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ABSTRACT

Aim The aim of this study was to test different modelling approaches, including a
new framework, for predicting the spatial distribution of richness and composition
of two insect groups.

Location The western Swiss Alps.

Methods We compared two community modelling approaches: the classical
method of stacking binary prediction obtained from individual species distribution
models (binary stacked species distribution models, bS-SDMs), and various imple-
mentations of a recent framework (spatially explicit species assemblage modelling,
SESAM) based on four steps that integrate the different drivers of the assembly
process in a unique modelling procedure. We used: (1) five methods to create
bS-SDM predictions; (2) two approaches for predicting species richness, by
summing individual SDM probabilities or by modelling the number of species (i.e.
richness) directly; and (3) five different biotic rules based either on ranking prob-
abilities from SDMs or on community co-occurrence patterns. Combining these
various options resulted in 47 implementations for each taxon.

Results Species richness of the two taxonomic groups was predicted with good
accuracy overall, and in most cases bS-SDM did not produce a biased prediction
exceeding the actual number of species in each unit. In the prediction of commu-
nity composition bS-SDM often also yielded the best evaluation score. In the case
of poor performance of bS-SDM (i.e. when bS-SDM overestimated the prediction
of richness) the SESAM framework improved predictions of species composition.

Main conclusions Our results differed from previous findings using
community-level models. First, we show that overprediction of richness by
bS-SDM is not a general rule, thus highlighting the relevance of producing good
individual SDMs to capture the ecological filters that are important for the assem-
bly process. Second, we confirm the potential of SESAM when richness is
overpredicted by bS-SDM; limiting the number of species for each unit and apply-
ing biotic rules (here using the ranking of SDM probabilities) can improve predic-
tions of species composition.
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INTRODUCTION

Understanding and predicting the attributes of biological com-

munities across the landscape is a great challenge for ecologists.

Many modelling approaches have been proposed to date for

predicting communities (e.g. Ferrier & Guisan, 2006; Shipley

et al., 2006; Mokany et al., 2012), but so far one of the most

widely used methods is to model and then stack the responses of

individual species (i.e. summing predicted probabilities from

individual species distribution models, S-SDMs) (e.g. Aranda &

Lobo, 2011; Dubuis et al., 2011; Faleiro et al., 2013; Pottier et al.,

2013). This method has the advantage of being easy to apply, and

once the predictions have been transformed to the binary scale

(binary stacked species distribution model, bS-SDM), it can also

predict the assemblage composition. However, the stacking of

binary SDMs has shown a general tendency to exceed the actual

number of species found in each unit (richness overprediction)

when considering different taxonomic groups, areas and scales

(e.g. Guisan & Rahbek, 2011; Pineda & Lobo, 2012; Calabrese

et al., 2014; Cord et al., 2014; D’Amen et al., 2015). To explain

this overprediction, Calabrese et al. (2014) suggested that the

application of thresholds (i.e. choosing a particular value to

transform a continuous probability distribution into a binary

one) before stacking species predictions would cause incorrect

overestimates of richness. Guisan & Rahbek (2011) proposed

the biological hypothesis that bS-SDM could overpredict rich-

ness because not all species for which the environment would be

predicted as suitable co-occur in a given site due to a limited

environmental carrying capacity and the exclusion of some

species by biotic interactions.

Guisan & Rahbek (2011) more generally proposed a novel

modelling framework called ‘spatially explicit species assem-

blage modelling’ (SESAM) to integrate the different drivers of

the assembly process that determine the final community.

SESAM is applied in four steps in each unit:

1. Definition of a list of species that, due to historical and

current dispersal limitations, could have reached the local unit

(local species pool, SSP).

2. Application of a habitat filter based on the ecological niche

model of each species. We use here the term habitat to identify

the variety of conditions and resources that may satisfy the

requirements of a species (Begon et al., 1996), thus including

factors related to climate, topography and environment as in

widespread use in the field of spatial predictive modelling

(Guisan & Zimmermann, 2000).

3. Definition of macroecological constraints that set a limit

on the number of species that can theoretically co-occur in

a given unit based on the space and/or resources available

(macroecological model, MEM).

4. Application of biotic rules to select, from those species pre-

dicted from Step 2, the ones that can actually assemble to form

the considered community. These ecological assembly rules

(EARs) are defined as ‘ecological restrictions on the observed

patterns of species assemblages that are based on one or more

other species or groups of species’ (Guisan & Rahbek, 2011)

(Fig. 1, top right box).

The steps of SESAM can be put into practice with different

approaches to predict species and biodiversity distributions.

Only a single test of the implementation of SESAM has been

conducted to date on plants (D’Amen et al., 2015). Plant species

are known to strongly compete for space (le Roux et al., 2014),

and therefore the SESAM framework was expected to produce

better predictions of community richness and composition

than models based solely on abiotic environmental filtering.

D’Amen et al. (2015) tested different implementations of

SESAM and were able to improve the prediction from bS-SDM

by applying both a macroecological constraint to species rich-

ness and a simple biotic rule based on a ranking of the prob-

ability of the presence of the species in the sites (from best to

least predicted). Departing from the results obtained in this

former test on plant species, we aim here to spatially predict

community richness and composition for two insect groups

(butterflies and grasshoppers) in a mountain environment at

high resolution. This is the first test of SESAM on animal

assemblages: we evaluate different combinations of methods to

implement Steps 2, 3 and 4, and we compare the performance of

SESAM against the widely used bS-SDM (Fig. 1). We are also

particularly interested in assessing whether constraints on

species richness and assembly rules can be found within these

groups, as these are often expected to compete to a much lesser

extent than plant species.

Because the implementation of SESAM should be optimized

for the study case, we fitted SDMs in Step 2 according to the

ecology of the considered species; they are herbivores therefore

we included proxies of plant resources as predictors (Araújo &

Luoto, 2007). This should, per se, limit the richness over-

prediction when SDMs are stacked to make a community pre-

diction. Because we did not use just abiotic predictors, we pro-

duced a habitat pool sensu lato for the SESAM framework,

though not a purely abiotic habitat pool, as in the original for-

mulation. In producing both the bS-SDM and some of the

SESAM implementations, the probability outcomes from SDM

should be transformed into binary predictions. This is a critical

step in individual species modelling, and it has been largely

explored in the SDM literature (e.g. Liu et al., 2005), but less so

in the context of community prediction (Pineda & Lobo, 2009;

Benito et al., 2013). To test the effect of using different thresh-

olds in bS-SDM and SESAM, we ran all our analyses using five

threshold maximization metrics, and we discuss the results

obtained in community predictions (Step 2, Fig. 1).

The other novel test that we perform here is the inclusion of

explicit ecological assembly rules (EARs) in the SESAM frame-

work (Step 4, Fig. 1). Research on ecological assembly rules is

a re-emerging field, but these rules have rarely been developed

and applied to recompose communities from an environmen-

tally filtered species pool (e.g. Cornwell & Ackerly, 2009),

and we know of no examples for insects. We developed new

approaches to apply EARs considering only potential interac-

tions within the taxonomic group (i.e. no trophic relations) on

the basis of the spatial patterns of geographic overlap in the

distributions of the species in the study area. We base the

approaches on the assumption that processes structuring
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the community leave an imprint on the spatial distributions of

species (e.g. Stone & Roberts, 1990). Our goal was to assess

whether identifiable pairwise interactions exist in these groups

that can exclude species from an assemblage (e.g. 2000).

However, the demonstration of significant non-randomness in

the co-occurrence of species does not provide direct insights

into the mechanisms that have generated the pattern (Connor

& Simberloff, 1979). To maximize the chance of distinguishing

between the influence of environmental preferences and biotic

interactions, we applied the approach proposed by Peres-Neto

et al. (2001) to control for species habitat requirements during

the creation of null communities. In particular we ask the fol-

lowing: (1) can EARs be derived from co-occurrence patterns

and (2) are they useful for the fine-scale prediction of insect

communities? The new EARs were integrated in SESAM and

tested in terms of their success in improving community pre-

dictions (Fig. 1).

METHODS

Community data and environmental variables

The study area is located in the western Swiss Alps, Canton de

Vaud, (46°10′–46°30′ N; 6°50′–7°10′ E) and covers approxi-

mately 700 km2, with a strong elevation gradient from 375 to

3210 m a.s.l. Sample sites were selected outside forested areas,

Macroecological

constraints

Habitat suitability

models

Ecological assembly

rules (EAR)

Source Species Pool

Regional Source Pool

Habitat Pool

Local Source Pool 

SPECIES PRODUCTION

(global pool)

SESAM framework

Analytical unit

What is the influence of 

different thresholding 

approaches on the 

creation of the 

Habitat Pool?

(a) Can ecological 

assembly rules (EARs) be 

derived from co-occurrence 

patterns?

(b) Can EARs allow one to 

select which species can 

co-occur within insect 

communities?

RESEARCH QUESTIONS

Realized assemblage

How can species richness 

predictions be used to 

constrain species 

assemblages?

IMPLEMENTATION

The SESAM framework was implemented by applying 5 binarization techniques to the 

probabilities from the ensemble SDM for each species

Abbreviation Criterion

1 MaxKappa threshold maximizing Cohen’s Kappa

2 MaxPCC threshold maximizing the percent of predictions correctly classified

3 ObsPrev threshold set to observed prevalence

4 ROC threshold maximizing sensitivity and specificity (inflection point in the ROC curve)

5 MaxTSS threshold maximizing the true skill statistics

Rule Criterion

1 Br - SS Based on the estimated competition pressure on single species. 

2 Br-Pair1

Based on ranking the competition strength of species pairs3 Br-Pair2

4 Br-Pair3

5 Prr Based on habitat suitability

(a) Four new EARs were created from co-occurrence analyses, based  on the 

checkerboard units (CU) index and environmentally constrained null models. 

(b) Five different EARs were tested in their ability to select which species can co-occur 

within the considered insect communities

We defined macroecological constraints by estimating species richness in two ways: 

(1) by fitting a Macroecological model of species richness (MEM)

(2) summing-up the rough probabilities predicted by the SDMs (pS-SDM)

Steps

Steps

Figure 1 Schematic representation of the
research questions in the test of spatially
explicit species assemblage modelling
(SESAM) (top left box), of the four steps
in the framework (top right box) and of
the alternative implementations in each
step (bottom box).

Community-level models of insects
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according to a random stratified design based on elevation,

slope and aspect. Samplings were performed between July and

September in 2009, 2010 and 2012, during the hours when the

insects were active and under good weather conditions. Butter-

flies were collected in 192 squares of 50 m × 50 m, ranging

between 1000 and 3210 m a.s.1., while the sampling for grass-

hoppers was conducted over the whole elevational range for a

total of 202 squares (see Pellissier et al., 2012, and Pradervand

et al., 2013, for more information).

A total of 131 butterfly and 41 grasshopper species were col-

lected. Due to modelling limitations, we only considered those

species that had more than 20 occurrences: 77 butterflies and

20 grasshoppers. We considered four bioclimatic variables

(solar radiation, summer temperature, annual degree-days and

annual average number of frost days during the growing

season), an index of vegetation productivity, i.e. normalized

difference vegetation index (as proxies for trophic resources),

and the distance to forest (see Appendix S1 in Supporting

Information for descriptions of the variables and references).

These variables were selected on the basis of insect ecology (e.g.

Turner et al., 1987; Hawkins, 2003) and experiences from pre-

vious investigations for the same study systems (e.g. Pellissier

et al., 2012; Pradervand et al., 2013). We verified that the cor-

relation between pairs of variables was lower than 0.7 to avoid

multicollinearity problems.

Analytical steps

To implement the SESAM framework, we adopted the four-step

procedure as described in Guisan & Rahbek (2011) (Fig. 1, top

right box).

Step 1: Definition of the pool of source species

In the present study, due to the limited geographical extent and

high resolution, all species in the regional source pool are con-

sidered equally probable.

Step 2: Definition of the habitat pool

The habitat pool was defined by fitting individual SDMs for all

the species using the variables described above (Appendix S1).

We modelled species distributions using four statistical tech-

niques appropriate for fitting presence–absence SDMs, assum-

ing a binomial distribution: a generalized linear model (GLM),

a generalized additive model (GAM), a generalized boosted

model (GBM) and random forest (RF). We used a repeated 10

split-sample procedure for the evaluation: each model was

fitted using 70% of the data and evaluated using the remaining

30% by the area under the curve (AUC) of a receiver operating

characteristics (ROC) plot (Fielding & Bell, 1997). To obtain a

final prediction, we applied an ensemble forecasting frame-

work by averaging all single-model projections, weighted by

their respective evaluation scores (Marmion et al., 2009). For

those species with 50 occurrences or fewer, simple SDMs were

fitted with all predictors, and then the consensus average was

calculated. Species with between 20 and 50 occurrences were

modelled with the Ensemble Bivariate approach (Lomba et al.,

2010): we fitted individual models based on bivariate combi-

nations of the selected predictors with the four modelling

techniques mentioned above, and we created a consensus fore-

cast from all the resulting models by a weighted mean of their

predictions, with weights based on the AUC scores. The mod-

elling analyses were performed in R 3.0.1 (R Development

Core Team, 2014) using the BIOMOD2 package (Thuiller

et al., 2014). Probabilities from SDMs were converted into

binary maps by applying five thresholding methods (Fig. 1; see

Appendix S2 for references to threshold methods and Liu et al.,

2005, for further description). Consequently, we produced five

presence/absence predictions for each species and the same

number of binary habitat pools and bS-SDMs for both orders

of insects by summing the binary maps obtained for each

species (Fig. 1).

Step 3: Macroecological constraints

We used two methods to define macroecological constraints.

First, we summed the probabilities from SDMs (Dubuis et al.,

2011) for the species, obtaining a prediction of richness for

each unit (pS-SDM). Second, we modelled the observed species

richness separately for the two groups using a GLM, GAM,

GBM and RF as a function of six environmental predictors

(Appendix S1) with a Poisson link function. The observed

species richness (SR) was calculated as the count of all species

belonging to the two insect groups that occurred in more than

20 plots. Each model was run 10 times with a repeated split-

sample procedure: models were fitted on the 70% data parti-

tion, and the other 30% was used for independent evaluation,

i.e. the Spearman rank correlation between observed and pre-

dicted SR. Finally, we calibrated the models with 100% of the

data so as to avoid biases associated with subsampling (Araújo

et al., 2005). An ensemble SR estimate for each group (MEMs

models) was obtained by averaging the predictions from full

models run with the four different techniques weighted by their

mean correlation scores.

Step 4: Creation and integration of ecological assembly rules

We implemented the SESAM framework by applying different

rules. First, we applied the probability ranking rule (PRR) pro-

posed by D’Amen et al. (2015): we selected a number of species

equal to the prediction of species richness on the basis of

decreasing probability of presence calculated by the SDMs. This

rule assumes that the predicted probabilities calculated by SDMs

are a proxy for the competitive strength of species. We therefore

hypothesize that a species that has a higher probability of pres-

ence will have a competitive advantage over another species with

a lower predicted probability by being closest to its optimal

performance in the considered unit.

In addition, we created new EARs on the basis of the spatial

patterns of co-occurrence in species distributions. We consid-

ered the number of species pairs that never co-occur, forming

M. D’Amen et al.
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‘checkerboard’ distributions (‘checkerboard units’, CU), as an

indication of pairwise species interaction (Diamond, 1975). We

evaluated the significance of the observed CU indices with envi-

ronmentally weighted null models (Peres-Neto et al., 2001), cor-

recting for the false discovery rate with an empirical Bayes

approach (Bayes CL criterion; Gotelli & Ulrich, 2010). To allow

comparisons across species pairs and insect groups, we scaled

the results in units of standard deviations (Gurevitch et al.,

1992). On the basis of the CU of species pairs and their pre-

dicted significance level, we developed two sets of EARs (biotic

rules, Br) based either on estimating a ‘competition pressure’ for

a single species (Br-SS) or on the interaction strength for species

pairs (Br-Pair). We tested three different implementations of the

Br-Pair, where we progressively relaxed the limitation of match-

ing the number of species in each unit to the macroecological

constraint. All these rules are applied on the five habitat pools

for each site obtained in Step 2 (see Appendix S3 for details).

Evaluation

We evaluated the richness predictions by calculating the corre-

lation between the observed species richness, the mean absolute

error (MAE) and the prediction bias (ME, mean of the error)

(Steinmann et al., 2009). To evaluate the community predictions

derived from the application of the SESAM framework and

bS-SDMs, we calculated the species richness error (predicted SR

– observed SR, expressed as a number of species), and we used

two metrics based on a confusion matrix totalling the number

species predictions that were true positives (TP), true negatives

(TN), false positives (FP) and false negatives (FN) (Fielding &

Bell, 1997) in any cell:

prediction success
TP TN

SP
= +

S rensen index
TP

TP FN FP
/ =

+ +
ο

2

2
.

The prediction success evaluates the ability to filter out absent

species and to predict the occurrences of observed species from

the entire regional species pool, while the Sørensen index, a

widely used metric of community similarity, does not account

for the true absences in the calculation.

RESULTS

Modelling results

The ensemble prediction from the individual SDMs for both

insect groups had very high AUC values, with means of 0.969 for

grasshoppers and 0.965 for butterflies (Appendix S4). Predic-

tions of total richness calculated using different approaches were

all very good, showing a Pearson correlation higher than 0.7 for

butterflies and 0.85 for grasshoppers (Table 1). In addition, the

mean error (ME) and the mean absolute error (MAE) indices

showed a strong model performance in predicting richness

(Table 1). The highest ME and MAE were obtained by the ‘bS-

SDM ObsPrev’ model for both taxa, due to a moderate degree of

overestimation (approximately 20% and 15% for butterflies and

grasshoppers, respectively) (Table 1, Appendix S2).

Co-occurrence analysis

The insect communities were analysed for the co-occurrence

pattern in the study area. Overall, the butterfly communities

showed a strong aggregated pattern, with the observed

C-score being significantly lower than the mean of the simulated

C-score indices (C-scoreobs = 817.95, C-scoreSim = 890.01,

P-value(Obs<Sim) < 0.0001). A weaker aggregated pattern was

observed in the grasshopper communities: the observed

C-score was significantly lower than the mean of the simulated

C-score indices (C-scoreobs = 665.87, C-scoreSim = 720.75,

P-value(Obs<Sim) = 0.009) (Appendix S5). With regard to the

pairwise interactions, after the application of the Bayes CL cri-

terion to control for false discovery rates, we identified 229 out

Table 1 Evaluation scores for predictions of total richness according to the following evaluation metrics: mean of the error (ME), the
mean absolute error (MAE), and the Pearson correlation with the observed species richness (r Pearson).

Modelling approach

ME MAE r Pearson

Butterflies Grasshoppers Butterflies Grasshoppers Butterflies Grasshoppers

pS-SDM 1.014 0.014 4.656 1.222 0.796 0.881

MEM −3.771 −0.693 5.625 1.307 0.758 0.879

bS-SDM ROC 3.661 0.728 4.484 1.411 0.874 0.862

bS-SDM MaxKappa −0.146 −0.691 3.01 0.941 0.899 0.914

bS-SDM MaxTSS 4.406 0.926 4.906 1.413 0.873 0.895

bS-SDM ObsPrev 15.832 3.193 15.833 3.322 0.712 0.851

bS-SDM MaxPCC −2.05 −0.381 3.333 0.945 0.904 0.919

Abbreviations: pS-SDM, sum of probabilities from single species distribution models; MEM, macroecological models; ROC, threshold where the ROC
curve makes its closest approach to (0,1); MaxKappa, threshold that maximizes Kappa; MaxTSS, threshold set at (sensitivity + specificity − 1); ObsPrev,
threshold set to the observed prevalence; MaxPCC, threshold that results in the maximum percentage of correctly classified.

Community-level models of insects
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2927 pairs of butterfly species and 22 out 190 pairs of

grasshopper species with significant segregated patterns

(Appendix S6).

Overall performance of community predictions

The implementation of bS-SDMs and of the SESAM frame-

work, considering all the combinations of techniques proposed

for implementing the three steps, leads to 47 different commu-

nity predictions for both insect taxa (Fig. 1). For butterflies, in

the cases of overprediction from the binary habitat pool, the

application of the biotic rules caused a reduction in the richness

error. As expected, Br-Pair3 most often produced a bias in the

prediction toward underestimation of the number of species

(richness underprediction), even if the mean error was always

fewer than six species. In the cases of underprediction from the

binary habitat pool, the application of the biotic rules produced

a larger error of underestimation (Fig. 2). In the grasshopper

community, which contains fewer species, the differences meas-

ured as richness error are very small; the highest error is the

overprediction (mean error of three species) by the simple

bS-SDM when the applied threshold was ObsPrev (Appen-

dix S2). Almost all the other SESAM implementations varied

between +1 and −1 (Fig. 2).

We obtained very positive results in composition predictions

according to both evaluation metrics and for both groups. Gen-

erally, the community composition was better estimated by the

simple bS-SDM than by the application of SESAM, except for

Figure 2 Boxplots representing the richness error, the Sørensen index and the prediction success of species richness and composition for
the prediction obtained from the sum of binary individual species distribution models (bS-SDM), the differential implementation of the
spatially explicit species assemblage modelling (SESAM) framework in Steps 2 (here we show results from the application of three
thresholds), 3 (two richness models) and 4 (five biotic rules), and a random sorting of species to match the value from the relevant richness
prediction (Rand). Abbreviations: pS-SDM, sum of probabilities from single species distribution models; MEM, macroecological models;
MaxTSS, threshold set at (sensitivity + specificity − 1); ObsPrev, threshold set to the observed prevalence; MaxPCC, threshold that results in
the maximum percentage of correctly classified sites; Br-SS, biotic rule based on competition pressure on single species; Br-Pair1, biotic rule
based on the competition strength of species pairs without considering a thresholding P-value; Br-Pair2, biotic rule based on the
competition strength of species pairs showing a significant segregation pattern after the application of the Bayesian CL correction; Br-Pair3,
biotic rule that always removes one of the two significantly competing species, if any are present in the unit; PRR, probability ranking rule,
based on the probability of the presence of the species in the unit.
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the case of the ObsPrev threshold (Appendix S2). In this latter

case, the SESAM framework, when implemented in Step 4 with

the PRR, produced the best community prediction in term of

species composition (Table 2). The use of random species

sorting to match the richness prediction in Step 3 always pro-

duced the worst results (mean Sørensen index < 0.5). In particu-

lar, the community of butterflies was best predicted by the

simple bS-SDM when we applied the thresholds maxPCC or

maxK (Appendix S2) in Step 2 (mean Søresen index = 0.85). We

obtained the poorest SESAM prediction when applying the

combination of the ObsPrev threshold to produce the habitat

pool in Step 2, the MEM richness prediction in Step 3 and the

biotic rule Br-SS in Step 4 (mean Sørensen index = 0.38) (cf.

Fig. 1 for the sequence of steps). All the other SESAM predic-

tions had a mean Sørensen index > 0.6. For grasshoppers, the

predictions reached higher mean Sørensen indices with a similar

pattern of performance; the poorest prediction was achieved by

applying the Br-SS (mean Sørensen index = 0.66), while the

highest value of the index was obtained by predictions from the

simple bS-SDM when the applied thresholds were maxPCC or

maxK (mean Sørensen index = 0.89) (Table 2, Appendix S2).

The mean prediction success index was higher than 0.8 for all

predictions in both groups. Results of differential implementa-

tions of the single steps can be found in Appendix S7.

DISCUSSION

Our capacity to understand the process of species assemblage in

real, multispecies communities is still limited, and several

options exist to enhance it (e.g. Laughlin et al., 2012; Mokany

et al., 2012; Fernandes et al., 2013). Here we tested a proposed

solution, i.e. the SESAM framework, to spatially predict com-

munity properties (e.g. richness, composition) by integrating

different drivers of the assembly process in a unique workflow.

Our results show an interesting picture that diverges in several

aspects from previous findings but confirms the utility of the

application of the SESAM framework in some circumstances.

First, our community-level models predicted, with good overall

Table 2 Performance in predicting species composition (mean Sørensen index) of the sum of binary individual species distribution
models (bS-SDM) implemented with five different thresholds (left column) and each combination of the spatially explicit species
assemblage modelling (SESAM) framework in Steps 2 (five thresholds), 3 (two richness models) and 4 (five biotic rules). On the colour
scale, darker tones highlight increasingly good predictive performances (higher values of the index).

bS-SDM

SESAM implementation

Thresholds Richness models

Biotic rules

Br-SS Br-Pair1 Br-Pair2 Br-Pair3 PRR

0.827 MaxTSS pS-SDM 0.760 0.777 0.780 0.750 0.741 Butterflies

0.817 ROC pS-SDM 0.758 0.789 0.780 0.750 0.741

0.846 MaxPCC pS-SDM 0.826 0.826 0.828 0.752 0.741

0.847 MaxKappa pS-SDM 0.812 0.819 0.816 0.758 0.741

0.675 ObsPrev pS-SDM 0.457 0.646 0.653 0.653 0.741

MaxTSS MEM 0.632 0.722 0.756 0.750 0.684

ROC MEM 0.667 0.727 0.750 0.750 0.684

MaxPCC MEM 0.767 0.778 0.800 0.752 0.684

MaxKappa MEM 0.737 0.763 0.777 0.758 0.684

ObsPrev MEM 0.381 0.619 0.653 0.653 0.684

0.850 MaxTSS pS-SDM 0.800 0.824 0.824 0.824 0.800 Grasshoppers

0.769 ROC pS-SDM 0.727 0.769 0.769 0.769 0.800

0.889 MaxPCC pS-SDM 0.842 0.857 0.857 0.842 0.800

0.890 MaxKappa pS-SDM 0.857 0.857 0.875 0.857 0.800

0.714 ObsPrev pS-SDM 0.667 0.750 0.756 0.756 0.800

MaxTSS MEM 0.750 0.800 0.824 0.824 0.769

ROC MEM 0.667 0.714 0.769 0.769 0.769

MaxPCC MEM 0.800 0.800 0.857 0.842 0.769

MaxKappa MEM 0.800 0.800 0.875 0.857 0.769

ObsPrev MEM 0.667 0.750 0.756 0.756 0.769

Abbreviations: pS-SDM, sum of probabilities from single species distribution models; MEM, macroecological models; ROC, threshold where the ROC
curve makes its closest approach to (0,1); MaxKappa, threshold that maximizes Kappa; MaxTSS, threshold set at (sensitivity + specificity − 1); ObsPrev,
threshold set to the observed prevalence; MaxPCC, threshold that results in the maximum percentage of correctly classified sites; Br-SS, biotic rule based
on the competition pressure on a single species; Br-Pair1, biotic rule based on the competition strength of species pairs without considering a
thresholding P-value; Br-Pair2, biotic rule based on the competition strength of species pairs showing a significant segregation pattern after the
application of the Bayesian CL correction; Br-Pair3, biotic rule that always removes one of the two significantly competing species, if any are present in
the unit; PRR, probability ranking rule, based on the probability of the presence of the species in the unit.
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accuracy, the species composition of the two insect groups. Pre-

vious studies analysing different taxonomic assemblages were

not able to produce such accurate predictions of species com-

position (e.g. Aranda & Lobo, 2011; Pottier et al., 2013; D’Amen

et al., 2015). Species richness predictions also yielded high sig-

nificant correlation scores with the observed richness that did

not differ between methods as expected (macroecological model

or summing the predicted probabilities from SDMs) (e.g.

Calabrese et al., 2014; D’Amen et al., 2015; Distler et al., 2015).

Remarkably, a good richness prediction was also obtained from

the bS-SDM models. The error in predicting the number of

species in different units was generally low; in only one case was

a moderate degree of overprediction observed, when applying a

particular thresholding method to create binary predictions

(ObsPrev; i.e. the threshold where the predicted prevalence is

equal to the observed prevalence). This result is quite different

from previous findings, which all showed an overall tendency of

bS-SDMs to overpredict species richness (Feria & Peterson,

2002; Dubuis et al., 2011; Calabrese et al., 2014; D’Amen et al.,

2015). However, this comparison should be taken with caution,

because the evaluation approach used (e.g. external or internal

validation) can differ among studies.

Our results show that richness overprediction by bS-SDM is

not a rule. This novel finding can first be explained by the high

quality of the individual SDMs. Following a biological explana-

tion, the choice of the environmental variables is likely to have

influenced the quality of our predictions. The importance of

considering trophic resources in SDMs for modelling herbivo-

rous insects, as we did, has already been shown (e.g. Araújo &

Luoto, 2007). As expected, the inclusion of bionomic (i.e.

resource-related) variables that are ecologically relevant to the

target species at this scale of analysis provided a greater approxi-

mation of the species realized niche (the Eltonian component of

the niche; Soberon & Nakamura, 2009) already limiting the

richness overprediction when SDMs are stacked to create a com-

munity prediction. Our SDMs probably captured important

ecological filters that restrict the composition of local species

pools derived from the regional pool (Keddy, 1992), while

this was not possible when only using climatic predictors. This

explanation is supported by a previous study with the same

butterfly dataset that produced less accurate community predic-

tions by stacking SDMs fitted with climatic variables (Pellissier

et al., 2012). More generally, the improvement in bS-SDM pre-

dictions related to the inclusion of additional variables in the

individual models has also been reported recently for tree

species in Mexico (Cord et al., 2014). Finally, the low degree of

competition detected in the insect assemblages further facili-

tated the possibility of correctly modelling the community

structure by applying an environmental filter that accounts for

plant resources.

From a methodological point of view, the application of the

ensemble of bivariate models (Lomba et al., 2010) is likely to

have improved our predictive ability. This method avoids

overfitting without losing explanatory power by averaging many

small models (Breiner et al., 2015). Consequently we were

able to model more species than with traditional modelling

approaches, including those with a low number of presences in

which they are usually ignored, and to use the number of pre-

dictors needed to capture all dimensions of a species’ niche.

Calabrese et al. (2014) suggested that thresholding before stack-

ing SDMs would generally cause the statistical bias towards

overprediction in bS-SDMs. Even following this purely statisti-

cal explanation, the very good quality of insect SDMs can

explain the low error in our richness predictions: choosing a

value to transform continuous predictions in presence and

absence maps would produce a higher error when stacking

models with low accuracy. Another factor potentially related to

richness overprediction by bS-SDM could be the community

dimension: the greater the number of species, the higher the

potential biases that can accumulate in the final community

prediction. To our knowledge, this aspect has never been exten-

sively explored and could help explain some of the observed

patterns. On the other hand, richness overprediction has also

been observed in small and medium-sized datasets by Calabrese

et al. (2014) (24 species in the Wadden Sea Macrobenthos

dataset, 79 species in the Barents Sea trawls), which had dimen-

sions comparable to those that we analysed.

Among the modelling approaches tested, overall community

predictions by bS-SDM outperformed those obtained by dif-

ferent implementations of SESAM. Thus, our results suggest

that, with high accuracy from SDMs, the best community pre-

diction simply matches the binary habitat pool, obtained in

Step 2 of SESAM, while the implementation of the other steps

seems unnecessary. On the contrary, in the case of richness

overprediction by bS-SDM the application of the whole

SESAM framework improved the community prediction by

setting a macroecological constraint limiting the number of

co-existing species (Step 3), coupled with the implementation

of biotic rules to identify the most probable ones in the unit

(Step 4). Given these conditions, the PRR produced the best

community predictions, i.e. selecting single species from the

pool predicted by SDMs by decreasing order of predicted

probability until the predicted richness is reached. This result

is in accordance with a previous test of the PRR in the SESAM

framework for a plant community in the same study area

(D’Amen et al., 2015).

We acknowledge that the assumption of greater competitive

power implicit in the PRR is an over-simplification and does

not represent the full complexity of biotic interactions. Here,

however, the PRR was not intended to represent all possible

interspecific interactions in the insect communities considered.

Developing formal assembly rules for a large number of species,

as modelled in this study, would require the setting of large

experiments coupled with physiological measurements, which

has not been attempted so far. Research on ecological assembly

rules is seeking to identify solutions to reduce this complexity at

a lower cost (e.g. Gilman et al., 2010; Kissling et al., 2012), and

the PRR can be seen as a first attempt at this. The good perfor-

mance of the PRR can be also interpreted from a more technical

point of view. For instance, as pointed out by D’Amen et al.

(2015), the good performance of the PRR can be related to

the fact that the same species with the lower probabilities of

M. D’Amen et al.
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occurrence, i.e. the ones removed by the rule, are also those most

likely to be overpredicted by bS-SDMs.

The new biotic rules based on the co-occurrence analysis

improved the overprediction by bS-SDM. In particular, the

best predictions were obtained by Br-Pair 2: the strengths of

this biotic rule are that it considers only those species pairs

that show a significant segregation pattern and allows for the

retention of the binary habitat pool prediction if not enough

competing pairs are present in the unit to reach the macro-

ecological constraint. The approach of using a co-occurrence

analysis to define potentially exclusive species pairs to use as

biotic rules in SESAM was interesting and worth testing, but

did not improve the predicted compositions for the considered

insect communities for all conditions. A reason for this result

could be the overall aggregation pattern detected in both

communities: the low-competitive structure could be linked

to the determination of low intra-guild interactions by the

geographical properties of the study area. In mountainous

environments, abiotic conditions are expected to become the

main determinants of species assemblages toward higher-

elevation areas (e.g. Pottier et al., 2013). Moreover, it has been

shown that the degree of community patterning varies among

taxonomic groups: homeotherms more often have a non-

random community pattern than heterotherms (like our study

groups), which is probably linked to their different physiologi-

cal requirements (Gotelli & McCabe, 2002). The checkerboard

pattern can be also due to affinities for non-overlapping habi-

tats and not to competitive interactions: our co-occurrence

analysis coupled with environmentally weighted null models

should have increased the confidence that species pairs with a

segregated distribution for competitive reasons are correctly

identified. Moreover, we used presence/absence data: thus, the

co-occurrence analyses can indicate interactive pairs whose

interactions lead to competitive exclusion, but we were not

able to consider weaker forms of competition potentially rel-

evant to our communities.

CONCLUDING REMARKS

In this paper we have explored different methods for spatial

prediction of insect communities. In particular, we imple-

mented one of the most recently proposed solutions – the

SESAM framework – for the first time for animal communities.

Using our results, we have derived useful new insights into the

application of the framework and on how to model commu-

nities in general. First, we highlighted the importance of pro-

ducing good SDMs to reconstruct communities. If SDMs are

fitted in a biased manner or miss the relevant predictors repre-

senting the environmental filter they offer little information

about the ecological potential of the species, and when applying

SESAM the framework will be similarly biased. Second, accord-

ing to our current results and those from a previous test of

SESAM on plant communities, the benefit of applying SESAM is

higher when the SDMs alone are not able to depict the commu-

nity structure, and a symptom of this is the overprediction of

richness by bS-SDM. On the contrary, when this bias is not

observed, the application of all steps of SESAM cannot further

improve the prediction of community composition. Third, in

relation to the biotic rules in SESAM, we can confirm the utility

of the previously proposed PRR (D’Amen et al., 2015) for

improving community predictions if an overprediction in the

binary habitat pool is detected. Finally, considering the commu-

nity characteristics, we cannot reach a definitive conclusion

about the proposed biotic rules based on co-occurrence, but we

have identified the best performing one so far. Further tests on

species assemblages structured by competition could help clarify

the utility of biotic rules based on co-occurrence patterns.

However, a preliminary analysis of co-occurrence in the study

area could help decide if the community model would benefit

from the inclusion of biotic rules. Other investigations of

biotic interactions could complement or substitute for this

co-occurrence analysis, while also considering population den-

sities when data are available.
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