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Abstract

For the classical compound Poisson surplus process of an insurance portfolio we investigate
the problem of how to optimally pay out dividends to shareholders if the criterion is to
maximize the expected discounted dividend payments until the time of ruin or a random
time horizon, whichever is smaller. We explicitly solve this problem for an exponential
time horizon and exponential claim sizes. Furthermore, we study the case of an Erlang(2)
time horizon by introducing an external state process and derive the solution under the
assumption that the external state process is observable. The results are illustrated by
numerical examples.

1 Introduction and Model

Let (Q,F,P) be a probability space, sufficiently large to carry all the stochastic quantities
that will be introduced in the sequel. Consider the classical collective risk model (also called
Cramér-Lundberg model) for the surplus process R = (R¢)¢>0 of an insurance portfolio, i.e.

Nt
Ri=x4ct— Z Y,

i=1
with initial surplus R = x > 0, a homogeneous Poisson process N = (INVy);>0 with parameter
A > 0 and a sequence of independent identically distributed claim amounts {Y;};eny with
Fy (z) = P(Y1 < z), where {Y;}ien and N = (N¢)¢>0 are independent. Here ¢ > AE(Y) is a
constant premium intensity.
Let 7 = inf{t > 0| R; < 0} denote the time of ruin. One of the classical concepts in risk
theory is the probability of ruin ¢(x) = P,(7 < c0), which is a measure for the safety of the
insurance portfolio, see Rolski et al. [16] and Asmussen & Albrecher [4] for an overview of
ruin probabilities and related quantities.
In [10], de Finetti proposed the use of expected discounted dividend payments until ruin as
a different criterion for measuring the performance of an insurance portfolio. This leads to a
stochastic control problem of how to optimally pay out dividends in order to maximize this
quantity. In the present model, an admissible dividend strategy is a caglad non-decrasing
process L = (L¢)¢>0, and the controlled reserve becomes

Ny
Rf =xz+ct—)Y Yi— L.
=1
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The process L describes the cumulated dividend payments over time. One has the restrictions
AL; < RE (ie. dividend payments can not lead to ruin) and Ly = L1 for t > 71 (i.e. no
payments after the event of ruin). Here 7 denotes the time of ruin of R*. The value of an
admissible dividend strategy L is given by

7_L
V(z,L) =E, (/ e 0 st> ,
0

where § > 0 is a constant discount rate (or simply a rate that reflects the preference to receive
payments earlier rather than later).

The stochastic control problem to determine the optimal dividend strategy has been studied
under various model assumptions and constraints, see Albrecher & Thonhauser [3] and Avanzi
[6] for recent surveys. One should note that that there are similarities, but also subtle differ-
ences to other stochastic control problems in mathematical finance.

In this contribution, we would like to address a variation of the classical dividend problem.
Usually the time horizon of the dividend maximization problems is the time of ruin (unless one
includes the possibility of reinvestments whenever the surplus turns negative, in which case the
time horizon is infinite, see Kulenko & Schmidli [14]). An exception is the paper of Grandits
[13], who deals with the problem on a finite time horizon for a diffusion approximation of the
risk reserve process R; (i.e. dividends can be collected up to the minimum of the time of ruin
and a prespecified fixed time horizon). Such a finite time horizon is a reasonable assumption
in view of finite planning horizons for portfolio management. However, the introduction of
the finite time horizon makes the problem technically highly involved, and one can expect this
to be even worse when generalizing the underlying portfolio process to a compound Poisson
process with drift (which is the more natural model for the insurance context). Here we pro-
pose a different route towards the solution of the dividend problem in the classical collective
risk model with finite horizon, namely to randomize the deterministic time horizon. Such a
randomization was successfully used in other finite horizon problems in insurance and math-
ematical finance (see for instance Asmussen et al. |5] and Carr [8]) and the results served as
a reasonable approximation to the original problem. In Section 2 we will focus on the case of
an exponential time horizon. In Section 3 we will then study the extension to an Erlang(2)
time horizon, which is a crucial step towards an approximation for the solution of the optimal
dividend problem in the Cramér-Lundberg model with deterministic finite time horizon. In
Section 4 we finally indicate some further research directions.

2 Exponential time horizon

Let us assume in this section that the time horizon is an exponentially distributed random
variable ( ~ FEzp(7v), independent of {Y;} and N. In other words, we apply exponential
killing at a constant rate - to the risk reserve and want to study its effect on the dividend
maximization problem. Under this assumption the value of a strategy L is given by

" TLAC
V(z,L) =E, < / e % st> .
0

In view of the setting of the original de Finetti problem, where the emphasis is on maximizing
profit, it is reasonable to assume that if the process is stopped at a time ¢ < 77, then the
remaining positive reserve can be paid out as dividends as well (otherwise the problem is



simpler, see Remark 2.1). This leads to the modification

Tin¢
V(z,L) =E, </0 e O dL; + eiéch I{C<TL}> .

Let £ be the set of admissible dividend strategies with the constraint that there are no pay-
ments after time ¢ A 77 and that the reserve process is stopped from ¢ A 77 onwards. The
value function of the dividend maximization problem under the random time horizon is then
given by

V(z) =supV(z, L).
Lel
We first observe that, due to P(¢ > t) = e 7t for an admissible strategy L in the infinite hori-
zon problem the strategy L = (e 7' L;);>0 corresponds to an admissible strategy for the killed
reserve. Secondly we have that P({ € dt) is y e "dt, so that the expectation of e*‘sCRf Iieerty

L
with respect to ¢ translates to fOT ye UtNtREdt. As a consequence we can rewrite V (z, L)

in the form
TL T
V(z,L) =E, (/ e(5+7)tst> +E, (/
0 0

Similar arguments for interchanging killing and discounting apply for state-dependent killing
rates, see for instance Davis [9, Theorem 31.9]. We can now write down (for the moment
informally) the Hamilton-Jacobi-Bellman (HJB) equation associated to V' in terms of a suitable
function f : [0,00) — [0, 00):

L

e~ Oty RE dt) .

max {cf’(w) o f " fo = )dFy(y) — (5 + N f(@) 4y ] f/(x)} —0. ()

Note that V(z) =0 for z < 0. The derivation of (1) follows standard arguments, see Fleming
& Soner [11] or Schmidli [17].

If we define A as the death state, the generator of the killed risk reserve (as a part of (1)) is
given by

ef' (@) + A /0 " f(@ = 9)dFy () — (v + N () + A F(A).

In our situation the value function evaluated at the death state is just equal to the terminal
payment of the reserve.

Remark 2.1. Considering the killing procedure for the dividend problem without possible
terminal payment (i.e. using V (z, L) instead of V (z, L)) leads to the original problem without
killing, but with the modified discounting factor § 4~ instead of §. So in this case the effect of
a finite random time horizon is just a simple shift of the discounting parameter (the solution
to this problem can correspondingly be found in Azcue & Muler [7] and Schmidli [17]).

2.1 Explicit solution in case of exponential claims

In order to quantitatively study the consequences of the finite (random) time horizon on the
dividend problem, we will restrict ourselves in the following to the case of exponentially dis-
tributed claim amounts (Y; ~ Exp(«)). Under this assumption one can expect an explicit



expression for the value function and the optimal strategy. Concretely, we can then construct
a concave solution to (1) with the consequence that a so-called barrier strategy is optimal
(at the end of the section we will give a verification result for a formal justification). A bar-
rier strategy with barrier b > 0 pays every excess of the reserve over b immediately as dividend.

Barrier in zero. Suppose a barrier strategy with level b = 0 is applied and denote the
associated dividend process by L°, then we have

oo pT
V(z,L%) =z + / / e Ot edi e dT = 0 4+ ————.
o Jo d+7+A

Define the constant A = (y 4+ + A) — ac.

Lemma 2.1. For Y1 ~ Exp(a), V(z,L°) is a solution to (1) either if A >0 or A <0 and
arle— (0 +N)(y+0+ ) <0.

Proof. We only need to check if
V(@204 X [ V(= g Y (5) = 6+ + WV (0, 2%) + 92 <0 )
0

for > 0. Define G(x) := A(e™** — 1)A — zad(y + 0 + A), then the left hand side of (2) can

be written as
G()
a0 +v+2A)’

so that we only need to check the sign of G(x).

If A> 0, then G(x) is decreasing, with G(0) = 0 as its maximum.

If A < 0, then G(z) is strictly concave. Furthermore G’(0) < 0 which is equivalent to
axe — (0 +AN)(y+ 0+ ) <0. Hence G(0) =0 is a maximum of G for z > 0. O

Barrier larger than zero. From now on assume A < 0 and adc — (6 + A\)(y + 5+ A) > 0.
Trying the construction of a concave solution f : [0,00) — [0,00) to (1) implies the existence
of a point z* such that f'(z) > 1 for 0 < z < z* and f'(z) <1 for z* < z.

At first we are going to construct a differentiable solution f; with b > 0 to the problem:

cfi(@) + Ay folz —y)dFy (y) — G+ v+ N fy(z) +y2 =0, 0<z<b, 3
z—b+ fi(b), x> b.

Correspondingly, fi(z) = V(z, L?) refers to the expected discounted dividends until ruin under
a barrier strategy with barrier b. Some calculations show that for 0 < z < b the function

1z ylac—))
v+ aly+0)?

fo(z) = A1(b) 1% + Ay(b) ef2® + , (4)

together with the linear continuation in b is a differentiable solution to (3). The corresponding
coefficients are given by

Ay (b) = (R1 + a)(a?(y +6) = Ro(Ry + a)yAe™?)
T 02(v + 0)2(Ri(Ry 4 a)efit — Ry(Ry + a)eli2b)’

(R4 a)(@?8(y +8) = Ri(R1 + a)yAef?)
a2(y 4+ 0)2(Ry(Ry + a)efiib — Ro(Ry + «)elizb)

Ag(b) =




and the exponents are

A— /A2 4+ dac(y +0)
N 2c

A+ /A2 + dac(y +6)

R
1 2c

> 0.

<0, Ry=

The principle of smooth fit suggests to derive the maximizing level b* by the condition f/.(b*) =
0. Intuitively this is in accordance with pasting the linear function with the highest curve from
below. Define H(b) := f}/(b).

Lemma 2.2. If A <0 and arc — (§ + N)(y + 6+ A) > 0, then there exists a unique positive
solution b* to H(b*) = 0.

_ade=(3+N) (v +I+N)

Proof. By our assumption, H(0) = < 0. Furthermore, limy o, H(b) =

(67N
g_% > 0. Since Ry + a > 0, there is no positive root of the denominator and therefore H(b) is
continuous for b > 0. One can further show by straight-forward but cumbersome calculations
that H'(b) > 0, which proves that there exists a unique b* > 0 such that H(b*) = 0. O

Remark 2.2. One observes that at b = b* the coefficients simplify as follows:

(SRge_b*Rl 6R1€_b*R2

A7) = A = R G

- Ri(Re — R1)(6+7)’

In particular, we have

a(c+7b)—(5+)\)‘

()

Lemma 2.3. ForY; ~ Exp(a) and under the conditions A < 0 and alc—(0+X)(y+0+A) > 0,
the function fy+(x) defined by (4) and (3) with b* from Lemma 2.2 is an increasing concave
solution to (2).

Proof. Since A < 0 we have that A;(b*) < 0 and from the definition of b*,
RIAL () e = —R2A,(b*) el

which implies Aa(b*) > 0, such that in total for 0 < z < b* we have fj.(z) > 0. Furthermore
this implies that fi(xz) > 0 for 0 < x < b*, since fi.(b*) = 0 the function is concave, and
that f;.(b*) =1 is a strict minimum of the first derivative. Because of the linear continuation
above b* these properties remain valid for x > b* as well.

By construction, the function fj« solves (2) on (0,5*]. Since on (b*,00) we have fi.(z) =1 we
finally need to check if

r—b*
c+ )\/ (x =0" 4 fo=(b") —y)ae™ Y dy — (§ + v+ N)(x —b" + f-(b"))
0
+ T+ )\/ for(x —y)ae™ ¥ dy < 0.
r—b*

From A [T, fir(x —y)ae Y dy < A fy- (b*) (e~ @=b") — =) (5) and using aXe — (6 + ) (v +
d + ) > 0, we obtain the result. O

The following standard verification theorem gives the formal basis for the above calculations.
Since in both parameter constellations above, we have concave and increasing solutions to (2)
which correspond to admissible dividend strategies, we are going to prove:



Theorem 2.4. Let h : R — R™ with h(z) = 0 for x < 0 be a differentiable, concave and
increasing solution to (2) which corresponds to an admissible dividend strateqy L* = (L} )¢>0.
Then h =V, and the strateqy L* is optimal.

Proof. Let L = (Lt)t>0 be an arbitrary admissible dividend strategy (L¢ denoting its absolutely
continuous component). Then for ¢ > 0 we can write

e—(é-i—v)t/\rL h(RL ) _

tATL
tATL Rﬁf
h(zx) + / e~ OFs[eh!(RE ) + ) / h(RE. — y)ae™dy — (6 + v + \)h(RL)]ds
0 0
tnrL
S [ e R s Y O ) - hED),
0 0<s<tATLARL #RL

Since R, — Rl =L, — Loy and 1 — K/(2) > 0 we have

ATl
[ e @b - Y e SRk ) - hRb) <
0 0<s<tATEARL, #RL
Nt ATl
_ / e~ (s gre 3 N[ L] = / e~ +sqr,
0 0<s<tATEARL #RL 0

Together with

RL
o (RE) -+ [ R(RE — y)ae Uy — (047 + Nh(RE) < —RE
0
we arrive at

Ex<ef@+WﬁATLh(R£VL))

tatl taTl
+E, / e~ O3 qr, +/ ety RL ds | < h(z), (6)
0 0

where we can take RL instead of RY in the last integral, since with probability zero there
occurs a claim exactly at time (.
Now we use dominated convergence for the limit ¢ — oo to deduce:
V(z,L) < h(x).
Using strategy L* we derive an equality in (6) which proves its optimality. O
We summarize our results in the following theorem.
Theorem 2.5. If A>0 or A <0 and axc— (0 + N)(y+ 6+ A) <0, then the value function
s given by
c
Vi)=oc+ ——.
(z) O+v+A

The optimal dividend strategy is then a barrier strategy with barrier b* = 0.

If on the other hand A < 0 and aic — (0 + A)(yv + 0 + X) > 0, then the value function is
V(z) = fo=(x) where fy- is determined by (3) and (4). In this case the optimal dividend
strategy s a barrier strategy with barrier b* > 0, which is determined in Lemma 2.2.
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Figure 1: b* as function of v Figure 2: fy« for v =0, 0.1, 0.5, 1.5

Example. Figure 1 shows the optimal barrier as a function of + for the parameter set ¢ =
6.5, = 1, A = 5 and § = 0.04. Due to the conditions of Theorem 2.5 it tends to zero
if v increases. Figure 2 displays the value function for different values of v. The dotted
line corresponds to v = 0 with *(0) = 15.7448, the dotted-dashed line to v = 0.1 with
b*(0.1) = 11.6348, the solid line to v = 0.5 with 5*(0.5) = 7.1230 and finally the dashed line
to v = 1.5 with b*(1.5) = 0. As expected the value function decreases with increasing « (due
to expected earlier killing of the surplus process).

Remark 2.3. If the underlying process R; is a diffusion, the above result will again hold,
with analogous barrier strategies to be optimal. This can either be shown directly by similar
calculations, or also by a suitable limiting procedure of the compound Poisson process (see
e.g. Albrecher, Biuerle & Thonhauser [1] for a related procedure in another control problem).

Remark 2.4. The HJB equation corresponding to 17(35) = SUPrer ‘7(1', L) is given by

max {Cf’(w) + A/Ox fl@z—y)dFy(y) — (6 +v+A) f(x), 1~ f’(x)} =0.

Although in the infinite horizon case v = 0, barrier strategies are not always optimal beyond
exponential claims (see Loeffen & Renaud [15] for more detailed criteria) it is surprisingly hard
to identify explicit optimal non-barrier strategies. There is one concrete example in Azcue &
Muler [7] for Erlang(2) claims, in which a barrier strategy is not optimal: For the parameters
Fy(y)=1—(14+y)e ¥, A=10,0 = 0.1, ¢c = 21.4 the value function turns out to be

R r+2.11881, 0 <z < 1.80303,
V(z) = g(x), 1.80303 < x < 10.2162,
2+ 2.45582, 10.2162 < =,

with
g(x) = 11.2571e% 939567 _ 9 43151~ 00793557 1 .094314¢~ 1438257

The optimal strategy is of band type, i.e. for 0 < x < 1.80303 a barrier strategy in zero is
used, for 1.80303 < x < 10.2162 no dividends are paid and for 10.2162 < = a barrier strategy
with height 10.2162 is applied.

Since band strategies are sensitive to slight modifications of the model (see e.g. Albrecher et
al. [1]), let us check the effect of v > 0 on the optimal strategy with respect to the infinite
horizon case v = 0. Figures 3 and 4 illustrate that for the same parameter set, but v = 0.1, a
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Figure 5: V(z) for v = 0, fo(z) for B
v=0.1 Figure 6: V(z) and fo(x) for v = 0.01

barrier strategy in zero is already optimal (i.e., the bands collapse to a barrier in zero). Figure
3 shows the left part of the maximum in the HJB equation ("IDE part") evaluated at the
function = + 6-%)\ (which corresponds to a barrier in zero) for v = 0, which clearly shows that
it can not be the value function. On the other hand, Figure 4 shows the IDE part evaluated at
the value of a barrier strategy equal to zero for v = 0.1, which shows that now =+ m solves

the HJB equation. Figure 5 shows V(z) in the case v = 0 (solid line) and fo = z + T
which is the value function for v = 0.1 (dashed line).

On the other hand, for v = 0.01 a band strategy is still optimal (namely to use a barrier in
zero for z € [0,2.18793], pay no dividends for z € (2.18793,9.07912] and use another barrier in
9.07912 for x > 9.07912). Figure 6 depicts the associated value function (solid line) together
with the performance under the barrier strategy fy (dashed line).

3 Erlang time horizon

A natural extension of an exponential random variable for the random time horizon is an
Erlang(n,~) distributed random variable. Although one then loses the attractive lack-of-
memory property of ¢, choosing n > 1 is a substantial step forward towards the case of
deterministic finite time horizon, since for fixed expected value the Erlang(n) distribution
converges weakly to a point mass at E(¢). This so-called Erlangization method was for in-
stance exploited to approximate finite-horizon ruin probabilities in Asmussen et al. [5|, where
it turned out that small values of n often already give very good approximations for the de-
terministic fixed time horizon counterpart. As mentioned in the introduction, the dividend
maximization problem with a finite time horizon was up to now only studied for a diffusion



risk reserve process in Grandits [13]. It turns out that even for this relatively simple case
(with constant coefficients), the problem becomes technically very complicated and it is only
possible to construct e-optimal strategies, given by time-dependent barrier strategies.

In this section we will study the case ( ~ Erlang(2,+) to see the effect of the Erlangization on
the calculations and to provide an alternative route towards finite horizon dividend problems
in the framework of the classical risk model. In principle, the methodology will be the same
when using larger values for n, but for reasons of compactness we restrict ourselves to the case
n = 2. As in the previous section, we consider exponentially distributed claim amounts. In
the sequel, the flow of information over time is supposed to be given by the filtration generated
by the reserve process and an external state process.

3.1 State-dependent barrier strategies

Let us recall the simple property that a random variable ¢ ~ Erlang(2,7) can be written

as ¢ ~ (1 + (2 where (1, (o i Exp(7y). Suppose the process € = (¢);>0 is an external state
process governed by the rule

15 0 SZt‘< Ch
=9 2, <t<G+C,
Z&, t 2 Cl*‘CZ

Le., at time zero it starts in state 1, after a time interval of length {7 it moves to state 2 and
after a further time interval of length (o, it moves to the death state A. Note that this is a
particular form of a Markov switching problem, where the underlying process has the same
dynamics across states, but the control at time ¢ depends on the value of ;. In particular, we
assume here that we can observe the process (g;), whereas in practice one will not be able to
determine the current state of the process (this is somewhat akin to the approach of Albrecher
& Hartinger [2] in a different context). Recently, Sotomayor & Cadenillas [18] considered a
Markov switching environment for a diffusion process with state-dependent coefficients.

Note that the two-dimensional process (Ry,e¢) has the strong Markov property. Let L =
(L¢)t>0 be an admissible strategy, the value of which, when starting in state 1, is defined as

FRING
Vi(z,L) =E1 ( /O e 'dLy + eéCRff{KTL}) :

If starting in state 2 we write,

TLAQ
Va(w, L) = E(y 9 < / e *"dL; + e—5<2R§21{<<TL}> :
0

When starting in state 2, there is only one exponentially distributed time span left until moving
to the death state, and so Va(z, L) coincides with the value of L under exponential killing from
Section 2.

The next lemma connects Vi(x, L) with Va(z, L).

Lemma 3.1. Let L = (L)1 be an admissible dividend strategy such that (R, ¢) is a strong
Markov process. Then

7_L 7_L
Vi(z,L) = E(z 1) ( /O e, + /0 e“*'”tvvg(Rf,L)dt)-



Proof. At first we write ¢ 4 (1 + (o so that

Vi(z,L) =

el s TL/\(C1+CQ) st L S(C140) pL
E(x’l) /0 ¢ dLy +/L/\< e Tdlite o RCl+C2I{C1+C2<TL} )
T 1

Since the process (R}, ;) is a strong Markov v process, we can write the second integral together
with the terminal payment as e 5<1V2(RC1, )I {¢1<rLy- The strategy Lis given by shifting the
strategy L by the starting time (, i.e. Lt L¢, 4. Taking the expectation with respect to (i
then gives the result. O

The value functions of this state-dependent dividend maximization problem are defined as

Vi(z) = ilelng(:v, L),

Vo(x) = sup Va(z, L).
Lel
As mentioned above, Va(x) is determined by Theorem 2.5. Combining Lemma 3.1 with the
proof of a related dynamic programming principle (see Azcue & Muler [7]) and replacing the
arbitrary stopping time by (1, one gets that

’T'L ’T'L

Vi(z) = supE, 1 / e~ O, + / e_(5+“/)t7V2(Rf) dt |,
LeL 0 0

where L € L can be taken as an admissible strategy (which in state 1 does not need to be a

Markov control). The associated HJB equation for state 1 is then given by
max{ / flx —y)ae™Vdy — (6 + 7+ A) f(z) +vVa(2),
1= f'(@)}=0. (7)

The remainder of this section is devoted to the construction of an increasing and concave
solution to (7).

It will turn out that it is without loss of generality to fix the strategies under considera-
tion to be of state-dependent barrier type. lL.e., if &, = 1 we apply a barrier strategy at height
b1, and if &, = 2 we apply a barrier strategy at height 5. From the formulation of the switching
problem, if &, = 2 it will be preferable to distribute dividends in a more risky manner than
in state 1 since killing is closer and because of discounting (i.e. in general b; > by). This also
matches the observation in Grandits [13] that e-optimal barriers are decreasing in time.

We have to distinguish the following cases.

b1 = by = 0. In this case the initial capital is immediately paid out as a dividend and all
the incoming premium is also immediately paid out as dividends up to time min{7}, {}, where
Ty ~ Exp(X) denotes the time of the first claim occurrence. Let F¢(s) denote the distribution
function of {, then the associated value is given by:

[e%s} t
ﬂwﬂ@=$+CA AGTW1—Q$D@A€Mﬁ

2y + 54+ \)
(v 43+ N2
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At first we observe that this function can only be a candidate for the value function if by = 0
is optimal for the second state.
Lemma 3.2. f(q) is a solution to (7) if Va(z) = 2+ 5575 and if (S+7+A)2—ac(2y+5+A) >
0orif(6+7+N2—ac2y+6+X) <0 and are(2y+5+X) — (6 +N) (6 +v+ N2 <0.
Proof. Since f(/o 0) (x) = 1, we need to verify that the integro-differential part is non-positive.
Plugging f(0)() into it, this part can be written as

M@+ +X2)? —ac2y + 8+ A)(e"* — 1) —adz(§ + 7+ A)* _

a0 +v+ N)?

Obviously J(z) < 0if (6+7+A)2—ac(2y+5+)) > 0. Now suppose (§+7+\)2—ac(2y+6+N) <

0, then J(x) is concave. Therefore J(0) = 0 is an upper bound for J(z) if J’(0) < 0. This is
true if and only if

:J(x), x>0.

aXe(2y +5+A) = (6 + N +v+ N2 <0,
O

b; > 0 and by = 0. Since the second barrier bs = 0, the value of starting in state 2 at level

Tis x + Hvﬁ Therefore the value of this particular strategy f, 0y, if starting in state 1,
fulfills:

cf(’bho)(x) + A fox f,0) (@ —y)ae™Ydy — (6 + v+ N) fp, 0)(®) +v(z + Mﬁ) =0,
0 <z < bla

x—b + f(b1,0)(b1)7 x > by.
Similar to the calculations in Section 2, we get that for 0 < x < by:
x
f(b1 0) (.%') = Dl(bl)eRlx + Dg(bl)€R2$ + "Y— + Dg,
) 5 + fy
where Ry < 0, Ry > 0 are the exponents determined in Section 2. Using B := ac(2(0 + ) +
A) — (8 + 7+ A)?, the coefficients are

(Ry +0)(a23(6 +7)(6 +7 + A) + Ra(Rs + a)yBelh)

D) = G+ )@ 7+ NE(E T )it — Ry(B, - a)en
Da(by) = — (Ro +a)(a?5(6 +7)(6 + v+ A) + Ri(Ry + a)yBeftr)
a2(6 +7)2) (8 +v + A\)(R1(Ry + a)efrbt — Ry(Ry + ar)elizbr’
Dy — Y(=ANO+ 7+ A) +ac2(6 +v) + /\).

a0+ +v+ )
This particular choice of coeflicients gives that fq, o is differentiable on R+,

Lemma 3.3. Assume that V3(x) = @ + 5555 and that f(o0) does not solve (7). Let H(b) :=
f(’g 0)(b), then there exists a unique by > 0 such that H(b}) = 0.

Proof. Similarly to the proof of Lemma 2.2, we get that

(E+ N0 +7+ N2 —ade(2y +5+N)
c(0+v+ )2

and limy, .., H(b) = g%/ > 0. We observe that H(0) < 0 in this case and that H(b) is
continuous for b > 0. Further, one can see that using 6 + v + A — ac < 0 (which holds since
a barrier in zero is optimal for state 2) one gets H'(b) > 0 for b > 0, which completes the

proof. O

H(0) =

11



In the same way as in Lemma 2.3 one can derive that f(b;o) is an increasing and concave
function for x > 0. But nevertheless it is hard to analytically establish that

c+ ; for0)(@ —y)ae™Ydy — (6 + v+ A) fp:,0)(2)

C
tylz+—") <0, z>b
7( 5+7+,\>— !

which would prove that [ o) fulfills (7). However there is numerical evidence that this is
fulfilled in general.

by > ba > 0. In this situation the area below b; splits into two regions (due to the form
of V3). The value f, p,)(x) of this strategy is a solution to

Sl by (@) F A5 fi1.60) (2 = y)ae™dy — (6 + 5 + X) fy,60) (@) + 7 ie(2) = 0,
0 <z < by,
1y (@) T A5 Fio15) (2 = y)ae™dy — (6 + 7 + ) fip,.5) (%) + (= b2 + fi(b2)) =0,
bz <z < bl,
T —b1+ f, 5y (b1), T > b1

One needs to be careful when dealing with the second integro-differential equation because the
integration area includes the region below by. Nevertheless there are enough conditions (from
smooth-pasting and the integrals) which can be translated into a linear system of equations,
such that one can determine a differentiable solution of the following form:

For60) (@) = (Bi(b1,b2) + 2Ba(b2))e™* 4 (Bs (b1, by) + xB4(by))e’™*
+ Bsx 4+ Bg, 0<x < by,
Fonn) (@) = C1(b1, b2)e™* + Ca(by, b2)e™* + Cyz + Cy, by <z < by.

Although available in closed form, we can not display the voluminous explicit expressions for
the involved coefficients here (they also include the coefficients of f3, (z)).

One can see that the right- and left- hand second derivatives of f(, 4,)(z) at = ba coincide
since f;_(ba) = 1. Therefore the function fg, 4, () is twice differentiable on the whole interval

(0,b7).

b; = by > 0. For completeness we look at this case explicitly, which can be solved like the
previous one, but the integro-differential part for by < z < by disappears now and correspond-
ingly calculations simplify. Setting b = by = by > 0, the value of the associated strategy for
0 <z < bis given by

Fop) (@) = (E1(b) + xE2(b))e™" + (E3(b) + 2F4(b))e™™" + zE5 + Fe.

Again the coeflicients are determined by solving a linear system of equations such that f(’b ) (b) =
1.

Remark 3.1. Obviously a simple (b1, by)-type strategy can only be a candidate for an optimal
dividend strategy, if bs is optimal for the second state. Now suppose that b5 > 0 (characterized
via Theorem 2.2) is optimal, then a good candidate for b; would be the solution to f('gl b5) (h) =

0. Like in the proof of Theorem 2.5, this condition together with f(’gl bg)(bl) > 0 would imply
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that at b; the derivative attains a minimum with value 1. This relates to the construction
procedure for optimal band strategies in the infinite horizon case as described in Schmidli [17]
, where one searches for minima equal to 1 of derivatives of solutions to the IDE part of the
associated HJB equation.

Because of the elaborate structure of the coefficients of f, 5,y it seems out of reach to prove
that a solution to f(’gth)(bl) = 0 exists in general and that the associated function solves
(7) (in particular to verify that for = > b} the IDE part of the HIB equation evaluates to a
non-positive value is intricate). We therefore propose the following procedure for deriving a
candidate for V. For state 2 we already know the solution which is given in Theorem 2.5.

o If for state 2 the optimal barrier level b5 = 0, from the conditions above either check
whether b = 0, or calculate b7 > 0 using Lemma 3.3 and check whether

c+ /0 for 0y (@ —y)ae™Ydy — (6 + v + ) [z 0)(z)

C
tryle+r—5 V<o, z>0n
7( 6+7+>\>_ 1

If this is true, fr o) Is an increasing and concave solution to (7).

o If b5 > 0, use the case by > by > 0. Determine b} > b3 as a solution to f(I;n b2)(b1) =0
and check whether it is a concave solution to (7).

If a simple state-dependent barrier strategy solves the dividend problem, the above procedure
will deliver the solution. Under this type of strategy the controlled reserve process is a strong
Markov process with respect to the filtration generated by the risk reserve process and the
external state process &;.

We conclude this section with the following verification theorem.

Theorem 3.4. Let h : R — R with h(z) = 0 for x < 0, be an increasing, differentiable
and concave solution to (7) which corresponds to an admissible strateqy L* for state 1 and the
optimal strategy for state 2. Then h(x) = Vi(x) and L* is optimal if starting in state 1.

Proof. Let L be an admissible strategy. We can follow the proof of Theorem 2.4 to arrive at

0

TL TL
E(z1) ( / e” AL, + / e—“ﬂ*wz(Rf_)ds) < h(x). (8)
0

Since Va(x) > Va(x, L) we get, by incorporating the time split ¢ ~ (1 + (o,

TLAC
Vi(z, L) = E( ) ( /0 e %dLs + 65<R§I{<<TL}> < h(x).

Now using the strategy L* while being in state 1 and the optimal strategy for state 2 we have
an equality in (8) which completes the proof. ]
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3.2 Illustrations

Example 1. For the first example we choose a parameter set which delivers positive barriers
for both states: ¢ =6.5, A =5, a=1,v =1, § = 0.04. For state 2 we numerically calculate
b5 = 4.13685 and have that Va(x) = fps(z). One then determines by = 7.17286 as a solution
to f(/;n,b;)(bl) =0.

Figure 7 shows f(b»f’b;)(x). Figure 10 displays the IDE part of the HJB equation evaluated at
f(v7 b5y for & > bj. Since it is negative the HJB equation is fulfilled and one can deduce from
Theorem 3.4 that it is the value function of the dividend maximization problem, if starting in
state 1. Furthermore Figure 8 illustrates that the minimum of the derivative is exactly equal
to 1 at b]. Figure 9 contains the graph of f(lgl,bg)(bl) as a function of the barrier for state 1.
The optimal state-dependent strategy, namely to use the barrier strategy b] up to the random
time (;, and from then on b3, is depicted in Figure 11.

Example 2. As a second example we reduce the premium intensity to ¢ = 5.5 and leave all
other parameters unchanged. For state 2 the optimal barrier is now zero, i.e. Va(z) = x—i—m
(one can observe the same effect by changing v = 1 to v = 2 (earlier killing) while keeping
¢ = 6.5). One then calculates bj = 3.70785 as a solution to f(/l/n,o)(bl) =0.

Here the crucial plot is Figure 15. As the IDE part is negative to the right of the barrier, we
have that f: o) is the value function, a plot of which is given in Figure 12. Figures 13 and
14 show f(’b170)(3:) and f(/;)l,o)(bl)7 illustrating that the minimum of the derivative is equal to 1
and the unique root of this specific second derivative.

Example 3. If we keep ¢ = 5.5 and A\ = 5, but choose v = 3, we get Vo = x + Mﬁ and a

c(2y+6+X)

barrier in zero is then also optimal for state 1, i.e. Vi(z) =z + NCEE DR

14



6,
4,
2,
. t
&
Figure 11: b] for i = 1,2
fib;,0(%) fo:.0) (X)
i 130
125
120
1151
110
1.05
\2‘ — s X
Figure 12: f(bT70) for x € [0,6) Figure 13: f(/bI,O)(x)’ for z € (07 10)
f(o,,0 sy X
0.01F -0.05
1
—0.01F -0.10+
-0.02F
_ooab ~015F
—-0.04F
-0.20
Figure 14: f(, o(b1) for by € (0,10) Figure 15: IDE-HJB for z € (b%, 10)

15



4 Conclusion and Outlook

In this contribution we identified and discussed a control problem in insurance, namely we
extended the classical optimal dividend problem in insurance by the non-standard feature of
having a random time horizon. We explicitly solved this problem for the case when both the
time horizon and the individual claim sizes are exponentially distributed. We then extended
the solution procedure to the case of an Erlang(2) time horizon by introducing an external
state process and under the assumption that the state of this external process is observable, in
which case the problem gets the flavor of a Markov regime switching problem. A natural next
step for future research will be to apply some filtering technique to remove the (somewhat
artificial) assumption of observability of the state process to explicitly solve the Erlang(2)
time horizon problem (in which case there is an interpretation in terms of a Hidden Markov
Model). The optimal strategy may then be expected to be of a time-dependent barrier form,
where the value of the barrier at each time point arises from mixing over the optimal barrier
values of the two states and the mixing probabilities are given by the probability to be in
the respective state at that time point. This procedure should then naturally extend to the
Erlang(n) case, and the latter can then also be used to approximate the deterministic finite
time horizon dividend problem. Since the diffusion approximation for the risk reserve process
is a limit of the classical insurance risk process, this program may also give additional tools for
analyzing the behavior of the optimal time-dependent barrier for the diffusion model studied
by Grandits [13].

However, in view of the complexity of the involved expressions, already the Erlang(2) case is
intricate and correspondingly the explicit identification of the optimal solution candidate for
general Erlang(n) horizons and the formal verification of its optimality are expected to be a
challenging problem.
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