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Abstract 

 

In pediatric patients, hyperammonemia can provoke irreversible damages to developing CNS 

like cortical atrophy, ventricular enlargement, demyelination or gray and white matter 

hypodensities which are concordant with alterations of neurons and oligodendrocytes. 

Cerebral injury triggers endogenous protective mechanisms that can prevent or limit brain 

damage. Understanding these mechanisms may lead to new therapeutic strategies. We 

investigated whether ciliary neurotrophic factor (CNTF), a cytokine-like protein expressed by 

astrocytes and described as an injury-associated survival factor, was up-regulated by ammonia 

in developing reaggregated 3D brain cell cultures. We showed that CNTF is up-regulated by 

ammonia exposure, through mediation of p38 MAPK activation in astrocytes. We also 

observed that SAPK/JNK and Erk1/2 activations in oligodendrocytes and neurons, 

respectively, also play indirect roles in CNTF synthesis by astrocytes. Co-treatment with 

exogenous CNTF demonstrated strong protective effects on oligodendrocytes, but not on 

neurons, against ammonia toxicity. These protective effects involved JAK/STAT, SAPK/JNK 

and c-jun proteins.  

 

Key words: hyperammonemia, CNTF, MAPK, oligodendrocytes, c-jun, neuroprotection. 

 

 



  3 

Introduction 

  

Hyperammonemia in neonates and infants is mainly due to defects of the urea cycle enzymes 

or other inborn errors of metabolism, and causes irreversible damages in the developing CNS 

such as cortical atrophy, ventricular enlargement, demyelination, and hypodensities of gray 

and white matter, which are compatible with alterations of neurons and oligodendrocytes. 

Irreversible lesions occur in prolonged hyperammonemia and/or high blood ammonia levels 

(for recent reviews, see Cagnon and Braissant, 2007, and Gropman et al., 2007). The recent 

use of alternative-pathway therapies detoxifying ammonia improved the survival of patients 

(Enns et al., 2007). However, the improved survival was correlated with a worsened 

neurological and cognitive outcome. Thus, the development of neuroprotective therapeutics is 

crucial for the improvement of the neurological outcome of neonates and infants experiencing 

hyperammonemia. Cerebral injury triggers endogenous protective mechanisms that can 

prevent or limit brain damage. Understanding these mechanisms may lead to new therapeutic 

strategies.  

 

Among neurotrophic factors, ciliary neurotrophic factor (CNTF) is of particular interest 

regarding ammonia neurotoxicity. CNTF is a cytokine-like protein, specifically expressed in 

CNS by astrocytes and acting through a heteromeric receptor complex formed by CNTF 

receptor subunit (CNTFRα), glycoprotein 130 and leukemia inhibitory factor receptor 

(Sleeman et al., 2000). CNTF expression is strongly up-regulated in reactive astrocytes 

adjacent to lesions following several CNS injuries such as focal cerebral ischemia, entorhinal 

cortex lesion, kainic acid-induced excitotoxicity or intracerebral hemorrhage (Lee et al. 1997; 

Lin et al., 1998; Choi et al., 2004; Yokota et al., 2005). Numerous studies have demonstrated 

strong protective effects of CNTF on neurons and oligodendrocytes in various models of brain 

injury (Louis et al., 1993; Mitchell et al., 1998; Semkova et al., 1999; Mittoux et al., 2000; 
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Oshitari and chi-Usami, 2003; Ozog et al., 2007). Moreover, CNTF induces astrocyte 

swelling (Hudgins and Levison, 1998), which is often observed in the brain submitted to 

hyperammonemia (Cordoba and Blei, 1996; Norenberg et al., 2005). We hypothesized that 

ammonia could induce CNTF synthesis.  

 

Many of the external signals encountered by cells are transduced to the nucleus by a highly 

conserved signaling mechanism, the mitogen-activated protein kinase (MAPK) cascades. 

MAPKs are serine/threonine kinases transducing extracellular signals to intracellular 

responses that balance survival, differentiation and death of the cell (Xia et al., 1995; Pearson 

et al., 2001; Weston and Davis, 2007). Three major conserved pathways of MAPKs have been 

described: the extracellular signal regulated kinases (Erk1/2 isoforms or p44/p42), the c-Jun 

NH2-terminal kinases (JNK-1, -2, -3 isoforms; also named Stress-Activated Protein Kinase or 

SAPK) and the p38 kinases (p38 α, β, γ and δ isoforms). We hypothesized that MAPKs 

pathways could be involved in alterations of CNTF by ammonia.  

 

In this study, reaggregated primary 3D cultures of developing brain cells, derived from fetal 

rat telencephalon and exposed to ammonia, were used as an experimental model for the 

developing brain exposed to hyperammonemia (Honegger and Monnet-Tschudi, 2001; 

Braissant et al., 2002; Braissant et al., 2008; Cagnon and Braissant, 2008). These cultures are 

a model of choice to study the ammonia-induced intracellular and extracellular crosstalks 

between glia and neurons which are intermingled in these aggregates, and are grown in 

absence of serum. We first studied how ammonia exposure alters the expression of CNTF and 

we investigated whether MAPKs were involved. Finally, we tested whether a treatment with 

exogenous CNTF could exert neuroprotective effects against ammonia toxicity, and analyzed 

the intracellular pathways involved. 
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Material and methods 

 

Reagent and antibodies 

DMEM powder without sodium pyruvate and sodium bicarbonate was purchased from 

Invitrogen (AG, Carlsbad, CA, USA). Gentamicin sulfate, insulin, linoleic acid, alpha-

tocopherol, 3,3’,5-triiodo-L-thyronine, apo-transferrin, choline chloride, hydrocortisone 21-

hemisuccinate, alpha-lipoic acid, Basal Medium Eagle vitamin solution and ammonium-

chloride (NH4Cl) were purchased from Sigma (St Louis, MO, USA). Retinol, sodium 

bicarbonate, L-carnitine and vitamin B12 were purchased from Fluka Chemie AG (Buchs, 

Switzerland). Rabbit polyclonal anti-SAPK/JNK and phospho-SAPK/JNK (Thr183/Tyr185), 

anti-p38 and phospho-p38 MAPK (Thr180/Tyr182), anti-Erk1/2 and phospho-Erk1/2 

(Thr202/Tyr204), anti-MAPKAPK2 and phospho-MAPKAPK2 (Thr334), anti-ATF2 (20F1) 

and phospho-ATF2 as well as anti-phospho-c-jun (Ser73) antibodies were purchased from 

Cell Signaling (Beverly, MA, USA). Mouse monoclonal anti-CNTF (clone 4-68), anti-

microtubule-associated protein 2 (MAP2), anti-glial fibrillary acidic protein (GFAP) (clone 

GA5) and anti-galactocerebroside (GalC) antibodies were purchased from Chemicon 

(Temecula, CA, USA). Mouse monoclonal anti-histone H1 and anti-neurofilament 160 kD 

(NF-M) (clone NF09), rabbit polyclonal anti-total-c-jun as well as goat polyclonal anti-myelin 

basic protein (MBP) and anti-CNTFRα (C-20) antibodies were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). U0126 and AG490 were purchased from Calbiochem 

(San Diego, CA, USA), SP600125 from Alexis Corporation (Lausen, Switzerland) and 

SB203580 from Promega (Madison, Wisc., USA). Recombinant rat CNTF was purchased 

from R&D Systems Europe (Minneapolis, MN). 
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Reaggregated developing brain cell cultures 

Rotation-mediated reaggregated brain cell cultures derived from fetal rat telencephalon were 

prepared as previously described (Honegger and Monnet-Tschudi, 2001; Braissant et al., 

2002). In brief, the pooled forebrains of 15-day fetal rats (Sprague-Dawley, Harlan, 

Nederlands; animals handled according to the rules of the Swiss Academy for Medical 

Sciences) were dissociated mechanically, washed and resuspended in serum-free, chemically 

defined medium consisting of DMEM with high glucose (25 mM) supplemented with insulin 

(0.8 µM), triiodothyronine (30 nM), hydrocortisone-21-phosphate (20 nM), transferrin 

(1 µg/ml), biotin (4 µM), vitamin B12 (1 µM), linoleate (10 µM), lipoic acid (1 µM), L-

carnitine (10 µM), choline chloride (2.5 g/l), sodium chloride (3.7 g/l) and trace vitamins and 

ions. Gentamicin sulfate (25 µg/ml) was used as an antibiotic. The cultures were incubated at 

3.6 x 107 cells per flask and maintained under constant gyratory agitation at 37°C, in an 

atmosphere of 10% CO2 and 90% humidified air. Media were replenished from day-in-vitro 

(DIV) 5 every 3 days, by exchanging 5 ml of medium (of a total of 8 ml) per flask. On the day 

of harvest (DIV 13), aggregate pellets were washed three times with ice-cold PBS, embedded 

for histology in cryoform (O.C.T. compound tissue-tek, Digitana, Switzerland) or frozen in 

liquid nitrogen and kept at -80°C until analysis. 

 

Treatments 

Cultures were treated with NH4Cl (5mM) (Braissant et al., 2002; Braissant et al., 2008) alone 

or in combination with 2 µM U0126 (a selective inhibitor of Erk1/2), 2 µM SP600125 (a 

selective inhibitor of SAPK/JNK), 2 µM SB203580 (a selective inhibitor of p38 MAPK), 2 

µM AG490 (a selective inhibitor of JAK/STAT) and/or CNTF (100, 150 or 200 ng/ml) from 

DIV 5 to 13. NH4Cl and CNTF were added after replenishing the culture medium at DIV 5, 8 

and 11, whereas inhibitors were added every day from DIV 5 to 12. NH4Cl stock solution was 
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prepared in milliQ water at 170 mM. The pH and osmolarity of each media with and without 

NH4Cl and inhibitors was stable at value of 7.4 and 340 mOsmol, respectively. Inhibitors 

were diluted in dimethyl-sulfoxide (DMSO) and the highest DMSO concentration in the 

culture media was 0.06 %. CNTF was diluted in culture medium. The corresponding controls, 

only treated with vehicle, were assessed.  

 

Western blot analysis 

Cell cultures were homogenized in 10 mM Tris-HCl, pH 7.5, containing 6 M urea, 0.1% SDS, 

protease inhibitors (Complete; Roche, Switzerland) and phosphatase inhibitors (cocktail 2 

aqueous solution, Sigma, St Louis, MO, USA). Homogenates were centrifuged at 16,000 x g 

for 10 min, and supernatants were recovered. Supernatant proteins were measured by the 

bicinchoninic acid assay (Pierce, Rockford, IL, USA) and diluted at a final concentration of 

3 µg/µl in NuPage® LDS sample buffer and NuPage® reducing agent (Invitrogen, Carlsbad, 

CA, USA). Samples were heated at 70°C for 10 min and proteins were separated by SDS-

PAGE (7 or 12% total acrylamide). After transfer of the proteins in a Transblot SD semi-dry 

transfer cell (Biorad) to polyvinylidene difluoride membranes (Immobilon; Millipore, 

Bedford, MA, USA), blots were probed with antibodies. All antibodies were diluted 1:1000, 

except anti-phospho-p38 MAPK antibody that was diluted 1:500. As CNTFRα expression 

was undetectable with “classical” immunoblot technique, a kit allowing signal amplification 

with avidin-biotin system was used following the manufacturer’s guidelines (Vectastain Elite 

ABC kit, Vector laboratories, Burlingame, CA, USA). Anti-CNTFRα antibody was diluted 

1:5000. Western blots were revealed by chemiluminescence (ECL; Amersham Biosciences, 

Buckinghamshire, UK). Blots were stripped (Re-Blot Plus Mild antibody stripping solution; 

Chemicon, Temecula, CA, USA) and reprobed with antibody against histone H1 to 

demonstrate equal loading of protein in each lane. The autoradiograms (Hyperfilm ECL, 
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Amersham Biosciences, UK) were scanned with an ImageScanner (Amersham Biosciences, 

UK) and processed by image analysis (ImageMaster 1D; Amersham Biosciences, UK). Data 

were acquired in arbitrary densitometric units and transformed to percentages of the 

densitometric levels obtained from scans of control samples visualized on the same blots.  

 

Immunofluorescent staining 

In-situ detection of MAPKs in cell cultures was performed with Tyramide Signal 

Amplification (TSA) kit (Molecular Probes, Eugene, OR, USA). 16 µm-thick aggregate 

cryosections were postfixed 1 h in 4% paraformaldehyde (PFA) in PBS at room temperature. 

Sections were washed in PBS and incubated in 1 % H2O2 (TraceSelect 30%, Fluka Chemie 

AG, Buchs, Switzerland) in PBS for 10 min to quench endogenous peroxidase activity. 

Nonspecific antibody binding sites were blocked for 1 h at room temperature with the 

blocking buffer of the kit. The primary antibody (1:100) diluted in blocking buffer was 

applied to sections overnight at 4° C. After washing, sections were incubated with a 

Horseradish Peroxidase-coupled anti-rabbit IgG secondary antibody (provided by the kit) for 

1 h. Peroxidase staining was performed using Alexa Fluor® 555-labeled tyramide diluted at 

1:200 in the amplification buffer (provided by the kit) and applied to sections for 5 min. For 

negative controls, primary antibody was omitted resulting in no staining. Sections were then 

incubated overnight at 4°C with the second primary antibody directed towards GFAP (1:200), 

MAP-2 (1:100) or MBP (1:100) to reveal astrocytes, neurons and oligodendrocytes, 

respectively. After washing, sections were incubated for 1 h with a secondary antibody 

directed towards mouse-IgG (for GFAP and MAP-2) or goat-IgG (for MBP) and labeled with 

Alexa Fluor® 350 (1/200) (Molecular Probes, Eugene, OR, USA). Immunohistochemistry 

against GalC was also performed to reveal oligodendrocytes, incubating sections overnight at 

4°C with the anti-GalC primary antibody (1:100). After washing, sections were also incubated 
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for 1 h with a secondary antibody directed towards mouse-IgG and labeled with Alexa Fluor® 

350 (1/200). Sections were mounted under FluorSave Reagent (Calbiochem, San Diego, CA, 

USA). 

  

The sections were examined and photographed by the use of an Olympus BX50 fluorescence 

microscope equipped with a Olympus Color View 2 camera and appropriate filter 

combinations for fluorescence. The contrast of structures was slightly enhanced and images 

were superposed using image-processing software (Cell Imaging Software, Olympus). For the 

clarity of the merged panels of figures 2, 3 and 4, images were pseudocolored in red 

(activated MAPKs) and green (MAP-2, GFAP or MBP), colocalization appearing in yellow. 

 

Statistics 

All data points are expressed as mean ± SEM. Experiments were independent in that separate 

cultures were not from the same primary preparation. Statistical difference was determined 

using Student’s t-test or one-way ANOVA followed by Tukey’s or Fisher’s LSD post hoc test 

for multiple groups. Data were considered significantly different when p < 0.05. 
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Results 

 

Up-regulation of CNTF and its receptor CNTFRα following ammonia exposure in 

reaggregated developing brain cell cultures 

Immunoblot analysis revealed that in untreated cultures, CNTF expression was barely 

detectable at DIV 8, while its level increased slightly at DIV 11 and 13, indicating the 

maturation of the cultures (Fig. 1A). In ammonia-exposed cultures, CNTF expression 

increased slightly at DIV 8, and markedly thereafter with a maximal tenfold increase at DIV 

13, as compared to respective control (Fig. 1A and 1B). We also examined CNTFRα 

expression, which was slightly up-regulated by ammonia exposure at DIV 8 but returned to 

basal level at DIV 11 and 13 (Fig. 1A and C).  

 

Regulation of MAPKs activation by ammonia exposure  

In order to evaluate the possible involvement of MAPKs in the ammonia-induced expression 

of CNTF, we studied the activation levels of MAPKs at DIV 13 after 8 days of ammonia 

exposure, as well as their cell-type distribution in cultures.  

 

Immunoblots revealed that ammonia did not affect significantly total and phosphorylated-

Erk1/2 levels (Fig. 2A). Double labeling for MAP-2 protein (a neuronal marker) and phospho-

Erk1/2 revealed that Erk1/2 was activated within nuclei of neurons both in untreated and 

ammonia-exposed cultures (Fig. 2B and C). No activated Erk1/2 could be detected in 

astrocytes and oligodendrocytes (data not shown). 

 

Ammonia exposure significantly repressed SAPK/JNK phosphorylation, while total 

SAPK/JNK expression remained unchanged (Fig. 3A). Immunofluorescent labeling show that 

in control condition, phospho-SAPK/JNK expression was cytoplasmic and was more intense 
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at the periphery of the aggregates (Fig. 3B1), where axonal outgrowth process takes place 

(Honegger and Monnet-Tschudi, 2001; Braissant et al., 2002). Ammonia exposure induced a 

drastic down-regulation of activated SAPK/JNK staining, with only few cells expressing 

phospho-SAPK/JNK at the periphery of the aggregates (Fig. 3C1). Double immuno-labeling 

show that in control condition SAPK/JNK was activated in neurons (MAP-2 positive cells) 

(Fig. 3B1-2-3-4), while in ammonia-exposed cultures, SAPK/JNK was activated in 

oligodendrocytes (MBP-positive cells) (Fig. 3C1-2-3-4). In untreated cultures, no 

oligodendrocytes expressing phospho-SAPK/JNK could be observed (data not shown), 

suggesting that ammonia exposure induced SAPK/JNK activation in oligodendroyctes. 

Activated SAPK/JNK could not be detected in astrocytes (data not shown).  

 

Ammonia exposure significantly increased the phosphorylation of p38 MAPK, while total 

p38 MAPK level remained unchanged (Fig. 4A). Immuno-labeling showed that phospho-p38 

MAPK staining was very weak in control condition (Fig. 4B1) while it was intense under 

ammonia exposure (Fig. 4C1). Double immuno-labeling showed that ammonia exposure 

activated p38 MAPK in cellular bodies and fibers of astrocytes (GFAP-positive cells) (Fig. 

4C3-4), as well as in numerous cells that were negative for GFAP (Fig. 4C1-2-3-4), MAP-2 and 

MBP (data not shown).   

 

The activation of p38 MAPK by ammonia exposure prompted us to evaluate the activation 

state of two targets of p38 MAPK: MAPKAPK2 and ATF2. We showed that phospho-

MAPKAPK2 level was increased while total MAPKAPK2 level was decreased (Fig. 4D). The 

ratio of phospho-MAPKAPK2 on total MAPKAPK2 revealed that MAPKAPK2 was 

significantly activated by ammonia exposure (Fig. 4E). In contrast, ATF2 was significantly 

deactivated by ammonia exposure (Fig. 4D and F).  
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The inhibition of SAPK/JNK and p38 MAPK repressed the ammonia-induced up-

regulation of CNTF expression, while inhibition of Erk1/2 over-activated CNTF 

In order to examine the role of MAPKs activation in ammonia-induced up-regulation of 

CNTF expression, cultures were co-treated with U0126, SP600125 and SB203580, which are 

inhibitors of Erk1/2, SAPK/JNK and p38 MAPK, respectively. Erk1/2 inhibition amplified 

the ammonia-induced up-regulation of CNTF expression while inhibition of SAPK/JNK and 

p38 MAPK significantly repressed CNTF up-regulation (Fig. 5). U0126 alone induced an 

increase of CNTF expression as compared to controls, while SP600125 and SB203580 alone 

had no significant effect on CNTF expression (Fig. 5). These results suggest that ammonia-

induced CNTF up-regulation was mediated by SAPK/JNK and p38 MAPK activation, while 

Erk1/2 negatively regulated CNTF expression, independently of ammonia exposure. Because 

CNTF is specifically synthesized by astrocytes and because p38 MAPK is activated in these 

cells by ammonia, the inhibition of p38 MAPK in astrocytes most probably directly inhibits 

CNTF synthesis. In contrast, as SAPK/JNK and Erk1/2 are not activated in astrocytes, their 

inhibition probably affect CNTF synthesis indirectly via other brain cells.  

 

Co-treatment with exogenous CNTF protected oligodendrocytes but not neurons 

In reaction to brain injury, astrocytes become reactive and increase CNTF expression, which 

is known to have strong protective effects on neurons and oligodendrocytes. The ammonia-

induced up-regulation of CNTF may be an endogenous protective mechanism against 

ammonia toxicity. To evaluate potential protective effects of exogenous CNTF in developing 

brain cells exposed to ammonia, cultures were co-treated with CNTF from DIV 5 to 13. 

CNTF at 150 ng/ml did not protect the expression of neuronal markers such as NF-M and 

MAP-2, but efficiently protected the expression of the oligodendroglial marker MBP (Fig. 6A 

and B). Other doses of CNTF were also tested (100 and 200 ng/ml), leading to the same result 

(data not shown). In particular, the higher dose of 200 ng/ml CNTF did not protect neurons 
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either. Immunohistochemistry against another oligodendroglial marker, GalC, demonstrated 

also that ammonia exposure not only inhibits MBP expression, but also leads to a decrease in 

the number of oligodendrocytes (Fig. 6C). CNTF also appeared to protect the number of 

oligodendrocytes differentiating in ammonia-exposed cultures (Fig. 6C). Because the 

expression of MBP closely parallels the course of oligodendrocytes differentiation (Staugaitis 

et al., 1996), our results suggest that CNTF co-treatment protected oligodendrocytes survival 

and differentiation against ammonia toxicity. 

 

The protective effects of CNTF on oligodendrocytes were mediated by c-jun activation  

CNTF was previously shown to up-regulate c-jun expression (Lu et al., 2003), a component of 

the transcription factor AP-1. Moreover, an AP-1-like site was observed within the promoter 

of MBP gene (Miskimins and Miskimins, 2001). Thus, we hypothesized that the protection of 

MBP expression by CNTF may be mediated by AP-1 signaling. We investigated the effect of 

CNTF treatment on c-jun expression and phosphorylation, in cultures exposed to ammonia. 

Immunoblot analysis revealed that ammonia inhibited the expression of both total and 

phosphorylated c-jun, while CNTF co-treatment protected both c-jun phosphorylation and 

expression (Fig. 7A, B and C).  

 

To determine whether c-jun signaling was required for the protective effects of CNTF on 

MBP expression, we investigated whether the inhibition of c-jun synthesis and 

phosphorylation could abolish CNTF effects on MBP expression. We tested an inhibitor of 

SAPK/JNK (SP600125), which is an upstream regulator of both c-jun expression and 

phosphorylation (Pearson et al., 2001; Brantley-Finley et al., 2003). As several studies 

demonstrated that the JAK/STAT pathway mediates CNTF intracellular effects (Stahl and 

Yancopoulos, 1994; Narazaki et al., 1994; Alonzi et al., 2001), we also tested an inhibitor of 

JAK/STAT, named AG490. Inhibition of either the SAPK/JNK pathway with SP600125 or 
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JAK/STAT with AG490 abolished the protective effects of CNTF on MBP expression (Fig. 7 

D and E). SP600125 and AG490 alone produced a small decrease of MBP levels. Moreover, 

both SP600125 and AG490 abolished the protective effects of CNTF on phosporylated-c jun 

expression (Fig. 7 D and F).   
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Discussion 

 
Ammonia-induced up-regulation of CNTF expression is mediated by MAPKs 

In CNS, CNTF is a factor synthesized exclusively by astrocytes in response to various brain 

injuries (Lee et al., 1997; Lin et al., 1998; Choi et al., 2004; Yokota et al., 2005). CNTF 

expression was up-regulated by ammonia exposure, an effect amplified with the duration of 

exposure. In contrast, CNTFRα was slightly up-regulated after 3 days of ammonia exposure 

but returned to basal level thereafter. Strong up-regulation of CNTF together with a shorter, 

transient up-regulation of its receptor CNTFRα have been observed in brain injuries such as 

kainic acid-induced excitotoxicity, entorhinal cortex lesion, transient global ischemia and 

intracerebral hemorrhage (Lee et al., 1997; Choi et al., 2004; Sarup et al., 2004; Yokota et al., 

2005). So far, the mechanism leading to this differential regulation of CNTF and CNTFRα 

under these various injuries is unknown. The slight up-regulation of CNTF observed in 

control cultures is attributable to culture maturation and suggests a physiological role for 

CNTF. Indeed, CNTF was shown involved in the generation, survival, maturation and 

myelination rate of oligodendrocytes (Mayer et al., 1994; Barres et al., 1996; Stankoff et al., 

2002).  

 
Moreover, p38 MAPK was activated in astrocytes by ammonia exposure, as well as its 

cytoplasmic target, MAPKAPK2. P38 MAPK was also activated in cells negative for MAP-2, 

MBP and GFAP, which may be Alzheimer’s type II astrocytes, which are induced by 

ammonia exposure and known to downregulate their GFAP expression (Norenberg et al., 

1990). The inhibition of p38 MAPK repressed the ammonia-induced CNTF synthesis, 

suggesting that the activation of p38 MAPK in astrocytes mediates ammonia-induced CNTF 

synthesis. In contrast to MAPKAPK2, ATF2, a nuclear target of p38 MAPK, was not 

activated by ammonia exposure. As ATF2 is also target of SAPK/JNK, our data suggest that 
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ATF2 deactivation by ammonia may be due to the concomitant deactivation of SAPK/JNK. 

SAPK/JNK deactivation in ammonia-exposed cultures was observed in neurons, suggesting 

that ATF2 deactivation also occurs in neurons. The deactivation of SAPK/JNK pathway in 

neurons may play a role in the inhibition of neurite outgrowth observed previously under 

ammonia exposure (Braissant et al., 2002) as SAPK/JNK regulates neuronal differentiation 

(Heasley et al., 1996; Giasson et al., 1999; Xiao and Liu, 2003). Although ammonia exposure 

did not activate SAPK/JNK in astrocytes, the inhibition of SAPK/JNK pathway abolished the 

ammonia-induced CNTF expression. The induction of phosphorylated-SAPK/JNK in 

oligodendrocytes was observed under ammonia exposure, suggesting that the inhibition of 

SAPK/JNK in oligodendrocytes may indirectly prevent the up-regulation of CNTF expression 

in astrocytes through an alteration of the extracellular crosstalk between oligodendrocytes and 

astrocytes. In contrast, the inhibition of Erk1/2 increased CNTF expression both in control 

and ammonia-exposed cultures suggesting that the Erk1/2 pathway negatively regulates 

CNTF synthesis. Because phosphorylated-Erk1/2 was detected only in neurons, we can 

hypothesize that the effect of Erk1/2 inhibition on CNTF expression in astrocytes is also 

indirect and mediated by neurons. 

 
Our results are in contrast with data showing that ammonia induces a down-regulation of 

CNTF in primary cultures of astrocytes (Bodega et al., 2006; Bodega et al., 2007a). However, 

these latter experiments were conducted in primary astrocytes, while our model contains 

intermingled brain cells. We can thus hypothesize that astrocytes deprived of natural 

communications with other brain cells may react differently to ammonia exposure from 

astrocytes in vivo. Astrocytes might up-regulate CNTF synthesis in reaction to ammonia 

injury on neurons or oligodendrocytes, which might release a specific factor of injury, as it 

was suggested for epidermal growth factor (EGF; Kamiguchi et al., 1995; Zelenaia et al., 

2000).  
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Treatment with CNTF prevents ammonia-induced inhibition of MBP expression and c-

jun expression and phosphorylation 

Ammonia exposure repressed NF-M, MAP-2 and MBP expression, confirming our previous 

results (Braissant et al., 1999; Braissant et al., 2002; Braissant et al., 2008) (Cagnon and 

Braissant, 2008). Because MBP expression reflects the maturation of oligodendrocytes and 

their capacity of myelination (Staugaitis et al., 1996), the toxic effect of ammonia on MBP 

expression is in accordance with clinical data showing hypomyelination in patients with 

neonatal onset of hyperammonemia (Takanashi et al., 2003; Majoie et al., 2004). 

 
Exogenous treatment with CNTF protected both the number of oligodendrocytes developing 

in the culture, and their MBP expression, against ammonia toxicity. These results are in line 

with data showing that CNTF promotes survival and maturation of oligodendrocytes (Mayer 

et al., 1994; Barres et al., 1996; Stankoff et al., 2002), increases myelin synthesis (Stankoff et 

al., 2002) and protects oligodendrocytes against Tumor Necrosis Factor-induced death (Louis 

et al., 1993). CNTF might directly act on oligodendrocytes as CNTFRα is expressed in 

oligodendrocytes and this expression can be up-regulated following injury (Miotke et al., 

2007). However, because our cultures contain intermingled brain cell types, the protective 

effect of CNTF on MBP expression may be indirect, through astrocyte activation, which 

could release a trophic factor for oligodendrocytes as recently demonstrated (Albrecht et al., 

2007), one likely candidate being platelet-derived growth factor (PDGF; Richardson et al., 

1988; Hu et al., 2008). Despite its protective effects on oligodendrocytes against ammonia 

toxicity, CNTF was unable to protect neurons. In a model of glutamate-mediated 

excitotoxicity on neurons, CNTF alone had no protective effects while the CNTF complexed 

with soluble CNTFRα protected both neuron survival and neurite outgrowth (Ozog et al., 

2007). However, more work is requested to determine whether soluble CNTFRα-CNTF 
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complex can protect neurons in our model. Indeed, ammonia-exposed neurons may be 

completely unresponsive to CNTF as ammonia is neurotoxic through many other gene-

independent mechanisms (see Cagnon and Braissant, 2007, for a review). 

 
We then investigated the signaling pathway mediating the protective effects of CNTF on 

MBP expression. It was previously observed that the AP-1 signaling pathway mediates 

CNTF-dependent transcription (Symes et al., 1997; Lu et al., 2003) and that the MBP gene 

promoter contains an AP-1-like site (Miskimins and Miskimins, 2001). Thus, we 

hypothesized that the protection of MBP expression by CNTF could be mediated by AP-1 

signaling. AP-1 is composed of Fos and Jun family proteins. Homo- and heterodimers of Jun 

proteins can bind DNA directly, whereas Fos members require interaction with any of the Jun 

proteins to act as transcriptional activators (Angel and Karin, 1991). Phosphorylation of c-Jun 

potentiates its ability to activate transcription either as a homodimer or a heterodimer with c-

Fos (Karin, 1995). Thus, we investigated the level of c-jun expression and phosphorylation in 

cultures exposed to ammonia alone or in combination with CNTF. Ammonia-exposure 

inhibited expression and phosphorylation of c-jun. CNTF protected both total and 

phosphorylated c-jun protein expression in cultures exposed to ammonia, suggesting that c-

jun synthesis and activation may mediate the effects of CNTF on MBP expression. This 

parallel increase in the expression of total and phosphorylated c-jun was expected as activated 

c-jun can induce the expression of its own gene, together with increased stability of the 

phosphorylated protein (Angel et al., 1988; Kolomeichuk et al., 2008).  

 
To determine whether c-jun signaling was required for the protective effects of CNTF on 

MBP expression, we investigated whether the inhibition of c-jun synthesis and 

phosphorylation could abolish CNTF effects on MBP expression. We tested an inhibitor of 

SAPK/JNK (SP600125), which is an upstream regulator of both c-jun expression and 

phosphorylation (Pearson et al., 2001; Brantley-Finley et al., 2003). As several studies 
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demonstrated that the JAK/STAT pathway mediates CNTF intracellular effects (Stahl and 

Yancopoulos, 1994; Narazaki et al., 1994; Alonzi et al., 2001), we also tested an inhibitor of 

JAK/STAT, named AG490. Inhibition of either the SAPK/JNK pathway with SP600125 or 

JAK/STAT with AG490 abolished the protective effects of CNTF on MBP expression under 

ammonia exposure. Similarly, both SP600125 and AG490 abolished the protective effects of 

CNTF on phosporylated-c jun expression  

 
Our data suggest that JAK/STAT, SAPK/JNK and phosphorylated-c jun mediate the 

protective effects of CNTF on MBP. It was shown that SAPK/JNK up-regulates c-jun 

(Pearson et al., 2001; Brantley-Finley et al., 2003) and that JAK/STAT can up-regulate 

SAPK/JNK (Okugawa, et al., 2003). Altogether, these results suggest that the protective 

effects of CNTF on the maturation of oligodendrocytes exposed to ammonia were mediated 

by the activation of c-jun, through the successive activation of JAK/STAT and SAPK/JNK.  

 
Conclusion 

Our work showed that CNTF expression was induced by ammonia toxicity through the 

activation of p38 MAPK in astrocytes. Intracellular signaling occurring in other brain cells 

could have indirect inhibiting or activating effects on synthesis of CNTF in astrocytes. Our 

observations stress the importance of investigating the toxic effects of ammonia in a model 

containing all brain cell types. While we have recently shown that creatine, as well as cdk5 

inhibition, exerts protective effects on neurons exposed to ammonia (Braissant et al., 2002; 

Braissant et al., 2008; Cagnon and Braissant, 2008), this new study demonstrates that a 

treatment with CNTF protects oligodendrocytes against ammonia toxicity, and that 

JAK/STAT, SAPK/JNK and c-jun are involved in this process. In vivo experiments are clearly 

needed to assess whether CNTF may have therapeutic implications for the treatment of 

demyelination observed in the brain of young patients experiencing hyperammonemia. 
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Figure legends 

 
Figure 1. Time course of CNTF and CNTFRα expressions in cultures exposed to 

ammonia. A: Immunoblot analysis of CNTF and CNTFRα expressions. Histone H1 was used 

as loading control. B and C: Data quantification of CNTF (B) and CNTFRα (C) expressions 

after 3 (DIV 5-8), 6 (DIV 5-11) and 8 (DIV 5-13) days of ammonia exposure. The values are 

expressed as percentage of respective controls and represent the mean ± SEM from at least 5 

replicates taken from 3 independent cultures. t-test: **p<0.01 *** p< 0.001 as compared to 

corresponding controls. 

 
Figure 2. Effect of ammonia exposure on Erk1/2 activation. A: Immunoblots and data 

quantification of total and phosphorylated levels of Erk1/2 in cultures exposed for 8 days 

(DIV 5-13) to ammonia. Histone H1 was used as loading control. The values are expressed as 

the ratio of phosphorylated Erk1/2 on total Erk1/2 and represent the mean ± SEM from 10 

replicates taken from 3 independent cultures. B and C: Double immunofluorescent staining of 

phospho-Erk1/2 (red) and MAP-2 (green) in control (B) and ammonia-exposed (C) cultures, 

showing that phospho-Erk1/2 is expressed in nuclei of neurons. Scale bar = 50 µm. 

 
Figure 3. Effect of ammonia exposure on SAPK/JNK activation. A: Immunoblots and data 

quantification of total and phosphorylated levels of SAPK/JNK in cultures exposed for 8 days 

(DIV 5-13) to ammonia. Histone H1 was used as loading control. The values are expressed as 

the ratio of phosphorylated SAPK/JNK on total SAPK/JNK and represent the mean ± SEM 

from 10 replicates taken from 3 independent cultures. t-test: *** p< 0.001 as compared to 

control. B: Double immunofluorescent staining of phospho-SAPK/JNK (red) and MAP-2 

(green) showed that SAPK/JNK is activated in cytoplasm of neurons in control cultures. C: 

Double immunofluorescent staining of phospho-SAPK/JNK (red) and MBP (green) showed 
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that SAPK/JNK activation is induced in oligodendrocytes by ammonia exposure. Scale bar = 

50 µm. 

 
Figure 4. Effects of ammonia exposure on p38 MAPK activation. A: Immunoblots and 

data quantification of total and phosphorylated levels of p38 MAPK in cultures exposed for 8 

days (DIV 5-13) to ammonia. Histone H1 was used as loading control. The values are 

expressed as the ratio of phosphorylated p38 MAPK on total p38 MAPK and represent the 

mean ± SEM from 9 replicates taken from 3 independent cultures. t-test: *** p< 0.001 as 

compared to control. B and C: Double immunofluorescent staining of phospho-p38 MAPK 

(red) and GFAP (green) in control (B) and ammonia-exposed (C) cultures, showing that p38 

MAPK is activated in cellular bodies and fibers of astrocytes by ammonia exposure. Scale bar 

= 50 µm. D: Immunoblots of phosphorylated and total MAPKAPK2 and ATF2. Histone H1 

was used as loading control. E and F: Data quantification of immunoblots presented in D. The 

values are expressed as the ratio of phosphorylated-MAPKAPK2 on total MAPKAPK2 and of 

phosphorylated-ATF2 on total ATF2 and represent the mean ± SEM from 13 replicates and 4 

replicates, respectively, taken from 3 independent cultures. t-test: ** p<0.01 and *** p< 0.001 

as compared to controls. 

 
Figure 5. Effects of MAPKs inhibitors on CNTF synthesis under ammonia exposure. 

Immunoblot analysis and corresponding data quantification of CNTF expression in cultures 

exposed or not to ammonia for 8 days (DIV 5-13) and treated or not with MAPKs inhibitors. 

Histone H1 was used as loading control. The values are expressed as percentage of control 

and represent the mean ± SEM from 6 replicates taken from 2 independent cultures. * p<0.05, 

** p<0.01 as compared to control, and o p<0.05, ooo p<0.001 as compared to ammonia (one-

way ANOVA followed by Fisher’s LSD post-hoc test). 
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Figure 6. Effect of exogenous CNTF treatment on neurons and oligodendrocytes under 

ammonia exposure. A: Immunoblot analysis of the neuronal (NF-M and MAP-2) and 

oligodendroglial (MBP) markers in cultures exposed to ammonia and co-treated or not with 

CNTF. Histone H1 was used as loading control. B: Data quantification of MBP expression. 

The values are expressed as percentage of control and represent the mean ± SEM from 6 

replicates taken from 2 independent cultures. *** p< 0.001 as compared to control and ooo 

p<0.001 as compared to ammonia (one-way ANOVA followed by Tukey post-hoc test). C: 

Immunohistochemical analysis of GalC, an oligodendroglial marker, in cultures exposed to 

ammonia and co-treated or not with CNTF. Bar: 50 µm. 

 
Figure 7. Mediation of the oligodendroglial protective effects of CNTF by c-jun.  A: 

Immunoblot analysis of total and phosphorylated c-jun expressions in cultures exposed to 

ammonia and co-treated or not with CNTF. Histone H1 was used as loading control. B and C: 

Data quantification of total (B) and phosphorylated (C) c-jun expression. The values are 

expressed as percentage of control and represent the mean ± SEM from 6 replicates taken 

from 2 independent cultures. * p<0.05 and *** p< 0.001 as compared to control and ooo 

p<0.001 as compared to ammonia (one-way ANOVA followed by Tukey’s post-hoc test). D: 

Immunoblot analysis of MBP and phosphorylated c-jun expression in cultures exposed to 

ammonia, CNTF and/or SP600125 and AG490. Histone H1 was used as loading control.  E 

and F: Data quantification of MBP and phosphorylated c-jun expression in cultures exposed 

to ammonia, CNTF and/or SP600125 and AG490. The values are expressed as percentage of 

control and represent the mean ± SEM from 6 replicates. t-test: * p<0.05 and *** p< 0.001 as 

compared to ammonia. 

 



C
N

TF
 e

xp
re

ss
io

n
 (%

 c
on

tro
ls

)

B

**

***

DIV 5-8  DIV 5-11  DIV 5-13

control
NH4

0

200

400

600

800

1000

1200

**

CNTF

Histone H1
ctrl   NH4   ctrl   NH4  ctrl   NH4  

DIV 5-8    DIV 5-11   DIV 5-13

A

CNTFR-α

DIV 5-8  DIV 5-11  DIV 5-13 

C
N

TF
R

-α
 e

xp
re

ss
io

n
(%

 c
on

tro
ls

)

C

**

0

20

40

60

80

100

120

140

control
NH4

Figure 1



ph
os

ph
o-

E
rk

1/
2

/ t
ot

al
 E

rk
1/

2

phospho-Erk1/2

total Erk1/2

Histone H1

A

ctrl NH4

0

0.5

1

1.5

control                 NH4

MAP-2 MAP-2

B1

B2

B3

B4

C1

C2

C3

C4

Erk1/2 Erk1/2

Figure 2



ph
os

ph
o-

S
A

P
K

/J
N

K
/ t

ot
al

 S
A

P
K

/J
N

K

phospho-SAPK/JNK

total SAPK/JNK

Histone H1

A

0

0.2

0.4

0.6

0.8

1

1.2

***

ctrl NH4

control                 NH4

MAP-2 MBP

B1

B2

B3

B4

C1

C2

C3

C4

SAPK/JNK SAPK/JNK

Figure 3



control                 NH4

GFAP GFAP

B1

B2

B3

C1

C2

C3

p38 p38

C4

D
phospho-MAPKAPK2

phospho-ATF2

Histone H1

total MAPKAPK2

total ATF2

  ctrl    NH4

ph
os

ph
o-

AT
F2

/ t
ot

al
 A

TF
2

**

F

0

0.2

0.4

0.6

0.8

1

1.2

  ctrl       NH4

E

ph
os

ph
o-

M
A

P
K

A
P

K
2

/ t
ot

al
 M

A
P

K
A

P
K

2

***

0

1

2

3

4

5

6

7

  ctrl       NH4

***
ph

os
ph

or
yl

at
ed

-p
38

 M
A

P
K

/ t
ot

al
 p

38
 M

A
P

K

phospho-p38 MAPK

total p38 MAPK

Histone H1

A

  ctrl    NH4

0

0.5

1

1.5

2

Figure 4



CNTF

N
H

4 
+ 

S
B

20
35

80

N
H

4 
+ 

U
01

26

N
H

4 
+ 

S
P

60
01

25

N
H

4 

C
on

tro
l

S
B

20
35

80

U
01

26

S
P

60
01

25

C
N

TF
 e

xp
re

ss
io

n 
(%

 c
on

tro
l)

**

0

500

1000

1500

2000

2500

3000

3500

o

ooo

*

Histone H1

o

Figure 5



ctrl   NH4   NH4
                 +CNTF

NF-M

MAP-2

MBP

Histone H1

A B

M
B

P
 e

xp
re

ss
io

n 
(%

 c
on

tro
l)

0

20

40

60

80

100

120

***

oo

ctrl    NH4    NH4
                  +CNTF

Figure 6

C ctrl NH4

NH4 + CNTF

     GalC
(oligodendrocytes)



phospho-c jun

total-c jun

Histone H1

ctrl   NH4   NH4
                +CNTF

A

0

50

100

150

*

ooo

To
ta

l c
 ju

n 
(%

 c
on

tro
l)

*

ctrl      NH4      NH4
                     +CNTF

B

0

20

40

60

80

100

P
ho

sp
ho

-c
 ju

n 
(%

 c
on

tro
l)

***

ooo

ctrl      NH4      NH4
                      +CNTF 

C

P
ho

sp
ho

-c
-ju

n 
(%

 c
on

tro
l)

0

50

100

150

200

NH4

NH4 + CNTF

   -        SP600125   AG490

***

F

  -         SP600125     AG490

NH4

NH4 + CNTF

M
B

P
 e

xp
re

ss
io

n 
(%

 c
on

tro
l)

0

100

200

300

400

500 *
E

D

phospho-c jun

MBP

Histone H1

NH4

CNTF
SP600125

AG490

+

-

+

- +
- +

-
+

-

+
- + -

+

-

+

-

+

-
++

+
-

Figure 7




