stimuli of face in the left inferior occipito-temporal (LIOT) cortex. Multiple repetitions of 
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the same stimulus could initiate the familiarization of a face, but additional semantic 

information stored in other brain regions are needed to identify the face. As explained in the 

article Henke et al. (Henke, 2010), the activation of the LIOT cortex is also task dependent, as 

its activation was only present during the implicit fame-judgment task, irrelevant to 

repetition, and not in an explicit task of episodic recognition (R N Henson, Shallice, Gorno-

Tempini, & Dolan, 2002). In another study, the activation of the LIOT cortex was also 

reduced when the preceding stimulus, the prime, was identical in terms of concept 

compared to an unrelated stimulus, and this was independent of the visual form of the 

stimuli (written words or objects). This supports the possibility of common top-down 

influences from high level amodal brain regions. In other terms, those regions can process 

conceptual knowledge not related to a specific sensory modality such as attention, task 

demand or prime and they can also integrate bottom-up perceptual information, in line with 

the predictive coding account theory. That theory assumes that learning depends on the 

minimization of free energy, which represents the difference between bottom-up 

information and predictions coming from top-down higher level brain (K. Friston & Kiebel, 

2009; Kherif, Josse, & Price, 2011).  

Connectivity. According to the “Binding of Item and Context” (BIC) model , MTL subregions 

process different types of information depending on the task demand (Diana et al., 2007). 

This model is based upon a three-component model observed behaviorally, both from lesion 

studies and by neuroimaging in both human patients and animal models (Eichenbaum H. 

Yonelinas A.R., 2007). The medial entorhinal cortex mainly receives inputs from the 

parahippocampal gyrus and the lateral entorhinal cortex receives inputs primarily from the 

perirhinal cortex. These two main regions projecting to the entorhinal cortex consist of 
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Figure 16. BIC model assuming that 
(a) hippocampus (red), 
parahippocampal cortex (green) and 
perirhinal cortex (blue) have (b) 
different roles in recognition 
memory. Arrows indicate anatomical 
connections between them (Source  
(Diana et al., 2007)). 

different anatomical pathways associated with spatial processing (“where”) and nonspatial 

(“what”) aspects of sensory inputs respectively. The parahippocampal cortex, specific to 

spatial processing, receives projections from the parietal cortex and other regions such as 

the superior temporal cortex, retrosplenial cortex and visual association areas. In contrast, 

the perirhinal cortex processes nonspatial information and receives projections mainly from 

the ventral, superior temporal cortices and visual areas. The item specific information of the 

perirhinal cortex (“what stream”) and the item-context information of the parahippocampal 

cortex (“where stream”) then converge in the hippocampus for the binding of different 

information (Diana et al., 2007) (Figure 16).  
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A study on functional connectivity has shown that the perirhinal/entorhinal cortices 

activation were correlated with the activation of the head of the hippocampus whereas the 

activation in the posterior parahippocampal cortex was correlated with the activation of the 

body of the hippocampus (Kahn, Andrews-hanna, Vincent, Snyder, & Buckner, 2008). This 

suggests that the different functions of MTL subregions and their roles in memory could be 

explained by integrative, parallel and hierarchical model that include the surrounding brain 

rgions. This can be linked to the fact that the hippocampus subfields are also functionally 

dissociated along the anterior-posterior axis. The anterior hippocampus, which sends 

projections to the prefrontal cortex and is directly connected to the amygdala, nucleus 

accumbens and other regions related to the Hypothalamic-Pituitary-Adrenal (HPA) axis for 

stress regulation, is involved in emotion, stress, sensory-motor integration and goal-driven 

activity. The posterior hippocampus is in contrast more connected to the visual cortex for 

visuo-spatial sensory information processing through the perirhinal and parahippocampal 

cortices and is thought to be involved in memory and cognitive activities. The functional 

specificity of those anterior-posterior parts of the hippocampus is also supported by lesions 

and electrophysiological studies. Contrary to the dorsal hippocampus, the ventral 

hippocampus seems to modulate dopamine projections to the prefrontal cortex and nucleus 

accumbens. The anterior hippocampus is also specific to the encoding of new information 

and to neural adaptation whereas the posterior part would be more specific to the degree of 

familiarity of behaviorally relevant stimuli (B a Strange, Fletcher, Henson, Friston, & Dolan, 

1999).  

One recent view (Bryan a. Strange et al., 2014) highlights the functional organization of the 

 hippocampus as a gradient in the longitudinal axis which is superimposed by a discrete 

dichotomy between the ventral/anterior part, involved in stress related affects, and the 
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dorsal/posterior part, involved in memory and spatial navigation. The gradient is supported 

by smooth and symmetrical transitions of input and output projections between anterior-

posterior MTL and cortical and subcortical regions. There are similarly oriented gradients in 

genes, receptor expression as well as vulnerability to ischaemia. The size of place fields is 

also larger in the ventral part, which could be linked to more potential for flexibility and for 

semantic memory (Figure 17)  (Bryan a. Strange et al., 2014). 

 

 

 

 

 

 

 

 

 

 

Figure 17. Schema of long-axis organization in the hippocampus (Bryan a. Strange et al., 2014). 
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2.3. Open questions 

 

Based on the literature on the anatomo-functional mapping of the MTL, we aim to test 

whether different memory processes can be associated with different representations in 

MLT subregions such as the hippocampus, the parahippocampal cortex and the perirhinal 

cortex (Figure 18). This is investigated in the chapter 2.4 on “Experiment 2 - A predictive 

anatomo-functional mapping of the medial temporal lobe subregions in recognition 

memory”.  

 

 

Part 2 

Recollection, 

 Familiarity 

fMRI at 7T 

Multivariate Bayes 

Healthy 

 

Figure 18.. Plan of the second part of the thesis. The raws 
describe the research topic, the neuroimaging MRI technique, the 
statistical method used and the population studied. MRI: 
Magnetic Resonance Imaging. 
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2.4. Experiment 2 - A predictive anatomo-functional mapping of the 
Medial temporal lobe subregions in recognition memory 

 

 
2.4.1. Objective 
 

When we recognize a person, we can have different subjective experiences. We can either 

recollect that the person has been met somewhere or we can just feel that the person is 

simply familiar. In the literature, there is a long standing debate on whether these two types 

of declarative recognition memory, recollection and familiarity, correspond to two different 

processes or to a single continuous process that differ only on the strength of memory 

(Slotnick, 2013; Larry R Squire, Stark, & Clark, 2004; Yonelinas, 2002). 

Neuroimaging studies that attempt to associate these two types of memory to different MTL 

substructures, i.e. hippocampus (Hipp) and the surrounding parahippocampal cortex (PhC) 

and perirhinal cortex (PrC) (Figure 19), did not provide strong or conclusive results for a 

double dissociation/exclusivity or the unitary view of the role of MTL structures (Song, 

Jeneson, & Squire, 2011). However, a dominant view is that hippocampal activation is most 

of the time associated with recollection-based memory, while activation in the surrounding 

cortex, mainly in the anterior part, the PrC, is associated with familiarity. The contribution of 

the PhC to those memories is mixed. Neuroimaging studies have shown that the PhC 

contributes to recollection (Brown & Aggleton, 2001; Eichenbaum H. Yonelinas A.R., 2007; 

Slotnick, 2013; Yonelinas, 2002) but seems necessary for familiarity in models derived from 

lesion and volumetric studies (Bowles et al., 2007; Wolk, L., Dickerson, Aizenstein, & 

Dekosky, 2011; Yonelinas, 2002). In addition, others studies found that there is not a simple 

mapping between MTL regions and recognition memory components. For example, the 
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hippocampus is thought to be involved in binding item with context, the PrC in individual 

item processing and PhC in binding item with specific spatial context (Diana, Yonelinas, & 

Ranganath, 2007). 

 

 
Figure 19. Figure of the three subregions of the medial temporal lobe in the MNI space: the 

hippocampus (in red), the parahippocampal cortex (in yellow) and the perirhinal cortex (in 

green). 

 

We aimed to test the different models that have been proposed in previous studies in one 

single experiment. Theoretical cognitive models of the contribution of the two memory 

components (Figure 20A) are represented on a continuum from unique process view (unitary 

strength view) to partially shared processes (redundancy or independency theory) and then 

to complete dissociation of processes (exclusivity theory) (Mayes, Montaldi, & Migo, 2007; 

Skinner & Fernandes, 2007). Based on these cognitive models, we aimed to test the 

corresponding neurocognitive models by measuring the contribution of each sub-region of 

the MTL for explaining recollection or familiarity (Figure 20B).   
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Figure 20. (A) Cognitive models of recollection and familiarity (from left to right) according to the 
unitary-strength theory, the exclusivity theory, the redundancy theory and the independence theory. 
(B) Neurocognitive models proposed for recollection and familiarity according to each cognitive 
theory and for each of the three regions of the medial temporal lobe, i.e. the hippocampus (Hipp), the 
parahippocampal cortex (PhC) and the perirhinal cortex (PrC). Black sphere indicates strongest 
contribution, white sphere indicates weakest contribution and grey sphere indicates intermediate 
contribution of one region compared to the other regions for recollection or familiarity. 

 

 

Most of the current statistical methods in neuroimaging based on mass univariate statistical 

inferences cannot address questions related to the comparisons between brain regions or 

questions about the spatial distribution of activation. In this study we used a hierarchical 

Multivariate Bayesian (MVB) approach and Bayesian selection (BMS) methods which provide 

the valid statistical framework to address questions related to structure-to-function mapping 

(Chadwick, Bonnici, & Maguire, 2012; R. Henson, 2005; Morcom & Friston, 2012). In 

addition, we used high-resolution 7Tesla Magnetic Resonance Imaging (fMRI), which 

increases signal to noise ratio, thus improving sensitivity for detecting medial temporal 

activation in the memory task (Carr, Rissman, & Wagner, 2010; Yassa & Stark, 2009). 

MVB and BMS allow to identify the best model for the different regions in MTL using 

different models of structure-function mapping called spatial priors. The spatial priors are 
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described in term of sparseness and smoothness of activation and include sparse, sparse-

distributed (i.e. compact) and distributed (i.e. smooth) priors (Figure 21). Those three priors 

reflect a continuum (Figure 21 from left to right) between the types of activation: from few 

neurons (or voxels) responding strongly to few specific stimuli (i.e. as described in the 

grandmother cell theory), to distributed response of multiple neurons (or voxels) responding 

to many stimuli or even class of stimuli (Rolls & Treves, 1990). 

 

Figure 21. The different models of spatial priors are shown from left to right. They differ in term of 
spatial distribution: They are sparse, sparse-distributed or smooth. At the top, models are represented 
from the z axis view of a three dimensional space and in the bottom, they are represented from the x 
and y views. 
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In this way, we can probe further the neural coding and spatial distribution of memory 

traces created at encoding. Most studies have investigated the neuronal representation of 

semantic memory in the human hippocampus, however in a recent study (Wixted, Squire, 

Jang, Papesh, Goldinger, Kuhn, et al., 2014), it was found that activation of the Hipp 

associated with episodic memory followed a sparse distributed code. It was assumed that 

there is a bimodal distribution of activity in the MTL, with distributed clusters of localized 

neurons. The sparse mapping allows a efficient selective coding of memory by minimising 

the overlap between the rapidly encoded new episodes and those that are already stored 

(Olshausen & Field, 2004; Waydo, Kraskov, Quian Quiroga, Fried, & Koch, 2006). 

In contrast, the distributed mapping allows the coding of multiple memories or class of 

stimuli by multiple neurons (or voxels), with the disadvantage to lose details of those 

memories and to increase the interference between them (Rolls & Treves, 1990). Sparse-

distributed mapping in the hippocampus can also be realated to the sparse and distributed 

neural representation of episodic and semantic memory respectively (Wixted, Squire, Jang, 

Papesh, Goldinger, Kuhn, et al., 2014).  

We predict first that recollection and familiarity will be associated with distinct regions and 

second with different neuronal representations in each of those regions.  

In this study, participants underwent a study phase in the scanner in which they were 

instructed to read words on the screen. This was followed by an incidental recognition test 

outside the scanner. For each recognized word participants made a remember or know 

judgement to tap recollection and familiarity. As emotional items have been associated in 

recognition memory with richer recollective experience (Sharot, Delgado, & Phelps, 2004; 

Sharot, Verfaellie, & Yonelinas, 2007) the to-be-remembered stimuli included words with 

emotional content and comparison neutral words.
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2.4.2. Materials and methods 

 

Behavioral task 

 

Recognition memory was tested with Remember/Know paradigm (J.M. Gardiner, 1988; 

Tulving, 1999). Thirteen healthy participants (age mean: 24.53, SD: 2.72, Male:Female (8:5)) 

were tested individually over two sessions comprising a study phase in the scanner, followed 

by an incidental recognition test phase, outside the scanner.  The stimuli consisted of 200 

French words divided equally neutral words and emotional words. Half of the words were 

used for the study phase and the other half, for the recognition test (Figure 22). The 

randomization of emotional (positive and negative) and neutral words in the study and test 

lists was performed with a 3 by 3 Latin square. This consists of 3 lists of positive, negative 

and neutral words that were matched for frequency and imagery and then spit in 2 parts for 

the emotional words and in 3 parts for the neutral words. Each part was then pseudo-

randomly assigned to a study and test list for each subject. In the study phase, participants 

were instructed to read, aloud (to check that they really read) but with the least possible 

movement of the jaw, the words that appeared on the screen for 500 ms with an inter-

stimulus interval of 1400 ms. A short time of 5 minutes for that study phase favoured 

spontaneous encoding by decreasing usage of specific goal-directed strategies  (Kafkas & 

Montaldi, 2011).  After approximately 10 and 15 minutes after the study phase, the test 

phase took place. The participant was then given extensive instructions and training on how 

to make remember and know judgements following a positive recognition. Words were 

presented in the middle of the screen and two options, old or new, were presented the right 

and left, respectively, in the bottom part of the screen. Participants had to choose “old” for 
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positive recognition and “new” for negative recognition. Participants were discouraged from 

guessing: if they were unsure, they were asked to choose the option of “new” word. In case 

of a positive recognition, two other options appeared in the bottom of the screen and 

participants had to choose whether they remembered or whether they knew the word with 

the left and right button respectively. They were told to take their time to decide, but they 

could also trust their feeling, reducing  the possible bias on differential effort provided in the 

different judgements (Kafkas & Montaldi, 2012).  

 

 

 

 

 

 

 

 

 

Figure 22.  Remember/Know paradigm consists of two sessions comprising a study/encoding phase in 
the scanner, followed by an incidental recognition/retrieval test phase, outside the scanner. In case of 
positive recognition, they had to choose between remembered (i.e. recollection) or known (i.e. 
familiarity) judgment. 
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     Already seen?        <Yes            No> 

The instruction (in French) given to the participant includes three phases (task, explication 

and example) and are described below. 

 

TASK  

 

(For the study phase) 

“In this task, you will see a serie of words appearing successively on the screen. For each 

word, you will have to read it aloud while trying not to move the jaw. Try to imagine what 

this word evokes for you.  

(For the test phase) 

In this task, you will see a serie of words appearing successively on the screen. For each 

word, you will have to answer 2 successive questions which will appear on the screen: 

1. Firstly, you will have to decide if the word that you see is a word you have already read 

previously in the list of words presented in the scanner, or not. The question " already 

seen?" will appear on the screen. You will have to choose if the word that you see is a word 

already seen (old) or not (new). If you are sure that you have already seen the word, click on 

the left button for "yes" or on the right button for "no". If you are not sure that the word 

was read before, select also "no.” 

Here is the example with the word “apple”. 

 

 

 

 

 

2. Then, for the words that you recognized as "already seen" (in the first question), you can 

choose between 2 categories of EXPERIENCE OF RECOGNITION. Select one of the 2 options 

1   

APPLE 
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appearing on the screen: either "Recollection" with the left arrow, or "Familiarity" with the 

right arrow. 

 

 

 

 

 

There is no time pressure, but trust also your instinct to answer. 

EXPLANATION 

"Recollection" means that you can travel back in time and remember something associated 

with the recognized word, such as the context or the moment when you met this word. For 

example, you recognize a face and you remember having spoken to this person during a 

party the last night. Here, you remember the context that allowed you the recognition of the 

face. 

In the other category corresponding to the option "Familiarity", you have no recollection of 

what allowed you this experience recognition. In this case, you are sure you recognize this 

face, and you know that you recognize this person because you have a strong feeling of 

familiarity, but you do not have more precise recollection that indicates you have already 

seen this person previously. 

 

 

 

2  

APPLE 

       <Recollection             Familiarity> 
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EXAMPLE 

Now, an additional example is described below and will help you to better understand the 

different categories of recognition experience: imagine you are watching a movie at the TV 

and that a new actor appears on the scene. You think that you have already seen this actor 

previously, but only one time. Now you can have two categories of recognition experience. 

In the first category (that we call "recollection"), when you see the face, you can almost 

immediately travel back in time and remember the moment or another cue related to the 

first time you saw this actor. You can thus situate him in the time or the context in which you 

saw him for the first time. 

There is also a second category of recognition experience (that we call "Familiarity") that you 

can have when you see the actor at the TV. You notice that you know who is the actor, you 

recognize him, you are sure that you have already met him by chance previously, but you 

have no recollection of the moment or any cue related to this first meeting. However, there 

is something in you that tells you have already seen this actor before. He is familiar to you, 

but you cannot travel back in time, and situate the actor in the context of the first meeting, 

but you have a strong feeling you have already seen this actor previously.” 

 

 

MRI sequences  

 

Previous studies in animals and patients with lesions have considerably improved our 

understanding of mechanisms in the MTL, however, considering the size of the human 

hippocampus, from 4 to 4.5 cm in the longitudinal axis, and its subregions, the in-vivo 
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investigation of human’s MTL, specifically the Cornu Ammon (CA) 2 subfield and the Dentate 

Gyrus (DG), is still limited by the resolution of neuroimaging techniques (Tamminga, 2013) 

or by strong artifact  such as signal dropouts coming from higher field strength in the inferior 

and anterior parts of the temporal cortex. Nevertheless, it has recently been shown that 

with imaging techniques at high magnetic field, memory encoding is associated with 

stronger BOLD dependent signal in the MTL. Neuroimaging studies using higher resolution, 

up to 1 or 1.5 mm3 resolution, would considerably improve the understanding of functional 

anatomy in MTL, in part due to decreased partial volume effects associated with a smaller 

voxel’s volume (Theysohn et al., 2013). Partial volume loss can occur in regions that contain 

a mixture of tissue types (J Ashburner & Friston, 2003). The aim of this study is to explore the 

different functions of the MTL taking part of the advantage of higher magnetic field, at 7 

Tesla that leads to greater sensitivity of memory-related processes and greater spatial 

resolution. 

We conducted high-resolution event-related fMRI BOLD sensitive experiment to probe 

neural activation associated with recollection and familiarity using the Remember and Know 

paradigm. Data were acquired at 7T Siemens MAGNETOM scanner with shielded activity 

(Siemens Medical Solutions) located at the Centre d’Imagerie BioMedicale (CIBM) in 

Lausanne, Switzerland. EPI sequence were acquired with a 8-channel head volume RF-coil 

(RAPID Biomedical GmbH) and with sinusoidal readout gradients, specially developed for 7T 

and with the following settings: TR 3000ms, TE 27ms, flip angle 69 degrees (SAR limited), 

FOV 200*200 mm, matrix size 132*132 *45 (1.5*1.5 mm resolution in-plane), 6/8 partial 

Fourier acquisition, bandwidth 1722 Hz/pixel. 100 volumes containing 43 1.5 mm axial-

oblique slices with the phase-encoding direction anterior-posterior located in the MTL were 

acquired in a single run with a total scanning time of 5 minutes.  
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An anatomical T1-weighted high-resolution 3D image was acquired using the MP2RAGE 

pulse sequence optimized for 7T MRI (Marques et al., 2010) with these parameters: 

resolution 1mm3, TR 5500ms, TE 28.2ms, flip angle of 5 degrees, matrix size 340*256*176.  

 

The 7T procedure used in our study has already been successfully performed with fMRI task  

investigating the motor cortex (van der Zwaag et al., 2009) and the auditory cortex (S. Da 

Costa et al., 2011). That technique allows increased signal-to-noise ratio, smaller voxel size, 

reduced signal of venous signal with shortened relaxation time, improving the spatial BOLD 

signal specificity (van der Zwaag et al., 2009, 2011).  

 

It is possible to compare the proportion of Hits and FA to measure sensitivity (Table 3). There 

are other corrected scores of recognition that can be calculated with a sensitivity index d’ 

with hit rate, the proportion of Hit, substracted by the proportion of false alarm (FA) rate 

(i.e. Hits rate - False Alarms rate). The higher is this index, the more distance there is 

between signal and noise in subject’s response.   

 

 Response “Old” Response “New” 

True “Old” Hit Miss 

True “New” False Alarm Correct Rejection 

Table 3. Table of signal detection theory applied to recognition memory task in which words in a 
studied list have to be recognized later in a testing list containing new words compared with the 
studied list. Items are classified as Old or New depending on whether they are recognized as part of 
the studied list or not (i.e. Response “Old” or “New”) and whether they belong to those lists in reality 
(i.e. True “Old” or “New”) .  
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Univariate statistical analysis  

 

Data were analysed using Statistical Parametric Mapping (SPM8-Matlab toolbox, 

http://www.fil.ion.ucl.ac.uk/spm). Pre-processing consisted of spatial transformations with 

realignment (for correcting movement artefacts), segmentation, normalization to the MNI 

space, and spatial smoothing (with isotropic 4-mm full-width at half-maximum kernel) and 

finally, temporal high-pass filtering (1/128 Hz cutoff) was applied. Based on the subsequent 

recognition test responses of each subject, old items were classified into 3 categories: 

Missed (or forgotten) items (neutral and emotional), remembered items (neutral and 

emotional) know items (neutral and emotional) (Figure 23A). For the fMRI data analysis, we 

constructed a design matrix for the General linear model (GLM) that contained regressors 

for these 3 conditions corresponding to a nested factorial design (Figure 23B). The regressors 

were built by convolving the canonical hemodynamic BOLD response function with each 

condition. The subject’s effect was not included in the design, because it was assumed that 

between-subject variability was low. 
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Statistical analysis: Design
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Figure 23. (A) Design matrix at subject’s level containing three regressors for remember, know and 
forgotten conditions. The rows represent the scans and the columns, the explanatory 
variables/regressor. (B) Design matrix at group level corresponding to a full factorial design including 
the three same conditions as subject’s level. The rows represent the contrasts estimated at subject’s 
level and the columns, the explanatory variables/regressors.  
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Multivariate analysis of spatial distribution: MVB, BMS  

 

We used multivariate Bayesian method (MVB) and Bayesian Model Selection (BMS) with 

SPM12 software to extract and identify the best model in term of multivariate spatial 

contribution of activity in MTL subregion, namely the hippocampus, the parahippocampal 

cortex and the perirhinal cortex, for encoding words that were subsequently recognized and 

classified as remember or know judgments.  

BMS. Bayesian Model Selection (BMS) allows comparing directly multiple models by 

comparing log-model evidences between different models. An exceedance probability is a 

measure of probability that one model exceeds all the others in term of ranking. For the 

inference method, “Random effects” (RFX) option was selected in order to take into account 

inter-individual differences in the task at group-level. Bayesian method affords a predictive 

validity and generalizaility of the model tested (Stephan et al., 2009).  

MVB. Withing each MTL subregions, the Multivariate Bayesian Method (MVB) was used to 

explain the link between multivariate distributed data (or target) X and predictors Y (K. 

Friston et al., 2008). MVB generates a decoding model in which some priors about the 

pattern weights over data features (i.e. voxels) are assigned. This pattern called partition is 

first assumed to have similar variance in the pattern weights and then, with a greedy search, 

this partition is optimized, using variational scheme under Laplace assumption, to obtain the 

subset of largest pattern weights. The search will finish with a high number of subsets, with 

higher covariance and weights, if the distribution is sparse. In other terms, MVB output can 

be related to the type of neuronal representation in a region (K. Friston et al., 2008; Karl J 

Friston & Stephan, 2007). Sparse distribution means that few voxels have large variance and 

most of them have small variance. Smooth prior represents clusters of voxels or spatially 
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coherent distribution over anatomy with local Gaussian kernels. Sparse-distributed (or 

compact) prior is a reduced (with singular value decomposition, SVD) local compact model of 

support prior. Support models mean large number of distributed patterns (K. Friston et al., 

2008; Morcom & Friston, 2012). These priors could be related to a continuum between 

“grand-mother cell” to “mass action” distribution (Quiroga, Kreiman, Koch, & Fried, 2008) as 

described in the Error! Reference source not found. from left to the right. 

 

Concerning MTL subregions anatomical mapping, the Hipp and PhC cortex were defined with 

AAL atlas (Tzourio-Mazoyer et al., 2002). The PrC map, based on macro-anatomic landmarks 

(Insausti et al., 1998), was created with group-based probabilistic map in the MNI-152 space 

and comes from a published work on perceptual information integration fMRI paradigm 

(Holdstock, Hocking, Notley, Devlin, & Price, 2009). In order to compare MTL subregions, the 

part of the PrC that overlaps the PhC was excluded of the perirhinal mask for the analysis 

and vice versa for the PhC. Those anatomical maps were fitted to the participant‘s native 

space and they were visually inspected.  We suspected a signal dropout in the PcR due to MR 

artefacts of fMRI echo-planar in the anterior part of the temporal cortex (Olman et al., 

2009). Percentages of voxels with non-zero values in the PrC were 100% (n=2), 99% (n=2), 

94% (n=1), 93% (n=1), 92% (n=1), 83% (n=1), 70% (n=2), 67% (n=1), 57% (n=1), and 55% 

(n=1). In the Hipp and PhC, all voxels are preserved, except in one participant with 97% of 

non-zeros value in the Hipp. In addition, no bias was observed in the model evidence due to 

the different volume in each of the MTL subregions.  

 

 



         

104 
 

2.4.3. Results 

 

 Emotional effect in recollection and familiarity 

 

The participants were tested individually over two phases: a study phase that took place in 

the scanner and an incidental recognition phase outside the scanner. In table 4,  we report 

the mean proportions of emotional and neutral studied words recognized as old words (hits) 

and unstudied words recognized as old (false alarm) for remember and know judgments. 

Participants could discriminate between the old words and the new words: overall hits 

(M=.65, SD=.17) were significantly higher than the false alarms (M=14, SD=.12; t(12)=10.36, 

p<0.05). Analyses on accurate recognition (hits minus false alarms) showed, as predicted, 

that more emotional words were remembered (M=.44, SD=.19) than neutral words (M=.37, 

SD=.15; t(12)=2.66, p<0.05), but not known (known emotional words, M=.09, SD=.12., 

known neutral words: M=11, SD=.11; t(12)=.62, p>0.05).  

 

Table 4 
 

   
  Hits False Alarms 

  Remember Know Remember Know 

Emotional .47 (.06) .20 (.02) .03 (.01) .11 (.03) 

Neutral .40 (.04) .22 (.03) .03 (.01) .11 (.03) 
Table 4. Mean proportion and standard errors (in brackets) of correctly recognized (Hits) and 
incorrectly recognized (FA) emotional and neutral words judged as remembered or known. 
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Univariate analysis of brain activation associated with recollection and familiarity  

 

Using a whole-brain family-wise error corrected threshold of p-value 0.05, we report in table 

5 the significant brain regions associated with main effect of each of these conditions: 

Reading (including all read words), recognition (including  all correctly recognized words), 

recollection including all correctly recognized words judged as recollected) and familiarity 

(including all correctly recognized words judged as known, familiar). 

Reading condition was associated with regions in the in bilateral occipito-temporal cortices 

(Table 5A). Recognition was not only associated with regions in bilateral occipito-temporal 

cortices, but also in the left cerebellum and left inferior frontal cortex (Table 5B).  

Recollection was associated with regions in bilateral occipito-temporal cortices, but also in 

the left cerebelum and in the inferior frontal cortex (Table 5C, Figure 24A), whereas 

familiarity was only associated with regions in bilateral occipito-temporal cortex (Table 5D, 

Figure 24B).  

Using the same statistical threshold, no significant voxels were for the negative association 

with recollection and familiarity even when they are subtracted by the miss condition 

(meaning incorrectly unrecognized, or forgotten words); idem for the positive association 

substracted by the miss condition. However, the effect of miss condition was included in the 

design to control for it. 
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Table 5 

A. Reading 

Cluster (Voxels) Region (Label) X  Y  Z  T statistic  

1036 Right inferior occipito-temporal 
cortex 

32 -76 -21 7.87 

 Right lingual cortex 21 -84 -11 6.82 

  24 -84 -18 5.84 

3077 Left occipital cortex -44 -76 -14 7.72 

 Left cerebelum -45 -70 -27 6.94 

 Left inferior occipito-temporal 
cortex 

-30 -81 -20 6.93 

928 Left superior temporal cortex -54 9 -9 5.65 

  -48 3 -11 4.99 

  -53 12 -17 4.9 

      

B. Recognition 

Cluster (Voxels) Region (Label) X  Y  Z  T statistic  

882 Right inferior occipito-temporal 
cortex 

32 -76 -21 7.84 

 Right lingual cortex 23 -81 -12 6.34 

 Right inferior occipital cortex 33 -87 -9 5.48 

2799 Left inferior occipital cortex -45 -75 -14 7.51 

 Left cerebelum -44 -67 -24 6.96 

 Left inferior occipital cortex -42 -55 -15 6.8 

765 Left superior temporal cortex -54 9 -9 5.73 

  -48 2 -9 5.13 

 Left inferior frontal cortex (pars 
opercularis) 

-48 8 6 4.99 

255 Left cerebellum -11 -61 -20 4.87 

  -12 -72 -20 3.58 

      

C. Recollection 

Cluster (Voxels) Region (Label) X  Y  Z  T statistic  

1792 Left inferior occipito-temporal 
cortex 

-41 -76 -18 6.32 

 Left inferior occipital cortex -42 -55 -15 6.4 

 Left cerebellum -45 -70 -27 5.39 

637 Right inferior occipito-temporal 
cortex 

32 -76 -21 7.61 

 Right inferior occipital cortex 33 -87 -9 5.17 

 Right lingual cortex 23 -81 -12 5.5 

534 Left superior temporal pole -51 15 -12 5.2 

 Left inferior frontal cortex (pars 
opercularis) 

50 15 -3 4.78 
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107 Left inferior frontal cortex (pars 
triangularis) 

-56 30 -2 4.41 

  -48 23 7 4.2 

      

D. Familiarity 

Cluster  (Voxels) Region (Label) X  Y  Z  T statistic  

1580 Left inferior occipito-temporal 
cortex 

-26 -81 -20 6.63 

 Left inferior occippital cortex -44 -76 -14 6.63 

 Left lingual cortex -20 -91 -11 5.46 

 Right lingual cortex 21 -84 -11 5.55 

 Right occipito-temporal cortex 32 -76 -21 5.44 

 Right calcarine gyrus 11 -90 -8 3.63 

      
Table 5. (A) Significant regions showing average activation for reading (PFWE<0.05) (B), for 
recognition, (C) for recollection and (D) for familiarity. Coordinates [X, Y, Z] are reported in the 
Montreal Neurological Institute space. 

 

A 

 

B  

 

 

 
 
Figure  24. Statistical parametric map of (A) recollection associated with left occipito-temporal cortex 
(top figure) and inferior frontal cortex (bottom) and (B) familiarity associated only with left inferior 
occipito-temporal cortex. Results are based on threshold of p<0.05 FWE corrected, and figure with a 
statistical threshold of p<0.001 uncorrected. 
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Multivariate analysis of spatial distribution of activation in the Medial Temporal Lobe 

associated with recollection and familiarity  

 

For each model of MTL subregion, Hipp, PhC and PrH activity (Figure 25), we report the 

parameters of exceedance probabilities to predict remember and know judgments (Figure 

26). There was greater evidence for the Hipp activity than the other MTL subregions to 

predict all recognized words (Figure 26A) and remember judgments (Figure 26B). The PhC 

predicted also more remember judgments compared with the PrC (Figure 26B). In contrast, 

for know judgments, the PhC is a better model than the other MTL subregions (Figure 26C). 
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Figure 25. Figure of the three subregions of the medial temporal lobe in the MNI space: the 
hippocampus (in red), the parahippocampal cortex (in yellow) and the perirhinal cortex (in green). 

 

 

 

 

Figure 26. Comparison of MTL subregions models, namely the Hipp, the parahippocampal cortex and 
the perirhinal cortex models for (A) recognition, (B) remember and (C) know judgments using the 
Bayesian Model Selection (BMS) with the best spatial prior model. Y axis: Exceedance probability of 
each model to outperform the others. 
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Within the Hipp, the best model, in terms of spatial distribution of activity predicting all 

recognized words, was sparse-distributed and smooth within the PhC compared to the two 

other models (i.e. the three models are sparse, sparse-distributed or smooth). No model 

outperformed clearly the others within the PrC (Figure 27A). For remember judgments, we 

observed that the Hipp was best predicted by a sparse-distributed model, whereas the two 

other cortical regions of the MTL were best predicted by sparse model compared to two 

other models (Figure 27B). In contrast, for know judgments there was no clear pattern: no 

one model outperformed the others, but within the PrC, there was slightly more evidence 

for a sparse model (Figure 27C). 
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Figure 27. Comparison of spatial priors models, namely sparse, sparse-distributed and distributed 
models (represented in blue, purple and gray colours respectively) within each region of the MTL, 
namely the Hipp, the parahippocampal cortex (PhC) and the perirhinal cortex (PrC). Y axis: 
Exceedance probability of each model to outperform the others are reported for (A) recognition, (B) 
recollection and (C) familiarity condition. 
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In addition, there was no bias due to the complexity of penalty (i.e. number of voxels in each 

region) in the variational approximation of the model evidence used with MVB, because we 

report no significant effect of the volume of MTL subregions in the individual native space on 

the log-model evidence (i.e. F value) associated with recognition (p=0.065,F=2.447,df=38), 

remember (p=0.602,F=0.693,df=38) and know (p=0.28,F=1.304,df=38) judgments. In 

addition, knowing that the anterior part of the temporal cortex, i.e. in the PrC, could be 

biased by MR artifact (Olman et al., 2009), we tested whether the small contribution of the 

PrC in remember and know judgments is driven by a lower regional size. However this 

hypothesis was rejected, because we found that the size of the PrC (34886±2901 mm3) is 

higher than the PhC (21535±1417 mm3) and this last is higher than the Hipp size 

(24509±1612 mm3) (p=0.00, F=147.08,df=38). 
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2.4.4. Discussion 

 

Our results reveal a dissociation and specific mapping, at the level of neuronal 

representation, between MTL subregions and recognition memory components. This is a 

new finding that has direct implication for the on-going debate on neurocognitive models in 

recognition memory. 

 

 Emotional effect in recollection and familiarity 

 

The experience of recollection was associated more with the recognized emotional words 

than the neutral words, thus replicating the advantage that emotional items have in 

recollection over neutral ones. By contrast, familiarity appears not affected by the emotional 

valence associated with the recognized items. One hypothesis is that, due to the Hipp 

specificity to process associations, emotional stimuli will enhance recollection. It is also 

possible that emotional remembered stimuli recruit more the amygdala to enhance the 

feeling of arousal and perceptual fluency (Sharot et al., 2004, 2007). 

 

Univariate analysis of brain activation associated with recollection and familiarity  

 

In the univariate analysis, we observe that brain activation associated with recollection and 

familiarity is mainly located in the inferior occipito-temporal cortex. We report that there is 

an additional activation associated with recollection in the inferior frontal cortex (i.e. 

operculum and triangularis parts).  
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The inferior temporal cortex, the medial temporal lobe (MTL) and left frontal cortex are 

commonly found to be associated with encoding of items that are subsequently recognized 

and associated with recollection and/or high confidence experience. The inferior frontal 

cortex associated with recollection could reflect a controlled effortful engagement allowing 

retrieval of source information (Skinner & Fernandes, 2007) or to the encoding of elaborate 

and organized episodic memory, in addition to the temporal cortex that would have a role in 

memory storage (Andrew P. Yonelinas, 2002).  

We also report that brain activation associated with recollection is localized in the anterior 

part of the left occipito-temporal region. In contrast, brain activation associated with 

familiarity is also localized in the same regions, but in the posterior part, including the 

calcarine gyrus. This could be explained by the fact that the MTL, and more particularly the 

hippocampus, has the function to store information in memory by a transformation of visual 

stimuli coming from inferior temporal (IT) cortex to more abstract, sparse, invariant 

representations, possibly with less detail than the variant dependent neurons in IT cortex 

(Quiroga et al., 2008; Quiroga, Reddy, Kreiman, Koch, & Fried, 2005).  

Recollection would involve mainly the hippocampus and anterior part of the MTL to store 

information coming from the ventral stream of the temporal cortex. In contrast, according to 

the representational-hierarchical view, familiarity would involve more the posterior part of 

the visual ventral stream in order to process visual features. The next steps involve complex 

conjunctions of features in the aim of representing them as a whole, fine-grained 

representation of object in the more anterior part of the temporal cortex (McTighe, Cowell, 

Winters, Bussey, & Saksida, 2010) with a semantic meaning (Tyler, Chiu, Zhuang, Randall, & 

Devereux, 2014).  
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Multivariate analysis of spatial distribution of activation in the Medial Temporal Lobe 

associated with recollection and familiarity  

 

Dissociation between hippocampus and parahippocampal cortex for recollection and 

familiarity. Our results highlight the dissociation between Hipp and PhC for remember and 

know judgments respectively. This is in accordance with the exclusivity model or also the 

independency model if both processes are dependent on another common region in the 

MTL such as the PrC (Figure 20, right). Mainly, our results indicate that there is evidence for 

Hipp activity model to predict remember judgments compared with the surrounding cortical 

region. The PhC predicted also more remember judgments compared with the PrC. There 

was also a positive evidence for the PhC compared with the other MTL subregions to predict 

know judgments. 

We also observed that Hipp activity model during encoding predicts strongly all recognized 

words compared to the other MTL subregions, This confirms that, within the MTL, the Hipp 

contains the largest amount of information related to memory compared with the other 

MTL subregions. This is in accordance with studies showing high sensitivity of hippocampal 

activity during fMRI memory task at high resolution (Carr et al., 2010; Yassa & Stark, 2009). 

We also confirm that, in MTL regions, a multivariate approach adds information compared to 

the univariate one in a memory paradigm (Chadwick et al., 2012). In addition, the advantage 

of MVB is that it can simulate a virtual lesion, by measuring the contribution of each region if 

they were absent (K. Friston et al., 2008), avoiding also collateral effects of lesions (e.g. 

compensation, presence of a “hidden” pathology) (J P Aggleton & Brown, 1999; Chadwick et 

al., 2012; Richard Henson, 2005; Morcom & Friston, 2012; Andrew P Yonelinas et al., 2010) 

that could bias the results.  
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Our observation of dissociation between the hipp and PhC to predict recollection and 

familiarity respectively is in line with models derived from lesion and volumetric studies. 

They found that the PhC, including perirhinal and entorhinal cortices, is necessary for 

familiarity (Bowles et al., 2007; Wolk et al., 2011; Yonelinas, 2002). These models are 

consistent with our results knowing that the entorhinal cortex is part of both the PrC and 

PhC. The majority of studies on amnesic patients showed that atrophied Hipp, but spared 

immediate surrounding cortical region, was associated with deficits only in recall, but not in 

recognition-related to spared familiarity processes (John P Aggleton et al., 2005; John M 

Gardiner, Brandt, Vargha-Khadem, Baddeley, & Mishkin, 2006; Yonelinas, 2002). The 

selective pattern of brain abnormality in the Hipp and in the enthorinal/perirhinal cortices 

was also correlated with recollection and familiarity deficit respectively (Eichenbaum H. 

Yonelinas A.R., 2007; Wolk et al., 2011). In addition, in a single case study, the resection of 

perirhinal and enthorinal cortices, with spared other parts of the PhC, impaired familiarity 

but not recollection (Bowles et al., 2007). The PhC can thus be associated with familiarity, 

probably with involvement of entorhinal cortex that is also part of the PhC in our study.  

In most neuroimaging studies, they found similar results for the association between 

recollection and the Hipp, but not for familiarity and the PhC. They observed that the Hipp 

and the PhC, mostly in the posterior part of the MTL, are both associated with recollection 

and that the more anterior part of the PhC, i.e. the PrC, is associated with familiarity (Diana 

et al., 2007; Eichenbaum H. Yonelinas A.R., 2007; Slotnick, 2013; Yonelinas, 2002). In our 

results, we found that the PrC is less predictive of familiarity than the PhC, which seems 

contradictory with the majority of studies showing that the PrC is critical for familiarity 

(Diana et al., 2007; Eichenbaum H. Yonelinas A.R., 2007; Slotnick, 2013; Yonelinas, 2002). 



         

117 
 

However, a recent study found a triple dissociation between regions in the MTL. Recollection 

was associated with the posterior half of the Hipp, familiarity with the posterior PhC and 

novelty with the anterior half of the Hipp (Daselaar, Fleck, & Cabeza, 2006). Numerous other 

studies  suggest a role of the anterior part of MTL, such as the PrC, in novelty detection 

(Rissman & Wagner, 2012; Yonelinas et al., 2010). 

We notice that the difficulty in providing conclusive results in lesion and neuroimaging 

studies lies in the various definitions of the surrounding cortex of the Hipp between studies 

and in the fact that this region is sensitive to MRI susceptibility-distortion effects 

(Eichenbaum H. Yonelinas A.R., 2007; R. Henson, 2005b). In our study we observed that the 

PrC is not only the less involved in familiarity, but also in recollection and overall recognition. 

This could raise the question of whether results on anterior region could be biased by MR 

artifact (Olman et al., 2009) and by the small region size. Nevertheless, we did not report any 

significant effect of the volume of MTL subregions on the log-model evidence (i.e. F value) 

for each condition (i.e. recognition, remember and know judgments) (Hulme, Skov, 

Chadwick, Siebner, & Ramsøy, 2014). In addition, we observed that the size of the PrC was 

higher than the two other regions of the MTL. It could also be possible that the difference in 

our results from other studies could be driven by the different method, here MVB, used.  

 

In addition, even if our results show specificity for each MTL subregion in remember and 

know judgments, other studies found that there is not a simple mapping (Larry R Squire et 

al., 2004). Those regions are associated differently with remember and know, depending on 

specific demands of the task and the type of information or domain involved: The Hipp has a 

role in binding item with context; the PrC in individual item, complex visual objects 

processes and the PhC in binding item with spatial context and scene and in categories 
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distinction (Diana et al., 2007; Rissman & Wagner, 2012; Staresina, Duncan, & Davachi, 

2011). The PrC and entorinal cortex are also associated with semantic, but not episodic 

memory (Davies, Graham, Xuereb, Williams, & Hodges, 2004), whereas the Hipp predicts 

more episodic memory than the surrounding cortex (i.e. the PhC and the entorhinal cortex) 

(Chadwick, Hassabis, Weiskopf, & Maguire, 2010). Likewise, the PrC projects to the lateral 

part of the entorhinal cortex for “what”/item specific information processing, whereas the 

PhC projects to the medial entorhinal cortex for “where”/location-specific information 

processing (Alvarado & Bachevalier, 2005; Eichenbaum H. Yonelinas A.R., 2007).   

In our study, we went also further in the investigation of the complex mapping, in term of 

spatial distribution of coding, between recognition memory components and MTL 

subregions by using MVB. 

 

Neuronal coding of MTL subregions predicting recollection and familiarity. For the first 

time in our knowledge, we found that for recognition and recollection, the associated Hipp 

spatial distribution activity was best predicted by sparse-distributed model compared to all 

the other models (i.e. smooth and sparse). In contrast, there was a positive evidence for the 

sparse model compared with the other models to predict the activity in the surrounding 

cortical subregions of the MTL, i.e. the PhC and the PrC, for recollection. But for familiarity, 

none of the models clearly outperform the other within the PhC. 

The emerging literature has investigated the neural representation/distributed pattern and 

its function for memory in the MTL, but was mainly focused on semantic rather than 

episodic memory. However, our result on recognition memory is highly consistent with a 

recent study (Wixted, Squire, Jang, Papesh, Goldinger, & Kuhn, 2014) that found that Hipp 

activation was associated with episodic memory and followed a sparse distributed coding 
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with distributed pattern of localized neural activity. This was described as the best way to 

rapidly encode memories without overwriting previously stored memories. Sparse-

distributed mapping in the hippocampus is in line with the fact that episodic memory 

involves both retrieval of details related to one single episode (i.e. in favor of sparse 

representation) and to semantic knowledge arising from exposure of multiple episodes and 

extraction of regularities, explaining that many neurons or voxels are activated by many 

stimuli from the same class (i.e. in favor of more distributed representation) (Wixted, Squire, 

Jang, Papesh, Goldinger, Kuhn, et al., 2014).  

Some studies explain the sparsity of the Hipp with its role in binding or association of 

information coming from different cortical regions outside the Hipp to form a single, 

complex and nonoverlapping episode in the Hipp (Chadwick et al., 2010; Diana et al., 2007; 

O’Reilly & Rudy, 2001; Quiroga et al., 2008; Rissman & Wagner, 2012; Rolls & Treves, 1990; 

Staresina et al., 2011). In a study (Quiroga, Kreiman, Koch, & Fried, 2008b), the Hipp 

representation was defined as sparse, however, the sparsity corresponds to neurons that 

fire to very few stimui such as abstract concepts, but not to single individual which was 

suggested in the Grandmother-cell theory (Quiroga et al., 2008, 2005). In a neural network 

learning context, the coding of several conjunctions (e.g. object and context) allows to 

process in parallel many solutions and find an optimal one, allowing generalization to novel 

inputs and avoiding exhaustive search through all possible combinations (e.g. each object 

and context) (Reilly & Busby, 2002). In most previous studies on the neuronal representation 

of declarative memory, mainly semantic memory, they found sparse representation in the 

Hipp. In addition, there would be less than 1% of neurons related to this memory in the Hipp 

(Wixted et al., 2014). In a recent study, they found that the Hipp subfield Cornu Ammonis 

has an increased sparsity compared to the surrounding entorhinal cortex. This sparsity 
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would arise from the dentate gyrus, another Hipp subregion, involved in pattern separation 

(i.e. the process of generating different neural codes from highly similar stimuli) (Deng et al., 

2010; Hulme et al., 2014). The Hipp would quickly bind together pattern separated 

representations and would favor recollection. In contrast, the cortical part of the MTL would 

be more poor in term of pattern separation and would be more specific to familiarity 

(Montaldi & Mayes, 2010). 

Numerous other studies suggest that activation of the PhC (i.e. mostly in the inferior part of 

the temporal cortex) is sparse, in line with our results. The representational-hierarchical 

view of the ventral visual stream, including regions from the visual cortex to the inferior 

temporal cortex and then to the perirhinal cortex, assumes that the representation of an 

object is increasing in complexity of conjunction of features along the stream. The posterior 

part of the temporal cortex processes visual detailed features and the more anterior part 

processes complex conjunctions of those features to obtain a whole representation of 

object, or categories, invariant to object metrics, with less details and with a semantic 

meaning (Baddeley et al., 1997; McTighe et al., 2010; Rolls & Treves, 1990; Tyler et al., 

2014). Those regions are mainly involved in perceptual functions; they can also generate 

representations of objects useful for other functions such as memory. The role of the MTL, 

mainly the Hipp, would be to store complex visual precepts in long-term memory in a less 

detailed, but more abstract way, allowing then generalization and learning processes 

(Quiroga et al., 2008; Reilly & Busby, 2002).  

In addition, as shown in our results, the PrC is different in the type of neuronal 

representation, with sparse coding. This is in accordance with the fact that this region 

processes mainly unitized object and item  information and is more selective to some 

specific perceptive information (Malcolm W Brown & Aggleton, 2001; Diana et al., 2007; 
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Duff, Hengst, Tranel, & Cohen, 2005; Henke, 2010; Kafkas & Montaldi, 2011a; Montaldi & 

Mayes, 2010; Quiroga et al., 2005; Slotnick, 2013; Yonelinas et al., 2010; Yonelinas, 2002).  

 

However, the different scales or sampling of analysis used between studies makes difficult 

the description of coarse or fine-scale distribution of activation (Rissman & Wagner, 2012; 

Waydo et al., 2006). Kurtosis is also a measure of sparsity in biological studies. Higher degree 

of sparsity allows more selectivity to specific pattern of input, increasing the efficiency of 

storing memories with less energy and less confusion. One study reported that sparse coding 

in the MTL would allow less cost to recall the input already encoded (Olshausen & Field, 

2004) and, in animals, the Hipp would contain place cells sensitive to specific locations and 

that are uniformly distributed or coarsely-distributed in human (Rissman & Wagner, 2012).  

The definition of sparsity should be adapted to the level of brain unit (e.g. neuron or voxel) 

and should correspond to units that contain enough information to distinguish between 

representations by taking into account human brain constraint (i.e. size) (Quiroga et al., 

2008). 

 

In conclusion, our results support a hierarchical organization of the Hipp and PhC, not 

exclusively based on memory function, but also on the spatial representation of the encoded 

information. This hierarchical representation of information could serve to multiple cognitive 

functions related to those types of representation (McTighe et al., 2010), such as familiarity 

and recollection. Our contribution on previous debates on recognition memory highlights 

the dissociation between regions of the MTL characterized by specific multivariate 

anatomical and functional profiles associated with recollection and familiarity. In the 

perspective to better understand the roles of MTL subregions, we could also investigate 



         

122 
 

their interaction with other cortical content-specific brain regions (Richard N Henson & 

Gagnepain, 2010; Skinner & Fernandes, 2007; Yonelinas et al., 2010; Yonelinas, Otten, Shaw, 

& Rugg, 2005) and how they can be affected by different types of stimuli  (Sharot et al., 

2004). 

 

 

2.4.5. Limitations and perspectives 
 

Limitations. In our study, we cannot be certain that difference between recollection and 

familiarity does not involve other possible non-mnemonic processes (Richard Henson, 2005). 

Indeed, recollection and familiarity are not matched in term of confidence of memory and in 

accuracy (Kafkas & Montaldi, 2012). However, we limited those problems by carefully asking 

the participants to choose a positive answer only if they were sure they remembered the 

word from the study list, making recollection and familiarity more comparable in term of 

confidence. The answer “No” allowed disregarding guessing and no confident answering. 

In addition, there is no objective control to ensure that recollection and familiarity 

definitions were correctly understood. In some studies, the experimenter adds a contextual 

detail (e.g. color) with the item (i.e. source recollection) to check whether recollection is 

based on qualitative retrieval of contextual information. However, the disadvantage of that 

strategy is that it adds associative information and could bias the process of familiarity based 

on item processing only (Davachi, Mitchell, & Wagner, 2003; Rugg et al., 2012). However, in 

our study, we checked the instruction understanding by carefully asking the subject to 

explain the way they recognized the first six words of the test list. However, because 

recollection and familiarity represent subjective memories, it is difficult to assess them 

objectively. For example, a subject could associate a word with personal information, such as 
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an event in his life or an emotion (e.g. the word “ski” was remembered because the 

participant plans to ski the next week-end or because he likes skiing). Some studies used 

pupillary response (Kafkas & Montaldi, 2011) and reaction time (R N Henson, Rugg, Shallice, 

Josephs, & Dolan, 1999; Yonelinas et al., 2005) to dissociate them. In our study, no time 

constraint was given to judge the memory, avoiding an additional bias to potential answers.  

Perspectives. In perspective, we could test whether the pattern of activation found in 

encoding can predict subsequent memory judgment in new participants. To have higher 

prediction accuracy, we should also replicate the results with more participants. The 

ultimate goal would be to investigate MTL subregion contribution and spatial distribution 

associated with recognition memory components in individuals with MTL abnormality such 

as patients with AD, amnesia or depression. This could help identify abnormal memory trace 

and would represent individual biological markers of brain disease related to memory. This 

could also be useful to find ways to improve memory or depression and to understand the 

effect of some therapies at the brain level. For example, some studies report positive effect 

of therapies in AD and depression, but they do not report the effect at the brain level. For 

example, it has been shown that recollection in AD patients would be less impaired in events 

that contain an emotional valence and are self-related (Amieva et al., 2014; Kalenzaga & 

Clarys, 2013). In another study, a training of recalling more detailed and specific events has 

been shown to decrease depressive symptom  (Watkins et al., 2009). In addition, knowing 

that removal of visual interference between the study and test phase could rescue 

recognition memory impairment, more particularly the ability to distinguish novel from 

repeated stimulus (McTighe et al., 2010), it could be interesting to understand how this 

intereference modulates the task performance and the neural code in healthy controls, AD 

and depressive patients. 
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3. LEARNING 
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3.1. Multiple cues learning and memory systems interactions  

 
Recent models of memory systems highlight that in order to understand the functions of the 

temporal cortex in guiding behaviors it is necessary to identify its interaction with other 

memory systems in the brain (Gagnepain et al., 2011; Richard N Henson & Gagnepain, 2010). 

It has been proposed that memory systems (Figure 28) could be a result of the specialization 

of specific  regions in processing different information and whose response will thus depend 

on the task demand (Henke, 2010). The multiple cue probabilistic learning (MCPL) task 

(described in section “Behavioral task” of chapter “3.3.2. Materials and methods ”) offers a 

way to probe different memory systems, their interaction, and their specific components 

related to trial-and-error learning based on feedback. MCPL is also a cognitive process 

constantly encountered in daily life in order to adapt to our environment. The task has been 

mainly used to test procedural memory and declarative-episodic memory in patients with 

brain lesions in specific regions such as the basal ganglia (BG) and the MTL (Foerde et al., 

2013; Hopkins, 2004; Knowlton et al., 1994; Daphna Shohamy et al., 2008). Recent 

neuroimaging studies have confirmed that in classification/categorization learning, the MTL 

and BG memory systems, in addition to the pre-frontal cortex, are involved and can interact 

through cooperation and/or competition depending on the learning situation. For example, 

when a memory system is altered, another system can show up to enhance learning or when 

a system is increasing, the other is decreasing for the same task. The MTL is active early for 

generation of new stimuli representation and for declarative memory of past experience. It 

becomes then deactivated through learning trials. In contrast, the BG is related to non-

declarative/procedural memory and gradual learning with feedback and increases over time 
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(R a Poldrack et al., 2001; Russell a Poldrack & Packard, 2003; D Shohamy, Myers, Kalanithi, 

& Gluck, 2008). 

According to the literature, different brain regions have different functions during MCPL. As 

this type of learning involves visual categorization, the visual cortex processes first the 

sensory information of the environment and then detailed representations with bottom-up 

influences, meaning from basic, detailed elements to linked elements that are larger and 

more complex in the level of organisation. In the “ventral stream” composed of the visual 

areas V1, V2, V4 and the inferior temporal cortex (Ungerleider & Haxby, 1994), there is not 

only the perceptual processes and image segmentation of image, but a transformation of 

visual percepts in brain’s internal view of objects (Sheinberg & Logothetis, 1997). With 

repeated exposure or attention to a stimulus, the neurons of this area can adapt and 

become specific to this stimulus with a certain degree of tolerance. This repetition can 

improve the perceptual processing of relevant information, but it is not sufficient for some 

decision-making and the generalization of information. In the accumulator model (Seger & 

Peterson, 2013), emerging from mathematical psychology, the information needs to be 

accumulated and summed up until a decision can be made. The accumulation of evidence 

(or information) can also recruit regions in the inferior temporal lobe or the dorsolateral 

prefrontal cortex. It is known that the inferior temporal and the occipito-temporal (OT) 

cortices contain neurons that respond selectively to the shape of stimuli and can categorize 

them based on their perceptual properties and similarities. This involves perceptual memory 

and pattern recognition (Seger & Peterson, 2013). The OT cortex can thus processes complex 

visual forms and integrate top-down influences, i.e. high to low level of information 

processing (Kherif et al., 2011).. 
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Figure 28. Schema of different memory systems (i.e. episodic memory, procedural memory and 
priming/semantic memory) with the associated brain regions and  the cognitive process related to 
them (Henke, 2010). 

 

In categorization tasks,  the MTL is involved in remembering individual examples and 

instances or exceptions to rules and error corrections (M. a Gluck, Myers, & Meeter, 2005; 

Henke, 2010; Seger & Miller, 2010; Seger & Peterson, 2013). In a study on animals 

performing a spatial trial-and-error learning, the ventral hippocampus was shown to be 

related to early learning local search strategies whereas the dorsal hippocampus was 

involved in late learning and was associated with more proficient learning strategies 

(Ruediger, Spirig, Donato, & Caroni, 2012). Both the MTL and the pre-frontal cortex also 

crucially contribute to making stored information accessible to other systems such as the 

neocortex and the striatum through dopamine projections (Foerde, Knowlton, & Poldrack, 

2006). In addition, the MTL is also involved in generalization of stored information to new 

situations, which can make learning more flexible (Seger & E. K. Miller, 2010). Flexibility 
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means that the storage of information occurs in different brain regions allowing recall to be 

done in many different ways (Henke, 2010). Other studies have investigated MCPL in 

amnesic patients and have shown that they were less able to use a more complex and 

optimal strategy that combines multiple information, probably due to their incapacity to 

remember strategies or feedback (M. a Gluck et al., 2005; Hopkins, 2004; M Meeter, Radics, 

Myers, Gluck, & Hopkins, 2008; Martijn Meeter, Myers, Shohamy, Hopkins, & Gluck, 2006). 

They also exhibited late learning deficits in the task (Knowlton et al., 1994), but also early on 

(Hopkins, 2004). In contrast, fMRI studies show that hippocampal activation is more involved 

early on and decreases and even becomes deactivated as the learning proceeds, which is the 

opposite case for the basal ganglia. There is an initial process in the MTL to acquire 

appropriate stimuli representation and that normally facilitates subsequent learning and 

makes that initial representation accessible to other brain regions. This mechanism is absent 

in patients with MTL lesions, explaining their deficits in MCPL (M. a Gluck et al., 2005; R a 

Poldrack et al., 2001).  

Hippocampal and striatal activations have been shown to work in coupled, complementary 

or competitive manners depending on the task demand. The competition between MTL and 

BG is likely to be to enhance learning by balancing access to flexible knowledge against an 

automatic, fast learning (Packard, White, & Ha, 1989; R a Poldrack et al., 2001; D Shohamy et 

al., 2008). It has also been shown that these two regions can act in parallel and 

complementary manners to facilitate learning (K. C. Dickerson, Li, & Delgado, 2011; Foerde 

et al., 2006). Their interaction would be for example supported by their functional 

neuroconnectivity through a dopaminergic loop in situation of novelty-detection (Lisman & 

Grace, 2005).  
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The basal ganglia (BG), mostly involved in “know how” or procedural memory, contributes 

in the MPCL, but mainly in the late stage of learning. This region is associated with gradual 

incremental aspects of learning based on feedback, with the integration of multiple 

information and with a shift from simple to more complex strategies (D Shohamy et al., 

2008). Procedural memory is a main part of implicit memory, acquired slowly as a skill 

learning to extract common elements from a serie of separate events. BG activation is 

involved in learning specific to one skill and in the slow encoding of rigid associations, in 

contrast to the hippocampus, which is more involved in the generalization and flexibility of 

learning (Henke, 2010). Recent computational models have predominantly associated the 

activation of the caudate nucleus, part of the BG, with dopamine and reward/feedback 

related learning (Delgado, Miller, Inati, & Phelps, 2005; Pessiglione, Seymour, Flandin, Dolan, 

& Frith, 2006). In a study on patients with pallidotomy, meaning with neurochirugical 

destoyement of a part of the BG called globus pallidus that is overactive in Parkinson’s 

disease,  the learning of weakly predictive cues, a more implicit learning than for strong 

predictive cues, was impaired (Sage et al., 2003). In the BG, the ventral striatum was also 

shown to be positively modulated by subject’s performance in MCPL (Vink et al. , 2013). The 

ventral striatum, connected to the orbitofrontal cortex, is associated with prediction error 

(PE) and reward-learning associations, whereas the dorsal striatum is more sensitive to the 

predicted value of the reward. The BG also contributes, as part of the cortico-thalamo-

striatal loop, to decision thresholding and response criterion setting. Anatomically, the 

caudate nucleus projects from the cortex to the striatum, then to the thalamus and back into 

the cortex. The response selection is supported by the inhibition of the thalamus through a 

direct pathway (Seger & Peterson, 2013). 
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The Pre-Frontal Cortex (PFC) contains neurons sensitive to the boundaries of category 

representations and to abstract rule-based categorization (Seger & Miller, 2010). The PFC 

maintains recent information in working memory to reach a goal. The PFC would also be 

connected to the BG via dopaminergic pathways, which filter non pertinent information and 

allow attentional learning for stimulus selection, motor learning or process of shifting 

between rules (Moustafa & Gluck, 2011; D Shohamy et al., 2008). The PFC could also be 

implicated, with the parietal cortex, in top-down attention processes (Buschman & Miller, 

2007) and can also be recruited for decision making, to choose a high value option or to 

switch from one strategy to another to maximize reward (Seger & Miller, 2010). In a study 

using repetitive transcranial magnetic stimulation (rTMS), which produces electrical currents 

with magnetic field generation, on the dorsal PFC early in a probabilistic task, there was a 

disruption of subsequent learning strategies (Rushby et al., 2011). In addition, the PFC can 

interact with the hippocampus to process associations (Seger & Peterson, 2013), to 

consolidate memory or to recall information through strategic control on retrieval. This 

allows the selection of more pertinent memories linked to a context and the suppression of 

other less relevant memories (Preston & Eichenbaum, 2013).  

The orbitofrontal cortex, also called the ventral PFC, is also involved in coding the value of a 

stimulus and is crucial for learning and decision-making by taking into account emotional 

and motivational experience associated with the stimulus. This is in line with neuroeconomic 

theories which affirm that in learning based on reward, the expected computed value does 

not always predict a rational decision, particularly in the case of uncertainty, which is 

present in situations of categorization. Indeed, a decision also integrates other factors such 

as motivation and affects and is often called “choice”.  For example, impulsivity can explain 
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the preferential choice for an immediate reward and the involvement of the PFC. In addition, 

the uncertainty of a reward induces risk and ambiguity that depends on the prediction of a 

reward and involves dopaminergic systems of the BG and dorsolateral PFC. The anterior 

prefrontal cortex is also associated with choice making in the future (Seger & Peterson, 

2013). In addition, other individual factors such as the presence of depression symptoms 

decreases the response to reward and increases the sensitivity to punishment in learning 

probabilistic associations (Brinkmann, Franzen, Rossier, & Gendolla, 2014; Whitmer, Frank, & 

Gotlib, 2012). Individuals with depressive symptoms without a depression diagnosis, also 

called dysphoric individuals, are more sensitive to change of contingences to learn (Msetfi, 

Murphy, & Kornbrot, 2012). Beyond this, stress can also favor striatal activation in 

categorization learning rather than the MTL system (Schwabe & Wolf, 2012). These 

observations highlight the fact that, in a categorization task such as MCPL, different 

individualized factors can influence learning and interact to make choices. Those systems 

could also be modulated by personality, affective and motivation states.  
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3.2. Open questions 

 

The aim is to investigate the role of the MTL and the temporal lobe during learning, by 

exploring their interactions with other memory systems (Figure 29). This is investigated in 

chapter 3.3 entitled “Experiment 3 - The interactive role of the occipito-temporal cortex with 

frontal cortex during probabilistic learning and uncertainty”. The effect of reward and 

prediction error in learning was investigated in the chaper 3.4 on “Experiment 4 – Neural 

substrate associated with reward and prediction error in probabilistic learning”. Individual 

factors such as personality and negative affects will also be related to learning. This is 

investigated in the chapter 3.5 entitled “Experiment 5 – Neural substrate associated with 

personality and depressive/anxiety symptoms in probabilistic learning”. 

 

 

Part 3 
Probabilistic learning 

fMRI with virtual game 
environment 

Causal Modelling 

Healthy 

 

 

Figure 29. Plan of the third part of the thesis. The raws describe 
the research topic, the neuroimaging MRI technique, the 
statistical method used and the population studied. MRI: 
Magnetic Resonance Imaging. 
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3.3. Experiment 3 - Uncertainty and the interaction between the 
occipito-temporal cortex and frontal cortex during probabilistic 
learning. 

 

3.3.1. Objective 

 

Learning is an adaptative process allowing predicting the future based on the past 

experience. In reality, the context is often uncertain and humans have still the capacity to 

learn but in probabilistic and individual ways (M. a Gluck et al., 2002). Well-adapted behavior 

and optimal decision making require the extraction of relevant information from noisy 

sensory inputs, as well as weighting of evidences from multiple sources of information 

(Behrens, Woolrich, Walton, & Rushworth, 2007). Recent studies aim to understand 

neuronal mechanisms in such environment (Huettel, Song, & Mccarthy, 2005). To capture 

those mechanisms of learning, we used a paradigm called multiple-cue probability learning 

(MCPL). We adapted the Weather prediction task (Knowlton et al., 1994) to a virtual game 

environment and used pseudo-letters to render the cue integration task similar to a pseudo-

word learning paradigm. In the MCPL task, subjects have to predict a criterion/outcome 

based on some cues presented at each trial. In order to learn the probabilistic association 

between the cues and the outcome, they have to combine cues to extract relevant 

information. The probabilistic nature of the task and the combination of cues generates 

random errors and uncertainty. Multiple studies on neuroimaging (R a Poldrack et al., 2001; 

D Shohamy et al., 2008) and on patients with brain lesions (Foerde et al., 2013; Hopkins, 

2004; Knowlton et al., 1994; Daphna Shohamy et al., 2008) have shown the implication of 

different memory networks localized in the medial temporal lobe (MTL) and the basal 
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ganglia (BG) associated with episodic and procedural memory (Figure 30) respectively. 

However, far less is known about the regions associated with within subject learning and 

about the role of the occipito-temporal (OT) cortex in priming memory or semantic memory 

and the functional connectivity with higher order cortical areas such as the frontal cortex 

involved in working memory and attention processes (Figure 30). We want to test whether 

the activation of these regions can explain some aspects of the MCPL task. We hypothesize 

that those nodes are segregated but interacting systems that underlie individual learning 

and memory components. The MTL would also have a dynamic or flexible role in that 

dynamic learning. 

In addition, a lot of studies have focused on behavioral learning in MCPL, but few of them 

have linked this learning with brain activity. Regarding the high inter-individual variability in 

learning strategies (Gluck et al., 2002), we will use a neurocomputational model  of learning 

that is weights of cues (Kelley & Friedman, 2002; D. A. Lagnado, Newell, Kahan, & Shanks, 

2006; Speekenbrink, Channon, & Shanks, 2008; Zeithamova, Schlichting, & Preston, 2012). 

We expect this will help understanding the dynamic role of different memory systems and 

their interaction during learning by capturing the inter-individual variability of subject’s 

learning (K. C. Dickerson et al., 2011; M. a Gluck et al., 2002). Regarding the lack of 

investigation of the dynamic neural mechanism underlying interaction of memory networks 

during MCPL, we investigated the directionality, in terms of “forward” and “backward” 

flows, between brain memory networks associated with models learning and whether this 

can be explained by the predictive coding account theory. In this theory, the OT is described 

as having a central role in integration of visual forms and in comparison of them with 

conceptual knowledge (or expectation) under top-down influences  (K. Friston & Kiebel, 

2009; Kherif et al., 2011). 
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Figure Figure 28.  Schema of different memory systems (i.e. episodic memory, procedural memory 
and priming/working memory) and the associated brain regions hypothesized to be involved in MCPL 
(Modified source: (Henke, 2010), http://www.bristol.ac.uk/synaptic/pathways/). 
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3.3.2. Materials and methods 

 

Participants 

 

27 participants that took part on the experiment. Four of them were removed for the brain 

imaging analysis, because of MR artifacts and excessive movements in the scanner.  The 23 

remaining subjects were about 26 years old (age mean: 26.2 years, SD: 4.6 years), with 11 

men and 12 women and 91% of them were right-handed. 

 

Behavioral task 

 

1-back task 

Before training and test phases of the MPCL task, participants underwent a discrimination 

task called 1-back task (Kirchner, 1958). That test allowed testing whether the four symbols 

used in the MCPL task were not different in terms of accuracy and reaction time. Three 

additional symbols were included to increase the subject’s engagement in the task. Each 

symbol was presented successively on a computer’s screen. Participants had to answer 

whether the previous symbol was similar or different than the present one. This task 

requires discriminating symbols and maintaining attention. N-back task is also known to test 

working memory. In total, there are 207 trials presenting 7 different symbols whose 4 are 

the same than in the MCPL task. The frequency of appearance of each symbol was nearly 

similar (29 times for 5 symbols, 28 and 34 times for the two last symbols). 
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MCPL task 

Training of MCPL task. To familiarize the participants with the gaming context of the MCPL 

task and to ensure that the instructions were well understood, they were trained with a 

shorter version of the MCPL task outside the scanner. In total, there are 36 trials which 

present symbols different than the ones in the MCPL task. 

MCPL task. A 3D gaming version of the MCPL task (M. a Gluck et al., 2002; David A Lagnado 

& Newell, 2006a; Speekenbrink et al., 2008) was performed in the scanner. On each trial, the 

participants had to predict the correct outcome, symbol A or B, presented on a door based 

on the presentation of a card containing a combination of one, two or three pseudo-letters 

sequence. Symbols A and B have a shape of trapeze or hexagon respectively. If the 

participants made the correct choice they received a positive feedback (coin) allowing them 

to learn the association. There are learning trials in which the cards illustrate pseudo-letters 

and non-learning trials where cards illustrate the outcome A or B (Figure 31). Pseudo-letters, 

also called cues, are selected among four different pseudo-letters. They are combined in 14 

patterns (or cards). The association between each card with outcome is probabilistic (Figure 

32, top part). This allows generating probabilities of association between each cue and 

outcome with the following probability: 20%, 40%, 60% and 80% (Figure 32, below part). The 

overall occurrence of symbol A and B is identical. The pattern frequency, the probability of 

association and the conditional probability of association between the pattern and the 

outcome A knowing the frequency of the pattern are described in article of Gluck et al. 

(Gluck et al., 2002). In each of the two sessions, each of the 4 cues appear 50 times and the 

non-learning trials, 80 times. The cards are presented in an identical order through the two 

sessions, but the order of combination of cues on a card is randomized between subjects.  
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A feedback phase was also planned at the end of the first and the second session. The 

subjects were asked to estimate the probabilistic association between each cue and the 

outcome. At the end of the second session, they also had to choose which strategies they 

thought they used during MCPL among a list of different strategies. They are based on 

presence of one cue; on cards containing only one cue or multiple cues; on number of cues, 

on the most frequent cards, on memorization of each card, on geometric shape of the 

symbols, on localization of symbols, on hazard, on intuition or on other strategies. This was 

mainly used to check whether the subjects understood the task and to have an insight of the 

variability in the way they performed the task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Figure of cues and cards with their pattern frequencies. From the 4 symbols/cues (below) 
and their conditional probability of association with the outcome (symbol A or B), 14 patterns/cards 
are generated (top) with indication of pattern frequency, probability of association and conditional 
probability of association between the pattern and the outcome A knowing the frequency of the 
pattern written below each card. 
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The instruction (in French) given to the participant is described below. 

 

(For the training phase) 

“Imagine that you are on another planet and that you enter in building containing a 

multitude of doors leading to rooms. Before entering in a room, there will be a card 

presented in front of you that is composed of a serie of 1, 2 or 3 alien letters (Figure 33A). 

You will have to predict which door (i.e. symbol drawn on it) is the most associated with this 

combination of letters. After having chosen a door, a light switches on and the door opens. If 

you make the correct choice, you will be rewarded by a precious coin. Your purpose is to 

collect the most possible of coins to reach the final destination. (The position of the symbols 

on the cards and of the doors is not an informative cue).  

In addition, some cards are bonus: they contain the same symbol than the one on the doors. 

You will just have to indicate which door contains the same symbol than on the card. Each 

time you collect a coin, one point will be added on the clock over the door (Figure 33B).  

A   B      

   

Figure 32. Figure of the task. Illustration of (A) the alien letters in learning trials and (B) symbols 
similar as on the doors in non-learning trials. 

 

 

Your task will be to click on the left button to choose the left door or on the right button for 

the right door. After having chosen a door, a light switches on and the door opens. You will 

see that it is a trial-and-error learning. To be prepared with this mission, you will now train 

with some cards. After this first session, the real mission in the MRI will begin.  
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Last message: Be the most correct and fast possible.  

(For the test phase) 

Now, your real mission in the MRI is going to begin. You will see other symbols on cards and 

on doors (look well at them on the illustrations, Figure 34). Be the most correct and fast 

possible. Good luck! " 

 
 

Figure 33. Figure of the task. Illustration of 
the alien letters in learning trials (left) and 
symbols similar as on the doors in non-
learning trials (right). 

 

 

MRI sequences  

 

We acquired EPI images in a 3-Tesla Siemens scanner located at the Centre d’Imagerie 

BioMedicale (CIBM) in Lausanne, Switzerland. EPI sequences were acquired with a 32-

channel head volume RF-coil. In total, there were 482 acquisitions of 3mm3 resolution with 

the following settings: TR 2000ms, TE 30ms, flip angle 90 degrees, FOV read 216 mm, 32 

slices per volume, FOV phase 100%, bandwidth 2480 Hz/pixel, echo spacing 0.47ms, 

interleaved multi-slice mode, long term average mode). Each trial lasted 3.5 s. with card 

presentation lasting 2 s, feedback 0.5 s and inter-stimulus interval 1 s. There were 2 sessions 

of 280 trials that included series of 9±1 learning trials interspersed with 4±1 non-learning 

trials. Frequency of each cue was randomized within and balanced between each block of 

learning trials. 
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Statistical analysis 

 

SPM8 was used for data pre-processing and statistical analyses. Pre-processing consisted of 

spatial transformations with realignment (for correcting movement artefacts), 

segmentation, normalization to the MNI space, and spatial smoothing (with isotropic 8-mm 

full-width at half-maximum kernel) and finally, temporal high-pass filtering (1/128 Hz cutoff) 

was applied. For the fMRI data analysis, we aim to compare learning trials compared with 

non-learning trials and the modulation of behavioral model of learning. For this purpose, we 

constructed a mixed parametric design matrix with the General linear model (GLM) that 

contained for each session: 4 conditions of learning trials related to each cue, 4 parametric 

modulators corresponding for each of the last conditions and that represent parameters 

(weights) of behavioural learning‘s model. Additional conditions corresponding to non-

learning trials and to timeout trials were added. In the first session, the first 30 trials were 

also included as covariate as they do not allow modelling a stable regression. The regressors 

were built by convolving the canonical hemodynamic BOLD response function with each 

condition. Onsets of each condition were defined as events of 0 s.  

 

 

Behavioral model of learning: cue utilization weight 

 

We used the cue utilization weights to estimate the internal model of individual’s judgment 

policy to capture the dynamic probabilistic structure of the environment. This model comes 

from the Brunswik’s Lens model framework (D. A. Lagnado et al., 2006) and is also an 

extension of the “rolling regression” technique to take into account the dynamic of learning 
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(Kelley & Friedman, 2002).  At each learning trial, a window of the last 50 consecutive trials 

allows computing a weight for each cue in each trial using a rolling multiple logistic 

regression. Based on binary response, this method produces a weight for each cue and can 

account for the learning of other cues even if they are absent. The size of the window takes 

also into account human memory constraint (D. A. Lagnado et al., 2006; Speekenbrink et al., 

2008; Zeithamova, Schlichting, et al., 2012). 

 From binary response, i.e. choice of outcome (Symbol A) and presence or absence of cues at 

time t, the regression computes thus weights (β) for each cue given the weight of the other 

cues using a multiple logistic regression (1).  Each weight represents also the log-likelihood 

ratio for the choice of the outcome (Symb A) given the presence of a specific cue (2). 

Weights are also transformed in odds (3) by a logistic function in order to compute 

probability values between 0 and 1 (Speekenbrink et al., 2008). When weights are inserted in 

the fMRI design, the learning curves of cues associated with probability lower than 50% are 

also reversed in order to test the effect of increasing learning curve. 

 

 

 

 

 

Choice At  = (β1t * cue 1t) + (β2t * cue2t) + (β3t*cue3t) + (β4t*cue4t)          (1) 

 

β1t= ln( P(choice At)|cue 1t) / P(choice Bt| cue 1t))          (2) 

 

Odd β1t = exp(β1t) / (exp(β1t) + 1))                         (3) 
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Statistical analysis: Design

parameters
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parameter estimability

(gray   not uniquely specified)

Design description...

Basis functions : hrf

Number of sessions : 2

Trials per session : 2  2  

Interscan interval : 2.00 {s}

High pass Filter : Cutoff: 128 {s}

Global calculation : mean voxel value

Grand mean scaling : session specific

Global normalisation : None

Univariate statistical analysis 

 

After pre-processing and smoothing of the data with isotropic 8 mm full-width at half-

maximum Kernel, we tested the effect of learning trials in MCPL. We built a design matrix at 

subject’s level composed of two conditions including learning trials and non-learning trials 

for each of the two sessions (Figure 35). Non-learning trials represent the baseline condition. 

T-contrast was then performed to test the effect of learning trials compared with non-

learning trials at subject level. This contrast was then brought in the second level analysis to 

perform a one-sample t-test at group-level. This tests whether the effect size or the average 

of the contrast images of each suject is different from zero at group-level. The same statistic 

was performed for the effect of reward compared with non-reward condition, except that 

the presence/absence of reward was inserted as parametric modulator of the learning trials 

condition. 

 

 

 

 

 

 

 

 

 

 

Figure 34. Design matrix containing two 
regressors for learning and non-learning 
condition in each of the two sessions. The 
design matrix includes scans in rows and 
explanatory variables/regressors in columns for 
each of the two sessions. 
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Then, to identify brain activations associated with subject’s learning, parametric modulators 

of cues were included in the design matrix. In each session, there were four conditions, one 

for each cue. For each condition, we added a parametric modulator corresponding to 

learning measure (Figure 36A). The timeout, non-learning trials of the two sessions and the 

30 first trials of the first session were included as regressors of no interest. The thirty first 

trials were removed due to instability of subject’s utilization weights of multiple logistic 

regressions. However, they were not removed in the model of PE.  At group level, an ANOVA 

test with repeated measures (i.e. flexible factorial design) was performed (Figure 36B). This 

statistical design is used when there are multiple measures/contrasts by subject and can test 

the effect of repeated measures while removing the subject’s effect. It is also possible to add 

parameters of subject’s movements to remove their possible confounding effect in the 

effect of interest. 
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Statistical analysis: Design

parameters
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Design : Flex ible factorial

Global calculation : omit

Grand mean scaling : <no grand Mean scaling>

Global normalisation : <no global normalisation>

Parameters : 4 condition, +0 covariate, +23 block, +0 nuisance

27 total, having 26 degrees of freedom

leaving 66 degrees of freedom from 92 images

  A                  B 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 35. (A) Design matrix at subject’s level containing 10 regressors for each of the two sessions. 
They are four conditions for each cue, four parametric modulators of learning for each cue and two 
other conditions for non-learning trials and timeout. The first session contains an additional condition 
with the thirty first trials. The rows represent the scans and the columns, the explanatory 
variables/regressors. (B) Design matrix at group level which corresponds to a flexible factorial design 
including four parametric modulators of learning for each cue and for each subject and a subject’s 
condition. The rows represent the contrasts estimated at subject’s level and the columns, the 
explanatory variables/regressors. 
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Multivariate analysis of effective connectivity between regions: VOI, DCM and BMS 

 

We used Volume of Interest (VOI), Dynamical Causal Modeling (DCM) and Bayesian Model 

Selection (BMS) with SPM8 software to extract time series activation from the left occipito-

temporal cortex (LOT) and the right mid frontal cortex and to identify the best model in term 

of effective connectivity, namely bottom-up, top-down or both directionalities, between the 

two regions. The selection of those two regions is based on previous results associated with 

behavioral learning and on the fact that those regions work together for the acquisition of  

new conceptual knowledge during decision making (Kumaran, Summerfield, Hassabis, & 

Maguire, 2009). 

 

VOI. VOI coordinates in LOT (XYZ(-39,-48, -10.5)) and in right mid frontal cortex (XYZ(-39,-48, 

-10.5))  correspond to the most significant voxels associated with the behavioral model of 

learning with threshold p<0.001 whole brain FWE corrected for multiple comparisons. VOI 

computes the first principal component of the time series from all voxels included in a 

sphere of 6 mm around each coordinate defined as a starting point to search the nearby 

local maximum.  

 

DCM. VOI’s are then used in DCM to measures the functional, effective (i.e. causal) 

connectivity between those brain nodes using temporal information of neuronal activity. 

DCM models not only the coupling between those nodes (i.e. functional connectivity), but 

also estimates the causal directed influences of changes in experimental context between 

the nodes (i.e. effective connectivity). The model of neuronal dynamic is calculated by a 

transformation of BOLD signal in neuronal and synaptic activity using a forward 
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hemodynamic model. The parameters that allow inferring the BOLD signal to neuronal 

inputs are described in the “Balloon” model. This includes effects of blood volume, 

deoxyhemoglobin, flow induction and vasodilatory signal of the vessels  (Klaas Enno et al., 

2008; Stephan et al., 2010). To test the causal change in connectivity, the model space 

includes parameters that can perturb the system. In our study, we tested a system 

constituted of two current states Z or nodes that are the LOT cortex and the right mid frontal 

cortex that can interact spatially and temporally. We used the classical DCM which is 

deterministic, bilinear and includes one-state for each node. The external inputs u, the 

learning trials, drives direct influence on the LOT and a second type of input, the behavioral 

model of learning, modulates the coupling between nodes and the nodes themselves. The 

model encompasses also the nonlinear and dynamic nature of neuronal responses in the 

interaction between nodes. This critically allows inferring a causal mechanism of neuronal 

responses (K J Friston, Harrison, & Penny, 2003).  

 

BMS. BMS allows identifying the best predictive model of connectivity among the bottom-

up, top-down and both directionalities models. Based on F values accounting for parameter 

interdependencies, an exceedance probability was calculated for each model and each 

subject. This probability is computed by optimizing the balance between accuracy/fit and 

complexity (i.e. with less parameter used) of the model. The model with the higher posterior 

probability relatively to the others corresponds to the best model in terms of predictive 

validity and generalizability, knowing some constraints (priors) and parameters that govern 

the hemodynamic and the neuronal states in a region.   

Six subjects were removed from the DCM analysis, because their  VOI’s were too far from 

the original coordinates (i.e. two times more than the FWMH of the smoothing kernel, here 
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16mm) and did not correspond to the anatomical region of interest defined with the atlas 

automated anatomical labeling (AAL) defined in MNI space. 

 

 

3.3.3. Results 
 

Discrimination of stimuli  

 

In the 1-back task, the 4 symbols shown later in the MPCL task were not different in terms of 

mean of correct answer (p=0.34, F=1.143, df=181), reaction time for correct trials 

(p=0.1,F=1.79,df=181) and reaction time for all trials (p=0.48, F=1.69, df=181) , avoiding a 

perceptual advantage for some symbols (Twomey, Kawabata Duncan, Price, & Devlin, 2011). 

The means of accuracy and reaction time for correct trials were: 89±8 % and 543±0.7ms 

respectively. 

 

Performance by block of trials and by cues 

 

Over the 400 learning trials, the number of reward collected (or correct prediction) was 

251±34 (i.e. 62.7%) for the whole group. The best and worst score were 307 (i.e. 76%) and 

173 (i.e. 43%). To assess whether subjects have learned during the MCPL task, we tested 

whether the correct predictions, meaning the number of rewards collected, was increasing 

between the 4 blocks of 100 trials and we tested whether the learning was different for each 

of the 4 cues using a two-way repeated measures ANOVA 4 (block) X 4 (cue) (Figure 37). We 

report a main effect of block (p=0.00, F=8.27, df=3), a main effect of cue (p=0.003, F=6.68, 

df=3), but no interaction between cue and block (p=0.19, F=0.19, df=9). In post-hoc analysis, 
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we see that the performance in block 1 is not different from block 2 (p=0.29, F=1.15, df=1), 

but then block 2 is different from block 3 (p=0.002, F=12.2, df=1) and finally block 3 is not 

different from block 4 (p=0.85, F=0.035, df=1). Two subjects (num. 6 and 19) were 

consistently under 50% chance of correct prediction in the fourth block for each cue (Figure 

38). However, they were not removed of the analysis, because their performances (i.e. score 

of 291 for subject num. 4 and score of 224 for subject num. 19 respectively) were in the 

average margin (i.e. 251±34), and not the worst, of the whole group. 

 

Figure 36. Correct prediction. Effect of block on subject’s performance, measured by the number of 
reward obtained.. Vertical bars indicate standard-deviation. 
 

 

Figure 37. Correct prediction. All participants have a performance higher than 50% for each cue 
within the fourth block of 100 trials, except for two subjects (number 6 and 19 within black circle.) 
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Performance (probabilistic reward) by block of trials and cues. In addition, we used another 

measure to test performance. Instead of scoring the number of reward obtained, we 

measured the number of rewards weighted by the probability of association of the pattern 

with outcome at each trial. This allows measuring the probabilistic reward, which is more 

reliable in the way that it distinguishes between strong and weak predictive cues 

(Speekenbrink et al., 2008). Performance scores for cue 1 and 2 were reversed in order to 

test the increase of performance. Here, using a two-way repeated measures ANOVA 4 

(block) X 4 (cue), we report a main effect of cue (p<0.001, F=29,11, df=2.47), an effect of 

block (p<0.001, F=13.82, df=3) and an effect of interaction between cue and block (p=0.025, 

F=3.22, df=3.14) (Figure 39). 

In post-hoc analysis for the effect of block, we observed that the performance in block1 is 

not different from block 2 (p=0.17, F=1.97, df=1), block 2 is different from block 3 (p=0.001, 

F=15.11, df=1) and block 3 is different from block 4 (p=0.59, F=0.28, df=1). For the effect of 

cue, we observed that the performance with cue 1 is different from cue 2 (p<0.001, F=68.2, 

df=1), cue 2 is different from cue 3 (p<0.001, F=9.07, df=1) and cue 3 is different from cue 4 

(p<0.001, F=37.5, df=1). In the interaction between block and cues, we reported a significant 

effect of block 1 and 2 with cue 3 and 4 (p<0.001, F=26.33, df=1), with cue 2 and 3 (p=0.04, 

F=4.7, df=1), but not with cue 1 and 2 (p=0.62, F=0.24, df=1). There is an interaction between 

block 2 and 3 with cue 1 and cue 2 (p=0.03, F=5.27, df=1), with cue 2 and 3 (p=0.01, F=7.46, 

df=1) but not with cue 3 and 4 (p=0.19, F=1.79, df=1). There is also an interaction between 

block 3 and 4 with cue 3 and 4 (p=0.03, F=5.24, df=1), but not with cue 1 and cue 2 (p=0.47, 

F=0.52, df=1) and with cue 2 and 3 (p=0.06, F=3.62, df=1).  
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Figure 38. Correct prediction. Effects of block, cue and interaction between block and cues on 
subject’s performance, measured by the number of probabilistic reward obtained. Vertical bars 
indicate standard-deviation. 

 

 

Cue utilization weight  

 

To test whether subjects followed the probabilistic nature of the task, we measured the 

subject’s choice of outcome (symbol A) by means of the transformed subject’s utilization 

weight in odd for each of the 4 cues along the 4 blocks of 100 trials. Results show significant 

effect of cue (p<0.001, F=64.2, df=3), effect of interaction between cue and block (p<0.001, 

F=14.48, df=9), but no effect of block (p=0.2, F=1.563, df=3) (Figure 40). We see that the 

subject’s utilization weight is only different between block 3 and 4 (p=0.041, F=4.6, df=1), 

but not between block 1 and block 2 (p=0.1, F=2.86, df=1) and block 2 and 3 (p=0.148, 

F=2.22, df=1). In the interaction effect of block with cue, there is a significant different 

between block 1 and 2 for the difference between cue 3 and 4 (p=0.00, F=26.9 df=1), and 

between block 2 and 3 for cues 2 and 3 (p=0.00, F=25, df=1), and between block 3 and 4 for 

cues 1 and 2 (p=0.048, F=4.3 df=1) and for cues  3 and 4 (p=0.018, F=6.3 df=1). At the end, in 
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the last block of 100 trials, the probability of subject’s choice for symbol A (with cue 1: 

26±13% , cue 2: 42±12%, cue 3: 60±10%, cue 4: 74±12%) is very close to the probabilities 

defined in the task for each cue (cue 1: 20%, cue 2: 40%, cue 3: 60%, cue 4: 80%). Two 

subjects did not learn the correct probability in the fourth block for each cue (Figure 41). 

 

Figure 39. Utilization weights (odds). Effects of cue and interaction between cue and block on the 
utilization weights of the 4 cues. At the end of the fourth block, the weights approach the correct 
probability: 80% for cue 4 (in blue), 60% for cue 3 (in orange), 40% for the cue 2 (in green), 20% for 
cue 1 (in red). Vertical bars indicate standard-deviation. 

 

 

Figure 40. Utilization weights. All participants follow the probability of association between each cue 
and symbol A (i.e. 80-60-40-20%), within the fourth block of 100 trials, except for two subjects 
(number 6 and 19 within black circle). 
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Univariate analysis of brain activation associated with learning trials  

 

Brain regions significantly more activated in learning trials compared with non-learning trials 

(i.e. baseline condition) include the bilateral caudate nuclei (Figure 42A), the bilateral mid 

frontal cortices, the right superior orbital frontal cortex, the right inferior frontal cortex, the 

bilateral insula, the left inferior and superior parietal cortex, the right angular cortex, the 

right inferior temporal cortex, the left inferior occipital cortex, the right mid occipital cortex, 

the bilateral cerebellum, the left precentral cortex, the right superior motor cortex, the right 

occipital inferior cortex (Table 6A).  In contrast, the brain regions less activated in learning 

trials compared with non-learning trials are the bilateral hippocampi, the bilateral 

parahippocampal cortices (Figure 42B), the left mid temporal cortex, the left anterior 

cingulum, the right superior temporal pole,  the left superior medial frontal cortex, the 

bilateral mid orbital frontal cortices, the left inferior orbital frontal cortex, the right mid 

frontal cortex, the bilateral  mid frontal cortex, the left inferior orbital frontal cortex, the 

right mid frontal cortex, the bilateral anterior cingulum, the bilateral mid cingulum, the right 

posterior cingulum, the left cingulum, the left mid occipital cortex, the left calcarine cortex, 

the bilateral cerebellum (Table 6B).   

Figure 41. Statistical parametric map for the significant regions associated with (A) learning trials 
compared with non-learning trials and, inversely, (B) with non-learning trials compared with learning 
trials (PFWE<0.05). Coordinates [X, Y, Z] are reported in the Montreal Neurological Institute (MNI) 
space. 
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Table 6. Activation associated with the learning trials compared with non-learning trials  

A. Effect of the learning trials > non-learning trials 

Cluster 
(Voxels) 

Region (Label) X  Y  Z  Z statistic  

3688 Right caudate nucleus 9 9 4.5 6.22 

  
10.5 6 15 4.93 

 
Left caudate nucleus -9 9 3 6.15 

5922 Right mid frontal cortex 45 52.5 25.5 5.57 

  
49.5 43.5 30 5.27 

  
46.5 36 36 5.23 

1452 Left mid frontal cortex -36 63 13.5 4.95 

711 Rigth superior orbital frontal cortex 27 52.5 -1.5 4.57 

1889 Right insula 31.5 25.5 0.00 7.09 

 
Righ inferior frontal cortex 33 27 15 4.28 

1586 Left insula -30 21 -3 6.54 

45823 Left inferior parietal cortex -30 -63 43.5 7.17 

 
Right superior parietal cortex 30 -61.5 51 6.25 

  
19.5 -63 52.5 6.24 

 
Right angular cortex 31.5 -51 39 6.96 

 
Right inferior temporal cortex 43.5 -58.5 -12 5.71 

 
Left inferior occipital cortex -34.5 -88.5 -9 6.43 

  
-30 -90 -10.5 6.33 

  
-39 -73.5 -7.5 6.00 

  
-43.5 -69 -12 6.00 

 
Right mid occipital cortex 31.5 -63 40.5 5.82 

 
Left cerebelum -7.5 -75 -28.5 6.23 

  
-28.5 -55.5 -31.5 5.71 

 
Right cerebelum 33 -52.5 -30 5.73 

  
7.5 -72 -25.5 6.02 

5492 Left precentral cortex -40.5 3 31.5 5.50 

  
-36 -3 49.5 5.10 

  
-58.5 9 36 4.81 

2437 Right superior motor area 6 16.5 49.5 7.14 

 
Right occitpial inferior cortex 27 -90 -7.5 6.50 

      B. Effect of the learning trials < non-learning trials 

Cluster 
(Voxels) 

Region (Label) X  Y  Z  Z statistic  

127882 Left hippocampus -24 -22.5 -18 6.99 

 
Left mid temporal cortex -63 -12 -15 6.96 

  
-57 -7.5 -13.5 6.84 

  
-55.5 -24 -16.5 6.59 

 
Left parahippocampal cortex -24 3 -21 6.42 

 
Right parahippocampal cortex 30 7.5 -22.5 6.89 
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Right hippocampus 31.5 -24 -16.5 6.58 

  
28.5 -16.5 -18 6.42 

 
Left olfactory/anterior cingulum cortex -7.5 27 -6 6.89 

  
-7.5 22.5 -9 6.75 

 
Right amygdale/sup. temporal pole 25.5 3 -19.5 6.71 

 
Left superior medial frontal cortex -7.5 51 3 7.79 

  
-6 57 33 6.68 

  
-7.5 63 18 6.66 

 
Right mid orbital frontal cortex 4.5 46.5 -4.5 7.38 

  
4.5 33 -12 7.31 

 
Left mid orbital frontal cortex -4.5 31.5 -10.5 7.16 

  
-4.5 52.5 -10.5 7.15 

  
-4.5 37.5 -6 7.25 

  
-1.5 30 -15 7.17 

 
Left inferior orbital frontal cortex -39 34.5 -10.5 6.93 

 
Right mid frontal cortex 4.5 46.5 -4.5 7.38 

  
4.5 33 -12 7.31 

 
Left anterior cingulum 1.5 37.5 -1.5 7.28 

 
Right anterior cingulum 4.5 34.5 0 7.24 

 
Left mid cingulum -1.5 -16.5 39 6.64 

 
Right mid cingulum 3 -16.5 40.5 6.58 

  
4.5 -21 40.5 6.58 

  
6 -33 42 6.41 

 
Right posterior cingulum -10.5 -51 28.5 7.16 

  
-4.5 -48 30 7.07 

 
Left precuneus -6 -51 16.5 6.90 

 
Left mid occipital cortex -46.5 -72 28.5 6.48 

 
Left calcarine cortex -7.5 -99 13.5 6.62 

461 Right cerebelum 30 -76.5 -36 5.53 

  
46.5 -63 -39 3.25 

390 Left cerebelum -31.5 -81 -34.5 5.28 

      Table 6.  Significant region activation showing more (A) and less (B) activation in learning trials 
compared with non-learning trials (PFWE<0.05). Coordinates [X, Y, Z] are reported in the Montreal 
Neurological Institute (MNI) space. 
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The movement parameters can been included in the statistical design to exclude their 

effects on statistics. However, in our study, most of the subjects did not move more that 2 

mm (Figure 43) which minimizes the possible unwanted correlation with the effect of 

interest.  
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In the figure below (Figure 44), there are figures showing the different SPMs, tresholded at 

PFWE<0.05, with and without movement parameter inclusion. Visually, we do not observe 

major differences between them. The left caudate (Z=4.36, xyz = [-19.5,0,16.5] ) and the 

right caudate nuclei (Z=4.17 , xyz = [19.5,3,18]) are still significantly associated with learning 

trials compared to non-learning trials after whole brain multiple comparison correction and 

p FWE of 0.05.  However, the left hippocampus is no more significantly associated with non-

learning trials compared with learning trials. 

Figure 43. Statistical parametric maps of the learning trials compared to non-learning trials 
with or without inclusion of the six head movements parameters in the statistical design. 

 

We also investigated whether the main regions associated with learning trials, the caudate 

nuclei and the hippocampus, show change of activation after 1, 2, 3 and 4 blocks of 100 trials 

(Figure 45). In the first and the two first blocks, the caudate nuclei and the hippocampus are 

not significantly activated. However, in the three first blocks, there are significant activation 

in the bilateral hippocampi ((Z=6.49, xyz = [28.5,-16.5,-16.5]), ((Z=6.44, xyz = [-18,-7.5,-18]) 
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and in the bilateral caudate nuclei ((Z=5.95, xyz = [10.5,7.5,3]), (Z=4.73, xyz = [-

10.5,1.5,19.5]), (Z=5.76, xyz = [-9,7.5,3]), (Z=4.84, xyz = [-9,3,19.5])) after whole brain 

multiple comparison correction and tresholded at p-value of 0.01 . 

Figure 44. Statistical parametric maps of the learning trials compared with non-learning trials after 1, 
2, 3 and 4 blocks of 100 trials. 

 

Univariate analysis of brain activation associated with cues utilization weights 

 

We report significant activation negatively associated with cues utilization weights in the left 

occipito-temporal (LOT) cortex (Figure 46AB), the left inferior temporal cortex, the left mid 

temporal cortex, the right mid frontal cortex (dorso-lateral part or Brodman’s area 46) at 

3mm distance with the inferior triangularis frontal cortex (Figure 46CD), the right inferior 

frontal cortex (Figure 46EF) more specifically in the pars triangularis, the pars opercularis (i.e. 

Broca’s area or Brodman’s areas 44 and 45 respectively), the pars orbitaris and in the mid 

orbital frontal cortex as well as the right insula (Table 7). We also observe that the activation 
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in the  left OT cortex and in the right mid and inferior frontal cortices (Figure 46 B,D,F)  

contribute more to explain utilization weights of cues 1 and 4, strong predictive cues, than 

the cues 2 and 3, weak predictive cues in the contrast estimate (Figure 46 A,C,E). No 

significant regions were positively associated with cues utilization weights. 

In the left OT cortex, the activation is in the posterior, lateral (most significant peaks at 

coordinates (Z=4.09, xyz= [-39,-48,-11]; Z=3.95; xyz= [-45,-54,-6]; Z=3.82, xyz= [-36,-55,-11]) 

and the medial parts (peaks coordinates at (Z=4.37, xyz= [-23,-57,-6]; Z=3.7, xyz=[-21.-66,-

6];Z=3.51,xyz=[-15,-72,-5]).  

 

 

 

 

 

 

 

 

 

 

 
Figure 45. Contrast estimates of the cue utilization weight of the 4 cues associated with negative 
brain activation (A-B) in the left inferior occipito-temporal cortex (xyz=[-39,-49.5,-7.5]), (C-D)  in the 
right mid frontal cortex (xyz=[43.5,43.5,-4.5]) and (E-F) in the right inferior frontal cortex 
(xyz=[39,28.5,4.5]). The 3 graphs show more contribution for weight of cues 1 and 4. Coordinates [X, 
Y, Z] are reported in the Montreal Neurological Institute space (results: PFWE<0.001, figures: P<0.001 
uncorrected). 
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Table 7. Activation associated with cues utilization weights 

Negative association  

Cluster 
(Voxels) 

Region (Label) X  Y  Z  Z statistic  

531 Left inferior occipito-temporal cortex -39 -48 -10.5 4.09 

  
-36 -51 -10.5 4.05 

  
-39 -52.5 -7.5 3.99 

  
-36 -55.5 -10.5 3.82 

  
-34.5 -43.5 -13.5 3.39 

 
Left inferior temporal cortex -45 -54 -6 3.95 

  
-43.5 -48 -7.5 3.70 

 
Left mid temporal cortex -43.5 -54 -1.5 3.92 

1574 Right mid frontal cortex 43.5 43.5 4.5 3.96 

 
Right inferior triangularis frontal cortex 39 28.5 4.5 3.80 

 
Right inferior opercularis frontal cortex 43.5 13.5 6 3.75 

  
43.5 16.5 3 3.67 

  
39 19.5 7.5 3.61 

  
48 16.5 4.5 3.59 

 
Right inferior orbitaris frontal cortex 36 24 -9 3.42 

 
Right mid orbital frontal cortex 42 49.5 -3 3.51 

 
Right insula 37.5 16.5 -10.5 3.65 

  
43.5 15 -3 3.40 

      Table 7. Significant region activation showing negative association with cues utilization weights 
(PFWE<0.05). Coordinates [X, Y, Z] are reported in the Montreal Neurological Institute (MNI) space.  

 

 

In addition, we visually inspected which brain activation still remains significant after 

inclusion of movement parameters. We observed whether regions of interest, i.e. left IOT 

and right mid frontal cortex activations, were affected by movements (Figure 47). Visually, 

we did not observe major differences between them for the right mid frontal cortex that 

remains significantly associated with the negative modulation of cue utilization weight 

(Z=3.91, xyz= [42,43.5,6]), however, this was no more the case for the left IOT. 
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Figure 46. Statistical parametric maps of the positive and negative association of behavioral learning, 
measured with cue utilization weights, with or without inclusion of the six head movement’s 
parameters in the statistical design. 
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Effective connectivity between OT cortex and mid-frontal cortex related to learning 

 

 Bayesian Model Selection was used to compare models of effective connectivity modulated 

by learning between the LOT cortex and the right mid frontal cortex at group level (Figure 

48A); The 3 models have bottom-up, top-down or bidirectionality influences (Figure 48B). 

We found that, in the first session, learning modulates the functional connectivity in 

bidirectional and bottom-up directions compared with top-down direction (Figure 49A), 

whereas, in the second session, the best model was reduced only to the bottom-up direction 

compared with the two other models (Figure 49B). 

A              B  

 

 

 

 

Figure 47. Illustration of (A) the two volumes of interest (VOI) in the left inferior occipito-temporal  
(OT) cortex and in the right mid pre-frontal cortex (PFc) and (B) the comparison of the 3 models of 
effective connectivity between those regions; Models have bottom-up, top-down and bidirectionality 
influences and are modulated by cue utilization weight. 

Figure 48. Comparison of three models of effective connectivity (Bottom-up, top-down and 
bidirectionality) between the left inferior occipito-temporal  (OT) cortex and the right mid frontal 
cortex modulated by learning (A) in the first session of 200 trials and (B) in the second session of 200 
trials. Y axis represents exceedance proabilitiy of each model to outperform the others.  

Bottom-up Top-down Bidirectionality 

Learning 

0 

0.2 

0.4 

0.6 

0.8 

1 

Ex
ce

e
d

ac
n

e
 p

ro
b

ab
ili

ty
 

Bottom-up 

Top-down 

Bidirectionality 

B 



         

165 
 

3.3.4. Discussion 

Behavioral learning 

 

At the beginning of the multiple cue probabilistic learning, subjects have to associate each of 

the 14 cards/patterns with the correct outcome. The learning is possible with feedback 

information revealing the true criterion and by combining multiple cues to unify them in a 

single judgment. Despite the difficulty inherent to uncertainty in probabilistic learning, we 

observe an increase of performance/correct prediction after 200 trials and then a plateau. 

weights of the four cues continuously approach the correct probability of association during 

the task and reach nearly similar probability at the end.  

Well-adapted behavior and optimal decision making require the extraction of relevant 

information from noisy sensory inputs, as well as weighting of evidence from multiple 

sources of information (Behrens et al., 2007). We also note substantial variance in learning 

across individuals. This is in line with previous findings (M. a Gluck et al., 2002) showing 

subjects can use very different learning strategies. 
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Memory systems related to -Medial Temporal Lobe and Basal Ganglia- in learning trials 

 

Our results on the fact that different memory systems related to Medial Temporal Lobe 

(MTL) and Basal Ganglia (BG) are differently involved during learning trials is highly 

consistent with the literature on MCPL. The hippocampus deactivation is in accordance with 

many neuroimaging studies on MCPL showing that hippocampus activation is more present 

in the early phase before decreasing and even becomes deactivated. The inverse activation 

pattern is seen in the BG (M. a Gluck et al., 2005; R a Poldrack et al., 2001; R a Poldrack, 

Prabhakaran, Seger, & Gabrieli, 1999; Daphna Shohamy et al., 2008), again in line with our 

results. In the study of Poldrack et al. (1999) on MCPL, they reported activation and 

deactivation in similar regions to our results.  

The role of MTL in MCPL is in line with its involvement in episodic memory for rapid, 

associative encoding and flexible memory (Henke, 2010). The postulated mechanism is that 

an initial process in MTL for acquiring appropriate new stimuli representations would 

facilitate the subsequent learning and make the initial representation accessible to other 

brain regions. This would then facilitate the recall of knowledge from previous events (M. a 

Gluck et al., 2005; R a Poldrack et al., 2001; Seger & Peterson, 2013; D Shohamy et al., 2008). 

This could reflect the role of hippocampus in consolidation and retrieval through the 

reinstatement in the neocortex of the activation pattern from the original encoding (Henke, 

2010). In patients with MTL lesions, this mechanism would be absent, explaining their 

impairment early in MCPL. MTL  also has a role in flexible use of knowledge and in feedback-

based learning when feedback is delayed (Foerde et al., 2006, 2013; R a Poldrack et al., 2001; 

Russell a Poldrack & Foerde, 2008; Russell a Poldrack & Packard, 2003; Russell a Poldrack & 

Rodriguez, 2004; Daphna Shohamy et al., 2008). The hippocampus activation would be also 
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coupled with the ventral medial pre-frontal cortex, region also activated in our task, to 

generate integrated memories that connect past events with new experiences. This would 

form schemas and allow future recall of past events, inferential reasoning, generalization or 

transfer of the acquired knowledge to new events (Zeithamova, Dominick2, & Preston, 2012; 

Zeithamova, Schlichting, et al., 2012). In addition, the degree of hippocampal involvement 

may depend on the strategy used to learn the category (Seger & Peterson, 2013; 

Zeithamova, Schlichting, et al., 2012). A study on hypoxic patients suggests a possible 

involvement of hippocampus in adoption of complex strategies of multiple cue integration, 

likely through relational and configuration learning (Hopkins, 2004). In addition, we report 

that the anterior part of the temporal cortex was involved in MCPL (in hippocampus (XYZ(-

24,-22.5,-18)) and MTL (XYZ(-63,-12,-15)). This anterior portion is related to goal-reward-

emotional related processes. It has been shown in animals and human that the ventral/head 

of the hippocampus (XYZ (28,-16,-25), XYZ(-30,-18,-22)) was involved early during learning 

for processing global directed strategies, whereas the dorsal/body of hippocampus (XYZ(25,-

30,-10), XYZ(-16,-31,-7)) was involved later for local, fine-grained or spatial strategies 

(Evensmoen et al., 2013; Ruediger et al., 2012).  The ventral/anterior (coordinates XYZ(24,-

11,-18) and XYZ(-26,-16,-20) in MNI space) and dorsal parts are also specific to different 

information with the first part, being more related to goal proximity or to reward 

expectation and arousal and the second part, being more related to cognitive and visuo-

spatial functions. In our results, we also report that the ventro-medial/orbital and 

lateral/mid prefrontal cortices, regions that are activated in parallel to the ventral and dorsal 

parts of the hippocampus respectively (Viard, Doeller, Hartley, Bird, & Burgess, 2011). A 

recent view describes functional organization of the hippocampus into a discrete dichotomy 

of ventral/anterior and dorsal/posterior parts, to process stress and memory/spatial 
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navigation respectively. This view also highlights a gradient in the longitudinal axis of the 

hippocampus supported by smooth connectivity of cortical and subcortical regions with MTL 

subregions (Bryan a. Strange et al., 2014). In another study, they found that connectivity of 

right anterior hippocampus with other temporal cortex regions such as the right perirhinal 

cortex, involved in semantic processing, was affected by the degree of stimuli familiarity 

(Barense, Henson, & Graham, 2011; McLelland, Chan, Ferber, & Barense, 2014), showing 

that through MCPL, a process of familiarization or semanticization can occur.  

In addition to the MTL, we also observed more activation of basal ganglia (BG) in learning 

trials compared with non-learning trials. The function of BG is related to incremental 

feedback-learning and learning of probabilistic contingencies between stimulus and 

outcome to adjust responses. This is in line with the role of BG in cognitive skill learning  and 

procedural memory (Henke, 2010). This also involves integration of multiple information 

through learning  (D Shohamy et al., 2008). Our study showed BG activation in the anterior 

part of the caudate nucleus. This part is involved in multiple functions that fit the features of 

the MCPL task such as probabilistic categorization with feedback, artificial grammar learning, 

stochastic decision, visuomotor association, shifting related to change of attention’s focus, 

reversal learning related to learning after a change in stimulus-reward contingencies positive 

feedback-reward processing. This is typically related to executive functions associated with 

feedback and error of prediction (PE) associated with reward (Seger & Cincotta, 2005). In 

contrast to the BG, the hippocampus would be sensitive to delayed reward, showing 

differential involvement of those memory systems in MCPL (Foerde et al., 2013). 
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Priming memory regions -occipito-temporal cortex and frontal cortex- modulated by cue 

utilization weights 

 

Our results indicate that weighting of evidence in MCPL is associated with decrease of 

activation in the left inferior temporal cortex, the left occipito-temporal (OT) cortex (i.e. 

including the fusiform gyrus), the left mid temporal cortex, the right mid frontal cortex (i.e. 

the dorso-lateral frontal cortex), the right inferior frontal cortex (including the Broca’s area), 

the right mid orbital frontal cortex and the right insula. Poldrack et al., 1999 (R a Poldrack et 

al., 1999) report a decrease of brain activation related to learning measured with time 

modulation in the right inferior occipital gyrus (XYZ(36,-80,-12)), the right medial/mid frontal 

gyrus (XYZ(2,60,8)), the left mid frontal gyrus (XYZ(-32,54,-4)), and also learning-related 

increase of activation in the right mid frontal gyrus (XYZ(42,46,4)) (BA 10/46), the parietal 

and the left insula (36,-6,-8)). Our results show similar regional activity in the right mid 

frontal cortex. 

We suggest that neocortical regions such as OT cortex and pre-frontal cortex deactivation 

represent priming memory systems. Priming means facilitation of information processing 

(Henke, 2010). The OT cortex is part of the extrahippocampal structures of the MTL. These 

structures can generate a conceptual implicit memory called priming. They are involved in 

combining perceptual features through repetition and facilitation of recognition memory. 

They also have a role in the memory of unitized items. The parahippocampal cortex is 

engaged after multiple episodes encountered and allows also acquisition of semantic 

knowledge (Henke, 2010), independently of the hippocampus. This is in line with a study 

showing that amnesic patients are impaired in learning the association between a label and 

abstract shapes, however they could still learn when they were taught to put a meaning to 
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these shapes. In this case, the learned association becomes a unitized familiar 

representation, easier to learn for them (Duff, Hengst, Tranel, & Cohen, 2005b; Henke, 2010; 

Yonelinas et al., 2010). The deactivated MTL was also related to syntax processing of artificial 

language relying more on implicit than declarative memory dependent on MTL (Petersson, 

Folia, & Hagoort, 2012). We suggest here that priming is a critical memory system, mainly 

dependent on the parahippocampal cortex and other neocortical regions, but that is 

independent on the hippocampus and that explains semantic knowledge acquisition through 

repetition and integration of information in unique representations (Henke, 2010). 

Converging evidence shows that high level visual processes for visual identification, 

recognition of objects and semantic processes occur in the left occipito-temporal (LOT) or in 

the so called “ventral stream” composed of visual areas and inferior temporal cortex 

(Ungerleider & Haxby, 1994). Whereas the early perceptual areas may categorize simple 

visual shapes or orientation, the LOT cortex is known to process and recognize more 

complex visual shape, by means of a more intricate receptive field organization, and 

perceptual learning. With extensive training, this plastic region can recognize meaningless 

objects. The LOT contains neurons that can be tuned to respond selectively to multiple 

aspects of an object. In addition these neurons are also selective to attended or memorized 

objects. This suggests a possible top down modulation of this region by various high-level 

perceptual, attention, expectation or working memory processes (Chelazzi, Miller, Duncan, 

& Desimone, 1993; Gilbert & Li, 2013; Jiang, King, Shim, & Vickery, 2006; Kherif et al., 2011; 

Logothetis NK, Pauls J., 1995; Odmanman, 1994; Sasaki Y., Gold J., 2010). The type of 

connectivity between the OT cortex and higher-level brain regions will be investigated in the 

chapter “Effective connectivity between fronto-temporal regions associated with cue 

utilization weights”. In our results, we found involvement of the posterior part (-60mm in 
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the y axis) of the LOT with most significant peaks at coordinates (xyz=[-36,-55.5,-10.5]), the 

middle part (xyz=[-39,-52.5,-7.5]); xyz= [-36,-51,-10.5])), and also the anterior part, in the 

vicinity of -45mm in the y axis (xyz[-39,-48,-11]; Z=3.39, xyz=[-34.5,-43.5,-13.5]). Substantial 

evidence shows these posterior and anterior parts of the OT are involved in the integration 

of multiple visual stimuli and in processing specific features related to words and pictures 

(Kherif et al., 2011). For example, the posterior left ventral occipito-temporal (LVOT) cortex 

is also called the Visual Word Form area (XYZ(-41,-60,-8)) and is involved in generation of 

representations with ordered combination of pseudo-letters or letter with identities (L. 

Cohen et al., 2002). However, there is still a debate on whether that region responds to 

specific feature of words or pictures or both and if this is only affected by bottom up 

influences. It seems that the activation in this region also depends on the task demand 

(Starrfelt & Gerlach, 2007). Indeed, subparts of LvOT can respond to different categories, but 

only under specific conditions. For example, LvOT is specific to integration of shape features 

in a unique whole object or word and the specificity of this region (XYZ(-43,-54,-12)) to 

respond differently to written words than objects depends on the task demand, i.e. if the 

demand on shape processing decreases (Starrfelt & Gerlach, 2007). In our MCPL task, the 

stimuli are pseudo-words and lie between pictures and letters. The involvement of LOT 

cortex can be explained by the fact that features of both pictures and words can share 

similar automatic top-down influences and semantic network in the left ventral stream and 

in the inferior frontal cortex (Kherif et al., 2011; Mechelli, Gorno-Tempini, & Price, 2003; 

Mechelli, Josephs, Lambon Ralph, McClelland, & Price, 2007; Price & Devlin, 2011; 

Vandenberghe, Price, Wise, Josephs, & Frackowiak, 1996; Vigneau et al., 2006).  

 In our results, we also found a greater deactivation in the LOT cortex for strong compared to 

weak predictive cues during learning. The same pattern was found in the right mid frontal 
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cortex. This is in accordance with a study showing that for more salient shapes detected, the 

OT region decreases in activation compared with less salient shapes in the aim to 

discriminate, segment and integrate the most relevant information to generate sparser 

representation and better recognition of the stimuli (Kourtzi, Betts, Sarkheil, & Welchman, 

2005). This reveals more automatic priming for more associated stimuli, which is in line with 

a study showing a decrease of activation in the posterior part of the OT cortex (XYZ(-36,-53,-

4), XYZ(-30,-46,-11)), as in our results and in the left inferior anterior frontal cortex ((XYZ(-

37,25,11)) for pairs of words that are semantically related compared to unrelated and 

identical pairs of words (Wheatley, Weisberg, Beauchamp, & Martin, 2005). We suggest a 

similarity between semantically related words in the last study and the strong predictive 

cues in our study. The more predictive cues contain more semantic information with training 

compared with weak predictive cues. In another study, the reduced activity for priming of 

repeated objects compared to new ones in inferior frontal regions was interpreted as more 

efficient access to semantic features of the previously similar item encountered and/or to 

less attentional demand (Koutstaal et al., 2001). In addition, considering the same profiles of 

activation in the right mid frontal cortex, the right inferior frontal cortex and the LOT in our 

study, we suggest that those regions can be functionally coupled in a dynamic way during 

learning.  

The involvement of the prefrontal cortex, more particularly the right inferior and right mid 

dorso-lateral frontal cortices, can be related to studies observing that after memory 

encoding dependent on the MTL, the performance could depend on episodic memory 

retrieval and on monitoring demands during retrieval dependent on the right pre-frontal 

cortex (Fletcher, Shallice, Frith, Frackowiak, & Dolan, 1998; Gluck et al., 2005; Henson, 

Shallice, & Dolan, 1999; R a Poldrack, Prabhakaran, et al., 1999; R a Poldrack et al., 2001; 
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Sakai, 2003; D Shohamy et al., 2008). The role of the inferior temporal cortex in 

categorization would be to process early perceptual features and distance whereas the role 

of prefrontal cortex is mainly to generate then the representations of boundary between 

categories, rules to separate them or the commonalities between features (Cromer, Roy, & 

Miller, 2011; Freedman, Riesenhuber, Poggio, & Miller, 2003; Muhammad, Wallis, & Miller, 

2006; Seger & Miller, 2010). However, those studies do not completely explain the decrease 

of activation in the pre-frontal cortex. The right inferior frontal cortex was found involved in 

decision-making choice under risk and activation was correlated with higher risk aversion 

(Christopoulos GI, Tobler PN, Bossaerts P, Dolan RK, 2010; Clark, Manes, Antoun, Sahakian, & 

Robbins, 2003). The right insula is anatomically connected to the right inferior frontal cortex 

and is also sensitive to risk and uncertainty (Huettel et al., 2005). Risk is generated by the 

variability in reward or in value prediction. Representation ambiguity means uncertainty 

about exemplars that are difficult to categorize, because they are distant to one prototype 

or that they are at equidistance of many different prototypes. It not always clear how risk 

and ambiguity are dissociated. Ambiguity would lay in the association between stimuli and 

category and risk, in the association between categories and value. However, risk and 

ambiguity can recruit similar neural systems, with additional recruitment of prefrontal cortex 

in ambiguity (Huettel et al., 2005; Seger & Peterson, 2013). Those regions could thus both be 

linked to processes related to uncertainty that decreases with learning in our study. The 

theory of accumulation of information through repetition of trials can also explain the 

activation of the insula, the dorsolateral prefrontal cortex and the inferior LOT cortex (Seger 

& Peterson, 2013). 



         

174 
 

Effective connectivity between fronto-temporal regions associated with cue utilization 

weights 

 

Using DCM analysis, we mainly found that priming memory systems in the left OT cortex and 

in the right mid pre-frontal cortex, showed different functional effective connectivity in early 

and later learning phases. We observe a bottom-up and bidirectional functional connectivity 

as best models in the first session of 200 trials; this was reduced to a bottom-up connectivity 

in the second session. This mechanism was accompanied by an increase of behavioral 

performance, measured by the number of correct predictions after the first session. This 

performance remains stable in the following session. We also reported a constant increase 

of discrimination between cues in each block of 100 trials. We postulate that behavioral 

learning is associated with repetition suppression and priming allowing continual adjustment 

by a cross-talk between bottom-up and top-down influences. This leads to decreased 

prediction error and increased discrimination of relevant features throughout learning until 

optimal behavior is reached. We argue that sufficient training allows discrimination of 

relevant features with less help from top-down processes or with facilitation from bottom-

up processes. Bottom-up processes can then become sufficient to process stable and 

adapted representations of the relevant features in the task. This is supported by an increase 

and then stabilization of behavioral performance after the first session of learning.   

Kumaran et al. (Kumaran et al., 2009) observed  a coupling between the temporal and pre-

frontal regions allowing emergence of new knowledge, while another also showed an 

increase of activity in both inferior OT area and prefrontal cortex in parallel to an increase of 

memory load (Druzgal & D’Esposito, 2003). We describe the underlying mechanism as a 

decrease of mismatch between bottom-up and top-down inputs leading to optimal learning 
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dependent on task demand. The expectations, such as reward maximization, can reach a 

fixed attractor, meaning that this will lead to an optimal behavior in which the value of the 

state will no longer change (K. Friston, 2010). This mechanism refers to the theory of 

“predictive coding account” (K. Friston & Kiebel, 2009). In the Interactive Account theory, 

the specific activation in ventral OT cortex is dependent on interaction between bottom-up 

visual stimuli and top-down expectations. A greater match between information coming 

from both connections leads to less prediction error and less response in OT cortex during 

reading (Price & Devlin, 2011). At a lower level, the OT cortex would compute the difference 

between perceptive information and knowledge and at a higher level, the pre-frontal cortex 

would compute the difference of that difference (K. Friston & Kiebel, 2009; Kherif et al., 

2011a; Twomey et al., 2011). In addition, our results mainly contradict feed-forward only 

models for word reading (L. Cohen et al., 2002; Price & Devlin, 2011). Multiple studies are in 

accordance with the fact that the inferior OT cortex, and more generally the ventral stream, 

is not only affected by bottom up connections, but also by top-down connections driven by 

attention, training, knowledge, category-specific recognition memory or 

semantic/phonological influences. This is also in line with the fact that the OT cortex is at the 

interface between visual and non-visual information processing (Gauthier et al., 1999; 

Gilbert & Li, 2013; Golarai et al., 2007; Kherif et al., 2002, 2011; Striem-Amit, Cohen, 

Dehaene, & Amedi, 2012; Twomey et al., 2011) (Figure 50).  

 

 

 

Figure 49. Illustration of feedforward and top-
down pathways between ventral stream and 
prefrontal and parietal cortices (Source image: 
(Gilbert & Li, 2013)). 



         

176 
 

In addition, the connection between the lateral orbitofrontal cortex and the anterior 

temporal lobes allows a rapid update and modulation of memory representation in the 

temporal lobe based on reward/punishment history integrated in the frontal cortex. This 

connection is called the uncinate fasciculus and would have a role in instrumental learning 

with the aim to make a choice. This is also involved in episodic memory, language semantic 

retrieval and/or social/emotional processing allowing valuation of stimuli and representation 

of emotional meaning (Mabbott, Rovet, Noseworthy, Smith, & Rockel, 2009; Von Der Heide, 

Skipper, Klobusicky, & Olson, 2013). The functional connectivity between the OT and the 

frontal cortex associated with learning could also be explained by cholinergic pathways, as 

there are strong cholinergic projections between orbital pre-frontal cortex, hippocampus, 

perirhinal and entorhinal cortices (Ranganath & Rainer, 2003). In limitation, we could remark 

that the regions studied in our results are not in the same brain hemisphere. However, an 

anatomical connection exists between the left inferior OT and the right medial orbitofrontal 

cortex (Joshi et al., 2010). In addition, the limits of DCM are that inferences depend on 

knowledge about the anatomical connectivity in the human brain and ranking of models is 

relative (Penny, Stephan, Mechelli, & Friston, 2004).  

In conclusion, our results indicate that humans have a great capacity to extract pertinent 

information from visually meaningless shapes in a context of uncertainty. This involves 

multiple brain networks related to visual, memory and language processes with bottom-up 

and top-down interactions. The aim of this learning is to create new and unique concepts 

containing a meaning. This could reflect the human ontogeny of the language’s semantic 

acquisition underlying temporo-frontal network.  
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Functional connectivity between hippocampus and caudate nucleus 

 

In our results, we found a significant interaction between two memory systems associated 

with hippocampus and caudate nucleus and the learning condition (cf. results in appendix in 

chapter “6.1. Functional connectivity between hippocampus and caudate nucleus”). In 

learning trials, we observe a negative relation between the two regions, but this is not the 

case in non-learning trials. Even if this result is in line with previous studies on MCPL showing 

a negative relation between hippocampus and BG, this is based on subject’s mean statics 

activations over the whole learning task. However, this does not allow affirming a dynamic 

negative functional connectivity between them through learning trials at neuronal level. We 

would need to perform a psychophysiological interaction (PPI) analysis to explore how the 

response in one region is influenced by the interaction of another region with an 

experimental treatment (K J Friston et al., 1997). 

In the literature, MTL and BG memory systems can be differentially activated during learning 

trials due to the different learning situations encountered throughout the task. MTL has an 

early role in encoding new stimuli representation and to form declarative memory, whereas 

the BG activation increases through learning trials and is related to gradual learning and non-

declarative memory. The aim of competition between MTL and BG would be an adjustment 

of access between flexible knowledge and automatic/fast learning to adapt to different 

learning situations during the task (Packard et al., 1989; R a Poldrack et al., 2001; D Shohamy 

et al., 2008). Another study suggests that the two memory systems could act in 

complementary and competitive ways. For example, when development of explicit 

knowledge is hindered by some factor (e.g. distraction), the striatal system mediates the 

performance, but with the cost of decreasing flexibility in new situations (Foerde et al., 
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2006). A parallel activation between those regions was also associated with cue difficulty, 

probability of association and with prediction error (PE) signal during feedback probabilistic 

learning. This indicates that they can both cooperate in different manners to facilitate 

learning and decision-making in case of violation of expectation. Their interaction is 

supported by a functional loop in which the hippocampus can detect novelty and send this 

signal to the ventral tegmental area (VTA) that releases dopamine into the hippocampus to 

facilitate long term potentiation (Dickerson, Li, & Delgado, 2011).  

In a categorization task, the learning of a one dimensional rule has been associated with 

declarative memory and the anterior MTL, whereas the categorization and integration of 

more than one dimension has been associated with non-declarative memory and the 

posterior caudate nucleus (Nomura et al., 2007). However, caution should be given to the 

fact that declarative does not always represent episodic memory associated with MTL, even 

if it is part of it, because one can be conscious of what is learning, without putting words to 

it. For example, one may use implicit processes such as conditional learning or priming to 

associate a cue with the outcome or one may use multiple strategies associated with 

different neural systems in parallel (M. a Gluck et al., 2002; Henke, 2010; D. A. Lagnado et 

al., 2006; David A Lagnado & Newell, 2006b; Reber, Knowlton, & Squire, 1996). Interaction 

between memory systems could thus be better explained at the individual level. 
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Model of learning 

 

Our results link categorization learning with procedural memory in BG and episodic memory 

in MTL and show that priming in OT is a critical mechanism underlying learning under 

uncertainty. In addition, conceptual categorization and optimal decision-making result from 

the interaction between OT and higher order regions in the frontal cortex and in the insula.  

Our results can also be generalised to understand language and provide evidence for an 

interactive model and contradict feed-forward only models for word reading (Price et al., 

2011).  

We propose a model of learning in which the involvement and interaction of different 

memory systems are modulated by feedback information and by the demand of the task 

through learning trials. In the schema presented below (Figure 51), the presentation of a 

new cue is the first input of the brain system. After visual processing, the OT cortex is 

involved in establishment of perceptual representation of the input. The frontal cortex, 

specific to working memory, can interact with the OT cortex to adjust the representation and 

to semanticize information with a priming process. The MTL is mainly associated with 

episodic memory and the basal ganglia with procedural memory. They generate a more 

structured, flexible and fine-grained representation of the information. All memory and 

cognitive systems are also affected by feedback and reward information. Through a feedback 

loop, information re-introduces external information in the brain system to adjust the 

direction of learning. Last, but not least, other factors such as reward or error of prediction 

or even personality and negative affects can modulate individual choices through learning 

(cf. next chapters “3.4. Experiment 4 – Neural substrate associated with reward and 

prediction error in probabilistic learning” and “3.5. Experiment 5 - Neural substrate 
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associated with personality and depressive/anxiety symptoms in probabilistic learning”). This 

model shows the importance of investigating learning and memory processes as large and 

interacting brain networks at the individual level. 

 

 

 

 

 

 

 

 

 

 

 
Figure 50. Model of learning in MCPL task. Multiple memory and cognitive systems interact during 
learning. They are also modulated by feedback information. 
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3.4. Experiment 4 – Neural substrate associated with reward and 
prediction error  

 

3.4.1. Objectives 

To investigate further the neural activation associated with MCPL, the effect of correct 

prediction (i.e. number of rewards collected) during learning was tested. I also used a 

reinforcement learning model based on prediction error (PE) (Sutton & Barto, 1998) to 

combine the subject’s choice and the reward information. This model is based on the 

Rescorla-Wagner model and computes the difference between actual reward and the 

expected value of outcome. In contrast to more conventional models of learning, the PE acts 

more like a “pacemaker of learning” and is often associated with ventral striatum in 

neuroimaging studies (Gläscher & Büchel, 2005). During instrumental learning, PE is mainly 

associated with dopaminergic activity in cortico-striatal circuit and with reward-seeking 

behaviors to control the immediate selection of behavior to improve learning (Pessiglione et 

al., 2006; Schultz & Dickinson, 2000).  

 

3.4.2. Materials and methods 

Prediction Error 

 

I computed a reinforcement learning model called the Prediction Error (PE), This measure 

derives from Q learning, a model-free that does not require a model of the environment. 

This is based on reinforcement learning model in which an agent, the learner, interacts with 
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its environment. The aim of the agent is to maximize his rewards. At each step, the agent has 

a representation of the environment’s state and chooses an action based on that state. On 

the next trial, he receives a reward and changes of state. At each step, the agent creates his 

policy, meaning that he has a mapping between state and probability to select a possible 

action depending on his experience (Sutton & Barto, 1998). PE represents the difference 

between actual reward and the expected value (Gläscher & Büchel, 2005). 

In MCPL, the states are the presence of absence of each of the 4 cues. The action is the 

choice of the symbol A or B. The monetary reward is shown only if the subject chooses the 

correct symbol. A correct answer means that the subject has chosen the symbol A with a 

probability close to the one defined for each cue (i.e. 20% for cue 1, 40% for cue 2, 60% for 

cue 3, 80% for cue 4). 

The equation below (4) is the learning model computed at each trial t (Daw, 2009). 

 

PE is the difference between the expected outcome (i.e. Qa(t)) and the actual 

outcome/reward (i.e. R(t)) (5). PE indices can then be inserted as parametric modulators in 

the fMRI matrix design for each subject. 

 

A softmax function (6) is used to convert Q values into action probabilities. This is called the 

observational model and represents a stochastic decision rule. This suggests that subject’s 

choice is dependent on the softmax probability. This is also a generalization of the logistic 

function to multiple variables (Daw, 2009).  

 

Qat +1 = Qat  + eta * PEt                           (4)             

(7) 

PE t = Rt  - Qat                                                   (5)  

Pat = exp(Qat * tmp) / (exp(Qat * tmp) + exp (Qbt * tmp))                            (6) 

 (6)                                      (5)  
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In order to optimize the two parameters of Q learning curves for each subject, named the 

temperature (tmp) and the rate of leaning (eta), a Maximum Liekelihood (ML) function is 

needed. ML represents the negative logarithm of the product of probabilities to choose 

symbol A at each trial t (7). This value has to be minimized by means of the function 

“fmincon” in Matlab software (MATLAB and Statistics Toolbox Release 2011b, The 

MathWorks, Inc., Natick, Massachusetts, United States).  

 

 

This allows optimizing the computational model of learning to maximize the "agreement" of 

the selected model with the observed individual data. Eta and tmp parameters are 

constrained in the range [0.01 to 1] and [1 to 10] respectively (Gläscher & Büchel, 2005). To 

avoid that the optimizer stops in a local minima, each model optimization begins with 

random initial values for eta and temp. In addition, the optimization was performed 50 

times; the most frequent pair of optimized eta and tmp values was then selected. 

For example, at trial n, the pattern consists of cues 1 and 3. There will be 2 Q values updated 

(depending on the previous learning with this pattern) for this trial: one for cue 1 and one 

for cue 3.  Here, the Q values have to be combined in one single Q value.  We propose two 

different non-exhaustive models for Q values integration. In the max model, the Q value of 

the trial n is the highest among the 4 Q values associated with each of the 4 cues. In the 

mean model, the Q value is an average of the 4 Q values associated with each of the 4 cue. 

This Q value represents the current expected Q value for cue 1 and cue 3 at this trial n. After 

this trial, we calculated a measure of PE and a probability to choose the symbol A by means 

of the softmax probability function. The initial Q value is defined as zeros and the probability 

to choose symbol A is 50%, because there is no expectation to choose more door A or B. 

ML = -  log(P(Qat)                         (7) 
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A learning rate (eta) of 1 will make the agent to take into account only the most recent 

information. In the literature, some fitted values exist: 0.2 to 0.7 for “explicit” learning tasks 

and 0.01 to 0.1 for “implicit” learning tasks. The temperature (tmp) is a parameter that 

controls the stochasticity of choices or the exploration rate. Low temperature, close to 0, 

means that all actions are equiprobable or randomly chosen. Oppositely, the temperature is 

high when the action with highest value is chosen. This can be linked to learning strategy, 

with higher temperature meaning higher exploitation and lower exploration. An agent has to 

balance between exploration and expoitation to find optimal actions. For example, during 

exploration, the agent can discover new options and during exploitation, the agent can use 

his knowledge to get better results (Coggan & Doina, 2004). In the equation of Q learning, 

there is also a discount factor, but is not shown in the equation because it is assigned to 0. A 

value of 0 makes the agent "opportunistic" by only considering current rewards without 

influence of future values in the current predictions. The policy is there deterministic. In 

addition, different measures of model fit are calculated in addition to the ML. One measure 

was computed with the sum of similar action predicted by the model and by the subject 

divided by the number of total trials. 

 

3.4.3. Results 
 

Univariate analysis of brain activation associated with reward in learning trials 

 

Several brain regions were positively associated with modulation of reward, meaning with 

the presence or absence of reward in learning trials. The significant regions were the 

bilateral OT cortices, the left lingual cortex and the left mid occipital cortex. No significant 
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brain regions were found for the negative association (Table 8). There was probably a slight 

trend for the right caudate nucleus (XYZ(7.5,4.5,-7.5)) to be positively associated with the 

first contrast (with a peak p-value uncorrected of p<0.001, but p-value FWE-corrected of 

0.98, Z=3.4). In addition, no significant voxels were associated with modulation of 

probabilistic reward, meaning the probability of having a correct prediction, in learning 

trials. 

 

Table 8. Activation associated with  modulation of reward in learning trials 

Positive association  

Cluster 
(Voxels) 

Region (Label) X  Y  Z  Z statistic  

43 Left occipital inferior cortex -36 -76.5 -12 4.84 
  Left lingual cortex -30 -88.5 -10.5 4.46 
  Left mid occipital cortex -39 -70.5 3 4 
  Rigth inferior occipital cortex 36 -72 -9 4.71 
  Right inferior occipito-temporal cortex 36 -57 -13.5 4.63 
  

 
34.5 -49.5 -18 4.22 

Table 8. Significant region activation associated with reward modulation in learning trials (PFWE<0.05). 
Coordinates [X, Y, Z] are reported in the Montreal Neurological Institute space.  

 

 

Prediction Error  

 

The best model was the one which combines the 4 Q values with a mean function and 

includes binary reward compared to the maximum function and probabilistic reward. This 

result is based on optimization by minimization of Maximum Likelihood (ML). The mean of 

ML and model fit for all subjects were 261.29 for the first model (mean, binary reward), 

261.31 for the second (mean, probabilistic reward), 261.38 for the third model (max, binary 

reward) and finally 262.36 for the fourth model (max, probabilistic reward). 
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The table 9 shows the optimized parameters of rate of learning (eta) and temperature (tmp) 

by means of maximum likelihood (ML) minimization. We report that the optimized model 

explains 64% of subject’s actions. 

Q learning curves and prediction error related to the 4 cues are shown in figure 52 and figure 

53 respectively for each of the 23 subjects (from top left to right bottom). There is clear 

discrimination of the 4 Q learning curves in most of the subjects except for 5 subjects (num. 

3, 5, 6, 17, 20).  The subject’ curves that show less discrimination between the 4 cues are less 

stable and coherent through trials (Figure 52). They are characterized by a higher value for 

temperature (higher or equal to 1.55) (Table 9, in yellow). 
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Table 9. Optimized parameters of the prediction error 

Subjects ML eta tmp model fit sub 

1 263.16 0.05 0.96 0.58 
2 268.27 0.07 1.22 0.64 
3 266.24 0.20 1.70 0.86 
4 250.53 0.06 0.71 0.84 
5 275.42 0.39 10.00 0.36 
6 265.31 0.30 1.55 0.75 
7 233.61 0.05 0.44 0.72 
8 259.67 0.10 0.92 0.49 
9 252.88 0.05 0.68 0.76 
10 259.65 0.02 1.25 0.38 
11 260.32 0.07 0.75 0.58 
12 257.72 0.06 0.90 0.78 
13 264.64 0.03 7.25 0.41 
14 272.18 0.06 2.21 0.52 
15 265.26 0.03 0.81 0.44 
16 246.86 0.06 0.58 0.65 
17 273.74 0.45 3.32 0.80 
18 255.79 0.05 0.90 0.65 
19 263.16 0.07 1.04 0.49 
20 268.01 0.25 1.55 0.87 
21 264.08 0.11 1.10 0.78 
22 258.02 0.05 1.23 0.61 
23 265.26 0.20 1.23 0.79 

Mean 261.29 0.12 1.84 0.64 
Table 9. Optimized parameters of rate of learning (eta) and temperature (tmp) by means of maximum 
likelihood (ML) for each subject (n=23). A percentage of model fit with subject’s actions (model fit 
subj) is also computed. The inconsistent subjects with no coherence of the Q learning curves are 
shown in yellow color. 
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Univariate analysis of brain activation associated with prediction error 

 

After having found the best model of prediction error that fits the best the subject’s 

answers, this measure was associated with brain activation. The model consists of a mean 

function to combine the 4 Q values related to each of the 4 cue and with a binary reward. 

No significant brain region was associated with the modulation of prediction error. In the 

second best model of prediction error, that consists of a maximum function to combine the 

4 Q values  with a binary reward, there was also no significant voxels, but there was a trend 

for the left caudate nucleus (XYZ(-17,21,21)) to be negatively associated with prediction 

error (pFWE-corr=0.068, Z=4.75,k =248) (Figure 54). 

 

 

 

 

 

 

 

 

 

 

Figure 53. Statistical parametric map for the trend of the left caudate nucleus to be negatively 
associated with prediction error (PFWE<0.05). Coordinates [X, Y, Z] are reported in the Montreal 
Neurological Institute space.  
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3.4.4. Discussion 

 

Prediction Error  

 

In a reinforcement learning framework, the aim of an agent is to maximize the reward 

coming from his environment. The agent chooses an action based on the representation of 

the environment’s state. At each trial, the agent creates his policy, meaning a mapping 

between state and probability to select a possible action depending on his experience. 

Prediction error (PE) appears when the predicted outcome differs from expected value and 

would represent a teaching signal to allow learning (Sutton & Barto, 1998).  

An accurate measure of PE depends on optimization of Q learning curves to fit subject’s 

actions. Here, the best model combines the Q values of each cue with a mean function and 

includes binary reward compared to the maximum function and probabilistic reward. This 

model suggests that the subject tries to integrate all the information/cues to choose an 

action, and does not focus on the most rewarding cue only. This could be in line with studies 

reporting subjects often adopt more of a matching than maximization strategy even it is less 

optimal in terms of reward maximization. Matching means that subject response is based on 

the probability of association between the pattern and the outcome (e.g. 70%), whereas for 

maximization the response is based on the most probable outcome (e.g. 100% for a pattern 

association of 70%) (D. A. Lagnado et al., 2006; Shanks, Tunney, & Mccarthy, 2002). 
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Univariate analysis of brain activation associated with reward in learning trials 

 

Effect of reward in learning trials was found in the bilateral occipito-temporal cortices. It is 

known that neurons in this region are affected by expertise (Gauthier et al., 1999) and by 

more salient/relevant stimuli (Kourtzi et al., 2005). In addition, there is not only bottom up 

integration of visual input in this region, but also top-down  integration from more anterior 

part of the anterior inferior temporal cortex that can store structural knowledge (Gerlach et 

al., 2002). In our study, we suggest that reward can modulate learning, because reward 

could make the strong predictive cues more salient. This could shape neuronal response in 

this region by means of the knowledge accumulated.  

 

 

Univariate analysis of brain activation associated with prediction error 

 

After having calculated the best fit of a prediction error (PE) model using subject’s actions 

for each cue, we inserted this measure as parametric modulator during learning trials. No 

brain regions were significantly associated with that measure. It is possible that functions 

other than mean Q value can better capture subject’s actions and the associated neuronal 

coding. In addition, to explain the fact that reward modulation was significantly associated 

with some brain regions (cf. chapter “Univariate analysis of brain activation associated with 

reward in learning trials”), but not PE, we can report that PE seems a more subtle marker of 

reinforcement learning than reward presence/absence only. For example, a study showed 

that PE signal was larger in unexpected compared with expected absence of reward 

(Holroyd, Nieuwenhuis, Yeung, & Cohen, 2003), whereas with reward modulation, the signal 

is only binary. 
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However, we observed a trend in which the left caudate nucleus activation was associated 

with the PE computed with the second best model, which selects the maximal Q value from 

the 4 cues. Regarding the specificity and the coherence of activation for PE coding in this 

region containing mainly dopaminergic neurons, we believe that the statistical effect size of 

our results would increase with inclusion of more subjects or with exclusion of worst 

performers. Indeed, it has been shown that coding of reward PE in instrumental learning is 

mainly associated with dopamine and with bilateral striatum and left posterior putamen for 

gain and loss conditions (Pessiglione et al., 2006b). The activation of the left caudate nucleus 

(XYZ(-17,21,21)) was in the dorsal striatum (y axis coordinates = 20-22mm), which has the 

role of “actor” that aims to memorize rewarding outcomes based on stimulus-response 

association policy, in contrast to the ventral striatum (y axis  coordinates = 8-14mm) that 

represents a  “critic” that learns to predict future rewards based on temporal difference PE 

correlated with phasic activity of dopaminergic neurons (O’Doherty et al., 2004).  

In addition, the fact that the first, but not the second model, was associated with the left 

caudate nucleus could reflect the specific function of PE and dopaminergic neurons highly 

concentrated in striatum, to maximize reward collection. However, in our results, we found a 

negative correlation between the caudate nucleus activation and PE. In a study, a decrease 

of activity in striatum has been associated with negative PE. Negative PE means absence of 

expected reward (Doherty, Dayan, Friston, Critchley, & Dolan, 2003; Tobler, O’doherty, 

Dolan, & Schultz, 2006). Regarding that last study, it could be pertinent to split trials in 

positive and negative PE and to test the associated brain activity. 
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3.5. Experiment 5 - Neural substrate associated with personality 
and depressive/anxiety symptoms in probabilistic learning 

 

3.5.1. Objectives 
 

A recent study has shown that stress induction can change learning strategy and the brain 

activation related to it during MCPL. They found that stress shifts the engagement of 

memory systems from the hippocampus dependent system to the striatal one. The aim 

would be to keep the learning performance at normal level in case the hippocampus shows 

vulnerability to stress (Schwabe & Wolf, 2012). In our study, factors related to personality 

and depression/anxiety will be associated with behavioral learning and brain activation 

related to it. As it is known that personality and negative affects can affect subject’s choice 

and learning strategies (Alttoa, Seeman, Kõiv, Eller, & Harro, 2009; Benjamin et al., 1996; 

Vermetten et al., 2001), we expect that they will be associated with specific parameters such 

as  exploration rate (i.e. temperature) (Coggan & Doina, 2004) extracted from the model of 

PE and choice aspect of learning. 
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3.5.2. Materials and Methods 
 

Psychological tests 

 

Participants from the MCPL task (n=26) underwent a personality questionnaire called Neo-

FFI-R of 150 items (P. Costa & Mccrae, 2004) and the Hospital Anxiety and Depression Scale 

(HADS-A and HADS-D respectively) (Zigmond, AS, Snaith, 1983) in addition to Beck 

Depression Inventory (BDI) (Beck, Steer, & Brown, 1996). The personality questionnaire 

contains 5-point agreement scale for each item and is based on the Five-Factor Model of 

personality (P. Costa & MacCrae, 1992). TPQ-Novelty Seeking score was calculated with a 

weighted combination of NEO-FFI-R five personality traits (Jonathan Benjamin, Lin Li, Chavis 

Patterson, Benjamin D. Greenberg, Dennis L. Murphy, 1996).  

 

 

Mutlivariate association between personality and learning 

 

The learning variable contains 4 dimensions (i.e. scores of the 4 cues) and the personality 

variable, 5 dimensions (i.e. 5 traits of personality) that are interdependent. Each variable has 

a meaning only if its dimensions remain combined in one whole model. Therefore, to link 

them, we need a multivariate method. I used two types of approach: principal component 

analysis (PCA)  and partial least square (PLS) regression.  

In the first approach, we used PCA (cf. method described in appendix, in the chapter “6.5. 

Multivariate Linear Method”) with oblique rotations allowing correlation between variables. 

The aim is to reduce dimension of learning variable for each subject. We extracted the first 

components that explained most of the variance in learning, after applying an oblique 
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rotation, and computed a linear combination of the 4 cues with the weights/loadings 

extracted from those components. This weighted score is then correlated with personality 

scores. 

In the second approach, we performed a PLS regression in order to find which personality 

profile explains maximal covariance with a profile of learning for the 4 cues. This combines 

principles of principal component analysis and multiple regression analysis and searches 

latent variables that explain the manifest ones. Those methods are implemented in Matlab 

software (MATLAB and Statistics Toolbox Release 2011b, The MathWorks, Inc., Natick, 

Massachusetts, United States). 

 

3.5.3. Results 
 

Personality profile associated with correct prediction and learning 

 

Personality scores of the subjects are 34.85±7 for neuroticism, 41.5±6 for extraversion, 

43.58±5 for openness, 44.5±5 for agreeableness and 44.31±6 for conscientiousness. Those 

scores will be correlated, by means of regression analysis and correlations of Pearson, with 

different measures of learning: (1) correct prediction in term of binary or probabilistic 

reward, (2) subjective utilization weights and (3) parameters related to the optimized model 

of prediction error, i.e. temperature and learning rate. Note that the results are not 

corrected for multiple comparisons. With Bonferroni correction (corrected for 50 tests), the 

p-value is  0.001 and none of the results have a lower p-value to be significant. 

 The correct prediction, measured with correct binary reward (1 or 0), was not correlated 

with the five personality trait scores that are neuroticism (N), extraversion (E), openness (O), 
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agreeableness (A) and conscientiousness (C), nor with the score of novelty seeking (Table 

10). 

The correct prediction, measured with correct probabilistic reward (i.e. value of the reward 

weighted by the probability of association of each pattern), was also not correlated with the 

five personality trait scores, nor with the score of novelty seeking (Table 10). 

 

Table 10. Correlation between personality traits and performance 

A. Association with correct prediction (binary) 

  Beta p-val T  

Neuroticism 0.11 0.67 0.43 

Extraversion -0.17 0.52 -0.65 

Openness -0.2 0.38 -0.89 

Agreeableness 0.065 0.76 0.3 

Conscientiousness -0.068 0.77 -0.3 

Novelty-seeking -0.12 -0.58 0.56 

B. Association with correct prediction (proba) 

  Beta p-val T  

Neuroticism 0.1 0.68 0.41 

Extraversion -0.15 0.58 -0.55 

Openness -0.1 0.65 -0.46 

Agreeableness 0.077 0.73 0.34 

Conscientiousness -0.16 0.94 -0.068 

Novelty-seeking -0.1 0.6 -0.53 
Table 10. Regression between the five personality trait and performance measured by the number of 
correct binary reward and by the number of probabilistic reward (i.e. reward weighted by the 
probability of association of each pattern of cues).  
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Then, the aim was to test whether there is a link between personality profile and learning. 

Learning is defined by subjective utilization weights of the 4 cues in the last block of 100 

trials, as it represents the final learning score. To this end, I reduce the dimensions of the 

learning variable with a principal component analysis (PCA) and then perform a multiple 

linear regression with the five personality trait scores. Kaiser-Meyer-Olkin measure of 

Sampling Adequacy is 0.46 and the Bartlett’s test of sphericity is significant (p<0.001, 

Approx. λ2 =29.3, df=435, n=26, df=6). Those tests are the minimum standards to accept PCA 

assumptions. The first, measuring the “factoriability” of the data, should be superior than 0.6 

and the second, testing the sphericity of the data, should be significant. As this is significant 

and that there are not too few subjects in each variable leading to oversensitive analysis, I 

continued the analysis. PCA revealed that two main components, with eigenvalue greater 

than 1, explain 83.7% of the data; The first component explains 42.95% of the data. The 

loadings of the first component are 0.89, 0.86, -0.29, 0.28 and the loadings of the second 

component are -0.274, 0.272, 0.878 and 0.848, which clearly define cues 1, 2 and cues 3, 4 in 

the two components (Figure 55). 

 

 

Figure 54. Figure representing the loading values of the first and the second component of the 
principal component analysis (PCA) on the learning of the 4 cues. 
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The weighted score extracted from the first component of learning were correlated with the 

five personality trait scores. We reported that the model explains 31.2% of the variance 

(R2=0.32, R=0.56) and does not assume a significant linear relationship between variables 

(F(5,20)=1.87,p=0.145). However, extraversion score was significantly associated with 

learning, but not neuroticism, openness, agreeableness, nor conscientiousness (Table 11A). 

Then, the weighted scores extracted from the second component of learning were 

correlated with the five personality trait scores by means of a multiple linear regression. We 

reported that the model explains 28.2% of the variance (R2=0.28, R=0.53) and does not 

assume a significant linear relationship between variables (F(5,20)=1.57,p=0.21). However, 

we found no correlation between this component and the five personality traits (Table 11B). 

A partial least square (PLS) regression was also performed in order to find which personality 

profile explains maximal covariance with learning of the 4 cues. The first component explains 

only 10.1% of variance of the learning dataset and 35.11% of variance of the personality 

dataset. In addition, inclusion of the next components in the model did not increase a lot the 

variance explanation; therefore we only investigated the first component (Figure 56). The 

profiles of this component are shown in figure 57. Regression coefficients (Beta) of each 

score in this component are 0.51, 1.19, 1.31, 0.67.  
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Table 11. Regression between personality traits and components of learning 

A. Association with Component 1 

  Beta p-val T  

Neuroticism -0.26 0.25 -1.17 
Extraversion -0.68 0.009 -2.91 
Openness 0.1 0.61 0.51 
Agreeableness -0.09 0.64 -0.46 
Conscientiousness -0.24 0.25 1.16 

B. Association with Component 2 

  Beta p-val T  

Neuroticism 0.09 0.67 0.43 
Extraversion 0.2 0.41 0.84 
Openness -0.51 0.23 -2.46 
Agreeableness -0.23 0.24 -1.21 
Conscientiousness 0.03 0.89 1.14 

Table 11. Multiple regression between personality traits and learning components from principal 
component analysis (PCA). Learning measure represent the subjective cue utilization weights in the 
last block of 100 trials. 

 

 

Figure 55. Figure representing the percentage of cumulative variance explained by personality with 
inclusion of 1 to 5 component of the partial least square (PLS) regression analysis. 

 

 

Figure 56. Figure representing the loading values of the first component of the partial least square 
(PLS) regression analysis with the profile of personality five scores and learning of 4 cues extracted. 
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I also tested whether parameters of learning related to prediction error could be explained 

by the personality scores (Table 12). I report that the measure of temperature (Tmp) was not 

significantly explained by the personality traits as a whole model (R2=0.1, F(5,17)=0.4, 

p=0.84) and by each of those traits separately. It was the same for the measure of rate of 

learning (Eta) in the whole model (R2=0.1, F(5,17)=0.44, p=0.81) and for each trait 

separately. Eta and Tmp were also not significantly associated with novelty seeking trait (Eta: 

p=0.08, r=-0.36; Tmp: p =0.1, r=-0.34). 

 

Table 12. Regressions between personality and parameters of prediction error 

A. Association with parameter of temperature  

  Beta p-val T  

Neuroticism -0.31 0.26 -1.1 
Extraversion -0.19 0.51 -0.66 
Opennes 0.15 0.54 0.61 
Agreeableness 0.042 0.85 0.18 
Conscientiousness 0.1 0.67 0.42 

B. Association with parameter of rate of learning 

  Beta p-val T  

Neuroticism -0.34 0.22 -1.27 
Extraversion -0.33 0.25 -1.16 
Opennes 0.065 0.79 0.26 
Agreeableness -0.033 0.88 -0.14 
Conscientiousness -0.017 0.94 -0.07 

Table 12. Multiple regression between personality traits and parameters of prediction error that are 
the temperature and the rate of learning. 

 

 

Depression/anxiety associated with correct prediction and learning 

 

Depressive/anxiety symptoms scores were collected from 26 participants with Beck 

Depression Index (BDI) and Hamilton Depressive and Anxiety scales (HAD-D and HAD-A). BDI 

score for those subjects was 5.84±6 (range [2-22]), HAD-D score was 3± 2.99 (range [0-11]) 

and HAD-A score 6.15± 3.39 (range [2-14]). Correlation of those affective scores with 
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performance was calculated with the Pearson’s linear correlation coefficient. Note that the 

results are not corrected for multiple comparisons. With Bonferroni correction (corrected for 

58 tests), the p-value is  0.001 and none of the results have a lower p-value to be significant. 

The correct prediction, measured with correct binary reward (1 or 0), was not correlated 

with depressive scores measured with BDI test or with HAM-D test, nor with total depressive 

and anxiety scores measured with HAD test, nor with anxiety score measured with HAD-A 

test (Table 13). 

The correct prediction, measured with correct probabilistic reward, was also not correlated 

with depressive scores measured with BDI test nor with HAM-D test, nor with total 

depressive and anxiety scores measured with HAD test, nor with anxiety score measured 

with HAD-A test (Table 13). 

 

Table 13. Correlation between depressive/anxiety scores and perfomance 

  Correct prediction (binary) Correct prediction (proba) 

 
r p-val r p-val 

Depressive score (BDI) 0.067 1 0.016 0.93 
Depressive score (HAM-D) 0.33 0.09 0.33 0.09 
Anxiety score (HAM-A) 0.21 0.29 -0.01 0.95 
Total score (HAM-A/HAM-D) 0.29 0.14 -0.02 0.91 

Table 13. Pearson’s correlation (r) between depressive/anxiety score (measured with BDI and HAM 
tests) and performance (measured with the number of correct binary reward and by the number of 
probabilistic reward).  

 

Correlation of affective scores with the two components of learning of the 4 cues (from 

previous PCA analysis) was calculated with Pearson’s correlations. The first component of 

learning was correlated with depressive score measured with HAM-D test, with total 

depressive and anxiety scores measured with HAM test, but not with anxiety score 
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measured with HAD-A test, nor with BDI test. The second component of learning was not 

correlated with any depressive and anxiety scores (Table 14). 

 

Table 14. Correlation between depressive/anxiety symptoms 
and subjective utilization weight 

A. Association with Component 1 

  r p-val 

Depressive score (BDI) 0.22 0.28 

Depressive score (HAM-D) 0.41 0.035 

Anxiety score (HAM-A) 0.33 0.1 

Total score (HAM-A/HAM-D) 0.45 0.02 

B. Association with Component 2 

  r p-val 

Depressive score (BDI) -0.17 0.41 

Depressive score (HAM-D) -0.07 0.97 

Anxiety score (HAM-A) 0.18 0.36 

Total score (HAM-A/HAM-D) 0.07 0.72 
Table 14. Pearson’s correlation (r) between depressive/anxiety score (measured with BDI and HAM 
tests) and learning components from principal component analysis (PCA). Learning measure represent 
the subjective cue utilization weights in the last block of 100 trials. 

 

I also tested whether measures of learning related to prediction error could be explained by 

the depressive and anxiety scores. We report the measure of rate of learning was 

significantly correlated with depressive symptoms of BDI test, with anxiety symptoms of 

HAD-A test and with the total depressive and anxiety score of HAD, but not with depressive 

symptom of HAD-D test (Table 15). The measure of temperature was not correlated with 

anxiety symptoms of HAD-A test, with depressive symptom of HAD-D test, nor with the total 

depressive and anxiety score of HAD (Table 15). 
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Table 15. Correlation between depressive/anxiety scores and prediction error measures 

 Temperature Rate of learning 

 r p-val r p-val 

Depressive score (BDI) -0.23 0.29 0.52 0.013 
Depressive score (HAM-D) -0.22 0.31 0.39 0.066 
Anxiety score (HAM-A) -0.14 0.52 0.45 0.029 
Total score (HAM-A/HAM-D) -0.19 0.37 0.47 0.023 
Table 15. Pearson’s correlation (r) between depressive/anxiety symptoms scores (measured with BDI 
and HAM tests) and parameters of prediction error (measured with temperature and rate of 
learning). 
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Personality profile and   brain activation associated with learning  

 

Multivariate MLM analysis of brain activation associated with subject’s learning (i.e. 

measured with cue utilization weight) showed a significant contribution of personality to the 

first component (F=4.18, p=4.2*10-6, p<e-1), which explained 63.47% of the covariance. The 

domains of neuroticism, extraversion and conscientiousness had more weight than the other 

three domains (Figure 58A) and a specific distributed spatial pattern of brain differences was 

revealed in multiple regions.  

Post-hoc univariate analyses of subject’s learning with the first component of the MLM 

analysis revealed significant brain differences in multiple regions (Table 16) such as the right 

occipito-temporal cortex (Figure 58B), the right lingual cortex, left mid occipital cortex, the 

right caudate nucleus (Figure 58C), the left superior orbital frontal cortex (Figure 58D) and 

the right mid frontal cortex. 

 

Figure 57. MLM analysis of personality profile at domain level. (A) First Eigen-component (p<0.05) of 
the MLM analysis for the combination of the personality domains associated with spatial brain 
activation distribution associated with learning within whole brain. Contrast estimate of the 5 
personality domains associated with (B) the right inferior occipital cortex (xyz=[28.5, -64.5, -15]), (C) 
the right caudate nucleus (xyz=[10.5, 16.5, -7.5]) and (D) the left superior orbital cortex (xyz=[-27, 60, 
-7.5]). Abbrev: Neuro= Neuroticism, Extra= Extraversion, Open= Openness, Agree= Agreeableness, 
Consc= Conscientiousness. Y axis is an arbitrary unit (AU). 
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Table 16. Personality profile associated with  subject’s utilization weight activation 

Positive association  

Cluster 

(Voxels) 

Region (Label) X  Y  Z  Z statistic  

18247 Right lingual cortex 28.5 -88.5 -12 4.91 

 

Right occipito-temporal cortex 28.5 -64.5 -15 4.86 

 

Right cerebelum 18 -72 -16.5 4.73 

815 Right superior temporal cortex 58.5 -25.5 6 3.94 

 

Right temporal cortex 64.5 -33 -10.5 3.78 

  

60 -42 3 3.71 

861 Right angular gyrus 49.5 -63 39 3.87 

 

Right inferior parietal cortex 57 -54 40.5 3.67 

 

Right mid occipital cortex 46.5 -70.5 30 3.53 

1560 Left superior parietal cortex -25.5 -72 52.5 4.30 

  

-37.5 -66 48 4.02 

 

Left mid occipital cortex -28.5 -79.5 37.5 3.89 

2261 

Right superior orbital frontal 

cortex 19.5 15 -10.5 4.73 

 

Right caudate nucleus 10.5 16.5 -7.5 4.40 

  

13.5 19.5 1.5 3.91 

348 

Left superior orbital frontal 

cortex -27 60 -7.5 4.67 

  

-21 52.5 -13.5 3.29 

 

Left mid orbital frontal cortex -31.5 48 -15 3.49 

903 Left inferior orbital frontal cortex 51 22.5 -12 4.60 

513 Right mid/superior frontal cortex 34.5 61.5 22.5 4.37 

792 Left cuneus 1.5 -82.5 40.5 4.37 

  

-10.5 -84 40.5 3.37 

 

Left precuneus 3 -73.5 42 3.57 

878 Left postcentral gyrus -54 -12 40.5 4.11 

  

-45 -18 39 3.74 

 

Left precentral gyrus -52.5 -3 39 3.63 

Table 16. Significant region associated with personality related to subject’s utilization weight 
activation (PFWE<0.05). Coordinates [X, Y, Z] are reported in the Montreal Neurological Institute 
space..  
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Depression/anxiety associated with learning brain activation  

 

The total score of depressive and anxiety symptoms measured with the Hamilton Rating 

Scale (HAM) was associated with brain activation related to subject’s learning measured with 

cue utilization weight. Using a whole-brain family-wise error corrected threshold, we found 

significant brain regions negatively associated with brain activation in the bilateral lingual 

cortices (Figure 59A), the right precentral gyrus, the left precuneus and the parietal inferior 

and superior cortices (Table 17A). No significant voxel was found with the positive 

association. The total score of depressive symptoms measured with the Beck Depression 

Inventory (BDI) was also associated with brain activation related to subject’s learning (i.e. 

measured with cue utilization weight). Using a whole-brain family-wise error corrected 

threshold, we found significant brain regions negatively associated with brain activation in 

the right parahippocampal cortex (Figure 59B), the left lingual cortex, the right insula, the 

left supramarginal gyrus and the left superior temporal cortex (Table 17B). No significant 

voxels were found with the positive association. 

  A  

 

 

 

 
 
Figure 58. Statistical parametric map for (A) depressive and anxiety symptoms measured with HAM in 
the left lingual cortex and (B) only depressive symptoms measured with BDI in right parahippocampal 
cortex that modulate learning’s activation (PFWE<0.05). Coordinates [X, Y, Z] are reported in the 
Montreal Neurological Institute space. HAM: Hamilton Rating Scale, BDI: Beck Depression Inventory. 
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Table 17. Depressive/anxiety symptoms modulation of learning’s activation 

A. Depressive/anxiety score with HAM rating scale - Negative association  

Cluster (Voxels) Region (Label) X  Y  Z  Z statistic  

48668 Right lingual cortex 7.5 -30 -4.5 5.12 

 

Right precentral gyrus 24 -4.5 52.5 4.92 

 

Left lingual cortex -16.5 -82.5 -7.5 4.90 

5410 Left precuneus -10.5 -63 51 4.87 

 

Left inferior parietal cortex -24 -48 37.5 4.85 

 

Left superior parietal cortex -25.5 -52.5 49.5 4.73 

B. Depressive score with BDI test  - Negative association 

90628 Right parahippocampal cortex 10.5 -40.5 -6 5.98 

 

Left lingual cortex -15 -75 -6 5.78 

 

Right insula 39 -9 -4.5 5.49 

376 Left supramarginal gyrus -67.5 -24 31.5 4.10 

 

Left superior temporal cortex -66 -40.5 19.5 3.87 

  

-57 -45 18 3.61 

Table 17. Significant region associated with depressive symptoms modulation of learning (i.e. 
subject’s utilization weight) activation (PFWE<0.05). Coordinates [X, Y, Z] are reported in the Montreal 
Neurological Institute space. HAM: Hamilton Rating Scale, BDI: Beck Depression Inventory. 
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3.5.4. Discussion  
 

Personality profile associated with correct prediction and learning 

 

To explain the high inter-individual variability in behavioral learning, we tested whether 

there was a link between learning and individual factors such as personality traits. I mainly 

report that extraversion was the only personality trait negatively associated with the 

weighted score extracted from the first component of learning (measured with subjective 

utilization weights) in PCA analysis (considering that the results interpreted here are not 

corrected for multiple comparisons). This component included mainly cues that are less 

associated with outcome A (i.e. 20% and 40% for cues 1 and 2). This trait was also the most 

contributive trait in PLS regression analysis.   

However, we do not observe a significant link between personality and correct prediction 

measured by number of rewards. Therefore, we postulate that personality affects subject 

choice or decision-making, but not their performance in correct prediction.  

This can be explained by the fact that in probabilistic learning, there is the involvement of 

decision-making, which is a two steps complex process. First, there is a valuation process 

that computes the value of options and secondly, a choice can be made by combining the 

previous value with other factors such as uncertainty, motivation or personality. Choice is 

thus not solely determined by valuation steps. In an uncertain situation such as in 

probabilistic learning, where probabilistic associations have to be learned, there is “reward 

uncertainty” or “representational uncertainty related to unclear boundaries in category”. 

The subject can decide in a suboptimal and irrational way compared to the expected value 

showing the importance of including other factors to understand the role of the subject’s 
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decision and learning (Seger & Peterson, 2013). In addition, personality can also affect 

subject choice by means of learning strategy selection (Vermetten et al., 2001). 

Extraversion may explain inter-individual variability related to reward sensitivity and  

motivation for behavioral approach (Canli, 2004; Depue & Collins, 1999). The negative 

impact of extraversion on learning could be explained by an emotional reaction to features 

of the task, such as feedback information, that may interfere with executive function 

(Matton, 2013) and disturb selection of action for cues that are difficult to learn. 

In our results, openness was also negatively correlated with learning. This is in line with a 

study showing a negative correlation of openness with surface learning, whereas this was 

positive with deep learning. It has been shown that open individuals have more intellectual 

curiosity and are more engaged and motivated by their learning experience, which increases 

their knowledge and skills. They would thus be more engaged in deep task-oriented learning, 

i.e. with interest in the task in itself and less with surface or effort/ego-oriented leaning in 

which the minimal requirement to do the task is achieved (Chamorro-Premuzic & Furnham, 

2009). Our results fit that study, however, in the literature, openness was mostly associated 

with general and crystallized intelligence (Ackerman & Heggestad, 1997; Gignac, 2004), with 

the observation that openness leads to more experiences and to better adaptation (McCrae, 

1994). It has been shown for example that openness and general intelligence were both 

correlated with decision making under changing conditions with a task of multiple cue 

probabilistic learning (Pine, Colquitt, & Erez A, 1999). This shows that there is a link between 

openness and learning. However we suggest that the type of association between them 

depends on the task demand and the learning measure. 

In the multivariate PLS analysis, neuroticism also has a high contribution, like extraversion 

and openness, to learning weights. In the result, there is a positive association between 
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neuroticism and learning. This can be supported by a study showing that stress increases 

learning of cues associated with positive outcomes. The postulated mechanism is that stress 

could increase reward saliency and related learning though higher brain dopamine level 

(Lighthall et al., 2013). High score of neuroticism has also been positively related to surface 

learning (Chamorro-Premuzic & Furnham, 2009). In other studies, there are mixed results. It 

was shown that neuroticism can cause cognitive impairment (Burt et al., 1995). This can 

even favor cognitive style such as rumination (i.e. thinking about an idea such as causes, 

meanings and consequences of depressive symptoms in a sustained and repetitive way), 

which is associated with bias in memory and attention and with vulnerability to persistent 

depressive symptoms (Roberts, Gilboa, & Gotlib, 1998). In another study, emotional stability, 

related to neuroticism and extraversion, was not associated with deep or surface learning 

types, but this could be due to the type of academic setting studied (Vermetten et al., 2001). 

This suggests that the effect of personality is highly dependent on the task demand. 

We also did not observe a significant link between novelty seeking trait score and any of the 

learning parameters, even with the temperature which measures the exploration rate. This 

is in contradiction with the fact that novelty seeking trait, linked to the dopaminergic gene, 

has been related to high exploratory behavior (Alttoa et al., 2009; Benjamin et al., 1996). The 

lack of of link could be explained by the fact that novelty-seeking is mostly dependent on the 

conscientiousness trait (Jonathan Benjamin, Lin Li, Chavis Patterson, Benjamin D. Greenberg, 

Dennis L. Murphy, 1996) which had no significant impact on learning measures in this study. 
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Depressive/anxiety symptoms associated with correct prediction and learning 

 

In our results, there was significant association between anxiety symptoms and the 

parameters of the prediction error (PE) (considering that the results interpreted here are not 

corrected for multiple comparisons) . The rate of learning was positively correlated with 

anxiety symptoms. This result indicates that individuals with higher anxiety symptoms 

exploited more the environment. Few studies have investigated the effect of stress on PE. 

However, our result is in line with studies showing a positive impact of stress on learning 

cues predicting positive outcome/reward (Lighthall et al., 2013) and on the type of strategy, 

with a change of simple-based strategy to multiple cue-based procedural strategy (Schwabe 

& Wolf, 2012). Stress decreases the use of negative feedback (Petzold, Plessow, Goschke, & 

Kirschbaum, 2010) and facilitates aversive conditioning learning (Lissek et al., 2005); It was 

even demonstrated in a recent study that stress can increase aversive PE signal in ventral 

striatum, and thus the responsiveness to threat associations (Robinson, Overstreet, Charney, 

Vytal, & Grillon, 2013). In another study, they found that stress hinders the use of complex 

strategy, however they tested more the maintenance than the application of complex 

strategy (Van Hiel & Mervielde, 2007).  

Regarding the variability of stess effects on cognition, we can also explain the positive effect 

of anxiety on cognition as a higher sensitivity to danger or mistake that make some 

individuals exploiting more the environment with less waste of time and energy on exploring 

new options. In unfavorable or unpredictable context, exploration is deterred for individuals 

with too high anxiety levels, because they become stuck in sampling the environment and 

fail to correct their misperceptions (Meacham & Jan, 2015).  
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In the results, there was also a significant positive correlation between the rate of learning 

and depressive symptoms score of BDI test, but not the HAM-D. The same result has been 

found in the correlation between the weighted scores extracted from the first component of 

learning (measured with subjective utilization weights) and depressive symptoms measured 

with HAM-D, but not with BDI test.  

This association is in contradiction with studies showing a negative effect of depressive 

symptoms on rate of implicit learning (Naismith, Hickie, Ward, Scott, & Little, 2006),  on 

complex reasoning or on sorting categories (Channon, 1996) and on task with feedback. 

Depressive patients  would respond worse than controls in front of perceived failures (Roiser 

& Sahakian, 2013). However, the two tests evaluating depressive symptoms in our results 

are not similarly correlated with rate of learning and subjective utilization weights. The 

results are thus difficult to interpret. This inconsistency could arise from the fact that 

depressive symptoms are evaluated in a population including mostly “healthy” persons, 

meaning that their scores in anxiety and depression levels could be too low or not enough 

variable to correlate with inter-individual differences in learning.. 

 

In addition, in our study, the measures of correct prediction or learning weights were not 

significantly associated with depressive and anxiety symptoms. The lack of association with 

the correct prediction is in line with a study showing that stress does not affect performance 

in the MCPL task (Schwabe & Wolf, 2012). In that last study, stress affects more the type of 

strategy used.   

 

 

 



         

214 
 

Personality profile associated with learning brain activation  

 

Using a multivariate MLM analysis, we extracted a significant personality profile associated 

with whole brain activation related to learning. The profile outlines a high contribution of 

extraversion, neuroticism and conscientiousness compared to other traits. The regions 

associated with the profile are the right OT cortex, the right lingual cortex, the left mid 

occipital cortex, the right caudate nucleus, the left superior orbital frontal cortex and the 

right mid frontal cortex. 

Personality can thus modulate brain regions related to learning. The involvement of the 

orbitofrontal cortex can be explained by its role in emotional and motivational aspects of 

coding value of a stimulus during learning and decision-making. The ventral striatum can also 

interact with the orbitofrontal cortex in the motivational loop (Seger & Peterson, 2013).  

Extraversion was the most contributive trait explaining brain activation related to learning.  

That personality trait can explain inter-individual differences in learning and can lead to 

greater sensitivity to positive incentive and greater motivation for approach behavior. 

Extraversion was also associated with the medial prefrontal cortex, the amygdala and the 

hippocampus. Dopaminergic structures such as nucleus accumbens, ventral pallidum and 

ventral tegmental area have a role in processing the intensity of the incentive and producing 

motivational state to approach (Depue & Collins, 1999). This is also in line with a study 

reporting that extraversion and presence of a specific dopaminergic receptor gene allele 

predicted both the magnitude of brain activation related to reward system, including 

bilateral medial, mid/superior orbitofrontal cortices ((XYZ(21,39,-21), XYZ(-10,42,-24)), the 

right amygdala, the left hippocampus and the right nucleus accumbens (M. Cohen et al., 

2005). This confirms our result that the personality profile found in our results, mainly driven 
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by extraversion, explains activation in the mid/superior orbitofrontal cortex activation 

related to MCPL that involves reward-learning. 

In a study on healthy adults, the five personality traits have also been differentially 

associated with brain region volumes. Extraversion was associated with medial orbitofrontal 

cortex for reward processing. Neuroticism was associated with regions involved in 

processing negative information and in self-evaluation and emotion regulation, including 

temporal cortices, the posterior hippocampus in the MTL, the right dorsomedial pre-frontal 

cortex and other regions such as the left globus pallidus and bilateral subthalamic nuclei. 

Conscientiousness was associated with posterior fusiform gyrus and lateral pre-frontal 

cortex; this last region is involved in control of behavior and self-regulation. The two other 

personality traits, openness and agreeableness, contribute less to the profile extracted from 

our results. However, openness includes intellectual engagement, imagination. 

Agreeableness was related to regions inferring the mental states of others, which includes 

the posterior cingulate cortex, the superior temporal cortex and the fusiform (Deyoung et 

al., 2010). 

In addition, the most notable finding in our multivariate analysis is that the personality 

profile associated with learning activation is driven by traits related to impulsivity (i.e. 

neuroticism, extraversion and conscientiousness). Knowing that impulsiveness (i.e. loss of 

self-control) is a facet of neuroticism, the negative contribution of neuroticism in the right 

mid/superior frontal cortex activation (XYZ(24.5, 61.5, 22.5)) associated with learning can be 

related to a study showing that increased impulsivity relates to less activation in the right 

anterior medial pre-frontal cortex and the right superior medial frontal cortex (XYZ(6,54,15)) 

in the presence of immediate reward (Sripada, Gonzalez, Phan, & Liberzon, 2011). Those 

regions, encompassing the anterior rostromedial pre-frontal cortex (XYZ(3,60,15)) and the 
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rostrolateral prefrontal cortices (XYZ(24,51,-9)), also represent a gateway for attentional 

control between external and internal information respectively (Henseler, Krüger, Dechent, 

& Gruber, 2011). Furthermore, as observed in the multivariate analysis, extraversion and 

conscientiousness were positively correlated with the striatum. This correlation can be 

explained with impulsivity. Impulsivity is part of those two traits, more particularly to the 

excitement seeking facet of extraversion and to the low self-discipline facet of 

conscientiousness (P. Costa & MacCrae, 1992; Whiteside & Lynam, 2001). A study showed 

that reward-related ventral striatum activity was correlated with impulsivity score measured 

with the Baratt Impulsiveness Scale and with dopamine (DA)-related polymorphisms related 

to DA release (DRD2 -141C deletion), availability (DAT1 9-repeat) and to DA post-synaptic 

decrease inhibition (DRD2 -141C deletion and DRD4 7-repeat) (Forbes et al., 2009). 

Impulsivity  has also been related to activation of the prefrontal cortex in preferential choice 

of immediate reward (Seger & Peterson, 2013).  

 

Depression/anxiety associated with learning brain activation  

 

Scores of depression and anxiety symptoms were associated with whole brain activation 

related to learning. Only depressive symptoms showed significant negative correlation with 

the right parahippocampal cortex activation, among other regions. A study reported that 

stress can affect memory systems during classification learning. After stress induction, they 

observed not only a difference in learning strategy, but also a decreasing negative 

correlation of right hippocampal activity with learning performance. They also observed that 

stress induces a positive association of striatum activity with performance. They even 

suggest a shift from declarative hippocampal memory system to a procedural one to control 
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behavior with stress. This could be due to the fact that the hippocampus is very vulnerable 

to stress and glucocorticoid stress hormones (Schwabe & Wolf, 2012). This finding, in 

addition to the evidence suggesting depression is often accompanied by anxiety (Kaufman & 

Charney, 2000), we suggest that stress could explain the negative association of the right 

parahippocampal cortex with depressive symptoms in our study.  

 

3.3-5. Limitations and perspectives 
 

 

Limitations. Knowing the high inter-individual variability in strategies used during MCPL, we 

can wonder whether models of learning (i.e. models of cue utilization weight and prediction 

error) computed in this study are best in terms of fit with subject’s behavioral learning and in 

term of neural coding. Inclusion of more individualized parameters in learning models such 

as personality, affective state or strategy could improve accuracy. 

Perspectives. We could also test the effect of different parameters of the model of PE (e.g. 

predicted value of the reward/Q-value, learning rate, temperature) and their interaction 

with other factors in the brain. In the model of prediction error, we could also include 

dynamic parameters, such as a temperature term evolving over time as it is known 

temperature is linked to exploration decay through learning of the environment (Andalora, 

2007). In addition, after having explicitly asked participants which strategies they used 

during MCPL, they reported variable and imaginative answers. For example, a subject tried 

to assimilate cues to letters and to form meaningful words, another associated cues with 

sounds or animals to create a story, another tried to associate some cues with positive or 

negative affect or another subject focused on the horizontal and vertical lines of the cues. 
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To go further in the understanding of MCPL at the individual level, we could create more 

individualized models of learning including parameters related to the individual (e.g. 

personality, affect, strategy), and we could test whether they can predict learning and 

associated brain activation. For example, individuals with a degree of depressive symptoms, 

called dysphorics, but without depression diagnosis, are impaired in the recall of detailed 

positive memories. In addition, some specific depression symptoms could be more 

informative on those mechanisms at individual level. For example, the maladaptive brooding 

aspect of rumination in depression was correlated with more impaired memory 

performance than the positive aspect of reflection (Romero, Vazquez, & Sanchez, 2013). In 

our study, the lack of variability in depressive symptom scores could explain the non-

significant association with learning performance. We are currently recruiting participants 

with more depressive symptoms to obtain a wider range of variability in depressive 

symptom scores.  

Investigation of MCPL in AD patients could also be an innovative project to understand brain 

and memory deficits as global and interactive systems. Indeed, learning of procedures has 

been rarely studied in AD and it seems this type of learning could be impaired in the early 

phase in the presence of other cognitive impairments, such as episodic or working memory 

(Beaunieux et al., 2012). However, the procedures already acquired and automated long 

before the disease appear unaffected (Amieva et al., 2014). 
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4. CONCLUSIONS AND PERSPECTIVES 

 

In this thesis, I propose a new approach to investigate population with mild with cognitive 

impairment (MCI) at risk for Alzheimer’s disease (AD). The findings highlight that 

abnormalities in the medial temporal lobe (MTL), a region that is vulnerable in AD, can be 

explained not only by cognition, but also by inter-individual differences in population with 

MCI and in healthy young individuals. In AD, the inclusion of more individual factors could 

probably reduce diagnostic confusion, mainly based on memory assessment, and therefore 

improve the development of more targeted treatment. 

 

Firstly, I have observed that, beyond cognitive state of impairment, the personality traits can 

explain the inter-individual differences in the MTL, notably with a higher contribution of 

neuroticism linked to proneness to stress and depression. My study has allowed identifying a 

pattern of anatomical abnormality in the MTL related to personality with measures of 

volume and mean diffusion of the tissue.  That pattern is characterized by right-left 

asymmetry in MTL and an anterior to posterior gradient within MTL. I have interpreted that 

result by tissue and neurochemical properties differently sensitive to stress.  

 

Secondly, the phenotypic diversity in AD arises also from the limited knowledge of memory 

and learning processes in healthy brain. For this reason, I also investigated the functional 

mapping of memory and learning in the structures of the MTL in healthy brain. Results of my 

second project have contributed to the actual debate on the contribution of MTL sub-

regions in the processes of familiarity and recollection. Using a new multivariate method, the 
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results support firstly a dissociation of the subregions associated with different memory 

components. The hippocampus was mostly associated with recollection and the surrounding 

parahippocampal cortex, with familiarity type of memory. Secondly, the activation 

corresponding to the mensic trace for each type of memory is characterized by a distinct 

spatial distribution. The specific neuronal representation, “sparse-distributed”, associated 

with recollection in the hippocampus would be the best way to rapidly encode detailed 

memories without overwriting previously stored memories. 

 

Thirdly, results of my third project allowed me to highlight the role of the MTL in learning 

and the interaction between different memory systems such as the procedural memory, the 

perceptual memory or priming and the working memory. We have found activations in the 

MTL corresponding to a process of episodic memory; the basal ganglia (BG), to a procedural 

memory and reward; the occipito-temporal (OT) cortex, to a perceptive memory or priming 

and the prefrontal cortex, to working memory. We have also observed that those regions 

can interact; the relation type between the MTL and the BG has been interpreted as a 

competition. In addition, with a dynamic causal model, I have demonstrated a “top-down” 

influence from cortical regions associated with high level cortical area such as the prefrontal 

cortex on lower level cortical regions such as the OT cortex. That influence decreases during 

learning. My interpretation is that this mechanism is at the origin of the semantic 

knowledge. I have also shown that the subject’s choice and the associated brain activation 

are influenced by personality traits and negative affects. 

 

The results of this thesis have brought me to propose (1) a model explaining the possible 

mechanism linked to the influence of personality on the MTL in a population with MCI, (2) a 
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dissociation of MTL sub-regions in different memory types and a neuronal representation 

specific to each region. This could give cues to resolve the actual debates on recognition 

memory. Finally, (3) the MTL is also a system involved in learning and that can interact with 

the BG by a competition. I have also shown a dynamic interaction of « top –down » and 

« bottom-up » types between the pre-frontal cortex and the OT cortex.  

 

In conclusion, the results could give cues to better understand some memory dysfunctions in 

aging and Alzheimer’s disease and to improve development of treatment. In addition, given 

that dementia is the most costly disease in developed countries in elderly population (Bonin-

Guillaume, Zekry, Giacobini, Gold, & Michel, 2005), our society needs to play a major role in 

deploying help, information and solutions for all the people in distress through training for 

caregivers, patient follow-up and the surrounding to improve our understanding of the 

disease. Future studies could also aim at testing whether models of memory and learning 

generated from healthy brain could predict memory and learning abnormalities in elderly 

persons and populations with MCI, AD or even with depression/anxiety disorders. 
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6. APPENDIX 

 

6.1. Functional connectivity between hippocampus and caudate 
nucleus  

 
As previously described, the left hippocampus (XYZ(-24,-22.5,-18)) and the right caudate 

nucleus (XYZ(9,9,4.5)) activations were associated with learning trials compared with non-

learning trials, in a negative and positive way respectively (cf. in chapter “3.3.3. Results” in 

“Univariate analysis of brain activation associated with learning trials”). We measured the 

functional connectivity between them by extracting the intensity of activation at the 

significant maximal peak in those regions during learning and non-learning trials and testing 

the interaction effect with ANOVA 2 (learning and non-learning condition) X 2 (left 

hippocampus and right caudate nucleus) with repeated measures.  We reported an effect of 

the region (p<0.001, F=44.95, df=1), no effect of the learning condition (p=0.046, F=4.47, 

df=1) and a significant interaction effect between region and learning condition (p<0.001, 

F=35.16, df=1). In learning condition, we observed a higher negative correlation between 

regions than in non-learning condition (Figure 60). 
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Figure 59. Graph showing significant interaction effect between mean activation of regions, i.e. the 
right caudate nucleus and left hippocampus, and learning conditions. The range of X axis lays 
between -40 to +5 and the Y axis, between -20 to +10. 

 

 

6.2. Anatomical brain region associated with learning  

 
The brain functional activity related to learning (i.e. subject’s utilization weight), mainly 

located in the left occipito-temporal cortex (XYZ(-39,-48,-10.5)) and in the right mid frontal 

cortex (XYZ(43.5,43.5,4.5)), was not significantly associated with any voxels of the 

anatomical image (measuring volume of gray matter) from all participants. The same 

analysis was performed with the functional activity of the learning trial compared to non-

learning trials located in the left hippocampus (XYZ(-24,-22.5,-18)) and in the right caudate 

nucleus (XYZ(9,9,4.5)). We report also no significant voxels associated with anatomical image 

of all participants. 
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6.3. Neuroimaging 

 
In the thesis, I investigated MR measures of Gray Matter Volume (GMV) with T1-weighted 

(T1w) structural images, Gray Matter Mean Diffusivity (GMMD) and Gray Matter Fractional 

Anisotropy (FA) with Diffusion Weighted Images (DWI). Diffusion represents the movement 

of molecules driven by random motions, called Brownian motion. The root mean square 

displacement of the molecules over a given time can define a diffusion measure. Different 

factors can affect the diffusion of molecules in the tissue such as barriers and compartments 

related to the intra-, extra-cellular space, neurons, glials or axons. This is also sensitive to 

cerebral edema. The apparent Diffusion Coefficient (ADC) can be measured with MRI and is 

related to the interaction of the water diffusing in cellular structure over a given time. The 

diffusion of liquid is constrained by the orientation of the tissue type; when the diffusion 

measure is the same in all directions, this is called the isotropic diffusion, but when this is 

highly oriented, this is called anisotropic diffusion (Figure 61). DWI are sensitive to diffusion 

in each direction and at each point in the brain and consist of the application of different 

magnetic gradients that produce a MR signal change related to the amplitude and direction 

of diffusion. The detected signal intensity attenuation is a function of values (i.e. b-values) 

that are diffusion-sensitizing gradients in different directions. In Diffusion Tensor Imaging 

(DTI), a symmetric b-matrix, called the Diffusion Tensor, is calculated for three orthogonal 

directions, x, y and z from the attenuating effect of all 30 gradient directions using linear 

regression. By averaging the computed diffusion coefficients, the result is called the Mean 

Diffusivity (MD) coefficient or the Trace. Fractional anisotropy (FA) is a measure of the 

amount of anisotropy at each point (Basser & Jones, 2002; Beaulieu, 2002). 
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Figure 60. Models of isotropic and anisotropic voxels and how they are constrained by tissue type. 
CSF: Cerebrospinal Fluid (Source: FSL the FMRIB Software Library (Jenkinson, Beckmann, Behrens, 
Woolrich, & Smith, 2012). 

 

 

VBM and VBQ:  pre-processing. I applied a standard data pre-processing pipeline using 

statistical parametric mapping package (J Ashburner & Friston, 2000; Friston, K.J., Holmes, 

A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., Frackowiack, 1995)(SPM8-Matlab toolbox, 

www.fil.ion.ucl.ac.uk/spm) to the T1w images with a bias field correction and unified 

segmentation into white and gray matter tissue classes. Additionally, I applied a standard 

pre-processing pipeline using Freesurfer software (Fischl, Sereno, Tootell, & Dale, 1999) (FSL, 

http://www.fmrib.ox.ac.uk/fsl/) with correction for eddy or electic currents, that are created 

by conductors (i.e. gradient coils) with a changing magnetic field in the conductor, and head 

movement distortion. This was followed by extraction of mean diffusion (MD) images. MD 

and T1W images were spatially realigned and normalized to MNI space with the DARTEL 

procedure contained in the Voxel-Based Quantification (VBQ) toolbox (Draganski et al., 

2011). The final outputs were restricted to the gray matter segment to obtain voxel-wise 

estimations of Gray Matter Volume (GMV) and Gray Matter Mean Diffusivity (GMMD). 

Finally, I smoothed the images with an isotropic Gaussian kernel of 8mm full-width at half 

maximum. Anatomical labeling was based on the AAL atlas (Tzourio-Mazoyer et al., 2002). 

In detail, Voxel-based Morphometry (VBM) provides a mass-univariate statistical analysis of 

between groups difference throughout all the brain’s voxels. This approach avoids the 

http://en.wikipedia.org/wiki/Conductor_%28material%29
http://en.wikipedia.org/wiki/Magnetic_field
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possible overlook of some brain specific regions using region of interest (ROI) technique, 

which consistsof drawing the region of interest and directly calculating the volume. A feature 

specific of VBM is the possibility to remove confounding effects on between group 

differences such as global differences in brain shape by a spatial normalization and the 

inclusion of variables of Total Intracranial Volume (TIV) and age in the final statistical analysis 

(J Ashburner & Friston, 2000). 

Main steps of VBM are described in figure 62. Firstly, the segmentation is performed 

between these different brain tissues: gray matter (GM), white matter (WM) and four other 

tissue classes: Cerebrospinal fluid (CSF); bone; soft tissue; air/background. The classification 

of each voxel in each tissue class begins with the nonlinear deformation registration of the 

images with tissue probability maps (Figure 63). A priori brain tissue probability maps (i.e. 

priors) allow classifying probability of a voxel to be part of each specific tissue type using a 

mixture of Gaussian intensity distribution. The knowledge of the priors is combined with the 

probability of each voxel’s intensity in order to provide posterior probabilities at each voxel 

using the Bayesian rule. The priors were created using 452 T1-weighted scans coming from 

the “International Consortium for Brain Mapping” (Mazziotta et al., 2001) and were aligned 

in atlas space, corrected for inhomogeneities, segmented into tissue classes and registered 

in MNI space. 

The segmentation step includes a bias field correction, which consists of a correction of 

artifacts related to the physics of MR scanning and to inhomogeneities due to different 

tissue properties. It is possible to correct with prior knowledge about the intensity variation 

of those artifacts (e.g. smooth, high frequency distribution).  All steps including classification, 

bias correction and registration are alternated in a single generative model to provide better 

segmentation than in a serial and separated way. The “imported” images of GM and WM (in 
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the Dartel format) are realigned by iterative non linear deformations in order to create a 

common population-average template. The final template will be more “crispy” at the end of 

the iterations. The aim is to match each individual’s image to a template by minimizing an 

objective function in order to create a generative model of the brain. A deformation field is 

created and allows the matching of each individual’s brain space to a common template, 

which can also be used to transform the images back to the individual space (Dartel 

procedure (John Ashburner, 2007)). In the normalization step, deformation fields are applied 

on each individual image in native space to place them in a standard common stereotactic 

MNI space defined by the ICBM, NIH P-20 project. Then, brain automated labeling can be 

done in this space (Tzourio-Mazoyer et al., 2002).  

 
Figure 61. Schema of the main steps of VBM pre-processing (source: 
http://www.fil.ion.ucl.ac.uk/spm/course/). 
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Figure 62. Tissue Probabilistic Atlases provided by the International Consortium for Brain Mapping. 
From left to right, they represent probabilistic maps of gray matter, white matter and cerebrospinal 
fluid. Source: SPM8-Matlab toolbox, www.fil.ion.ucl.ac.uk/spm). 

 

 

Functional MRI: pre-processing. Functional MRI data were analysed using the Statistical 

Parametric Mapping (SPM8-Matlab toolbox, www.fil.ion.ucl.ac.uk/spm). All the scans were 

realigned to the first scan of the first session in each individual. This step accounts for head 

movement in the scanner using six parameters of rigid body transformations (three rotations 

and three translations) and for the differences in the images between sessions by means of 

the least squares approach. These parameters can also be included in the statistical design 

as confounding or nuisance factors. The mean of the functional EPI scans, called the target 

stationary image, is then co-registered with the anatomical one, which is of higher resolution 

and that change to match the target image. The matching between the two images is 

optimized with a cost function that maximizes mutual information. After this step, the 

anatomical image is bias corrected, segmented into gray matter (GM), white matter (WM) 

and cerebrospinal fluid (CSF) tissues and then normalized to MNI standard space. This 

creates a deformation field allowing all the scans (anatomical and EPI) to be put into the 

same MNI standard space. The final step is to smooth all the images at a specific size with 

the Gaussian Kernel, usually about three times more the voxel’s size. All these steps are 

summarized in figure 64.  
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Figure 63. Schema of the main steps of fMRI pre-processing (source: 
http://www.fil.ion.ucl.ac.uk/spm/course/). 

 

 

6.4. Statistics 

 
In neuroimaging, the most common approach is the mass univariate statistic, meaning that a 

statistic is calculated at each voxel of the brain using the General Linear Model (GLM). In 

each voxel, the model fit of an experimental manipulation is calculated with a size effect 

estimation (or parameter estimates). Statistical Parametric Maps (SPMs) are then computed 

and inference is then possible for each hypothesis (or contrast).  

The aim of the univariate analysis is to test which brain region is associated with a function, 

whereas multivariate analysis can test spatial or temporal patterns of multiple brain regions 

or the interaction between brain regions for this function. The Multivariate approach uses 

correlation and covariance measures between voxels and can, for example, test functional 

connectivity. It can also deal with high dimensional data and can directly compare the 
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contribution of different brain regions. It can predict outcome from independent data, 

facilitating reproducibility in a new dataset. They are also particularly suited for brain 

decoding as they can reduce the complexity of data in sparse representations that contain 

the most information. The multivariate approach also leads to greater statistical power than 

the univariate one, because the univariate statistic is more conservative in the correction for 

multiple comparisons at each voxel. However, multivariate statistic can require high 

computational demands and can be difficult to interpret (Habeck & Stern, 2010).  

 

In this thesis, the multivariate approach was used to answer several different questions.  

The multivariate relationship between personality profile and the MTL in a population with 

MCI is investigated using Multivariate Linear Model (MLM). This is based on singular value 

decomposition (SVD) to summarize the maximum of covariance between the anatomical 

data and personality scores (Kherif et al., 2002). The contribution and the multivariate 

spatial distribution of the MTL in recognition memory was investigated using multivariate 

Bayesian Statistics (MVB) and the Bayesian Model Selection (BMS) methods (Karl J Friston & 

Stephan, 2007; K. Friston et al., 2008).  Finally, the effective causal connectivity between 

temporal and frontal brain regions was tested during multiple cue probabilistic learning. For 

this purpose, Dynamical Causal Modeling (DCM) was used (K J Friston et al., 2003).  
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6.5. Multivariate Linear Method 

 
Principal Component Analysis (PCA) is a multivariate procedure that extracts uncorrelated 

components that explain most of the variance in observations. Those observations can be 

correlated or not. The aim is to reduce the number of variables that explain most of the 

variance of the data. This is based on the decomposition of co-variance matrix M between 

variables. The main step involves the orthogonal transformation of the coordinate system of 

the data into a new system that maximizes the variance explained in the data. Here is the 

equation of matrix M decomposition (8). 

 

 

M represents the matrix of covariance. V is a matrix whose columns are Eigenvectors of M 

and V’ is the transposed V matrix. L is a diagonal matrix with Eigenvalues of M. The 

Eigenvectors are the components that combine variables and explain initial data variance. 

The Eigenvalues correspond to total variance of each variable explained by the component. 

Each component is independent. The final outputs are saturation coefficients (also called 

weights or loadings) allowing the combination of scores to a unique score with a multiple 

regression. A PCA with oblique rotations allows correlation between variables.  

MLM is a multivariate extension of PLS and the linear model (9) between the observed brain 

data Y and a set of the predictors X (design matrix) where model β represents the model 

parameters.  

 

 

Y = Xβ + Ɛ   with Ɛ ~  N (0,δ2)            (9) 

M = V L V’                 (8) 
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The difference advantage of MLM and other multivariate methods PLS and PCA are 

described in figure 65 (Kherif et al., 2002). In comparison to PLS, the MLM corrects for 

problems related to scaling differences in the model regressors and the temporal correlation 

between scans for fMRI data. The difference between PCA and MLM is that MLM can 

incorporate a priori information with a linear model and is not only data-driven, which can 

make the results easier to interpret. 

 

 
Figure 64. Overview of the advantages and drawbacks of statistical methods mainly used for fMRI 
analysis (Kherif et al., 2002). 

 

 

 MLM uses both X the design matrix of dimensions n x p containing effects of interest (with n 

the number of subjects scans and p the number of predictors) and the data matrix Y of  

dimension k  x  n (with k  the number of voxels).  

MLM decomposes the covariance Z matrix between X and Y (10) into eigencomponents U for 

predictors (X) and V for voxels (Y) (11). The correlation matrix X’Y is normalized with  
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(X’  X)1/2 to overcome scaling differences in the model regressors and the potential 

temporal correlation of the data.  is the temporal covariance matrix of the data (10). 

 

           

 

 

U =  [U1, U2,..., Up] refers to the eigencomponents/eigenvectors explaining, in order of 

contribution, the covariance of the predictors, and Λ represents a diagonal matrix of the 

eigenvalues [λ1, λ 2,..., λ p]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z = (X’  X)1/2  X’Y             (10) 

Z = U’ Λ  V  = X Y’             (11) 
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