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Key points summary 

 

• Orexins are well described for their excitatory actions on feeding- and arousal-

promoting brain centres. 

• We describe here an inhibitory action of orexin-A on synaptic NMDA receptors 

in hippocampus, a key area for synaptic plasticity and memory formation. 

• Orexin-A inhibited NMDA receptor responses at mossy fibre-CA3 connections 

through postsynaptically expressed orexin-2 receptors, whereas a minor 

inhibition was observed at Schaffer collateral-CA1 connections, and no effect 

occurred at non-mossy fibre excitatory synapses in CA3. 

• Exogenously applied orexin-A inhibited NMDA receptors in slices prepared 

during the rats’ resting phase, when endogenous orexin levels are low, but not 

in slices prepared in the active phase, when endogenous orexins peak. 

• Through intraperitoneal administration of an orexin receptor antagonist during 

the active period, exogenous orexin-A-mediated inhibition was restored in the 

slice. 

• Endogenous orexins suppress hippocampal synaptic NMDA receptor function 

in a diurnally cyclic manner, likely restraining synaptic plasticity and learning 

during certain periods of waking. 
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Abstract 

Diurnal release of the orexin neuropeptides, orexin-A (ox-A, hypocretin-1) and orexin-

B (ox-B, hypocretin-2), stabilises arousal, regulates energy homeostasis and 

contributes to cognition and learning. However, whether cellular correlates of brain 

plasticity are regulated through orexins, and whether they do so in a time-of-day-

dependent manner, has never been assessed. Immunohistochemically, we found 

sparse but widespread innervation of hippocampal subfields through ox-A- and ox-B-

containing fibres in young adult rats. The actions of ox-A were studied on NMDA 

receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal 

slices prepared around the trough (Zeitgeber Time (ZT) 4-8, corresponding to 4-8 h 

into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At 

ZT 4-8, exogenous ox-A (100 nM in bath) inhibited NMDA-EPSCs at mossy fibre 

(MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 

synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF 

excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and 

blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μM), but not by 

OX1R inhibition (SB334867, 1 μM) or by adrenergic and cholinergic antagonists. At 

ZT 23, inhibitory effects of exogenous ox-A were absent (97.6 ± 2.9%, P = 0.42), but 

reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was 

attenuated for 5 hours through I.P. injections of almorexant (100 mgkg-1), a dual 

orexin receptor antagonist. In conclusion, endogenous orexins modulate 

hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that 

they may influence cellular plasticity and consequent variations in memory 

performance across the sleep-wake cycle. 
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Abbreviation list 

A/C, associational/commissural; Alm, almorexant; DAB, 3,3′-diaminobenzidine ; DG, 

dentate gyrus; LD, light/dark; LFF, low-frequency facilitation; LTP, long-term 

potentiation; MF, mossy fibre; mGluR, metabotrobic glutamate receptor; NMDAR, 

NMDA receptor; PKC, protein kinase-C; ox-A, orexin-A; ox-B, orexin-B; OX1R, 

orexin-1 receptor; OX2R, orexin-2 receptor; Ri, input resistance; Rs, series 

resistance; RT, room temperature; s., stratum; SC, Schaffer collaterals; TBS, Tris-

buffered solution; Veh, vehicle; ZT, Zeitgeber Time. 
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Introduction  

From rodent to human, a few thousand to ten-thousand neurones in the lateral 

hypothalamus form a brain-wide axonal projection system that regulates many 

physiological and behavioural processes via releasing two orexin peptides, orexin-A 

(ox-A, hypocretin-1) and orexin–B (ox-B, hypocretin-2). The densest projections 

formed by these orexinergic neurones are found in wake-promoting and feeding 

control centres (Peyron et al., 1998), in the mesolimbic dopaminergic reward system 

(Fadel & Deutch, 2002), and in the spinal cord autonomic tracts (van den Pol, 1999). 

Today, a complex picture of orexinergic function is emerging, in which energy 

homeostasis and arousal stability are coordinated with adaptation of the organism to 

environmental challenge (Li et al., 2013). In line with orexin neurones promoting 

waking and energy expenditure, orexinergic concentration in the cerebral spinal fluid 

(Zhang et al. 2004) and in the lateral hypothalamic area (Yoshida et al., 2001) is high 

(hundreds of nanomolar) during the active state, whereas it declines during the 

resting phase. Via the G-protein-coupled orexin-1 receptors (OX1Rs) and orexin-2 

receptors (OX2Rs), orexin peptides are known for their excitatory effects induced 

through postsynaptic depolarisation or facilitation of repetitive action potential 

discharge at subcortical and cortical levels of the wake-promoting system (Horvath et 

al., 1999; Brown et al., 2001; Eriksson et al., 2001; Bayer et al., 2002; Burlet et al., 

2002; Zhang et al., 2010), presynaptic facilitation of neurotransmitter release (van 

den Pol et al., 1998; Burlet et al., 2002; Li et al., 2002; Lambe & Aghajanian, 2003), 

or through promoting membrane insertion of NMDA receptor (NMDAR) subunits at 

synapses (Borgland et al., 2006). 

More recent studies implicate orexins in cognitive processes, involving attention 

and memory formation (Jaeger et al., 2002; Lambe et al., 2005; Deadwyler et al., 
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2007; Boschen et al., 2009; Sears et al., 2013). Activation of arousal systems, such 

as the locus coeruleus and the basal forebrain (Boschen et al., 2009; Sears et al., 

2013; Soya et al., 2013), and stimulation of thalamocortical circuits (Lambe et al., 

2005; Deadwyler et al., 2007; Mair & Hembrook, 2008) are some of the brain 

mechanisms by which orexins promote cognitive performance. In contrast, few and 

partially contradictory pieces of evidence support a hippocampal involvement in 

orexinergic actions on cognitive function. Hippocampus-dependent spatial memory, 

as assessed with rats in the Morris Water Maze task, reportedly is compromised by 

hippocampal or intracerebroventricular infusion of either agonists or antagonists of 

orexin receptors (Aou et al., 2003; Akbari et al., 2006, 2007). Ox-A also attenuates 

NMDAR-dependent long-term potentiation (LTP) and NMDAR-mediated field 

potentials at Schaffer collateral (SC)-CA1 synapses in vitro (Aou et al., 2003; Selbach 

et al., 2004; Doreulee et al., 2009), whereas it indirectly upregulates glutamatergic 

synaptic strength at different hippocampal synapses (Selbach et al., 2004; Walling et 

al., 2004) and boosts LTP in dentate gyrus (DG) in vivo (Wayner et al., 2004). 

Immunohistochemistry consistently reveals the presence of orexinergic fibres 

throughout hippocampal areas, but fibre density is low (Peyron et al., 1998; Selbach 

et al., 2004; Morales et al., 2006). OX1Rs and OX2Rs are expressed in all 

hippocampal areas at the mRNA and protein levels (Hervieu et al., 2001; Marcus et 

al., 2001; Cluderay et al., 2002; Ito et al., 2008). Taken together, these studies 

suggest that orexin neurones innervate the hippocampal formation to, directly and/or 

indirectly, regulate synaptic function. However, whether endogenous orexins indeed 

act on hippocampal circuits and what their primary synaptic targets are has not been 

investigated. 
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Using ex vivo slice recordings and pharmacological interference with orexin 

signalling in the rat, this study defines the role of orexins at hippocampal excitatory 

synapses by focusing on the following questions. Do orexins directly control 

hippocampal excitatory synaptic transmission? If yes, what is the role played by 

synaptic NMDARs? Do endogenous orexins act on these targets in a manner 

consistent with their time-of-day-dependent release?  

We found that exogenously applied ox-A inhibited NMDAR function at two major 

hippocampal synapses, with a stronger effect at mossy fibre (MF)-CA3 compared to 

SC-CA1 synapses. Our data also indicate that MF-NMDAR function is suppressed by 

orexins released during periods of waking, while they recover during rest, suggesting 

a diurnal regulation of NMDAR properties at a key synapse of the hippocampal 

trisynaptic circuit. 

 

Methods  

Animals 

Pregnant (E14) Sprague Dawley dams were obtained from Janvier Labs, 

France, and kept in a 12 h/12 h light/dark (LD) cycle (lights on at 7 a.m.), with food 

and water provided ad libitum, in a room controlled for temperature and humidity 

(~24°C, 30-40%) in standard Makrolon cages (22 cm x 39 cm). For some 

experiments, mothers with their pups (P7) were shifted to a LD cycle from 2 p.m. - 2 

a.m. (lights on at 2 p.m.), through increasing time steps of 1-2 h per day. The rats 

were kept in these conditions for at least an additional week before use. Experiments 

were performed on P19-P30 offsprings. All experimental procedures conformed to 

the policies of the Veterinary Office of the Canton de Vaud. 
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Immunohistochemistry  

Several three-week-old rats were kept under deep anaesthesia using 4-5% 

isofluorane and were transcardially perfused with 5-10 ml of 0.9% NaCl followed by 

~500 ml of an ice-cold fixative solution (4% paraformaldehyde in 0.1 mM phosphate 

buffer, pH 7.4). The brains were extracted, post-fixed in the same fixative for 2 h at 

4°C and cryopreserved in increasing sucrose gradients (10-20-30% in PBS) at 4°C. 

Coronal sections (45 μm) were cut with a freezing microtome and collected in PBS. 

Free-floating sections were incubated with 2% methanol and 0.3% H2O2 in PBS for 

30 min at room temperature (RT) to quench the endogenous peroxidases. Sections 

were washed in PBS, kept for 45 min in a blocking solution containing 2% normal 

horse serum and 0.3% Triton X-100 in PBS, and then incubated overnight at 4°C with 

an ox-A or ox-B primary antibody (goat polyclonal antibodies raised against the C-

terminus of ox-A or ox-B of human origin; 1:1000 diluted in blocking solution, Santa 

Cruz Biotech.). After several rinses with PBS, sections were incubated with the biotin-

SP-conjugated secondary antibody (1:500 diluted in PBS, biotin-SP-conjugated 

AffiPure Donkey Anti-Goat IgG, Jackson ImmunoResearch) for 2 h at RT. 

Subsequently, sections were washed with a Tris-buffered saline (TBS, 0.1 M Tris and 

0.9% NaCl, pH 8) and incubated in the avidin-biotin-peroxidase complex (Vectastain 

Elite ABC-peroxidase kit, Vector Lab Inc.) diluted 1:100 in the same Tris-buffered 

solution. After being rinsed in a different TBS (0.05 M Tris and 0.9% NaCl, pH 7.6), 

sections were incubated with 3,3′-diaminobenzidine (DAB, 0.04%) and 0.015% H2O2 

diluted in TBS (0.05 M Tris and 0.9% NaCl, pH 7.6), to allow the DAB oxidation and 

precipitation. As negative control, the immunostaining procedure was performed in 

the absence of the primary antibodies and resulted in a lack of labelling. The sections 
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were mounted on glass slides (SuperFrostPlus, Menzer-Gläser), dehydrated in an 

ascending series of ethanol, cleared in xylol and coverslipped with Eukitt mounting 

medium (Reactolab). Illustrations for Fig. 1 were taken from the sections of one rat. 

 

Electrophysiological recordings   

Rats were deeply anaesthetised with 4-5% isofluorane and immediately 

decapitated. Hippocampal slices were prepared according to two previously 

described procedures, depending on the type of NMDAR-mediated response 

recorded. The standard time of slice preparation was at Zeitgeber Time (ZT) 4 

(corresponding to 4 h into the resting phase). For some experiments, slices were 

prepared at ZT 8 or ZT 23, as specified in the text. For most of the recordings of 

NMDA-EPSCs at MF-CA3 synapses (MF-NMDA-EPSCs), hippocampi were 

dissected and cut as described (Kwon & Castillo, 2008a) to optimally preserve the 

integrity of MF projections. For some of the initial recordings of MF-NMDA-EPSCs, 

for SC-CA1 NMDA-EPSCs and for iontophoretic NMDAR-mediated currents (NMDA-

currents), parasagittal slices from whole brains were prepared (Bischofberger et al., 

2006). For slice preparation from dissected hippocampi, the brain was quickly 

immersed in an ice-cold oxygenated (95%/5%, O2/CO2) sucrose solution containing 

(in mM): 213.3 sucrose, 2.5 KCl, 1.3 NaH2PO4, 26 NaHCO3, 7 MgCl2, 0.5 CaCl2, 25 

glucose, 1.7 L(+)-ascorbic acid. Entire hippocampi were gently removed and cut 

parasagittally while being fixed in an agar cube glued to the stage of the vibratome 

(HM650V, Microm). Slices (400 µm) were incubated in a recovery chamber filled with 

a solution made of sucrose solution and ACSF, mixed at 1:1, for 30 min at RT, which 

was subsequently replaced by standard ACSF. The ACSF contained (in mM): 117.7 

NaCl, 2.5 KCl, 1.3 NaH2PO4, 26 NaHCO3, 1.2 MgCl2, 2 CaCl2, 25 glucose, 1.7 L(+)-



10 
 

ascorbic acid. For parasagittal hippocampal slices cut from entire brain, the brain was 

quickly immersed in an ice-cold oxygenated solution containing (in mM): 58.8 NaCl, 

105 sucrose, 2.5 KCl, 1.3 NaH2PO4, 26 NaHCO3, 7 MgCl2, 0.5 CaCl2, 25 glucose, 1.7 

L(+)-ascorbic acid and 2 kynurenic acid. Slices (400 µm) were cut with the vibratome 

and incubated at 35°C for 30 min in a storage chamber filled with ACSF, followed by 

cooling to RT.  

For whole-cell voltage-clamp recordings, patch pipettes (3-3.5 MΩ) were 

pulled from borosilicate glass (TW150F-A, WPI) and filled with the following 

intracellular solution (in mM): 120 Cs-methanesulphonate, 10 CsCl, 10 HEPES, 8 

NaCl, 0.5 EGTA, 4 Mg-ATP, 10 phosphocreatine, adjusted to pH 7.3-7.4 with CsOH 

and to 300-305 mOsm. Na-GTP (0.2 mM) and N-(2,6-

dimethylphenylcarbamoylmethyl) TEA chloride (QX-314 chloride, 2 mM) were freshly 

added and the solution was filtered and kept on ice. 

Slices were perfused with oxygenated ACSF in the recording chamber at a 

rate of ~3-3.5 mlmin-1 and recordings were performed at RT. Pyramidal neurone 

layers were visualised using near-infrared differential interference contrast 

microscopy (BX51WI, Olympus), but cells were recorded “semi-blind” or “blind” at 

depths >100 µm below the surface to target cells with largely preserved neurites and 

maximal vitality. Voltage-clamp recordings were obtained using a Multiclamp 700B 

amplifier (Molecular Devices), filtered at 2 kHz and sampled at 10 kHz, using 

Clampex 10.2 (Molecular Devices). Series resistance (Rs) was monitored during the 

experiments and changes >15% were not accepted. A liquid junction potential of ~-7 

mV, measured as previously described (Neher, 1992), was not compensated for. 

NMDA-EPSCs were pharmacologically isolated through continuous bath application 

of oxygenated ACSF containing (in µM): 40 6,7-dinitroquinoxaline-2,3-dione (DNQX), 
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100 picrotoxin, 2(2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2hydroxypropyl] 

(phenylmethyl) phosphinic acid hydrochloride (CGP55845) to block AMPA, GABAA 

and GABAB receptors, respectively, and recorded at +30 mV. The NMDAR co-

agonist glycine (1 µM) was also included in the bath. MF-AMPA-EPSCs were 

recorded at -60 mV in ACSF supplemented with (in µM): 100 picrotoxin, 2 

CGP55845, 100 D,L-2-amino-5-phosphonopentanoic acid (D,L-APV). In this case, TTX 

was included at 30 nM to avoid polysynaptic contamination (Kwon & Castillo, 2008b).  

Synaptic currents were elicited by brief current pulses (100 µs, 50-150 µA) 

through monopolar (saline-filled patch pipette) or bipolar tungsten electrodes (FHC 

Inc.). Mossy fibres were stimulated by placing the stimulation electrode in the granule 

cell layer of the DG, whereas associational/commissural (A/C) synapses and 

entorhinal inputs, referred to as non-MF synapses, were activated in the hilus/stratum 

(s.) lucidum of CA3, and SCs were recruited in s. radiatum of the CA1. To 

demonstrate the identity of MF-induced responses, the group II metabotropic 

glutamate receptor (mGluR2) agonist (2’S,2’R,3’R)-2-(2’,3’-

dicarboxycyclopropyl)glycine (DCG-IV), 1 µM, was always applied at the end of the 

experiments (Kamiya et al., 1996). When the EPSC amplitude was reduced by > 

80%, EPSCs were included as MF-mediated responses. When the reduction was ≤ 

60%, recordings were considered of predominant non-MF origin. SC-NMDA-EPSCs 

were routinely blocked by D,L-APV (100 µM) at the end of the experiments. Five 

experiments yielding intermediate DCG-IV sensitivity (60-80%) were included only in 

the linear regression analysis between DCG-IV and ox-A sensitivity (Fig. 2D). 

Iontophoretic NMDA-currents were elicited through a patch pipette filled with 

10 mM NMDA (in ACSF), placed either at the proximal apical dendrite (within 100 µm 

from the soma in s. lucidum) or at the distal apical dendrite (> ~250 µm from the 
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soma in s. radiatum) to preferentially activate MF or non-MF inputs, respectively. 

NMDA was ejected once per min by applying currents of 200-500 nA and 1 s 

duration. Cellular currents were recorded at +30 mV in ACSF containing (in µM): 1 

glycine, 40 DNQX, 100 picrotoxin, 2 CGP55845 and 0.5 TTX. Retention currents of 

10-20 nA were used in between ejections. The ejection area was visualised by 

fluorescence microscopy after including Alexa 594 (1 μM) in the pipette, which 

covered 94 ± 20 µm of proximal dendritic length (n = 3 measurements). 100 µM D,L-

APV was applied at the end of the recording to block the NMDA-currents.  

Ox-A was applied through the bath and dissolved at the desired solution 

immediately before application. Time points of ox-A application were between 114 

and 405 min after slice preparation for both MF stimulation and iontophoretic NMDA 

application. In none of these experimental series there was a significant correlation 

between the time of recording and the amplitude of the ox-A effect, as assessed by a 

least-squares linear fit (Pearson’s correlation coefficients R2 = 0.002 and 0.02 for MF 

stimulation (n = 10) and NMDA iontophoresis (ZT 4, n = 12), respectively, P > 0.05 

for both). 

 

Analysis of electrophysiological recordings 

Current amplitudes were measured in a 4 ms (EPSCs) or 200 ms 

(iontophoresis) time window around the peak of the event. Inhibitory effects of ox-A 

were calculated when steady-state was reached, typically 10 min after onset of bath 

application. DCG-IV effects were measured after 10 min and D,L-APV after 5 min of 

wash-in. Currents were normalised to the corresponding mean baseline amplitudes. 

The decay time of currents was calculated by dividing the charge transfer by the 

mean amplitude of the NMDA-EPSCs or NMDA-currents (Longordo et al., 2009). 
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Charge transfer was calculated between the peak time and the time of return to 

baseline (for EPSCs ~ 1 s after peak, for iontophoretic currents ~30 s after the peak). 

The IC50 and the Hill coefficient for ox-A-suppression of MF-NMDA-EPSCs were 

calculated by fitting the data with the Hill equation. Least-squares linear fits were 

performed in JMP 9.0.0. 

 

Behavioral monitoring and almorexant injections 

For these experiments, animals were shifted to a LD cycle of 2 p.m. – 2 a.m. 

At P20-21, each rat was transferred singly into a larger cage (53 cm x 31.5 cm) with 

34 cm-high transparent walls and with a dark bedding made of various tree barks 

(Zoosano AG, Switzerland) or Cellu-Dri Soft bedding (Shepherd Specialty Papers). 

As enrichment, pieces of black cardboard were put in the cage. Animals were 

monitored for their sleep-wake behaviour over 48 h (24 h baseline trial (Bsl), 24 h 

injection trial (Inj) through tracking the spontaneous locomotor activity (distance 

travelled per unit of recording time), using an infrared-sensitive camera (Ikegami 

ICD47E) and Ethovision XT8 software (Noldus Information Technology). The dual 

orexin receptor antagonist (2R)-2-{(1S)-6,7-dimethoxy-1-[2-(4-trifluoromethylphenyl)-

ethyl]-3,4-dihydro-1H-isoquinolin-2-yl}-N-methyl-2-phenyl-acetamide (almorexant, 

Alm) was suspended in 200 µl of 0.25% methyl cellulose (Sigma-Aldrich) immediately 

before injections and injected I.P. at 100 mgkg-1 under red light illumination. In a 

preliminary trial test, we observed that the action of Alm (100 mgkg-1) on the rats’ 

resting time lasted for up to ~ 3 h after the injection. We administered two injections 

at ZT 18 and 21 of the Inj trial to maintain the resting state for the entire second half 

of the dark, active phase. In parallel to the rat group injected with Alm (Alm group), 

the control group (Veh group) was injected at the same ZTs with equal volumes of 
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0.25% methyl cellulose, the vehicle (Veh). After the two injections, rats were removed 

from the cage at ZT 23 and anaesthetised within 30 s for slice preparation. 

 

Analysis of behavioural data  

The resting time was calculated as hourly % of time during which the rat’s 

centre of gravity moved at < 1 cms-1. This threshold was set during a visually 

identified resting episode. For the 24 h Bsl trial, mean resting times were calculated 

for the 12 h light and 12 h dark periods. For the 24 h Inj trial, means of 5 h resting 

time (ZT 18 – 23) during the injections were taken for comparison between animals 

injected with Alm or Veh. 

 

Drugs and chemicals  

Picrotoxin, D,L-APV, DNQX, CGP55845 hydrochloride and kynurenic acid were 

purchased from Abcam; TTX from Latoxan; NMDA, glycine, D,L-propranolol and 

methyl cellulose from Sigma-Aldrich; ox-A, DCG-IV, N-(2-Methyl-6-benzoxazolyl)-N'-

1,5-naphthyridin-4-yl urea (SB334857), scopolamine hydrobromide, prazosin 

hydrochloride from Tocris-R&D systems; 1-(2,4-dibromophenyl)-3-[(4S,5S)-2,2-

dimethyl-4-phenyl-1,3-dioxan-5-yl] urea (JNJ10397049) was a generous gift from Dr. 

Mauro Corsi and Dr. Corrado Corti (Aptuit, Verona, Italy). Alm was kindly provided by 

Prof. Mehdi Tafti and Dr. Anne Vassalli (CIG-UNIL). 

 

Statistics 
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All data are given as means ± SEM. Statistics were done using Student’s t-tests as 

follows: Electrophysiological data were assessed with two-tailed paired Student’s t-

tests comparing raw datasets for baseline and test conditions in Excel. Two-tailed 

paired Student’s t-tests were also used to compare resting times of rats across the 

light-dark cycle and between the Bsl and the Inj Trials. Unpaired Student’s t-tests 

were used for comparison between conditions using normalised data both in 

electrophysiological and behavioural analyses. Correlation coefficients of linear 

regressions were obtained in JMP 9.0.0. The level of significance was set at P < 

0.05. 
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Results 

Orexin-A suppresses NMDA-EPSCs at MF synapses through a postsynaptic 

mechanism 

We first tested whether 3-week-old Sprague Dawley rats expressed 

immunoreactivity for orexins in hippocampus. With antibodies recognising the C-

terminus of ox-A and ox-B, previously used for hippocampal immunostaining of 

orexins (Morales et al., 2006), we identified heavily stained cell bodies and fibres in 

the lateral hypothalamic area (not shown), consistent with the described location of 

orexin neurones (Peyron et al., 1998). Individual immunoreactive fibres were clearly 

present within the CA3 and CA1 areas, as well as in the DG (Fig. 1Aa, Ab). Ox-A or 

ox-B-expressing fibres, ranging from ~20 to ~270 μm in length within the 45 μm-thick 

coronal section, were sparse and located throughout all layers, crossing s. 

pyramidale in CA3 and CA1 to enter s. lucidum and s. radiatum, respectively. In the 

DG, ox-A and ox-B-positive short fibres appeared mostly in close proximity to the 

granule cell layer.  

To evaluate the physiological effects of orexin on hippocampal NMDARs, we 

prepared acute hippocampal slices at ZT 4 (see Methods), corresponding to 11 a.m. 

in the light phase (lights on at 7 a.m.). Pharmacologically isolated NMDA-EPSCs 

were evoked at 0.033 Hz in CA3 or CA1 pyramidal neurones held at +30 mV. 

Stimulation was achieved via monopolar or bipolar extracellular electrodes positioned 

in the DG for MF stimulation and in s. radiatum for stimulation of SCs (see Methods 

and insets in Fig. 1B and E). Mean baseline NMDA-EPSCs had an amplitude of 57 ± 

5 pA (n = 10) in CA3 neurones, and 87 ± 8 pA in CA1 neurones (n = 4). Orexinergic 

actions were examined through bath application of ox-A, which shows comparable 

affinity for both orexin receptor types (Sakurai et al., 1998). At 100 nM, ox-A 
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decreased the amplitude of NMDA-EPSCs to 55.6 ± 6.8% (38 ± 4 pA, n = 10, P = 

0.0003) of baseline at MF-CA3 (Fig. 1B), and to 70.8 ± 6.3% (61 ± 9 pA, n = 4, P = 

0.013) at SC-CA1 synapses (Fig. 1E). The effect reached a maximum after 7-10 min 

of application and recovered partially in the case of MF-NMDA-EPSCs upon wash-

out of ox-A. Holding current remained unaltered after ox-A application in these cells 

(651± 50 pA vs. 653 ± 59 pA in ox-A, P = 0.9 for MF-CA3 recordings, 344 ± 52 pA vs. 

341 ± 52 pA, P = 0.5 for SC-CA1 recordings). The input resistance (Ri) weakly 

increased 10 min after ox-A application (for CA3 pyramidal neurones: 53 ± 4 MΩ vs. 

59 ± 5 MΩ in ox-A, P = 0.009, Fig. 1C; for CA1 pyramidal neurones: 89 ± 12 MΩ vs. 

95 ± 14 MΩ, P = 0.059, Fig. 1F). Continuous monitoring of cellular Rs indicated no 

changes during the recordings (< 10% change in DCG-IV vs. baseline, Fig. 1C and 

~10% change in D,L-APV vs. baseline, Fig. 1F). Ox-A slowed the decay time course 

of the synaptically elicited MF-NMDA-EPSCs in 9/10 cells (145 ± 14 ms vs. 211 ± 24 

ms after ox-A application, P = 0.0008) but not of SC-NMDA-EPSCs (208 ± 8 ms vs. 

237 ± 17 ms, P = 0.2, see Methods). The mGluR2 agonist DCG-IV (1 µM) largely 

abolished NMDA-EPSCs at MFs (7.6 ± 1.4 pA, n = 10, P < 0.0001, see Methods, Fig. 

1B). The NMDA-EPSCs recorded at SC-CA1 synapses were fully blocked by the 

NMDAR antagonist D,L-APV (100 µM, n = 4, Fig. 1E). 

The inhibitory effect of ox-A on NMDA-EPSCs at MF-CA3 synapses was 

concentration-dependent (Fig. 1D): NMDA-EPSCs were not affected by 1 nM ox-A, 

but reduced to a minimum of 33.5 ± 2.3% of baseline amplitude by 200 nM ox-A (n = 

2-10 per concentration tested). This concentration range corresponds to the one 

found in the cerebral spinal fluid (Yoshida et al., 2001) and overlaps with several 

concentration-functional response relations of heterologously expressed mouse 

OX2Rs (Chen & Randeva, 2004; Wang et al., 2014). Fitting of a sigmoidal Hill 
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function yielded an IC50 of 62 ± 17 nM and a Hill coefficient of 0.6 ± 0.1 (Fig. 1D). In 

all subsequent experiments, ox-A was applied at 100 nM to induce a close-to-

maximal suppression.  

In contrast to NMDA-EPSCs, no suppressant actions of ox-A were found at 

MF-AMPA-EPSCs. Amplitudes remained unaltered after 10 min in the continuous 

presence of ox-A (99.3 ± 9.5% of control, n = 3, P = 0.78), while they were fully 

blocked by DCG-IV (1 µM, Fig. 1G). 

To assess the synaptic specificity of ox-A actions, we recorded NMDA-EPSCs 

formed by A/C and entorhinal connections, referred to as non-MF connections. 

Stimulation of the s. lucidum/hilar regions elicited NMDA-EPSCs showing an 

intermediate to weak sensitivity to DCG-IV (40-60% reduction), indicating that a 

mixture of fibres of both MF and non-MF origin was recruited. The EPSCs were not 

affected by bath application of ox-A (89.5 ± 7.1%, n = 4, P = 0.31, Fig. 2A) and no 

significant changes occurred in holding currents after ox-A application (656 ± 64 pA 

vs. 558 ± 63 pA in ox-A, P = 0.2). Values for Ri were 44 ± 6 MΩ vs. 57 ± 5 MΩ in ox-

A (P = 0.053). We further assessed ox-A-mediated modulation of NMDARs on distal 

sites of CA3 cells by placing an iontophoresis pipette filled with NMDA (10 mM) at the 

distal apical dendrite of CA3 pyramidal neurones (s. radiatum, ~250 µm from the 

soma, see inset in Fig. 2B). Local pressure application of NMDA on CA3 cells has 

been previously used to study G-protein-mediated regulation of NMDARs (Benquet et 

al., 2002). NMDA-currents had a mean amplitude of 85 ± 12 pA and a mean decay 

time of 10.2 ± 1.0 s (n = 8, Fig. 2B), comparable to previous observations (Benquet et 

al., 2002). Ox-A (100 nM) applied in the bath neither affected amplitude (98.7 ± 3.6%, 

84 ± 12 pA, n = 8, P = 0.73) nor decay time (9.6 ± 1.0 s, P = 0.12) of these currents 

that were fully blocked by D,L-APV (100 µM) at the end of the experiments (Fig. 2B). 
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In contrast, NMDA-currents elicited iontophoretically on the proximal apical dendrite 

(within 100 µm from the soma, see inset in Fig. 2C), the site of MF synapses 

(Claiborne et al., 1986), were reduced by ox-A to 77.8 ± 3.9% (n = 9, P = 0.016, Fig. 

2C). Baseline NMDA-currents had a mean amplitude of 95 ± 13 pA and a mean 

decay time of 8.2 ± 1.6 s, whereas, in the presence of ox-A, amplitudes were 78 ± 11 

pA and decay time 7.5 ± 1.4 s. No recovery was observed up to 20 min after wash-

out. Currents were fully blocked by D,L-APV (100 µM) at the end of the experiment 

(Fig. 2C). In these experiments, the ox-A effects were smaller, probably because 

NMDARs at both MF- and non-MF synapses were recruited. Nevertheless, NMDA-

current measurements offered a rapid and reliable assay for further characterisation 

of ox-A actions on postsynaptic NMDARs. 

Taken together, we identified a specific inhibitory effect of ox-A on NMDA-

EPSCs at two sets of hippocampal synapses, with a major suppression at MF-CA3 

and a moderate effect at SC-CA1 synapses. Moreover, within the CA3 area, ox-A 

effects were confined to MF-CA3 synapses. This conclusion was further supported by 

the fact that the ox-A sensitivity of NMDA-EPSCs depended linearly on the DCG-IV 

sensitivity, which is an indicator of the relative presence of MFs in the stimulated fibre 

bundle (n = 14, Correlation coefficient 0.36, P = 0.022; Fig. 2D). For the further 

analysis of ox-A actions, the remainder of the study was focused on the MF-CA3 

pathway. 

Based on the clear ox-A effects on iontophoretic NMDA-currents, and on the 

lack of such on AMPA-EPSCs, it is likely that ox-A acted primarily post- rather than 

presynaptically. To further corroborate this, we examined whether ox-A affected low-

frequency facilitation (LFF), a well-characterised presynaptic form of short-term 

plasticity at MFs that sensitively reports on presynaptic receptor-induced changes in 
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release characteristics (for review, see (Evstratova & Tóth, 2014)). Baseline NMDA-

EPSCs elicited at 0.033 Hz were followed by a train of 20 pulses at 1 Hz during which 

NMDA-EPSC amplitude increased by 2- to 3-fold (297 ± 77% of baseline, n = 5, Fig. 

3A, B). Subsequent application of ox-A (100 nM) decreased the amplitude of the 

NMDA-EPSCs, but LFF developed to a comparable extent during 1 Hz stimulation 

(328 ± 97%, n = 5, P = 0.69 compared to baseline, Fig. 3A-C), thus excluding a 

primarily presynaptic mechanism for ox-A-inhibition of NMDAR-mediated synaptic 

responses.  

 

Orexin-A suppresses NMDA-currents through OX2Rs 

In situ hybridisation studies suggest that the OX2R is predominantly expressed 

in the CA3 area (Marcus et al., 2001). We examined the actions of potent and 

selective orexin receptor antagonists to test the functional involvement of OX1Rs and 

OX2Rs in ox-A actions on NMDA-currents. SB334867 selectively blocks OX1Rs in 

acute brain slices (Borgland et al., 2006; Li et al., 2010), whereas JNJ10397049 

abrogates OX2R actions in vitro (Borgland et al., 2008; Gozzi et al., 2011). When 

used at these previously established concentrations in the bathing solution, ox-A-

mediated actions on NMDA-currents elicited on proximal dendrites persisted in 

SB334867 (1 µM) (82.6 ± 1.7%, n = 7, P = 0.00003, Fig. 4A, Da), whereas they were 

entirely blocked by JNJ10397049 (1 µM) (97.3 ± 3.7%, n = 8, P = 0.34, Fig. 4B, Db). 

The extent of current reduction in SB334867 was comparable to that obtained when 

ox-A was applied alone (P = 0.49), whereas it was different in JNJ10397049 (P = 

0.003). In addition, ox-A actions were largely maintained when applied in the 

continuous presence of a cocktail of cholinergic (scopolamine hydrobromide, 10 μM) 

and adrenergic receptor antagonists (prazosin hydrochloride, 1 μM and D,L-
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propranolol, 1 μM) shown previously to interfere with ox-A actions on hippocampal 

excitatory transmission (Selbach et al., 2004; Doreulee et al., 2009) (81.4 ± 2.7%, n = 

5, P = 0.69 compared to control, Fig.4C, Dc). Therefore, ox-A acts primarily through 

postsynaptic OX2Rs to directly suppress NMDAR-mediated transmission at MF 

synapses.  

 

Ox-A-mediated suppression of NMDA-currents varies with time of day 

Is NMDAR function modified by endogenous orexins released within the 

hippocampus? The recent history of the animal’s sleep-wake behaviour prior to 

sacrifice can be traced in several synaptic characteristics of acute brain slices (Kopp 

et al., 2006; Kurotani et al., 2008; Lanté et al., 2011). Endogenous orexins fluctuate 

across the day, notably also in discrete brain areas innervated by orexinergic fibres 

(Yoshida et al., 2001; Zhang et al., 2004). Therefore, we examined whether 

exogenous ox-A effects on NMDA-EPSCs varied depending on the time of day of 

slice preparation.    

Slices were cut at ZT 23, corresponding to the last hour of the dark phase, 

during which ox-A reaches a peak, and compared to recordings from slices at ZT 4 or 

at ZT 8, at which ox-A concentrations are their lowest (Zhang et al., 2004), and at 

which the majority of our recordings were performed (Fig. 1-4). Application of 

exogenous ox-A (100 nM) did not affect NMDA-current amplitudes in brain slices 

prepared at ZT 23 (97.6 ± 2.9% baseline, n = 12, P = 0.42, Fig. 5A-C). On the 

contrary, in slices prepared in the period of low endogenous orexin levels (ZT 4 and 

ZT 8), bath application of ox-A invariably decreased the amplitude of NMDA-currents 

(77.2 ± 3.5% for ZT 4, n = 12, P = 0.006 and 80.4 ± 2.3% for ZT 8, n = 4, P = 0.022, 

Fig. 5A-C). Was the time-of-day dependence of ox-A actions due to elevated 
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amounts of endogenous orexins present in slices at ZT 23, but not at ZT 4 or ZT 8? 

High ambient neurotransmitter concentrations can be maintained in slices, as 

described for adenosine in the MF-CA3 synaptic environment (Moore et al., 2003). If 

endogenous orexin concentration remained high in our case, the actions of 

exogenous ox-A would be attenuated. However, the OX2R antagonist JNJ10397049 

(1 µM), when applied for a period of at least 25 min, did not affect NMDA-currents 

(100.3 ± 3.7% of amplitude before drug application, n = 6, P = 0.87, Fig. 5D), arguing 

against a tonic suppressive action of ambient orexins in the slice.  

Even without continued presence of the ligand, orexinergic modulation 

induced during waking could persist in the slice and attenuate or occlude the actions 

of exogenously added ox-A. Such modifications could have taken place at the level of 

the OX2Rs or the NMDARs, rendering further inhibitory effects of ox-A undetectable. 

In this case, NMDA-EPSCs recorded in slices prepared at ZT 23 should be smaller 

compared to those at ZT 4 or ZT 8. Such comparison, however, is experimentally 

difficult due to variable recruitment of MFs that, even in the dissected hippocampal 

preparation (Kwon & Castillo, 2008a), are left intact in the slice to only a very limited 

extent and at very restricted sites. To further define the role of endogenous orexins in 

the observed time-of-day dependence, we chose to pharmacologically interfere with 

orexinergic signalling prior to slice preparation. Almorexant (Alm) is a potent dual 

orexin receptor antagonist (Brisbare-Roch et al., 2007; Dugovic et al., 2009; Kang et 

al., 2009; Morairty et al., 2012) that crosses the blood-brain barrier (Brisbare-Roch et 

al., 2007) and that acts as a preferential OX2R antagonist in vivo (Dugovic et al., 

2009; Mang et al., 2012). This antagonist was injected I.P. into rats and video 

monitoring was used to follow the activity during the LD cycle in two groups of rats, 

one injected with Alm (Alm group, n = 8, 100 mgkg-1 I.P. in 0.25% methyl cellulose 
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suspension), the other one with vehicle (Veh) only (Veh group, n = 6, 0.25% methyl 

cellulose). For each group, a 24 h video monitoring of undisturbed baseline activity 

(Bsl Alm, Bsl Veh) was followed by a 24 h period when injections of Alm (Inj Alm) or 

Veh (Inj Veh) in the dark, active phase were applied. Activity monitoring during the 

Bsl trials indicated that both Alm and Veh groups were well entrained to the LD cycle, 

showing consistently higher resting time  during the light (ZT 1-12) than during the 

dark phase (ZT 13-24) (Bsl Alm: mean 12 h resting time, ZT 1-12: 63 ± 2.3%; ZT 13-

24: 45.1 ± 1.8%, n = 8, P = 0.018; Bsl Veh: mean 12 h resting time, ZT 1-12: 67 ± 

3.8%; ZT 13-24: 44.9 ± 3.4%, n = 6, P = 0.077, Fig. 6Aa, Ac). Moreover, both rat 

groups showed a delayed and transient increase in resting time during ZT 16-18, 

described previously as a secondary recovery phase after an initial peak of activity in 

the dark (Franken et al., 1991; Brisbare-Roch et al., 2007; Lanté et al., 2011). In the 

Inj Alm trials, two injections of Alm at ZT 18 and ZT 21 were applied to ensure OXR 

block during the entire second half of the dark phase (see Methods). Veh injections 

occurred at equal ZTs in the Inj Veh trial. After Alm injections, rats rested significantly 

more than during the corresponding times in the Bsl Alm trial (mean 5 h resting time, 

ZT 18-23: Inj Alm: 66.5 ± 1.8%; Bsl Alm: 38.8 ± 1.5%, P = 0.0006, Fig. 6Ab, Ad). On 

the contrary, in the Veh group, resting behavior was not different in the Bsl Veh and 

Inj Veh trials (mean 5 h resting time, ZT 18-23: Inj Veh: 33.2 ± 2.9%, Bsl Veh: 39.8 ± 

3.7%, P = 0.28, Fig. 6Ab, Ad), confirming the sedative action induced by Alm but not 

Veh injections. When recording from CA3 cells in slices prepared at ZT 23 from Alm-

injected animals, we found that bath-applied ox-A (100 nM) suppressed NMDA-

currents to 87.2 ± 3.3% of baseline (n = 11, P = 0.002, Fig. 6Ba). Conversely, 

exogenous ox-A (100 nM) did not affect the amplitude of NMDA-currents in the Veh-



24 
 

injected group (97.4 ± 3.1%, n = 8, P = 0.53, Fig. 6Bb), in agreement with the results 

from undisturbed animals sacrificed at the same ZT.  

Therefore, by inhibiting the orexinergic system through the injection of Alm, we 

prevented the build-up of endogenous orexin’s suppressant action on NMDARs 

during this waking period, leaving NMDARs available for modulation by exogenous 

orexin. 
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Discussion 

We have identified the NMDARs as a target for orexin at two separate 

hippocampal excitatory synapses. This finding adds a novel facet to the repertoire of 

orexin’s actions: in addition to its widely demonstrated predominant excitatory effects  

(Leonard & Kukkonen, 2014), the peptide is inhibitory for synaptic NMDAR-mediated 

transmission in a brain area central for mnemonic functions. Orexin-mediated 

inhibition is most strongly expressed and direct at MFs, moderate at SCs, and is 

absent at non-MF synapses in the CA3 area, pointing to a synaptic specificity of ox-A 

actions not only amongst pyramidal cell types, but also within subsets of synapses 

established on the dendritic arbour of the same neurone. We further found that 

endogenous orexins regulate NMDAR-responses according to their daily fluctuations, 

perhaps contributing to a diurnal variation of NMDAR function in the hippocampus. 

Therefore, our study has implications for the consequences of waking on 

hippocampal excitatory communication, and, consequently, for diurnal variability in 

memory performance.  

The identification of a hippocampally targetted action of orexin on excitatory 

synapses complements expression studies describing structural and molecular 

substrates for orexinergic signalling in the hippocampus. Orexinergic fibres enter the 

hippocampus via a dorsal ascending pathway (Peyron et al., 1998) and innervate 

both cellular and dendritic strata across hippocampal subfields, including the hilus , s. 

lucidum in CA3 (Morales et al., 2006) and s. radiatum in CA1 (Selbach et al., 2004). 

Using ox-A- and ox-B-specific antibodies, we confirmed a hippocampus-wide 

invasion by orexinergic fibres, in particular in dendritic synapse-rich regions in both 

CA3 and CA1. Moreover, mRNA for OX1Rs locates to the CA1 area, whereas OX2R 

mRNA is predominantly found in the CA3 area (Marcus et al., 2001), consistent with 
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our identification of OX2Rs as mediators of ox-A actions. In addition to pyramidal 

cells (Hervieu et al., 2001; Cluderay et al., 2002), OXRs are also present on hilar and 

s. lucidum interneurones (Hervieu et al., 2001; Ito et al., 2008), possibly representing 

additional, yet unexplored, sites of action for the endogenous peptides within 

hippocampal circuits. 

Aside from several studies suggesting a role of orexins in hippocampus-

dependent memory formation (Jaeger et al., 2002; Aou et al., 2003; Yang et al., 

2013), evidence for direct orexinergic actions on hippocampal circuitry is scarce 

(Wayner et al., 2004; Akbari et al., 2006, 2007). Several studies indicate that 

cholinergic and monoaminergic nuclei, both heavily innervated by orexinergic fibres, 

regulate hippocampal activity in response to orexinergic excitation (Walling et al., 

2004; Doreulee et al., 2009; Stanley & Fadel, 2012). The present study used an 

isolated hippocampal slice preparation from young adult animals and identified a 

suppression of NMDAR-mediated synaptic transmission that developed over minutes 

and recovered only partially, or not at all, even after prolonged wash-out. The effect 

of ox-A could be long-lasting (see Wang et al., 2014), but a poor wash-out of the 

peptide once it had deeply penetrated into the slice and reached the recorded 

neurone could also prevent the return to baseline responses. Additionally, OX1Rs 

bound to ox-A can maintain G-protein-mediated signalling despite being internalised 

(Milasta et al., 2005; Xu et al., 2012). The suppression was largely preserved in the 

presence of a cocktail of neurotransmitters, found in previous reports to cooperate 

with ox-A in modulating hippocampal excitatory synapses (Selbach et al., 2004; 

Doreulee et al., 2009). Also, our experiments were carried out in the continuous 

presence of GABAA and GABAB receptor blockers to exclude an influence of GABA 

release from OXR-expressing interneurones on MF-CA3 circuitry. NMDA-EPSC 
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inhibition was thus mediated, to a major extent, by a direct action of ox-A on 

hippocampal NMDARs. 

The effect of ox-A was observed only on the NMDA- but not on the AMPA-

component of the MF-EPSCs, arguing in favour of a postsynaptically delimited ox-A 

action. Consistent with this finding, LFF, a sensitive measure of presynaptic function 

that reports on cumulative increases in presynaptic residual Ca2+ levels (Salin et al., 

1996), was unaffected in the presence of ox-A. Finally, ox-A suppressed NMDA-

currents elicited through direct NMDA application specifically on dendritic sites where 

MF terminals arrive. Altogether, although a possible expression of OX2Rs at 

presynaptic sites still needs to be definitely excluded, our combined results indicate 

that ox-A-induced suppression of MF-NMDAR-EPSCs is a predominantly 

postsynaptic process. In the in vivo situation, however, the possibility remains that 

orexinergic fibres act presynaptically on MF synapses through dynorphin and 

glutamate, well-described co-transmitters at orexinergic terminals (Chou et al., 2001; 

Schöne et al., 2012), both of which modulate glutamate release from MF terminals 

(Weisskopf et al., 1993; Nicoll & Schmitz, 2005). 

 Inhibitory effects of ox-A were found at MF synapses, but not at non-MF 

synapses. Placing the stimulation electrode in the granule cell layer allowed us to 

record almost pure MF responses in the CA3 pyramidal neurone, as indicated by 

their near-total block by DCG-IV. Whereas MFs form giant terminals at predominantly 

proximal dendritic portions in s. lucidum, non-MF inputs impinge on more distal 

portions of CA3 apical dendrites, in s. radiatum (Claiborne et al., 1986). These 

findings thus suggest that ox-A acts in a dendritically compartmentalised manner, 

modulating NMDARs at the proximally located MF synapses, while sparing those at 

non-MF synapses. Similar spatially delimited effects were observed upon 
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iontophoretic NMDA application to 100 μm-portions of the dendrite: only proximally, 

but not distally positioned NMDA pulses produced NMDA-currents susceptible to ox-

A. The MF-delimited action could be explained by a selective localisation of OX2Rs 

to s. lucidum but not to s. radiatum, a possibility to be further tested with 

immunohistochemistry. Alternatively, molecular characteristics of NMDARs or 

localised signalling cascades could play a role. For example, lamination of 

expression patterns has been described for NMDAR subunits, with GluN2A 

dominating in s. lucidum and GluN2B in s. radiatum (Watanabe et al., 1998). A 

functional compartmentalisation to s. lucidum exists for protein kinase C (PKC)-

mediated stimulatory actions on NMDARs (Kwon & Castillo, 2008a) and for synaptic 

mGluR-mediated activation of a slow cationic conductance (Heuss et al., 1999). 

MF-NMDARs were long considered of minor relevance for normal MF-

mediated synaptic transmission, in part due to their low expression level compared to 

AMPARs (Fritschy et al., 1998; Watanabe et al., 1998), and due to the presence of 

marked NMDAR-independent forms of long-term plasticity (Nicoll & Schmitz, 2005). 

Overcoming this traditional view, several recent studies now indicate that MF-

NMDARs contribute importantly to CA3 pyramidal cell excitability and plasticity 

(Tsukamoto et al., 2003; Kwon & Castillo, 2008a; Rebola et al., 2008; Astori et al., 

2010; Rebola et al., 2011; Hunt et al., 2013). Electron microscopy revealed that CA3 

spines receiving MF boutons express the NMDAR-modulating adenosinergic A2A and 

mGluR group I receptors in close proximity to the synapse (Rebola et al., 2008; Hunt 

et al., 2013). The OX2R-mediated downregulation of NMDARs thus suggests a 

dedicated arrangement of G-protein coupled receptors on CA3 spines to up- or 

downregulate a NMDAR pool with important roles in basal and activity-dependent 

modification of MF function. 
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GluN2A-containing but not GluN2B-containing NMDARs were detected at MF 

synapses (Fritschy et al., 1998; Watanabe et al., 1998) and are therefore the likely 

final targets of OX2R activation. Consistent with a possible removal of GluN2A from 

the synapse are the observed slow-down of the NMDAR-EPSC decay time course in 

the presence of ox-A, the slow time course of ox-A actions, and the poor recovery. In 

the ventral tegmental area, however, OX2Rs up- rather than downregulate GluN2A-

containing NMDARs through a mechanism involving PKC (Borgland et al., 2006). 

Why OX2Rs do not couple to PKC, known to be present at MFs and to be recruited 

during LTP of NMDAR-EPSCs (Kwon & Castillo, 2008a), and upregulate NMDA-

EPSCs, is unclear. Interesting in this context is that mice have two OX2R variants 

that, upon heterodimerisation, produce receptors with novel signalling properties 

(Wang et al., 2014). Therefore, additional signalling pathways, such as OX2R-

mediated activation of extracellular mitogen-activating protein kinases, extracellular 

signal-regulated kinases, coupling to Gi/o-proteins and subsequent receptor 

modification need to be considered (Zhu et al., 2003; Selbach et al., 2010; Guo & 

Feng, 2012; Wang et al., 2014). The considerable number of possible pathways 

involved, together with the comparatively small size of the synaptic response in ox-A 

and the consequent difficulty in reliably assessing time courses, as well as the 

reduced effect of ox-A on iontophoretic currents, leave an assessment of the 

mechanistic bases of ox-A-mediated modulation open for future investigation.  

Surprisingly, ox-A actions were not observed in slices prepared from rats at 

the end of their active period. Instead, several hours of rest were required to observe 

a suppression of NMDAR-EPSCs by the peptide. Furthermore, treating animals with 

the dual antagonist Alm augmented their resting time during the late dark phase and 

partially restored the effect for exogenous ox-A. This supports the idea that 
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endogenous orexin level in hippocampus shows diurnal fluctuations (Yoshida et al., 

2001) and is involved in a time-of-day dependence of ox-A-induced NMDAR 

regulation. The persistence of endogenous orexinergic actions in the slice is not due 

to the continued presence of a high orexinergic tone in the slice, but likely due to 

maintained effects at the OX2R or the NMDAR level. Thus, high orexinergic levels 

during waking could downregulate OX2Rs, rendering slices prepared then 

unresponsive to exogenous ox-A. Additionally, NMDAR function could already be 

downregulated, occluding further ox-A actions. Our work is the first to demonstrate 

that acute slices preserve some of the functional consequences of endogenous 

orexinergic levels present at the moment of brain dissection. However, alternative 

possibilities remain. For example, a circadian fluctuation in the molecular constitution 

of NMDARs (Ishida et al., 1994) could explain diurnal insensitivity to ox-A. 

Furthermore, although unlikely based on our in vitro results, potential secondary 

contributions from afferent modulatory systems regulated by orexin cannot be 

excluded. Thus, the Alm Inj group showed an almost doubled resting time compared 

to the Veh Inj group in the same five hours of the dark phase, likely accompanied by 

an overall decrease in the activity of orexin-driven wake-promoting systems that 

could, in turn, modulate responsiveness to ox-A. Hippocampus-selective 

manipulation of orexinergic activity is needed to distinguish amongst these 

possibilities. 

Time-of-day-dependent modification of properties at excitatory synapses has 

been previously reported for the amplitude of the evoked field potential in rodent DG 

(Barnes et al., 1977), for transcallosal synaptic strength in rat cortex (Vyazovskiy et 

al., 2008), for the constitution of AMPARs at synapses of layer 5 somatosensory 

cortex pyramidal neurones (Lanté et al., 2011) and for the expression of synaptic 
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adhesion molecules (El Helou et al., 2013). The present work is the first to suggest 

that the wake-promoting compound ox-A, accumulating during the active phase, 

could be directly involved in such modulation. Interestingly, diurnal fluctuations of ox-

A in hippocampus drive a rhythmic increase in amyloid-β peptide in hippocampus, a 

pathogenic factor of Alzheimer’s disease (Kang et al., 2009). Together with our 

results, this suggests that prolonged wakefulness and associated elevation of orexin 

deteriorates hippocampal function and imposes a risk for pathology in the long-term. 

This is not only in line with the fact that circadian time of day affects cognitive 

performance (Goel et al., 2013), but also that sleep deprivation negatively affects 

hippocampal synaptic function (Kopp et al., 2006) and can trigger neurodegeneration 

(Cirelli, 2006). In addition, hippocampal neuronal degeneration due to sleep 

deprivation-induced epileptical seizures is amplified by the action of orexins (Ni et al., 

2014). 

To conclude, our study provides mechanistic insights into how the waking 

state modifies synapses, bringing to attention the consequences of elevated orexin 

levels on molecular processes important for hippocampal learning. The wake-

promoting neurochemical environment could eventually limit the susceptibility of 

hippocampal circuits to undergo plastic strengthening. We propose that such insights 

should be considered in further discussions of general concepts on how waking and 

sleeping drive changes in synaptic function (Tononi & Cirelli, 2014). 
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Figures 

Figure 1. Ox-A reduces NMDA-EPSCs at MFs and at SCs 

Aa, Ab, images depicting immunostainings for ox-A or ox-B proteins in areas 

CA3/DG(Aa) and CA1 (Ab). Ox-A and ox-B containing fibres (some indicated with 

filled arrowheads), sparse and of different size, are found throughout CA3, DG and 

CA1. sp, s. pyramidale; sl, s. lucidum; sr, s. radiatum; sg, s. granulosum. Scale bar 

for Aa and Ab: 20 μm. B, top, schematic shows hippocampal slice with positioning of 

recording and stimulation electrodes. Middle, representative NMDA-EPSCs (mean of 

two successive sweeps), recorded from a CA3 pyramidal neurone in a slice prepared 

at ZT 4, are shown for baseline, during maximal ox-A suppression, after wash-out 

and following DCG-IV application to confirm MF origin. Numbers correspond to the 

time points in the graph shown below. Horizontal dashed lines refer to baseline 

holding current and peak of the NMDA-EPSC before ox-A application. Bottom, mean 

NMDA-EPSC amplitudes, expressed as % of baseline, are plotted against time (n = 

10). Horizontal dashed lines indicate mean EPSC levels before and after 10 min of 

ox-A application. C, Time course of Ri and Rs corresponding to B. Vertical lines 

indicate time period of ox-A and DCG-IV application in B and C. D, concentration-

response curve for ox-A-induced inhibition of MF-NMDA-EPSCs, with 1, 10, 50, 100 

and 200 nM tested (n = 2 - 10 recordings from different cells per concentration). Data 

were fitted with a Hill equation, yielding IC50 = 62 ± 17 nM (value indicated by dotted 

lines) and a Hill coefficient nH = 0.6 ± 0.1. E, top, schematic as in B. Middle, 

Representative SC-NMDA-EPSCs recorded from a CA1 pyramidal neurone in a slice 

prepared at ZT 4, are shown for baseline, in ox-A, after wash-out and in D,L-APV. 

Numbers and horizontal dashed lines are as in B. Bottom, graph of time course of ox-

A actions on SC-NMDA-EPSCs (n = 4), in % of baseline. F, Corresponding time 
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course of Ri and Rs, vertical lines as in C. G, top, representative MF-AMPA-EPSCs 

(mean of 2 successive sweeps) in a CA3 pyramidal neurone recorded in a slice 

prepared at ZT 4, during baseline, in ox-A and after DCG-IV application. Horizontal 

dashed lines are used as in B and E. Bottom, bar graph representing mean AMPA-

EPSC amplitudes expressed as % of baseline (n = 3). Ox-A effect was measured 10 

min after application onset, DCG-IV blocked the response. Data are presented as 

mean ± SEM. 

 

Figure 2. Ox-A does not modify NMDA-EPSCs at non-MF to CA3 synapses 

A, top, Representative NMDA-EPSCs (mean of 2 successive sweeps), elicited 

through hilum/s. lucidum stimulation and recorded in a slice prepared at ZT 4, are 

shown for baseline, during maximal ox-A action, after wash-out and after DCG-IV 

application. Numbers correspond to the time points in the graph shown below. 

Horizontal dashed lines refer to baseline holding current and peak of NMDA-EPSC 

before ox-A application. Bottom, time course of mean NMDA-EPSC amplitudes in %, 

with horizontal lines indicating 100% and suppression of ox-A, measured 10 min after 

application onset (n = 4). DCG-IV induced a partial block of NMDA-EPSCs, indicating 

that a mixture of MFs and non-MFs was recruited. Inset, schematic of recording 

configuration, indicating in particular the positioning of the stimulation pipette in the 

hilus/s. lucidum. B, similar experiment as in A, except that iontophoretic (ionto) 

application of NMDA was used to elicit NMDA-currents at distal dendritic sites (see 

inset). The pipette was positioned ~250 µm from the cell body to activate NMDARs 

preferentially at non-MF synapses. Corresponding representative traces and time 

course are shown (n = 8). Horizontal lines are used as in A. Data are presented as 

mean ± SEM. C, Same experiment as B, but for iontophoretic NMDA application on 
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proximal dendritic sites. In B and C, D,L-APV fully blocked the iontophoretic current 

responses. D, Least-squares linear regression analysis of DCG-IV sensitivity and ox-

A sensitivity for 14 recordings with low to intermediate suppression by DCG-IV (to 15-

60% of control amplitude), which includes the four cells presented in panel A. The 

slope of the regression curve is 1.02, with R2 = 0.366 and P = 0.0219. 

 

Figure 3. Ox-A leaves low-frequency facilitation of MF synapses unaltered 

A, mean time course of LFF of MF-NMDA-EPSCs (n = 5), evoked by increasing the 

stimulation frequency from 0.033 Hz to 1 Hz (indicated on top of the graph). Note 

that, although EPSCs show a gradual run-up during the initial 0.033 Hz stimulation, a 

strong, several-fold increase in EPSC amplitude occurred during the 20 pulses at 1 

Hz that recovered after 0.033 Hz stimulation was resumed. After ox-A (100 nM) 

application, NMDA-EPSC amplitude decreased, but LFF persisted. EPSC amplitudes 

before and in ox-A were normalised to their respective baseline values at 0.033 Hz 

and set to 100%. B, raw traces (mean of 2 sweeps) corresponding to an experiment 

shown in A. Note that baseline NMDA-EPSCs were reduced in ox-A, but LFF was 

fully developed. Numbers correspond to the time points in the graph shown in A. 

Horizontal lines refer to baseline holding current and peak NMDA-EPSC at 0.033 Hz. 

C, bar graphs summarising mean relative values of LFF in control (black bars) and in 

ox-A (grey bars) (n = 5). The amplitude of LFF was obtained by dividing the mean 

EPSC amplitudes during the last 5 sweeps in the 1 Hz train by the mean of the 5 

baseline sweeps. Relative values of LFF were not altered in ox-A. Steady-state 

EPSC amplitudes at 0.033 Hz after the 1 Hz train are also indicated. Data are 

presented as mean ± SEM. 
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Figure 4. Ox-A actions on MF-NMDARs are mediated by OX2Rs 

A, B, pharmacological dissection of ox-A actions through continuous bath application 

of the OX1R antagonist, SB334867 (A), or the OX2R antagonist, JNJ10397049 (B). 

Time courses for both pharmacological tests, performed on iontophoretic NMDA-

currents in slices prepared at ZT 4, indicate that ox-A-induced suppression of NMDA-

currents was maintained in SB334867 (1 μM, n = 7, A), but abolished in 

JNJ10397049 (1 μM, n = 8, B). C, Ox-A actions were assessed in the presence of a 

cocktail of scopolamine (non-selective muscarinic antagonist, 10 μM), prazosin and 

D,L-propranolol (α- and β-adrenergic antagonists, respectively, 1 μM each) (n = 5). 

Ox-A inhibition developed fully, but more slowly than in the absence of these 

antagonists. D, Representative NMDA-currents for experiments in A, B and C. Lower 

case letters correspond to the experiments in A, B and C, respectively, and numbers 

to the points in the respective time courses. Horizontal lines indicate baseline holding 

and peak NMDA-current values before ox-A application. Data are presented as mean 

± SEM. 

 

Figure 5. Exogenous ox-A effects are dependent on the time-of-day of slice 

preparation 

A, representative NMDA-currents evoked iontophoretically on proximal CA3 

dendrites, in slices prepared during different ZTs, as indicated to the left of the traces. 

Traces in the presence of ox-A and D,L-APV are also shown. Time points chosen for 

slice preparation correspond to the peak of ox-A cerebral spinal fluid levels (ZT 23), 

and to the minimum (ZT 4, ZT 8) (Zhang et al., 2004). Note that ox-A inhibitory 

effects are minor at ZT 23, but fully developed at ZT 4 and ZT 8. B, time course of ox-

A actions in slices prepared at these three different times of day (ZT 23, n = 12; ZT 4, 
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n = 12; ZT 8, n = 4), with mean NMDA-EPSC amplitudes, expressed as % of 

baseline. At ZT 4, 9 datapoints presented in Fig. 2C were included. 100% is indicated 

by the horizontal line. C, bar graphs representing mean ox-A inhibition at these 

different ZT values. Asterisks represent significance relative to baseline NMDA-

currents. *, P < 0.05; **, P < 0.01. D, Left, Time course of NMDA-currents in the 

continuous presence of JNJ10397049 (1 μM). NMDA-currents remained unaltered 

over >25 min (n = 6), arguing against a tonic suppression by endogenous orexins 

present in the slice. Responses were fully blocked by D,L-APV. Dotted line indicates 

100%. Right, representative traces corresponding to the graph on the left. Dotted 

lines denote baseline holding and peak NMDA-current amplitude before drug wash-

in. Data are presented as mean ± SEM.  

 

Figure 6. Almorexant administration restores the actions of exogenous ox-A on 

NMDARs 

Aa, distribution of resting time of the Veh and Alm groups of rats across the LD cycle, 

during the Bsl Alm (squares) and Bsl Veh (circles) trials. Resting time was quantified 

as % timeh-1 below a visually set threshold of locomotor activity (see Methods). Rats 

rested more during the light phase (ZT 1-12, unshaded portion of the graph) 

compared to the dark phase (ZT 13-24, shaded) (Alm group, n = 8; Veh group, n = 

6). Ab, mean resting time of the Alm and Veh groups over ZT 18-23 of the Inj trials, 

during which two I.P. injections of Alm or Veh were administered at ZT 18 and ZT 21 

(arrows). The Alm group rested more than in the corresponding 5 h period in the 

preceding Bsl Alm trial, while resting time of the Veh group was unaltered. Ac and 

Ad, summarising bar graphs of mean resting times for the 12 h light and 12 h dark 

periods (Ac) and for the 5 h dark periods after Alm or Veh injection, respectively (Ad). 
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In the Veh group, all but one animal showed a decreased resting time in the dark 

compared to the light phase of the Bsl trial, rendering P non-significant (0.077) for the 

right column pair in Ac. Exclusion of this animal would decrease P to 0.008. The 

animal was kept for further analysis as it showed regular behaviour in the subsequent 

Inj trial. Ba, Bb, ox-A actions on iontophoretic NMDA-currents in slices prepared at 

ZT 23 from the Alm (Ba) and Veh (Bb) groups. The actions of bath-applied ox-A were 

recovered in the Alm group (n = 11), but not in the Veh group (n = 8). Horizontal lines 

represent 100% and mean ox-A-induced suppression. Data are presented as mean ± 

SEM. n.s., P > 0.05; *, P < 0.05; ***, P < 0.001.  
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