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Preface
Multiple sclerosis (MS) is one of the most common disease of the central nervous system

affecting young adults. MS affects indeed about 2 million of people of any age and gender

although it has a special preference for young people, for women and for those in northern lat-

itudes. MS symptoms can vary among patients including visual, motor, sensory and cognitive

deficit leading to significant impact on personal and social daily-life of patients.

Historically, MS has been described for the first time in 1868 by Jean-Martin Charcot, a profes-

sor at the university of Paris, who observed the characteristic scars or "plaques" of MS during

an autopsy. Seminal studies performed in the late 19th and early 20th centuries showed MS was

characterized by demyelinated lesions around veins and inflammatory activity. During the

20th century, the development of several scientific domains, such as biology, led to attribute

MS damage to a dysfunction of the immune system. Though the exact causes of MS remain

unclear, several treaments and therapies have been developped so far to attenuate neurologi-

cal damage by reducing the pathological immune response. In the 1980’s, the emergence of

Magnetic Resonance Technology provided images of MS pathology (focal "plaques") leading

to more rapid diagnosis and a better monitoring of the disease and treatment effects. The

development of Magnetic Resonance Imaging (MRI) provided new insights on the changes due

to MS in the whole-brain, which included cortical and subcortical gray matter in addition to

the classical white matter "plaques". Furthermore, it became clear that the normal appearing

tissue was also alterated in MS patietns compared to healthy population.

Nowadays, MRI is a fundamental part of MS diagnosis and is mainly used for lesions detection

and qualitative estimation of lesions volume. However, though advances in conventional MRI

improved images sensitivity to measure mechanisms such as inflammation or tissue loss, they

lack of sensitivity to detect diffuse pathology and suffer from a poor correlation with clinical

symptoms. In this context, in the last decades new advanced techniques have emerged such

as diffusion imaging, relaxometry, magnetization transfer imaging and magnetic resonance

spectroscopy, providing more specific and sensitive tools to assess diffuse pathology. And

recently, it became clear that the combination of different MR contrasts or modalities would

improve our understanding of the underlying processes leading to neurodegeneration.

This dissertation presents a new approach combining several advanced MRI techniques to

study the overall effects of MS pathology in brain tissue at early stages of the disease. We

performed an extensive analysis to detect and identify diffuse and focal changes in normal ap-

pearing tissue, MS lesions and basal ganglia, but also to reveal the dynamics of these changes

in these regions.
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Preface

The pathogenesis of MS is very complex and multifactorial, with both genetic susceptibility

and environemental causes involved. Although they remain unclear, we know that these causes

lead to the propagation of the immune response and provokes brain damage observed in MRI.

In the first chapter, we briefly describe the MS pathogenesis and the different courses of the

disease, as well as the role of conventional and non-conventional MRI in our understanding

of MS pathology.

In Chapter 2, we present our approach combining relaxometry and magnetization transfer

imaging to detect and identify subtle and diffuse tissue alteration in MS patients. We per-

formed a comparative analysis on a group of relapsing-remitting MS patients with minor

deficit and a group of controls. We also correlate our MRI observations with clinical symptoms

characterized by motor and cognitive scores.

In Chapter 3, we used our approach to classify MS lesions according to the different mecha-

nisms occuring in these plaques.

In the Chapter 4, we focused on basal ganglia by using a new technique to estimate the partial

volume. The deep gray matter nuclei are indeed very challenging regions considering the

presence of mixture of brain tissue. Therefore, we propose to measure the proportion of

tissue in each voxel and to extract their characteristic MR signal in order to provide additional

information on the altered tissue.

Finally, the Chapter 5 present the results of a longitudinal study performed over 2 years. We

measured the dynamics of MS mechanisms in the normal appearing tissue and MS lesions

based on multi-contrast analysis. Last, we exploit the information of advanced MRI to predict

patients clinical outcome at 2 years follow up.
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Abstract
Multiple sclerosis (MS) is the most common disabling neurological disease of young adults

around the world, affecting about 2 million of people of any age and gender. Typical symptoms

can vary among patients and include visual, motor, sensory and cognitive deficits which may

significantly impact patients personal and social life. Described for the first time in 1868

by Jean-Martin Charcot, MS has been intensely studied since then and is now defined as

a chronic inflammatory autoimmune demyelinating disease of the central nervous system.

In the 1980’s, the emergence of Magnetic Resonance Technology provided new insights on

brain pathology in MS, and improved the monitoring of available pharmacological therapies.

Nowadays, magnetic resonance imaging (MRI) is a fundamental part of MS diagnosis, and in

the last decades new advanced MRI techniques have emerged providing more specific and

sensitive tools to assess not only local pathology (plaques) but also diffuse alteration in the

brain tissue.

In this thesis, we present an approach combining new advanced MRI techniques including

relaxometry and magnetization transfer imaging, to analyse brain tissue micro-structure prop-

erties in MS patients. We show how to take advantage of the complementarity of quantitative

and semi-quantitative MRI sensitivity, to identify the physio-pathological processes under-

lying tissue alterations in normal appearing tissue, MS lesions and deep gray matter nuclei.

We then extend our multi-contrast approach to model the heterogeneity of tissue damage in

MS lesions through a classification framework, and present an innovative technique based on

partial volume estimation, to provide additional information on the micro-properties of the

tissue in thalamus and basal ganglia. Last, we show the potential of our approach to monitor

MS disease over time, and to identify complex mechanisms such as repair and degeneration

activity.

Our work provides evidence of the potential of multi-contrast advanced MRI to study the

physiopathology of MS over the whole brain, even at early stages of the disease. Though

these state-of-the art MRI techniques require more sophisticated hardware and software than

conventional MRI, recent advances in acquisitions speed and robustness render them strong

candidates for clinical applications in next future.

Key words: Multiple Sclerosis, Advanced MRI, Quantitative imaging techniques, Micro-

structure analysis, Multi-contrast.
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Résumé
La Sclérose en Plaques (SEP) est la maladie neurologique chez les jeunes adultes la plus com-

mune dans le monde, touchant 2 millions de personnes de tout age et genre. Les symptômes

classiques peuvent varier parmi les patients incluant des déficits visuel, moteur, sensoriel et

cognitif qui ont un impact significatif sur leur quotidien et leur vie sociale. Décrites pour la

première fois en 1868 par Jean-Martin Charcot, la SEP, qui a été depuis intensément étudié, est

une maladie auto-immune et inflammatoire chronique affectant le système nerveux central.

Dans les années 1980, l’émergence de la technologie de résonance magnétique a fourni une

nouvelle vision des modifications du tissue cérébral provoqués par la maladie, et a amélioré le

suivi des traitements et des thérapies développées jusqu’alors. De nos jours, l’Imagerie par

Résonance Magnétique (IRM) est devenue fondamentale lors du diagnostique de la SEP, de

plus ces dernières années l’émergence de nouvelles techniques avancées a permis le develo-

pement d’analyses plus spécifiques et sensibles aux pathologies diffuse de la SEP.

Dans cette thèse, nous présentons une nouvelle approche combinant de nouvelles techniques

avancées d’imagerie dont la relaxometrie et l’imagerie par transfert magnétique, afin d’analy-

ser les propriétés micro-structurelles du tissue cérébral chez les personnes atteintes de SEP.

Nous montrons comment profiter de la complémentarité des contrastes IRM pour identifier

les processus physiopathologiques sous-jacents dans les tissue d’apparence normale, les

lésions et les noyaux gris. Nous étendons ensuite notre approche en modélisant l’hétérogé-

néité des lésions de la SEP à l’aide d’une méthode de classification, puis nous présentons

une technique innovante basée sur l’estimation du volume partiel qui fourni de nouvelles

informations sur la microstructure du thalamus et des noyaux gris centraux. Enfin, ces travaux

révèlent le potentiel de notre approche pour assurer le suivi de la maladie, et ainsi identifier

des mécanismes complexes tels que la dégénérescence et la capacité de réparation du cerveau.

En conclusion, nos travaux prouvent le potentiel de ses nouvelles techniques IRM pour étudier

la physiopathologie de la SEP dans toutes les parties du cerveau, même aux premiers stades

de la maladie. Bien que ces nouvelles techniques d’acquisition requièrent des méthodes de

traitement plus sophistiquées, les récentes avancées en termes de rapidité et de robustesse

des acquisitions IRM en font de sérieux candidats pour les applications cliniques des années à

venir.

Mots clefs : Sclérose en Plaques, IRM avancé, Techniques d’imagerie quantitative, Analyse de

la micro-structure, Multi-contrast.
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1 Neuromaging in Multiple Sclerosis

1.1 Introduction

Multiple sclerosis (MS) is the most common disabling neurological disease of young adults

around the world. MS affects about 2 million of people of any age and gender, though it’s most

commonly diagnosed in women between the age of 20 and 50 years [1]. Typical symptoms

include visual, motor, sensory and cognitive deficits as well as fatigue, leading to physical and

cognitive disability. Therefore, MS has a significant personal, social and economic impact for

patients and healthcare services. MS is a chronic inflammatory autoimmune demyelinating

disease of the central nervous system (CNS). It affects the brain and the spinal cord through

focal and diffuse alteration of brain tissue. Traditionally, MS has been characterized by the

presence of focal demyelination; yet in the last decades, magnetic resonance imaging (MRI)

studies revealed substantial cortical damage as well as diffuse changes in normal appearing

(NA) tissue. Although MRI provided new insight in the physiopathology of MS, the underlying

mechanisms of brain degeneration remain unclear. The recent development of advanced MR

techniques such as T1, T2, T2* relaxometry ,magnetisation transfer imaging, diffusion imaging

and spectroscopy may provide new and sensitive ways to characterize tissue biology and

pathology in vivo in MS, in order to improve diagnostic, prognostic and follow-up methods.

1.2 Multiple sclerosis

1.2.1 Pathogenesis of MS

MS pathophysiology is complex and multifactorial. In fact, both genetic susceptibility and

environmental factors contribute to the development of MS in a complex interplay. In an

initial step, inflammatory cells cross into the CNS due to blood brain barrier leaks [2],then

the immune response is propagated through the brain. A non specific immune response, the

innate response, provokes first the production of small proteins so-called cytokines, which

modulate an adaptive immune response [3]. The innate system plays a role both in the

initiation and progression of MS by influencing the effector function of specialised defender
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cells: the T and B cells. The adaptive response is in fact initiated by the presentation of a

specific antigen to T lymphocytes using antigen presenting cells such as B cells, dendritic cells,

microglia and macrophages. The propagation of these molecules and cytokines promotes

inflammatory process and induce demyelination. Some studies observed a positive correlation

of T-cells, macrophages and microglia with the extent of axonal damage [4], [5]. These results

suggest that the myelin breakdown leaves axons vulnerable to pro-inflammatory mediators

direct attacks. Myelin loss may also contribute to the disease process by activating microglia,

which mediate neuronal damage [6]. There is also evidence that the loss of oligodentrocytes

which provide trophic support to axons, leads to degeneration despite intact surrounding

myelin and a lack of inflammation [7], [8]. These damages manifest by the appearance of focal

lesions, which develop around small veins and venules in several regions of the brain, with

a variable degree of inflammation, gliosis and axonal degeneration [9]. In addition to this

degenerative aspect, the presence of newly formed myelin indicates signs of remyelination in

MS lesions reflecting brain plasticity [10]. In the last decade, cortical demyelination has also

emerged as a critical aspect of the pathogenesis of MS [11–14], as well as diffuse inflammation

[15] and progressive neuroaxonal loss in NA tissue [7]. The complex interaction and overlap of

these underlying processes induced by immune-mediated renders the clinical disease course

of MS difficult to monitor and predict.

1.2.2 Clinical onset and diagnosis

Inflammatory and neurodegenerative processes in MS lead to physical and cognitive dis-

abilities. MS symptoms can vary among patients and include muscle weakness, balance

problems, loss of coordination and mobility, visual and sensory problems, speech difficulties,

bowel, bladder and sexual dysfunction, as well as cognitive impairment. In this context, early

diagnosis is important since treatment can slow the disease, improve patient daily life and

decrease long-term disability. To date, MS is diagnosed based on the revised McDonald criteria

2010 [16], which rely on clinical and MRI data. These tests are based on the principles of

dissemination in space (DIS) and dissemination in time (DIT) of the disease, and the exclusion

of other diseases with similar characteristics. DIS and DIT are established using serial MR

images. They allow to predict clinically definite MS diagnosis in 70% of patients who have

experienced only a single clinically isolated syndrome (CIS) [17]. Recently, new guidelines

have proposed to diagnose MS in a CIS patient using a single MRI scan [18].
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Clinical

(attack)
Lesions Additional criteria

2 or more

Objective clinical evidence of more than 2

lesions or objective clinical evidence of 1

lesion with reasonable historical evidence

of a prior attack

None. Clinical evidence alone will suffice,

additional evidence desirable but must be

consistent with MS

2 or more Objective clinical evidence of 1 lesion
DIS; OR await further clinical attack

implicating a different CNS site

1 Objective evidence of at least 2 lesions DIT; OR await a second clinical attack

1 Objective clinical evidence of 1 lesion

DIS; OR await further clinical attack

implicating a different CNS site AND DIT;

OR await a second clinical attack

0 (progres-

sion from

onset)

One year of disease progression

(retrospective or prospective) AND at

least two of : DIS in the brain based on at

least 1 T2 lesion in periventricular,

juxtacortical or infratentorial regions; DIS

in the spinal cord based on at least 2

lesions or positive CSF

Table 1.1: 2010 revised McDonald MS diagnostic criteria. The diagnosis of MS requires
elimination of more likely diagnose and demonstration of dissemination of lesions in space
(DIS) and time (DIT).

1.2.3 MS subtypes

The complex pathogenesis of MS and the variety of symptoms among patients, make the

clinical disease course of MS unpredictable. To date, four different clinical MS forms have

been described (see Figure 1.1) [19]:

• Relapsing remitting (RRMS) affects 85% of MS patients and is characterized by episodes

of exacerbations of symptoms followed by periods of remission.

• Secondary progressive (SPMS) develops in more than 50% of untreated patients affected

by RRMS. The course of the disease continues to worsen with or without periods of

remission or levelling of symptoms severity.

• Primary progressive (PPMS) is a form of MS which is more resistant to drugs typically

used in MS therapy. The symptoms continue to worsen gradually without remission or

relapse episodes with occasional plateaus. However few MS patients are affected by this

subtype ( 10%).

• Progressive relapsing MD (PRMS) is the rarest form of MS (<5%). Its course is progressive
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from the start without any period of remission.

The disease progression is usually assessed by neurological examination and disability rating

scales such as the Expended Disability Status Scale (EDSS) [20]. Nevertheless, these methods

lack of sensitivity and specificity to monitor the disease course on short period of time. In this

context, magnetic resonance imaging is an objective and sensitive tool, which may provide

appropriate and reliable criteria to diagnose and monitor disease progression.

Figure 1.1: Clinical course of MS subtypes.

1.3 Magnetic Resonance Imaging in Multiple Sclerosis

Magnetic resonance imaging (MRI) plays an important role both for MS clinical management

and the investigation of its physiopathology. Conventional MRI techniques are routinely used

for MS clinical diagnosis and patients follow-up. Nevertheless, they suffer from a number

of limitations such as limited sensitivity to diffuse damage as well as low correlations with

clinical tests. In this context, new emerging techniques such as diffusion imaging, relaxometry

or magnetization transfer imaging propose a novel approach to assess at a time focal and

diffuse pathology and support with new biomarkers correlating with clinical performances.
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1.3.1 Conventional MRI in MS

Conventional MRI (cMRI) techniques are sequences used routinely on a standard clinical

MRI scanner. In MS, they are mainly used for lesion detection and monitoring, but also

for qualitative atrophy measurements. These sequences include proton density (PD), T2-

weighted (T2-w), T1-weighted (T1-w), Fluid Attenuated Inversion Recovery (FLAIR) images

and Gadolinium-enhanced T1-weighted imaging. Conventional MRI techniques have been

developed to improve diagnosis and prognosis in MS by revealing mainly focal expression

of MS pathology. Although to date, atrophy measurement are not a part of clinical routine,

recent improvements in cMRI post-processing methods allow to perform off-line longitudinal

volumetric analysis and atrophy rates of specific brain structures or the whole brain.

Conventional MR physics

MR technology is based on nuclear magnetic resonance of atoms within the body induced by

the application of radio waves. The signal intensity on an MR image is determined by basic

parameters characterizing tissue properties: the proton density (PD), and the relaxation times

T1, T2 and T2*. The proton density is the concentration of protons in the tissue in the form

of water and macromolecules (proteins, macrophages, etc). The relaxation times T1, T2 and

T2* define the way that the protons revert back to their resting states after the initial RF pulse.

They are representatives of the structural characteristics of the tissue. T1, T2 and PD weighted

images are basic pulse sequences in MRI and are widely used in clinical application of MS.

Recently, the FLAIR sequence has replaced the PD image. FLAIR images are T2-w with the CSF

signal suppressed (see Figure 1.2). Recent improvements in MR field also allowed to provide

high resolution (1mm3) images at high field (3T), and improve detection and identification of

pathology of MS in the brain.

Focal inflammation and neurodegeneration in conventional MRI

cMRI allows visualisation of the structure of the brain, and the areas of focal damage due

to the increased water content relative to the surrounding tissue. PD and T2-w images are

standard sequences in clinical practice to detect MS lesions which appear as focal areas of

signal increase. MS lesions observed from these sequences can occur throughout the entire

CNS, but tend to predominate in the periventricular WM. In this area, due to the suppression of

CSF signal in FLAIR, the lesions can be better distinguished from CSF spaces than in PD/T2-w

images. T1-w images are mainly used to differentiate anatomical structures thanks to the high

contrast between each tissue, where high proton density areas appear bright and low density

dark. On T1-w images increased water such as oedema appear as hypointense. However, only

10-30% of lesions seen on T2-w images can be visualised on T1-w images, which suggests

that these T2-w lesions invisible on T1-w may reflect inflammatory process. On the opposite

side, the chronic T1 hypointensities so-called "black holes" indicate areas with severe tissue

destruction which may reflect marked oedema with or without matrix destruction during

acute phase of MS [21, 22]. During the active stage of MS, there is an increased permeability of

the blood brain barrier and the contrast agent Gadolinium (Gd) is used with T1-w imaging to
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identify areas of acute inflammation and distinguish active and inactive lesions. T1-w is indeed

sensitive to paramagnetic substances such as Gd which appear bright. Gd-enhanced T1-w

images provide an important tool to detect and distinguish acute/active and chronic/non-

active lesions, but this method remain invasive and strongly affected by several factors such as

Gd dose, image acquisition parameters and treatment during acute attacks [23].

Figure 1.2: T1-w MPRAGE, T2-w FLAIR of MS patients with lesions (red arrows). Lesion appear
brighter on T2-w images, and darker on T1-w images.

Recently, new approaches using cMRI have emerged based on serial analysis of images [24] or

their substraction [25], to relate signal changes to lesions evolution.

Global neurodegeneration in conventional MRI

Cerebral atrophy is a common feature of MS reflecting loss of neurons and the connections

between them. Atrophy can be generalized or focal. In the last decade, brain volumetry has

become an emerging technique based on conventional MRI data to provide sensitive and

reproducible assessments of brain volumetry over time and hence atrophy rates. Several

methods exist to assess brain atrophy based on segmentation or registration techniques

[26, 27]. Although it has been recognised as a feature of advanced or severe MS, some studies

measured atrophy already in CIS and early stage patients [27]. A number of gray and white

matter (WM) regions are affected by atrophy such as cerebral lobes, brainstem, cerebellum,

thalamus and specific WM tracts [28]. Recent studies evidenced gray matter (GM) atrophy

expressed by diffuse and focal thinning of cortex [29, 30]. A small cohort study showed

cortical thinning in frontal and temporal cortex of early disease or mild disability patients [29]

and a larger study reported significant correlations between cortical atrophy in the anterior

cingulate cortex, insula and temporal gyrus with lesion load [30]. Cortical atrophy has also

been shown to be the best predictor of future disability in MS patients [28,31]. Despite atrophy

is related to neurodegeneration, the underlying mechanisms appear to differ depending
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on its location. Inflammation appeared more pronounced in WM areas compared with GM

areas [28,32]. This suggest that atrophy in WM is mainly reflecting focal loss of myelin and axon

following inflammation [28, 33, 34]. Yet, a longitudinal study suggested that WM volume may

transiently increase due to presence of oedema, despite an increase of lesion load, masking

sometimes the real brain volume loss [35]. Conventional MRI techniques provide measures

of inflammation (T2-w lesions, gadolinium-enhancing T1-w lesions), in acute and chronic

disease, and new post-processing methods applied to conventional sequences support with

measures of degeneration (global brain atrophy) as well as with metrics of focal tissue loss

(chronic black holes on T1-w images). Combined, they provide a unique insight into the

dynamics of MS lesion development and the long-term pathological consequences on CNS

tissues. However, cMRI showed weak associations with clinical status which may reflect its

lack of sensitivity to detect diffuse disease. In this context, non-conventional techniques have

emerged and may improve the detection of diffuse MS pathology and the correlation with

clinical disabilities.

1.3.2 Non-conventionall MRI in MS

Non-conventional quantitative MRI techniques (qMRI) have raised in the last decades, and

provided new insights into MS pathology. The signal intensity in conventional MRI is influ-

enced by intrinsic contrast mechanisms, such as density of water proton and proton relaxation

(T1, T2, T2*), but also by characteristics unrelated to tissue properties such as scan parameters,

variation in the magnetic field and image scaling [36]. Quantitative imaging provides infor-

mation on the tissue properties that is theoretically independent of hardware and sequence

parameters. Quantification, therefore, allows comparisons across different sites, between

different patients and different time-points [37]. In addition, qMRI provide biophysical pa-

rameters maps which are more specific for the microscopic structure of tissue than the mixed

contrast images of conventional MRI. Advanced MR sequences require more sophisticated

methods and post-processing approaches to compute parameters maps, which limit their use

to research field. However recent advances in acquisition speed and robustness make them

more suitable to clinical applications.

Relaxometry

Magnetic resonance relaxometry is a promising approach to assess tissue properties and

composition in vivo. This quantitative method provides a more detailed characterization

of tissue microstructure by establishing a more direct link between MRI signal and tissue

microstructural properties. The term microstructure comprise neuronal bodies, unmyeli-

nated and myelinated axons, glia cells, vessels, and extracellular-extravascular spaces. The

biophysical parameters related to MR sequences are the proton density and the relaxation

times T1, T2 and T2*.

T1 relaxation time (T1-rt) in brain tissue is mainly influenced by free water protons and the

degree of structural organization (i.e. amount of macromolecules such as myelin, lipids,
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proteins). Myelin shortens T1 as the lipid composing myelin sheath do not contribute to

signal. In this context, an increase in T1-rt may indicate a loss of structure or myelin and/or

an increase in water content (see Figure 1.3). Conversely, greater density of macromolecules

and reduced water content as well as iron accumulation tend to reduce T1 [38].

T2-rt measures the loss of spin coherence and therefore, mainly reflect the dynamic state of

water protons and their interaction with macromolecules. An increase in T2-rt characterizes a

loss of macromolecules and/or increased water content. On the contrary, a decrease in T2-rt

reflects an increase of protons bound to macromolecules. As for T1, iron accumulation also

causes a shorter T2 [39] (see Figure 1.3).

The effective T2*-rt transverse describes the loss of transverse magnetization due to T2 re-

laxation and magnetic field inhomogeneities (R2’ component [40]). Possible sources are

tissue-dependent differences in magnetic susceptibility or the presence of paramagnetic or

ferromagnetic ions like iron. For these reasons, an increase in T2* most often indicates a loss

of macromolecules, while a decrease suggests an increase of macromolecular compounds or

iron that translate into an increase in R2’.

Figure 1.3: T1, T2 and MTR images of MS patients with lesions. On T1 and T2 quantitative
maps, lesion appears bright while it appears darker on MTR image.

In the last decades, single scan relaxometry acquisitions have been extensively used in MS

research (for review see [41, 42]). Several studies used quantitative imaging to assess diffuse

processes such as inflammation and degeneration in normal-appearing (NA) tissue in MS

patients. Neema and Whittall observed an increase of the T2-rt in the normal appearing

white matter (NAWM) of a heterogeneous cohort of MS patients compared to healthy controls

[43, 44], while Bakshi showed T2 increase in the deep GM [45]. These findings suggest diffuse

inflammatory process in NA tissue. On the other hand, Vrenken used T1 mapping to observe

global changes in the NA gray and WM in RR and SP MS patients with long disease duration [46],

and Manfredonia et al. investigated global T1 changes in early stages of the disease and their

correlation with disability [47]. The prolongation of T1-rt due to tissue or axonal/myelin loss

appeared less pronounced compared to inflammation [48]. In addition, T1rt is more affected

(longer) by axonal loss than myelin loss. Therefore, previous results reporting prolongation of
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T1-rt in NAWM and NAGM as well as WM/GM lesions might indicate the presence of different

degrees of inflammation or degeneration.

Magnetization transfer imaging

Magnetization transfer (MT) imaging targets cross-relaxation and exchange between macro-

molecules and water. MT contrast is evoked by implementing additional off-resonance radio-

frequency RF pulses into MRI sequences. Such an MT pulse reduces the longitudinal magneti-

zation of the macromolecules, but has little effect on the free water. This saturation is then

transferred to the water [49] and observed as an attenuated signal compared to the absence of

pulses. In vivo MT measurements are quantified by a two pool model. Most relevant parame-

ters are the macromolecular fraction and the forward transfer rate. The bound pool is larger in

WM (11%) than in GM (4%), much smaller in blood, and practically absent in cerebro-spinal

fluid (CSF) [50] (see Figure 1.3). Several metrics can be obtained from MTI scans. The first

analysis step is the creation of MTR maps, derived from the two sets of images acquired with

and without off resonance pulse. The MT ratio are derived by removing the signal of the free

protons voxel-by-voxel according to the equation :

MT R =
M0 −MT

M0
(1.1)

with M0 and MT the T2* images acquired without and with MT pulse, respectively. MTR

expresses macromolecular tissue integrity and provides both morphological and pathological

information with a higher specificity than conventional MRI [51].

MT ratio which informs about myelin integrity and water content [52], has been widely used

to perform histogram analysis of NA tissue in MS patients. Despites a limited difference found

by Vrenken in MTR measure of NA tissue between controls and MS patients [53], Catalaa

and others found a significant decrease of MTR in NA tissue of MS subjects compared to

healthy controls [54]. Levesque and Tardif also used MTR to analyze lesion tissue in MS

patients and observed a lower MTR in both subcortical and cortical lesions compared to

healthy tissue [55, 56]. In all these studies, relative MTR decrease has been interpreted as the

result of myelin loss. Nevertheless, inflammation and oedema also influence MTR [52], and

should be take into account when interpreting MTR images.

Diffusion imaging

Diffusion imaging is based on the microscopic Brownian motion of water molecules. In a tissue,

diffusion is ’hindered’ by the semipermeable cell membranes, which couple the diffusivity

in extra- and intracellular subspaces. In the axon bundles of WM, diffusion is anisotropic.

The simplest model to describe the directional dependence of diffusion is an ellipsoid, the

diffusion tensor (DT) [57]. The main diffusion direction is that along the parallel axons. The

mean diffusion over all directions is mean diffusivity (MD). The degree of anisotropy is a

scalar measure for axonal coherence, and is known as the fractional anisotropy (FA). Increased
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MD and reduced FA are the hallmarks of demyelination. Pathological studies evaluated the

physiological correlates of these diffusion indices [58], and a post-mortem study showed

strong correlation between MD and FA with myelin content in chronic MS patients [59].

Abnormalities in diffusivity patterns have been observed in focal MS lesion and NA brain

tissue (NABT). Several studies showed increase of MD and decrease of FA at various degrees in

lesions compare with NABT [60, 61]. An histopathological study showed that MD reflects the

advanced alteration of the tissue in chronic T1 hypointensities, where there is an irreversible

tissue disruption, gliosis and axonal loss [21]. Conversely, a longitudinal study in patient

revealed a progressive increase of MD only in a subgroup of Gd-enhancing lesions which were

all showing MD increase at the beginning [62]. These results suggest that MD is sensitive

to the different mechanisms in MS lesions such as neurodegeneration but also oedema,

demyelination and remyelination. Unlike MD, FA appears higher in non-enhancing of lesions

compared with Gd-enhancing lesions, reflecting a sensitivity to demyelination, axonal injury

and large amount of inflammatory cells [61, 63]. Diffusion imaging provided also new insights

on diffuse pathology in NABT. Several studies found abnormalities in diffusion metrics in the

periphery of T2 lesions in the NAWM and NAGM, as well as in regions of NAWM close to newly

appeared lesions [61, 64]. Global analysis also reported higher average MD and lower average

FA in MS patients compared with healthy controls [65]. Diffusion tensor imaging properties,

such as mean brain diffusity or apparent diffusion coefficient in NABT and lesions, have also

been suggested as strong predictors of clinical outcome [66]. Correlation between diffusion

metrics in T2 lesions and disability were observed [67].

Magnetic resonance spectroscopy

Magnetic resonance spectroscopy (MRS) complements magnetic resonance imaging (MRI) as

a non-invasive technique. Proton MRS uses the signal from hydrogen protons to determine the

concentration of brain metabolites such as N-acetyl aspartate (NAA), choline (Cho), creatine

(Cr) and lactate in the tissue examined. Hydrogen MRS has now become a routinely used

clinical tool in the brain, and is widely used to study MS as it proposes potential specific

biomarkers of demyelination, inflammation and neuronal/axonal integrity [68]. NAA, found

exclusively in neurons, is a marker of neuronal viability and its decrease may reflect inflamma-

tory conditions but also axonal or neuronal loss. Cho resonance have been associated with a

protein expressing cells proliferation, and is also an important indicator, with Cr, of disease

state such as demyelination. Lactate is absent in normal brain tissue and its presence is indica-

tive of metabolic disorders. The combination of these different measurements provide specific

information on the nature of mechanisms underlying brain tissue alteration. MRS studies

showed indeed a diminished NAA peak and increased Cho and free-lipid peaks in acute MS

lesions, suggesting demyelination and axonal loss [69–71]. The MRS was also used to evaluate

neuronal damage in NAWM, where lower NAA-Cr ratio in patients was observed [69, 72]. In

addition, correlations with clinical disability showed that MRS metabolic measurements were

better predictors than conventional MRI [72, 73].
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1.3.3 Mulitmodal approach

THe brain quantitative imaging techniques detailed above provide complementary informa-

tion that is critical to understand the complexity of MS physiopathology. However, to date,

most qMRI studies applied a single contrast approach, which leads to important limitations

when the results need to be interpreted [74]. In fact unicontrastl studies can not discriminate

single underlying mechanism. For example, magnetization transfer imaging alone cannot

discriminate between myelin alterations and variation of water content in tissues [52].As

another example, DTI studies showed reduced fractional anisotropy (FA) in NAWM of early

MS patients that was interpreted as axonal loss [75, 76]. Nevertheless, this interpretation

may be misleading since loss of anisotropy can derive from the loss of the branched-shape

of microglia cells that is typical of their activated-inflammatory form [77]. Thus, another

possible explanation is that reduced FA might point to inflammatory rather than degenerative

phenomena. In the last five years, multimodal approaches in MRI have become a popular

moethod to study pathophysiology of neurodegenerative disease. The combination of differ-

ent MR modalities or contrasts provided MR parameters sensitive to complementary tissue

characteristics (atrophy, iron, microstructure damage...) which have a great potential to detect

and identify pathological changes. In addition, multi-contrast approaches also show strong

potential to improve disability prediction.

In MS, a number of studies tried to address the limitation of unicontrast ones by combining

relaxometry, MTR measurements [78], and DTI [79]. Hasan et al. used T2 relaxometry and

diffusion tractography maps to assess widespread pathology of RRMS patients. They focused

their analysis on neocortical and corpus callosum regions, and observed increase in T2 and

diffusivities suggesting inflammation. Their multimodal approach also improve correlation

with disability scores [79]. In another study, Reich et al. proposed a multi-contrast approach

associating relaxometry, diffusion and magnetization transfer imaging. They analysed the

corticospinal tract of advanced MS patients, and found abnormalities along this tract such as

MTR decreases or asymmetry [78].

1.3.4 Conclusion

MRI plays now a key role in the diagnosis and monitoring of MS by characterizing brain tissue

properties in vivo and reducing the gap with clinical findings. The complex mechanisms

underlying MS pathology are still unclear, but the ongoing advances in MRI technology

should extend our understanding of disease effects on tissue microstructure. In this thesis, we

combined advanced MRI techniques, including relaxometry, magnetization transfer imaging

and new imaging techniques such as 3D Fluid Attenuated Inversion Recovery (FLAIR) and

Double Inversion Recovery (DIR) sequences, to assess brain tissue microstructure properties

of MS patients at early stage of the disease. We performed our analysis on NA tissue, MS lesions,

but also focused on deep GM structures. In the next chapter, we present our multi-contrast

approach applied to analyse diffuse changes in NA tissue.
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2 Multi-contrast MRI for normal ap-
pearing tissue analysis

Abstract

In patients with multiple sclerosis (MS), conventional magnetic resonance imaging (MRI) pro-

vides only limited insights into the nature of brain damage with modest clinical-radiological

correlation. In this chapter, we applied recent advanced MRI techniques to study brain micro-

structural alterations in a early relapsing-remitting MS (RRMS) patients cohort with minor

deficits. Further, we investigated the potential use of advanced MRI to predict functional

performances in these patients. Brain relaxometry (T1, T2, T2*) and magnetisation transfer

imaging were performed at 3T in 36 RRMS patients and 18 healthy controls (HC). Multi-

contrast analysis was used to assess for micro-structural alterations in normal-appearing (NA)

tissue and lesions. A generalized linear model was computed to predict clinical performance

in patients using multi-contrast MRI data, conventional MRI measures as well as demographic

and behavioural data as covariates. Results showed that quantitative T2 and T2* relaxometry

were significantly increased in temporal normal appearing white matter (NAWM) of patients

compared to HC, indicating subtle micro-edema (T2 : p = 0.03; T2* : p = 0.004). Furthermore,

significant T1 and magnetisation transfer ratio (MTR) variations in lesions (mean T1 z-score:

4.42 and mean MTR z-score: -4.09) suggested substantial tissue loss. Finally, combinations of

multi-contrast and conventional MRI data significantly predicted cognitive fatigue (p = 0.01,

Adj-R2 = 0.4), attention (p = 0.0004, Adj-R2 = 0.6), and disability (p = 0.03, Adj-R2 = 0.4). In

conclusion, advanced MRI techniques at 3T unraveled the nature of brain tissue damage in

early MS and substantially improved clinical-radiological correlations in patients with minor

deficits, as compared to conventional measures of disease.

The content of this chapter has been published in [80].
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2.1 Introduction

MS is characterized by the presence of focal lesions in WM and GM, but also by diffuse inflam-

mation and degeneration in normal-appearing (NA) tissue [81, 82]. Conventional MRI, which

plays a major role in identifying focal inflammation and diagnosing MS, has important limits in

assessing underlying pathology. As a consequence, this method provides only modest correla-

tions with patient functional performance, particularly during early phases of the disease [41].

In this context, quantitative and semi-quantitative (q/sq) MRI techniques [42, 83] may provide

new biomarkers of disease severity and help to improve the clinical-radiological mismatch in

MS treatment. To this end, pathological processes such as demyelination, oedema formation,

tissue loss, and iron accumulation lead to variable changes in quantitative measures of proton

relaxation times (T1, T2, and T2*) as well as in semi-quantitative parameters such as the

magnetisation transfer ratio (MTR) [43,45,54–56]. Thanks to recent MRI developments [84,85],

it is now possible to combine multiple q/sq MRI sequences in a clinically applicable protocol

and gather more specific information about the nature of tissue pathology in MS.

In this chapter, we investigated whether the combination of advanced T1, T2, and T2* relax-

ometry and magnetisation transfer imaging may be employed (i) to assess the nature of brain

tissue changes occurring early in MS and (ii) to improve the correlation between imaging and

clinical performance.

2.2 Method

2.2.1 Study population

We enrolled 36 patients with relapsing-remitting MS (RRMS), 24 women / 12 men, age = 34.8

± 9.2 years (mean ± standard deviation (SD)) and 18 age-matched healthy controls (HC), 9

women / 9 men, age = 33 ± 9.7 years. All patients were < 6 years from initial symptoms (33.3

± 21 months, range 2 to 70 months) and disease diagnosis (27.1 ± 18 months, range 0 to 59

months) (see Table 2.1). Thirty patients (83%) were under immunomodulatory treatment (high

dosage IFN beta or fingolimod) for at least 3 months. No patient had received corticosteroid

therapy within the three months preceding the enrollment. The study was approved by the

ethics committee of the Lausanne University Hospital (CHUV). Written, informed consent

was obtained from each subject.

Demographic data HC RRMS patient

Number of subjects 18 36

Age (mean years ± std) 33 ± 9.7 34.8 ± 9.2

Gender(feamles:males) 9:9 24:12

Months since intial symptoms 27.1 ± 18

Table 2.1: Demographic characteristics of HC and RRMS patients.
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2.2.2 Clinical assessment

Each subject underwent a neurological examination including the following cognitive and

behavioural tests: (i) Brief Repeatable Battery of Neuropsychological Tests (BRB-N) [86], which

examine verbal and spatial memory, sustained attention, information processing speed, and

verbal fluency on semantic cues; (ii) the Hospital Anxiety and Depression scale (HAD) [87]

and (iii) the Fatigue Scale for Motor and Cognitive functions (FSMC) [88], which quantifies

depressive mood symptoms and fatigue. The Expanded Disability Status Scale (EDSS [20]) and

the Multiple Sclerosis Functional Composite (MSFC [89]) scores were assessed by a certified

neurologist (C. Granziera, CG) to quantify motor performance. (see Table 2.2).

Disability and

motor tests
Assessed function HC RRMS patient

BRB-N

SRT-LTS Verbal memory 66.06 ± 6.72 64.14± 7.12

SRT-CTLR Verbal memory 63.19 ± 8.76 59.64± 11.94

SRT-D Verbal memory 11.75 ± 1 11.54± 0.79

SDMT Attention 56.88 ± 12.24 58.54± 9.89

WLG Execution 27.56 ± 7.23 28.64± 5.65

Mood and fatigue

HADA Anxiety 5.38± 2.45 6.50± 4.32

HADD Depression 1.38± 1.26 3.07± 2.62

FSMC Cognitive Cognitive fatigue 16.13± 5.30 23.00± 9.17

FSMC motor Motor fatigue 14.19± 4.25 22.39± 11.01

EDSS Disability 1.55± 0.21

MSFC Disability -0.08± 0.24

Table 2.2: Clinical tests (mean ± std)

2.2.3 MRI techniques

All MR images were acquired on a 3T Siemens Trio (Siemens, Erlangen, Germany) equipped

with a 32-channel head coil. The acquisition protocol consisted of (see Table 2.3):

• High-resolution 3D magnetization-prepared acquisition with gradient echo (MPRAGE)

(TR/TE = 2300/2.89 ms, voxel size = 1.0x1.0x1.2 mm3, FoV = 256x240x192 mm3, ac-

quisition time = 5:12 min) for automatic brain tissue and atlas-based segmentation as

reported previously [90–92]; signal-to-noise ratio (SNR) measurements on a MPRAGE

image were performed based on [93, 94];

• High-resolution 3D fluid attenuated inversion recovery (FLAIR) (TR/TE/TI = 5000/394/1800

ms, voxel size = 1.0x1.0x1.2 mm3, FoV = 256x240x212 mm3, acquisition time = 6:27 min);

15



Chapter 2. Multi-contrast MRI for normal appearing tissue analysis

• High-resolution 3D double inversion recovery (DIR) (TR/TE/TI = 10000/218/3650 ms,

voxel size = 1.1x1.0x1.2 mm3, FoV = 256x240x192 mm3, inversion times 450/3652 ms,

acquisition time = 12:52 min);

• Magnetization Prepared 2 Rapid Acquisition Gradient Echoes MP2RAGE [85] (TR/TE =

5000/2.89 ms, voxel size = 1x1x1.2 mm3, FoV = 256x240x192 mm3, acquisition time =

8:22 min) for lesion count [95] and whole-brain T1 relaxometry;

• T2 relaxometry (TR/TE = 5000/9 ms, 21 echos, 30 slices: voxel size = 1x1x4 mm3, FoV

= 256x240x192 mm3, acquisition time = 3 min) using a new nonlinear inverse recon-

struction algorithm that directly estimates a T2 and spin-density map from a train of

undersampled spin echoes [84];

• T2* relaxometry (TR/TE = 47/1.23 ms, 32 gradient echoes, voxel size = 1.6x1.6x1.6 mm3,

FoV = 217x217x179 mm3, acquisition time = 11:16 min) with and without magnetization

transfer (MT) pulse (MT pulse flip angle: 220 deg; duration: 4000 ms; pulse offset: 2000

Hz; spoiler moment: 25000 us*mT/m).

In order to correct for susceptibility induced macroscopic field inhomogeneities, which were

already diminished by isotropic high-spatial resolution, we used a 3D Sinc Correction [96] that

was extended to include a non-linear correction term based on the underlying B0 map [97];

The B0 map was calculated as the weighted mean phase difference [98] of the temporally

unwrapped phase followed by a median and Gaussian filters to remove phase inconsistencies

[99]. R2’ maps were computed from T2 and T2* maps according to

R2′ =
1

T 2∗−
1

T 2
(2.1)

MTR maps were derived from the T2* data by

MT R =
M0 −MT

M0
(2.2)

with M0 and MT the images acquired without and with MT pulse, respectively. MT images

were registered to images without MT pulse. Before any processing, image quality was assessed

for each modality by visual inspection. Table 2.1 lists all sequences properties of the protocol,

and the Figure 2.1 provides an example of all images and maps in one HC and one MS subject.

Total scan time was approximatively 1h08 mins.
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Sequence Parameters Time

T2* (MT)
TR/TE = 47/1.23 ms; 32 echoes, δTE = 1.23 ms; Voxel size =

1.6×1.6×1.6 mm3 ; FoV=136×136×112
11’ 16”

T2
TR = 5000 ms, 21 echoes with δTE = 9 ms; Voxel size =

1.1×1.1×4.0 mm3, FoV=160×192×30
3’15”

MP2RAGE
TR/TE = 5000/2.89, IT1 = 700 ms, IT2=2500 ms; Voxel size=

1.0×1.0×1.2 mm3, FA = 4°;FoV = 256×240×176
8’ 22”

3D FLAIR
TR/TE/TI = 5000/394/1800 ms; Voxel size = 1.0×1.0×1.2 mm3;

FoV = 256×240×176
6’ 27”

3D DIR
TR/TE/TI = 10000/218/3650 ms; Voxel size= 1.1×1.0×1.2 mm3;

FoV = 240×256×160
12’ 52”

MPRAGE
TR/TE = 2300/2.98 ms; Voxel size= 1.0×1.0×1.2 mm3; FoV=

256×240×160
5’12”

Table 2.3: Detailed MS Advanced protocol sequences parameters. Total acquisition time 1h08’.

2.2.4 MRI contrasts

T1 relaxation time (rt) in brain tissue is mainly influenced by free water protons and the degree

of structural organization (i.e. amount of macromolecules such as myelin, lipids, proteins). In

this context, an increase in T1rt may indicate a loss of structure and/or an increase in water

content. Conversely, greater density of macromolecules and reduced water content as well as

iron accumulation tend to reduce T1 [38].

T2-rt measures the loss of spin coherence and therefore, mainly reflect the dynamic state of

water protons and their interaction with macromolecules. An increase in T2-rt characterizes a

loss of macromolecules and/or increased water content. On the contrary, a decrease in T2-rt

reflects an increase of protons bound to macromolecules. As for T1, iron accumulation also

causes a shorter T2 [39].

The effective T2*-rt transverse describe the loss of transverse magnetization due to T2 re-

laxation and magnetic field inhomogeneities (R2’ component [40]). Possible sources are

tissue-dependent differences in magnetic susceptibility or the presence of paramagnetic or

ferromagnetic ions like iron. For these reasons, an increase in T2* most often indicates a loss

of macromolecules, while a decrease suggests an increase of macromolecular compounds or

iron that translate into an increase in R2’.

MT images are based on the interaction between free protons and immobilized protons

bound to macromolecules, so that a lower MTR indicates a reduced spin exchange between

macromolecules and surrounding bulk water suggesting neuroaxonal damage or myelin

breakdown [100] and/or water increase.(see Figure 2.2)
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Chapter 2. Multi-contrast MRI for normal appearing tissue analysis

Figure 2.1: Example of MR images from MS advanced protocol : MP2RAGE uniform image,
MPRAGE, DIR, 3D FLAIR images as well as MP2RAGE T1, T2, T2*, and MTR maps for one
healthy control subject (first two rows) and one MS patient (last two rows). Examples of lesions
are shown by red arrows in the images from the MS patient.
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Figure 2.2: Biophysical basis of MRI contrasts. ++: increase; – : decrease. Big red arrow: large
increase; small red arrow: small increase. Big blue arrow: large decrease; small blue arrow:
small decrease.

2.2.5 Image analysis and tissue segmentation

We used the Elastix c++ library [101] to perform (i) rigid registration with BSpline interpola-

tion of the T2 maps to the T1 maps (from the MP2RAGE); (ii) rigid registration of T2* maps,

MPRAGE, FLAIR, and DIR images to one of the inverted contrasts of the MP2RAGE sequence.

By doing this, we obtained all images in the MP2RAGE space. Regions of interest (ROIs) were

derived from the MPRAGE image using in-house software based on variational expectation-

maximization tissue classification [102]. The following ROIs were automatically segmented:

whole brain WM and cortical GM, thalamus and basal ganglia (caudate, putamen and globus

pallidus), cerebellar WM and GM. In addition, we computed lobar WM and GM (temporal,

occipital, frontal, parietal areas) (see Figure 2.3).

An experienced neurologist (Cristina Granziera, CG) and a radiologist (D. Rotzinger, DR) man-

ually counted MS lesions by consensus in 3D FLAIR, 3D DIR, and MP2RAGE images for all MS

subjects and HC, as performed previously [92]. A trained technician generated manual con-

tours for each lesion in the three different contrasts (re-checked by DR). In order to maximize

the sensitivity of lesion count and volume, lesion masks from each contrast were merged into

a single mask (lesion union mask), as reported in [92] . The lesion union mask and the ROIs

masks were then registered to the T1, T2, T2*, and MTR maps to obtain parametric values in

lesions and NA tissue in each ROI. The volume of each ROI was also automatically obtained

using the in-house software [103] and normalized by total intracranial volume.
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Figure 2.3: Example of tisue segmentation and lobe parcellation using in-house software
MorphoBox. The segmentation was obtained using MPRAGE image as input.

2.2.6 Statistical analysis

Between-groups comparisons of subjects’ demographics and clinical scores

Differences in age, gender, education, and clinical performances were assessed using a non-

parametric ANOVA (Kruskal-Wallis test) among HC and MS patients.

Between-groups comparisons of multi-contrast MRI data

To assess NA tissue differences in mean T1, T2, T2*, and MTR of patients and controls, we

performed a permutation-based Hotelling test with 10.000 permutations, age and gender as

covariates, and family-wise error rate correction for multiple comparisons. The following null

hypotheses were tested:

• (i) there are no differences in WM and GM of temporal, parietal, occipital, and frontal

lobes;

• (ii) there are no differences in cerebellum WM and GM;

• (iii) there are no differences in thalamus and basal ganglia.

Lobar assessment was chosen, instead of whole brain, to take into account the local variation

of quantitative relaxometry measures, as reported previously [104, 105]. In order to determine
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the strength of the significance, we also calculated the Cohen’s d effect size as follow:

d =
x̄1 − x̄2

s
(2.3)

with x̄1 and x̄1 are the mean of the group 1 (HC) and group 2 (RRMS), and s defined as follows:

s =

√√√√ (n1 −1) · s2
1 + (n2 −1) · s2

2

n1 +n2 −2
(2.4)

Parameters s1 and s2 refer to the standard deviation of group 1 (HC) and group 2 (RRMS),

while n1 and n2 are the number of samples of group 1 and 2.

For lesions analysis we normalized T1, T2, T2* and MTR value using z-score :

zT 1 = 1

N

∑
IT 1(ν)−µT 1(Ll ,Tl )σT 1(Ll ,Tl ) (2.5)

where zT 1 corresponds to the T1 lesion z-score (z), l to the lesion voxels, N to a normalisation

term, I the T1 map, µT 1 and σT 1 to the mean and the standard deviation of the T1 map in

the lobe L and tissue T (i.e WM or GM) in the HC group, corresponding to the lesion location.

Averages of each patient’s T1, T2, T2*, and MTR lesion z-scores were also performed in the

whole MS group. This approach was chosen instead of the permutation-based test applied for

NA tissue to account for spatial variation of relaxometry values [104, 105]. A permutation test

was not feasible for each lobe as not all patients exhibited lesions in all lobes.

Between-groups comparison of volumes

To assess volumetric differences in ROIs between patients and controls, we performed a

permutation-based Hotelling test with 10.000 permutations, age and gender as covariates,

and family-wise error rate correction for multiple comparisons.

Linear regression of MRI parameters with clinical scores

A multivariate linear regression of clinical scores was performed using a general linear model

(GLM) applied to:

• T2*, T2, T1, and MTR in the ROIs that significantly differed between patients and HC;

• T1, T2, T2*, and MTR lesion z-scores;

• Cortical/subcortical lesion count and volume.

Age, gender, educational years, anxiety, and depression scores (HAD) were considered as

covariates, since they have been reported to be linked to functional performance [106, 107].
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Cognitive scores were adapted using the Box-Cox transformation to satisfy the model as-

sumption for normality [108]. EDSS scores were not considered, as they were positive only

in patients.We performed seven regressions, where we used a stepwise regression approach

to select the best prediction model for each dependent variable (clinical scores). Bonferroni

correction was applied for multiple comparisons (seven tests). Cook’s distance (Cd) was

computed to assess the influence of each observation on the regression process, using 4/n

(n: number of observations) as the threshold of significance. Robust regression was used to

reduce influence of the outliers identified by Cook’s distance analysis.

“Leave-one-out” (LOO) cross validation was applied to assess the prediction quality and ro-

bustness of each model. A p-value < 0.05 was considered statistically significant.

All regression analyses were performed using R software (http://www.R-project.org).

2.3 Results

Between-groups comparisons of subject demographics and clinical scores

No significant differences were observed between HC and MS patients in terms of age (p =

0.3) or gender (p = 0.8); however, HC had slightly higher education levels (17 ± 4 years, mean±

standard deviation) than MS patients (15 ± 3 years, p = 0.04). Mean EDSS in patients was 1.6 ±

0.3 (interval: 1-2). The FSMC motor score was significantly higher in MS patients (23.1 ± 10.5)

than in HC (14.8 ± 5.8, p < 0.02). The FSMC cognitive scores, cognitive performance, MSFC

scores, as well as anxiety and depression scores (HAD) were not significantly different between

groups (p > 0.1).

Between-groups comparison of multi-contrast MRI data

In temporal NAWM, mean T2* and T2 were significantly higher in RRMS patients compared

to HC (T2* rt: 55.1 ± 1.55 ms in patients and 53.4 ± 1.35 ms in HC, d = 1.17, p = 0.004; T2

rt: 82.0 ± 2.38 ms in patients and 79.8 ± 2.0 ms in HC, d = 1, p = 0.03) (see Figure 2.4). In

order to assess whether the observed T2* increase in temporal NAWM depended on local

field inhomogeneities, we also compared temporal NAWM R2’ between groups and found no

significant differences. Additionally, parietal NAWM and cerebellar NAWM exhibited a trend

toward higher T2 values in patients compared to HC (parietal NAWM T2: 83.5 ± 2.44 ms in

patients compared to 81.8 ± 2.62 ms in HC; d = 0.7, p = 0.05; and cerebellar WM T2: 85.90 ± 1.69

ms in patients compared to 85.48 ± 1.47 ms in HC; d = 1.62, p = 0.07). Further, no differences

were seen for T1 and MTR in NAWM and cortical NAGM, nor for T2 and T2* in cortical NAGM,

frontal or occipital NAWM.

Finally, no significant differences between groups were found for T1, MTR, T2, or T2* in the

thalamus or basal ganglia.
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Figure 2.4: Histograms and boxplots of T2 and T2* in RRMS patients and HC. (A) (Top): T2*
and T2 mean histograms in NAWM (temporal lobe) for HC (blue) and MS patients (red); (B)
(Below): Boxplots of T2* and T2 in NAWM (temporal lobe) for HC (left) and MS patients (right).

23



Chapter 2. Multi-contrast MRI for normal appearing tissue analysis

Results of micro-structural analysis of lesions are reported in Figure 2.5. In the MS cohort, MS

lesions showed a strong increase in T1 mean z-score (4.42) and an important decrease in MTR

mean z-score (-4.09). T2 and T2* z-scores slightly increased (2.33 and 2.25 respectively).

Figure 2.5: Mean z-scores of T1, MTR, T2, and T2* of MS lesions per patient. Each column
represents a patient.

Between-groups comparison of volumes

No significant differences were observed in volumes between MS patients and HC; however,

there was a trend (p = 0.07) toward smaller normalized thalamic volumes in patients (absolute

volume 15.31 ± 1.36 mm3, normalized volume 0.01 ± 0.0006) compared to HC (absolute volume

16.52 ± 2.04 mm3, normalized volume 0.01 ± 0.0003).

Linear regression of MRI parameters with clinical scores

GLM using backward, stepwise regression revealed a highly significant association, confirmed

by cross-validation results, between multi-contrast MRI features and four clinical scores (see

Table 2.4):

• Cortical lesions count and volume, T1, T2, and T2* mean z-score of lesions, T1, T2*, and

MTR mean of temporal NAWM together with gender predicted the SDMT (attention

function) score (adj-R2= 0.6, p = 0.0004).

• T2, T2*, and MTR mean in temporal NAWM in conjunction with T1 and T2 mean z-score

in lesions as well as subcortical lesion volume and educational years, gender and HAD

scores predicted the MSFC (general disability) score (adj-R2= 0.4, p = 0.03).

• T1 and T2 mean in temporal NAWM combined with cortical lesion volume, subcortical

lesion count and HADD score predicted the FSMC cognitive score (adj-R2 = 0.4, p =

0.01).

• T1 and T2 mean in temporal NAWM combined with cortical lesion volume, subcortical

lesion count, and volume with HADD score predicted the FSMC motor score (adj-R2=

0.4, p = 0.01).
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MSFC SDMT
FSMC

Cognitive
FSMC
Motor

Stepwise regression
p-value 0.03178* 0.00051*** 0.01577* 0.01250*

Adj-R2 0.43 0.59 0.36 0.42

Leave-one-out
cross-validation

p-value 0.00080*** 0.00004*** 0.00696** 0.01160*

Adj-R2 0.24 0.44 0.26 0.24

Table 2.4: Regression analysis. Each line corresponds to the corrected p-values, and adjusted-
R2 of each model (n=7) subjected to regression and cross-validation analysis. (*** : p< 0.001),
(** : p< 0.01), (* : p< 0.05).

2.4 Discussion

The present results demonstrate that, combining multiple advanced MRI techniques it is

possible to unravel the nature of subtle tissue alterations in early MS. Moreover, MRI markers of

inflammation and neurodegeneration substantially improved clinical-radiological correlations

compared to conventional measures.

The RRMS patients enrolled in our study exhibited significant increases in T2 and T2* in tem-

poral NAWM, and to a lesser extent in parietal and cerebellar NAWM. These changes hint to

an accumulation of extracellular water (micro-edema) and/or a reduction of macromolecular

content (myelin) in affected brain tissue (see Figure 2.2). In the absence of significant changes

in MTR and T1, which would support the structural explanation, the increase of both T2 and

T2* most likely indicates the presence of subtle edema. Iron loss might also be responsible for

a prolongation of T2 and T2*, but appears to be a less probable cause as no differences were

observed in R2’, which reflects local field inhomogeneities [109]. By combining multiple q/sq

MRI measures, our study confirms work reporting T2 increase in NAWM in early MS [43, 44]

and extends these findings by providing new insights into the pathology underlying those

changes. Our data, however, contradicts studies showing a measured unimodal MTR decrease

in NAWM of early MS patients attributed to myelin loss [110, 111]. These studies focused

mainly on untreated patients and applied magnetization transfer imaging at lower spatial

resolution and lower field strength (1.5 T) than ours. Furthermore, unimodal MTR studies

in MS should be considered with caution, as magnetization transfer imaging alone cannot

discriminate between myelin alterations and variation of water content in tissues [52]. Axonal

degeneration in NAWM of early MS patients was also suggested by unimodal diffusion tensor

imaging (DTI) studies, showing reduced fractional anisotropy (FA) [75, 76]. Nevertheless, this

interpretation may be misleading since a decrease in anisotropy can derive from the loss of

the branched-shape of microglia cells that is typical of their activated-inflammatory form [77].

Thus, another possible explanation is that reduced FA might point to inflammatory rather

than degenerative phenomena. Several studies tried to address the limitation of unimodality

studies by combining T2 relaxometry, MTR measurements [78], and DTI [79]; yet, these studies

focused on selected brain structures (i.e corpus callosum [79] and corticospinal tract [78]) in
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patients with advanced stages of MS [79]. Our approach overcomes the above-mentioned

limits by performing a whole brain analysis of multiple q/sq assessments in early MS.

Our data also showed that both cortical and subcortical lesions were characterized by a strong

increase in T1 and decrease in MTR with relatively modest positive variations of T2 and T2*

(see Figure 2.5). These findings are consistent with previous MRI literature [112, 113] and

histopathological studies [55, 56, 114] showing significant neurodegeneration in MS plaques.

No significant micro-structural alterations were found in NA tissue belonging to the basal

ganglia or thalamus in our MS cohort. Still, volumetric analyses revealed a trend toward lower

regional volumes in patients (p=0.07), which is consistent with thalamic atrophy reported

in larger and more heterogeneous patient groups [115]. Last, we showed that MRI findings

of micro-structural alterations in NA tissue and lesions substantially improved the clinical-

radiological correlation obtained with conventional measures, even in the presence of minor

functional deficits. In fact, a variable combination of relaxometry and MTR values significantly

ameliorated the prediction of cognitive performance (attention), cognitive fatigue, and general

disability obtained with traditional measures of disease burden and patient covariates (see

Table 2.4). Conventional MRI measures of MS disease impact provide only modest correla-

tions with clinical performances, a phenomenon that is known as the clinico-radiological

paradox. Multivariate analyses and multi-contrast, tract-specific measures were proposed to

alleviate this paradox [78, 79], but suffered from the limitations of conventional protocols and

partial brain analyses. Recently, ultra-high field MRI at 7T has been used to identify subtypes

of cortical lesions, whose numbers showed good correlations with disability and cognitive

performance in MS [116]. Extending such work, our multi-contrast approach emerges as a

whole-brain MRI method at a clinically-compatible magnetic field, which produces strong

clinic-radiological correlations for both cognition and disability. Future developments should

aim at reducing the number of sequences required for optimal lesion detection (i.e. MP2RAGE

and 3DFLAIR) as well as at applying accelerated T1-T2* relaxometry sequences to achieve a

well-suited protocol for the clinical workflow.

2.5 Conclusion

In summary, in this chapter we established a methodology combining different q/sqMRI

contrasts to detect subtle pathological changes in brain tissue of MS patients as well as focal

alterations. We observed indeed micro-edema in NA tissue characterized by an increased

of T2 and T2* in temporal NAWM, as well as prevalent tissue degeneration in MS lesions

revealed by a strong increase in T1 and decrease in MTR. Last, we improved correlations

between MRI data and measures of cognition and disability in early and minimally-impaired

MS patients. Additional studies extending the current methods to patients at later disease

stages and containing larger cohorts will be necessary in the future.

In the next chapter, we focused on the MS lesions by extendeding our multi-contrast approach

to model the heterogeneity of tissue damage in MS lesions through a classification framework.
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3 Multi-contrast MRI quantification of
focal inflammation and degeneration
in multiple sclerosis

Abstract

Local microstructural pathology in multiple sclerosis patients might influence their clinical

performance. This study applied multi-contrast MRI to quantify inflammation and neurode-

generation in MS lesions. We explored the impact of MRI-based lesion pathology in cognition

and disability. Relapsing-remitting MS subjects and healthy controls underwent neurological,

cognitive, behavioural examinations and 3T MRI including: (i) advanced MR techniques for

lesion count; and (ii) T1, T2, T2* relaxometry and magnetisation transfer imaging for lesion

tissue characterization. Lesions were classified according to the extent of inflammation/neu-

rodegeneration. A generalized linear model assessed the contribution of lesion groups to

clinical performances. Four lesions classes were identified and characterized by (1) absence of

significant alterations, (2) prevalent inflammation, (3) concomitant inflammation and micro-

degeneration and (4) prevalent tissue loss. Classes (1), (3), (4) strongly correlated with general

disability (Adj-R2 = 0.6, p = 0.0005), executive function (Adj-R2 = 0.5, p = 0.004), verbal memory

(Adj-R2= 0.4, p = 0.02) and attention (Adj-R2 = 0.5, p = 0.002). To conclude, multi-contrast

MRI provides a new approach to infer in vivo histopathology of MS plaques. Our results also

support evidence that neurodegeneration is the major determinant of patients disability and

cognitive dysfunction.

The content of this chapter has been published in [117].
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3.1 Introduction

The hallmark of MS is the presence of multi-focal lesions or "plaques", which are charac-

terized by variable inflammatory, degenerative and reparative processes [118, 119]. Plaques

inflammation is widespread in the relapsing-remitting MS subtype, whereas important tissue

loss is pronounced in progressive MS and in long-standing disease [120, 121]. In addition, new

lesions are mostly characterized by inflammatory phenomena, leading to blood-brain barrier

disruption, while older lesions show a higher proportion of neuro-degeneration and/or repair

processes [24, 121].

Conventional magnetic resonance imaging is a valuable tool to provide information about the

number, location and inflammatory “activity” of focal lesions. Nevertheless cMRI offers only

limited sensitivity to focal pathology in the cortex and little insight into the nature of local

damage. Non-conventional MRI techniques such as Double Inversion Recovery (DIR, Geurts

Radiology 2005) and magnetization-prepared 2 rapid gradient echo (MP2RAGE, Marques

Neuroimage 2010 and Kober 2012) have proven higher sensitivity to focal cortical pathology

than cMRI. Similarly, the combination of multiple cMRI contrasts improved cortical lesions

detection at all field strengths (1.5 T [122], 3T [123] and 7T [124]). Besides, other advanced

MRI techniques have shown to be sensitive to tissue pathology in lesions, such as axonal and

myelin damage (diffusion tensor imaging-DTI and magnetisation transfer imaging-MTI) and

axonal metabolic deficits (magnetic resonance spectroscopy) [119, 125–128]. MRI relaxometry

has also been extensively used to study normal-appearing brain tissue in multiple sclerosis

patients (for review see [128, 129]), but only few works focused on lesions properties and

heterogeneity [95, 130]. Yet, some recent post-mortem studies provided strong evidence of the

value of MRI relaxometry techniques to study specific aspects of plaques pathology; Bagnato

et al. showed that high R2* values in the periphery of white matter (WM) lesions correlated

with iron accumulation in macrophages/microglia whereas high R2* inside the WM plaque

had the appearance of iron aggregates typical of microbleeds [131]. Furthermore, Tardif et

al. established that myelin loss within cortical lesions was associated with a concomitant

increase of T1 and T2 relaxation times and a decrease of MTI measures [55].

In this chapter, we combined three relaxometry techniques (T1, T2 and T2*) and MTI (i) to

classify MS cortical and WM lesions according to the extent of inflammatory and neurodegen-

erative phenomena, as measured by unconventional MRI and (ii) to assess the clinical impact

of MRI measures of lesion pathology in a cohort of relapsing-remitting multiple sclerosis

patients.

3.2 Method

3.2.1 Lesion segmentation

Cortical and WM MS lesions were manually identified in patients by an experienced neurolo-

gist (CG) and a radiologist (DR) using 3D FLAIR, 3D DIR and MP2RAGE images, as previously

reported [85, 91]. Manual contours were generated for each lesion by a trained technician
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for each contrast. As reported by [95] we merged the lesions extracted from FLAIR, DIR and

MP2RAGE to obtain a final union lesion mask for each subject. Lesion volumes were computed

and normalized by total intracranial volume using our in-house software [103]. Only lesions

with more than 10 voxels size were included in the analysis. Lesion masks were then registered

to MP2RAGE space using the registration parameters described in the previous chapter and

mean T1, T2, T2* and MTR were calculated for each lesion.

In order to assess the mean distribution of T1, T2, T2* rt and MTR in HC brain tissue, we seg-

mented lobar WM and cortical GM (frontal, parietal, occipital, temporal) as well as cerebellar

WM/GM from the MPRAGE images. To compare lesion MRI properties in patients with the

corresponding tissue in HC, we calculated a z-score for each contrast in each lesion (e.g. for

T1 data):

zT 1 = 1

N

∑
IT 1(ν)−µT 1(Ll ,Tl )σT 1(Ll ,Tl ) (3.1)

where zT 1 corresponds to the T1 lesion z-score (z), l to the lesion voxels, N to a normalisation

term, I the T1 map, µT 1 and σT 1 to the mean and the standard deviation of the T1 map in the

lobe L and tissue T (i.e WM or GM) in the HC group, corresponding to the lesion location and

type.

This normalisation step provide for each contrast a normalized value corresponding to the

number of standard deviation measured between a lesion voxel and the corresponding healthy

distribution. In this context, a negative value corresponds to a decrease of the quantitative

parameter, while a positive value reflects an increase of the parameter (Figure 3.1).

3.2.2 Lesion classification

Considering the continuous distribution (without distinct cluster) of lesions z-scores in each

contrast (see Appendix A.1), we classified the lesions z-score into 3 groups as follows: (i) z

very low (z < -2), (ii) z very high (z > 2) and (iii) z close to the HC distribution (-2 ≤ z ≤ 2). The

thresholds were chosen considering the fact that more than 95 percent of the z-scores belong

in the interval [-2, 2] in a normal distribution and that values beyond this interval reflect

significant differences in patients compared to controls (p< 0.05). (Figure 3.2). Last, for each

subject, all existing combinations of z were computed for all contrasts (e.g. : combination 1 =

zT 1 > 2, zT 2 > 2, zT 2∗ > 2, zMT R < -2; combination 2 = zT 1 > 2, zT 2 > 2, -2 < zT 2∗ < 2, zMT R < -2,

etc...) and mean lesion volume (MLV) was assessed for each combination (total normalized

lesion volume/number of lesions).

Finally we grouped the combinations in 4 lesion types : Class 1 (Combination 1), Class 2

(Combinations 2-4), Class 3 (Combinations 5-8), Class 4 (Combinations 9-12).
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Figure 3.1: Pipeline for MS lesions classification using multi-contrast approach. Computation
of lesion fingerprint using z-score measurement.

3.2.3 Statistical analysis

Regression analysis

Differences in age, gender, education, and clinical performance were assessed using a non-

parametric ANOVA (Kruskal-Wallis test) among HC and MS patients. A multivariate linear

regression of clinical scores was performed using a general linear model (GLM) applied to MLV

in each combinations of contrasts. Age, gender, educational years, anxiety, and depression

scores (HAD) were considered as covariates. Cognitive scores were adapted using Box-Cox

transformation to satisfy the model assumption for normality [132].

We performed seven regressions and applied a stepwise approach to select the best prediction

model for each dependent variable (clinical scores). Bonferroni correction was applied for

multiple comparisons (seven tests). “Leave-one-out” (LOO) cross validation was applied to

assess the prediction quality and robustness of each model. A p-value < 0.05 was considered

statistically significant.

All regression analyses were performed using R software (http://www.R-project.org).
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3.3. Results

Figure 3.2: List of the 12 combinations of MS lesions z-scores for T1, T2, T2* and MTR q/sq
MRI from the least (combination 1) to the most (combination 12) severe stage. The presence
of irreversible tissue loss was considered a sign of higher severity than inflammation.

3.3 Results

Contrasts combinations and lesion combination distribution

We found 12 z-scores combinations in all MS lesions (1402 lesions, Figure 3.2). These combi-

nations characterised plaques with no significant contrast changes (Class 1: combination 1,

54% cortical and 46% WM lesions), prevalent inflammatory edema (Class 2: isolated increase

of T2 and/or T2* z-scores, combinations 2-4, 40% of cortical and 60% of WM lesions), micro-

degeneration and/or inflammatory edema (Class 3: increase in T1 and/or increase in T2/T2*,

combinations 5-8, 2% cortical and 98% WM) and broad tissue loss (Class 4: strong increase

in T1 and decrease in MTR z-scores, with or without increase in T2/T2*, combinations 9-12,

100% WM).

Most of the lesions (70%) showed a significantly high T1 z-score (Class 3 and 4) and only 27%

of total number of lesions did not show any significant change in all contrasts (Class 1); 48% of

lesions showed high T1 z-score only (Class 3), 32% exhibited high T1 z-score combined with

high T2 or T2* (Class 3) and 18% were characterized by high T1 z-score combined with low

MTR (Class 4). Class 2 containing lesions with high T2 and/or T2* and "non significant" T1

and MTR counted less than 3% of the total number of lesions (Figure 3.3).

The cortical lesions represented 17% of the total number of lesions; 90% were cortical lesions

Type I (mixed GM/WM) and 10% Type II (GM only). They mainly belong to combination 1

(85%) and combinations 2 to 8. Most of the lesions were pure WM lesions (83%) and appeared
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in all combinations.

Figure 3.3: Distribution of lesions among combinations and distribution of combination
among patients. Combinations 1 (non significant z-score in all contrasts) and 4 (isolated high
T1 z-score) count more than 50% of all lesions and are the combinations mostly found in all
patients.

Linear regression

GLM using stepwise regression revealed a highly significant association, confirmed by a cross-

validation test, between lesions MRI characteristics and three clinical scores (Table 3.1):

• The MLV in combinations 8 and 9 (Class 3 and 4) together with age and depression score

predicted the MSFC (general disability) score (Adj-R2 = 0.6, p = 0.0005).

• The MLV in combinations 5, 6 and 9 (Class 3 and 4) in conjunction with gender predicted

the FV (execution) score (Adj-R2= 0.5, p = 0.002).

• The MLV in combinations 1, 9 and 10 (Class 1and 4) predicted the SRT (verbal memory)

score (Adj-R2 = 0.4, p = 0.002).

• MLV in combinations 1, 5, 6 and 9 (Class 1, 3 and 4) with age and depression score

predicted the SDMT (attention function) score (Adj-R2 = 0.5, p = 0.004). Nevertheless,

cross-validation test revealed a possible over-fitting of the GLM (estimated score vs

clinical score: Adj-R2 = 0.1, p = 0.09)

32



3.4. Discussion

MSFC FV SRT SDMT

Stepwise regression
p-value 0.00045*** 0.00166** 0.01536* 0.00379**

Adj-R2 0.55050 0.45350 0.38040 0.48960

Leave-one-out
cross-validation

p-value 0.00005*** 0.00030*** 0.00677** 0.09011

Adj-R2 0.43660 0.37490 0.25620 0.14360

Table 3.1: Regression analysis of clinical scores using lesions characteristics. Each line corre-
sponds to the corrected p-values, and adjusted-R2 of each model (n=7) subjected to regression
and cross-validation analysis. (*** : p< 0.001), (** : p< 0.01), (* : p< 0.05).

3.4 Discussion

Current diagnostic and prognostic criteria in MS as well as clinical trials end-points are based

on conventional MRI measures of lesions number, volume and activity [133]. Nevertheless,

these parameters provide only limited information about the nature and severity of tissue

alterations in the central nervous system. In fact, changes in conventional T1 and T2 signals

are compatible with both inflammatory and degenerative phenomena [80]; moreover, the pres-

ence of "black holes”, considered to be a marker of permanent axonal/myelin loss [134, 135]

might be also due to inflammatory extracellular [135] edema and activated microglia [136,137].

Furthermore, gadolinium (Gd) enhancement, a conventional marker of active inflammation,

does not detect active lesions with mild changes in blood-brain barrier (BBB) permeabil-

ity [138] and disseminated inflammation due to activated microglia [139]. In addition, the

presence of Gd uptake might reveal incomplete restoration of tight junction integrity and BBB

function in inactive, non-inflamed, chronic lesions [2].

We previously showed the potential of advanced MRI techniques allow to unravel the nature of

diffuse and focal tissue pathology in MS (Chapter 2). In this chapter, we aimed at investigating

the influence of unconventional MRI metrics of lesion pathology on patients disability and

cognition. In accordance with previous literature at 3T [95] we found that the majority of

lesions detected in our cohort of early MS patients were located in WM (83%), a moderate

number were mixed WM/GM (Cortical Lesion Type-I) (15%) and few were purely cortical

and punctiform (cortical lesion Type-II) (2%). We identified twelve combinations of MRI

contrasts in MS lesions, which we organized in four main groups according to the predominant

underlying pathology (Figure 3.2). Class 1 was constituted by lesions that did not show any

significant contrast change, possibly due to pathophysiological causes (i.e. presence of more

efficient reparative processes in early stages of disease) and/or technical aspects (lack of

sensitivity/spatial resolution). The other three groups were constituted by lesions exhibiting

prevalent inflammation (Class 2), micro-degeneration with/without inflammation (Class 3) or

predominant tissue loss (Class 4). These four groups were consistent with those reported by the

histopathological “Vienna classification” of MS lesions (Class 1: Vienna lesion type-VLT 6; Class

2: VLT 2; Class 3: VLT 2/5; Class 4: VLT 5) [140]. Interestingly, we did not observe any T1/T2/T2*
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decrease in local plaques, suggesting that no significant iron accumulation occurs in our

cohort of patients. However, since we performed an average lesion analysis, this observation

does not exclude the presence of local iron increase, as previously reported [131, 141].

Last, we studied the relative impact of lesion combinations/groups on clinical performance

in patients. And we found that lesions with concomitant micro-degeneration/inflammation

or important tissue loss had a greater impact on patients’ disability, executive function and

verbal memory than prevalent inflammatory lesions. This result could be due to the presence

of a minority of lesions in the purely inflammatory group (Class 2), which might be due to

the fact that most of the patients were benefitting of immunomodulatory/immunodepressive

therapy. In addition, lesions with no significant changes in multi-contrast MRI (Class 1) played

an important role in verbal memory and attention. This aspect is coherent with the fact that

the majority of Class 1 lesions were located in the cortical layers; yet, it could be also due to

the fact that a proportion of Class 1 lesions is located in eloquent areas. In order to elucidate

this last point, an ongoing study is aiming at integrating the lesion location information in the

current lesion classification.

3.5 Conclusion

In summary, this chapter provides a new approach to infer histo-pathological information

from MS plaques and supports evidence that MRI measures of lesion pathology are strong

determinants of patients’ clinical performance in our cohort. In addition, we propose a model

based on multi-contrast approach to characterized the heterogeneity of tissue damage in MS

lesions through a classification framework.

The next chapter, which focuses on deep gray matter nuclei analysis, presents an innovative

technique based on partial volume estimation, to disentangle the WM and GM components

in deep gray matter structures, providing additional information on the micro-properties of

the tissue affected by MS pathology
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4 A new approach for deep gray matter
analysis using partial volume estima-
tion

Abstract

The presence of partial volume in brain regions like the deep grey matter nuclei renders quite

challenging the detection and identification of pathological alterations. In this chapter, we

propose a new single-contrast approach to disentangle gray and white matter (GM, WM) in

the thalamus and the basal ganglia. Using a newly developed PV estimation algorithm (Roche

et al. [142]) we computed tissue concentration in each voxel so as to estimate the intensity

characteristic of each tissue throughout a given region of interest (ROI). The proposed method-

ology has been applied to a cohort of patients with early multiple sclerosis patients to assess

its ability to evaluate the impact of subtle and diffuse inflammatory or neurodegenerative pro-

cesses. Fourty-three relapsing-remitting MS (RRMS) patients and nineteen healthy controls

underwent 3T MRI including: (i) FLAIR, DIR, MPRAGE for lesion count; (ii) and T1 relaxometry

for tissue characterization and concentration maps estimation. We applied a newly developed

partial-volume estimation algorithm to T1 relaxometry maps (Roche et al.), and computed

GM and WM tissue concentrations maps to estimate the intensity characteristic of each tissue

in the thalamus and basal ganglia. Then, we performed a qualitative analysis comparing

estimated concentration maps with histological data, and a quantitative analysis consisting of

a group comparison based on the concentration and T1 intensity characteristic in both WM

and GM.Qualitative analysis provided evidence of the precision and validity of our approach

in the deep grey matter nuclei. Group comparison showed significant increase in the T1

of the GM component of the thalamus (p=0.016) in RRMS patients compared to HC. The

presented methodology enables an in-depth characterization of deep gray matter nuclei tissue

properties. This additional information holds promise to identify the presence and nature of

diffuse pathology in neuroinflammatory and neurodegenerative diseases.

The content of this chapter has been submitted to Human Brain Mapping.
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4.1 Introduction

Magnetic resonance imaging (MRI) provides in vivo information about brain tissue integrity

[83]. MRI signal varies across tissue types because gray matter contains a prevalence of cell

bodies (neurons, glial cells etc....) and iron, while white matter is for the majority constituted

by nerve fibers (myelinated and unmyelinated axons) [143, 144]. Nevertheless, as cell bodies

are common in WM, a certain amount of neuronal fibers is also present in cortical and sub-

cortical gray matter (Histology for pathologists Stacey E. Mills).

In T1 relaxometry images for example, the globus pallidus appears with lower T1 (close to

WM T1) compared with other deep gray matter nuclei (DGMN) due to an abundance of

myelin [145]. On the other hand, the putamen, which is composed by packed myelinated

axons [146], appears with a higher T1 (close to GM T1). The presence of several tissue types

results in an intensity mixing effect known as “partial volume” (PV). In brain regions affected

by important PV effects, the DGMN and the cortex (especially in the cerebellum), the identifi-

cation of the tissue type affected by pathology is challenging and pathological effects might

appear undetectable when tissues alterations have an opposite effect on the MRI signal. In the

recent past, a number of multi-contrast MRI approaches have been proposed to image cortical

myelination and differentiate the cellular component from the one constituted by neuronal

fibers in the brain cortex. Glasser et al. computed the ratio between T1- and T2-weighted MR

images to estimate cortical myelin content [147], while Grydeland combined this ratio with

diffusion MRI information to achieve more accurate results [148]. More recently, Shafee et al.

attempted at improving cortical myelin content estimation by introducing a mixture model of

gray and white matter based on T1- and T2-weighted images. As to deep gray matter (DGM)

structures (thalamus and basal ganglia), there have been few attempts to separate their tissue

components based on advanced MRI techniques like relaxometry and magnetization transfer

imaging or quantitative susceptibility mapping [149].

In this chapter, we present a new single-contrast approach, based on MP2RAGE images, to

disentangle WM from GM signal components in the thalamus and the basal ganglia. Using

a newly developed PV estimation algorithm (Roche et al. [142]) we computed tissue concen-

tration in each voxel so as to estimate the intensity characteristic of each tissue throughout a

given region of interest (ROI). This characteristic intensity stands for the idealized signal of

a voxel composed by pure tissue. Results were evaluated qualitatively by comparing the ob-

tained concentration maps with previously published histological data and with high-spatial

resolution 7T data in healthy subjects. Next, we performed quantitative comparison by assess-

ing differences in T1 quantitative MRI contrasts between a group of multiple sclerosis patients

and of healthy subjects.

4.2 Method

4.2.1 Image processing

Extraction of regions of interest
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We segmented the MPRAGE volumes using MorphoBox [103] in order to extract the following

deep grey matter regions : thalamus, caudate, putamen and pallidum. MorphoBox auto-

matically delineates regions of interest (ROIs) by performing a non-rigid registration with a

template, manually defined by 3 neurologists and radiologist by consent.

Concentration map and tissue intensities

The intensity of a voxel in a MR image depends on the pulse sequence used and the type of

molecules present in the voxel volume. In a T1 relaxometry map, this intensity is driven by the

density and type of molecules that compose the tissue. The microstructures in the DGMN can

be neurons nuclei or glial cells, mainly found in the GM, as well as axons and myelin, the main

components of WM [144]. Our approach consists in grouping DGMN cells in two pools, the

GM component and the WM component, and estimate their respective contributions to the

T1 intensity. For each subject, we applied the PV estimation algorithm developed by Roche A.

et al. [142] to the T1 relaxometry map in the extracted ROIs. This algorithm uses a PV model

that describes a voxel intensity as the sum of the GM and WM pooled intensities weighted by

their respective concentrations, up to Gaussian noise :

yi =µGMCGM +µW MCW M +εi with εi = N(0, σ) (4.1)

where yi is the intensity of a voxel i, CGM and CW M are the associated concentrations of GM

and WM, µGM and µWM the characteristic tissue intensities, i.e. the intensities corresponding

to 100% of GM and WM, respectively; εi represents the noise and σ its standard deviation,

which is also estimated by the PV algorithm. After we initialized the vector µ by standard T1

values [85] at 3T for GM (µGM = 1350 ms) and WM (µW M = 850 ms), the algorithm iteratively

estimated voxelwise gray and white matter concentrations and intensities within each ROI.

Since the algorithm can adapt to global intensity changes, the regionally pooled GM and WM

intensity estimates reflect putative T1 signal alterations due to pathology.

4.2.2 Qualitative assessment

In a first place, we qualitatively compared our results with a renowned method computing con-

centration maps. Images were segmented into GM, WM and CSF using SPM8 (Welcome Trust

Centre for Neuroimaging, Institute of Neurology, UCL, London, UK — http://www.fil.ion.ucl.ac.uk/spm),

(see Figure 4.1). Then, we qualitatively compared estimated GM concentration maps with

histological images reported in [150, 151]. In this work, Sadikot and Chakravarty used Nissl

staining to highlight the cells bodies representing GM in red, and blue Luxol to show myelin

of axons of the WM in blue (see Figure 4.3). Their images show variable concentrations of

neuronal cells and myelin in the different structures of the deep gray matter. We used 3T and

7T dataset to estimates our PV maps in order to appreciate the subtle tissue concentration gra-

dient in the different ROIs. We used whole brain estimated concentration maps to ease visual

inspection of the data. In practice global tissue concentration maps turned out qualitatively
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similar to their ROI-based counterparts.

Figure 4.1: Comparison between 2 axial slices of GM concentration maps (first row) and
Statistical Parametric Mapping (SPM) GM probabilistic maps (second row) at 3T. The SPM
map mainly shows binary concentrations, and some parts (pointed out by red arrows) of the
thalamus and putamen disappear compared with concentration maps.

4.2.3 Quantitative assessment

We performed a group analysis to compare RRMS patients and controls for each ROI. We

computed the T1 averaged across each ROI in RRMS patients and controls, and applied a

two-tailed permutation-based two sample t-tests with age and gender as covariates. Then

we performed the same analysis on ROIs revealing significative differences between the two

groups, based on the estimated pooled T1 intensity in GM and WM. as well as the logarithm of

the ratio between GM and WM concentration. A family-wise error rate correction was used

for multiple comparisons correction. Both concentration and intensity tests were corrected

simultaneously.
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4.3 Results

4.3.1 Qualitative assessment

The observation of GM concentration maps using SPM showed similarities with our PV esti-

mated maps. Nevertheless, the SPM maps appeared mostly binary than our PVE maps and

did not represent parts of the thalamus as well as a large part of the putamen (red arrows) (see

Figure 4.1). These results reflect the additional information provided by our method compared

with SPM in deep gray matter regions. Then, we qualitatively compared the results from the

concentration maps obtained from 3T data of 3 healthy subjects with two histological slices

obtained from Sadikot and Chakravarty [150, 151]. The first slice shows the histology of the

thalamus, the caudate and the putamen (see Figure 4.2): neurons nuclei in red, and myelin in

blue. While the concentration of nuclei in the putamen and caudate appears homogeneous,

the thalamus shows a variable amount of cells nuclei which gradually increase towards the

ventricles. The concentration maps estimated from the T1 map at 3T show very similar homo-

geneity in the GM concentration of the caudate (delineated in green) and putamen (delineated

in yellow), while the thalamus (delineated in blue) exhibits an increase of GM concentration

going from the border of the structure to its center. The red coloration in the histological slice

shows a higher concentration of neurons nuclei in the caudate than in the putamen. The GM

concentration map reflects this difference as the caudate appears brighter than the putamen

for the 3 subjects. We also noticed the difference in GM concentrations between the thalamus

and caudate, reflecting the presence of myelin, as shown in the histological data. Furthermore,

the concentration maps visualized the red nucleus (Ru) and the locus niger (Ni),as reported by

histological data.

Figure 4.2: GM concentration map using T1 maps of 3 healthy subjects at 3T and histological
slice with an outline of nuclei of the thalamus on a coronal Myelin-Nissl-stained section
(right).
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Similar observations are made in others coronal slices from estimated concentration maps of

3 healthy subjects scanned at 7T MRI compared with histological stainings [151] (see Figure

4.3). Owing to the higher spatial resolution than 3T data, 7T images showed additional detail:

a GM bridge between the caudate and putamen which is clearly observable on stained images.

The qualitative assessment showed multiple similarities in terms of nuclei structures and

relative concentration of each DGMN between histological data and concentration maps.

Figure 4.3: Comparison between GM concentration map of 3 healthy subjects at 7T and an
histological slice from a healthy human subject . The concentration map were estimated using
the whole-brain T1 map. In the zoomed area of GM concentration map we can observe the
gray matter bridge present in the histological slice between the caudate and the putamen.

4.3.2 Quantitative group comparison using global ROI averaging, T1 tissue inten-
sities and concentrations

The multivariate analysis of T1 pooled intensities and concentration ratios revealed a sig-

nificant difference in the thalamus of RRMS patients (p=0.0016). The analysis of the tissue

T1 intensities and concentrations showed a significant increase of 3% of the GM T1 in the

RRMS patients (Controls: µGM = 1389 ± 47 ms; Patients: µGM = 1427 ± 40 ms; p = 0.016), while

the WM T1 (0.6%) and the concentration ratio (-1%) were not found significantly different

(Controls: µWM = 912 ± 18 ms, µratio = 0.62 ± 0.08; Patients: µWM = 918 ± 14 ms, µratio = 0.61

± 0.07) (see Figure 4.4).

40



4.3. Results

Figure 4.4: Boxplots of the WM and GM of the thalamus for RRMS patients and controls using
the proposed PV method. It shows significant increase in the T1 of the GM components
between the RRMS patients and HC.

Figure 4.5: Boxplots of the WM and GM of the putamen for RRMS patients and controls
using PV method. This method showed no significant increase in the T1 of the GM and WM
components neither concentration ratio between the RRMS patients and HC.

The putamen, caudate and pallidum did not show any significant changes between RRMS

patients and HC using the multivariate analysis (see Figure 4.5). The global averaging analysis

showed significant differences in the thalamus but also in the putamen between RRMS patients

and HC. In both structures, we observed a significant T1 increase in RRMS patients compared

with HC (thalamus: p = 0.038; HC : µT1 = 1094 ± 33 ms; RRMS : µT1 = 1110 ± 22 ms ; putamen:

p = 0.026; HC : µT1 = 1136 ± 35 ms; RRMS : µT1 = 1156 ± 27 ms, see Figure 4.6).
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Figure 4.6: Boxplot of mean T1 in the thalamus and putamen using global averaging method.
This method showed significant increase of T1 in both ROIs in RRMS patients compared with
HC.

4.4 Discussion

This study presents a new approach to disentangle GM and WM in regions affected by PV

like the thalamus and the basal ganglia. The proposed methodology provides quantitative

estimations of GM and WM voxelwise concentrations and pooled intensity values that are

characteristic of GM and WM within a particular region, opening new perspectives to evaluate
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the impact and the nature of pathological processes in these brain regions.

The comparison with concentration maps estimated using a publically available software

(SPM8) revealed similarities and some differences. Specifically, SPM maps had an overall

comparable global appearance with the one obtained with our method, though our maps

visualize parts of the thalamus and putamen, which were not visible on SPM maps. In parallel,

the qualitative comparison of estimated tissue concentration maps with histological data

showed remarkable similarities. The heterogeneity of cells nuclei concentration in the thala-

mus, as well as the variable amount of myelin among the DGMN, could indeed be observed

in GM concentration maps as shown in the histological slices. Also, the concentration maps

estimated from 7T MRI data showed subtle structure such a GM bridge between the caudate

nucleus and the putamen in addition to the detailed microstructure already revealed by 3T

maps. All together therefore, these findings provide qualitative validation of the PV estimation

technique, recently proposed by of Roche et al. [142].

Furthermore, group analysis showed a significant changes between MS patients and controls

in the thalamus (p=0.038) and putamen (p=0.026). The changes in the thalamus were mainly

reflected by an increase of the intrinsic T1 value of the GM in RRMS patients (p=0.016), with

no significant changes in the T1 of the WM component nor in the concentration ratio. At

the same time, the analysis of the putamen did not show significant changes in the T1 of the

GM and WM nor concentration ratio, but revealed an increase in the 3 components. These

results suggest that the pathology in the thalamus seems to mainly affect the microstructure

elements composing the GM pool, while in the putamen the WM and GM pools appeared less

but equally affected.

From a patho-physiological viewpoint, these findings imply the presence of a diffuse alter-

ation of the tissue in the thalamus and putamen, which may be due to a loss of tissue or an

increase in water component. This might reflect a stage preceding atrophy, which has been

already reported in the thalamus since the early stages of the MS [152]. Our approach provided

additional information and improved our understanding of the underlying processes involved

in brain tissue alteration in ROIs affected by PV. Although global averaging method remains

sensitive to compare MR intensities in ROIs, our method may also reveal changes in DGMN in

a more sensitive way. In fact, a multivariate analysis (e.g. MANOVA) may be more appropriate

in case of larger cohort, to detect subtle changes.

Yet, our approach suffers from some limitations. Concerning the intensity model we used, it

considers that the characteristic intensity of a tissue is homogeneous over the whole region of

interest. This hypothesis is questionable for large regions of interest such as the cortical gray

matter, and may limit the validity of our method to small regions such as the DGMN. Moreover,

the estimation of the PV becomes ambiguous when the tissue is so alterated that its intensity

is drastically changed. Consequently, focal alterations such as lesions, could be confused with

voxels with high GM concentration in T1 maps for example. Therefore, an exclusion of the

lesions should be considered before estimating concentration maps.
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4.5 Conclusion

In summary, our study proposed a single-contrast approach which provides novel and relevant

characteristics of brain tissue in regions affected by partial voluming. In this context, the

analysis of basal nuclei and thalamus which are involved in the physiopathology of various

neurodegenerative diseases [153], may be improved and lead to new perspectives to under-

stand underlying processes of the pathology. Additional studies extending the PV approach to

other regions (lobes, cerebellum) and other qMRI would provide whole-brain concentration

map, and allow to compute spatial comparison map between individual and control group

(see Conclusion : Perspectives).

In the next chapter we present the results of a longitudinal analysis based on our q/sq multi-

contrast approach, and we show the potential of our methodology to monitor disease over 2

years.
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5 Longitudinal analysis of multi-
contrast advanced MRI

Abstract

Clinical monitoring of RRMS patients evolution and therapy efficacy plays a key role in MS

since a number of treatments have been shown to substantially reduce the number of clinical

relapses and disability, as well as the extent of local inflammation and brain volume loss [154].

Recently, a number of non-conventional MRI techniques have been applied to disease follow-

up, to overcome the limitations of conventional MRI due to their low sensitivity to diffuse and

subtle changes in brain tissue. In this chapter, we used longitudinal MRI data acquired over 2

years to assess (i) the sensitivity of multi-contrast MRI (mcMRI) to longitudinal changes in

normal appearing brain tissue and lesions, and (ii) the prognostic value of baseline mcMRI

metrics to predict motor and cognitive performance at 2 years in MS patients. Results showed

significant changes in normal brain tissue due to aging effect characterized by an increase of

T1 and a decrease of MTR in MS patient and controls. Lesions analysis revealed significant

changes suggesting reparative processes such as remyelination and scar formation. Finally

the combination of quantitative MR measurements of focal and diffuse pathology from the

first time-point showed strong correlation with clinical score of the second time-point.
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5.1 Introduction

To date, there is no cure for RRMS but a number of treatments have been shown to substantially

reduce the number of clinical relapses and disability, as well as the extent of local inflammation

and brain volume loss [154]. Clinical monitoring of RRMS patients evolution and therapy

efficacy relies on neurological and disability assessment, which is often insensitive to mild

and subclinical disease progression. On the other hand, conventional magnetic resonance

imaging (MRI), such as T2-weighted and gadolinium enhanced MRI, provide quantitative

measurements of local MS pathology (lesion number and volume) as well as on inflammatory

activity [155]. In addition, conventional T1-weighted MRI is sensitive to the presence of severe

local tissue loss ("black holes") [155], and provides the basis for volumetric estimations and

brain atrophy assessment [28, 156]. Yet, conventional MRI has low sensitivity to diffuse and

subtle brain alterations, and provides with metrics that only partially correlate with patients

function and disability [157–159]).

In this context, a number of non-conventional MRI techniques have been applied to overcome

the limitations of conventional MRI, such as Magnetisation Transfer Imaging, Diffusion Ten-

sor Imaging, relaxometry and spectroscopy [160]. Nevertheless, single contrast approaches

provides only limited knowledge about the nature of measured alteration. We recently showed

that advanced multicontrast MRI (mcMRI) provides metrics to quantify the extent and the

nature of focal and diffuse pathology in MS, with higher specificity than single contrast ap-

proaches; besides, we determined that metrics of tissue mictrostructural integrity as obtained

with cMRI improved the clinico-radiological correlations obtained with conventional mea-

sures only (lesion number and volume).

In this chapter, we assessed (i) the sensitivity of mcMRI to assess longitudinal changes in brain

tissue properties of a cohort of MS patients compared to healthy controls, that we followed-up

for 2 years; and (ii) the prognostic value of baseline mcMRI metrics to predict motor and

cognitive performance at 2 years in MS patients.

5.2 Methods

Thirty RRMS patients out of 36 and 9 HC out of 20 were enrolled for a second scan session 24

months after the first scan. Seven patients and one control were discarded because one or

more datasets were artefactual.

The cohort of interest consisted therefore of 23 RRMS patients (17 women / 6 men, age = 35.7

± 11.8 years) and 8 HC (2 women / 6 men, age = 34.3 ± 9.2 years). The MRI protocol was the

same for the 2 time-points as well as the cognitive, behavioural and motor tests applied (see

Chapter 2.2.3).

As to therapy, thirty patients (83%) were under immunomodulatory treatment (high dosage

IFN beta or fingolimod) for at least 3 months. No patient had received corticosteroid therapy

within the three months preceding the enrollment.
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5.2.1 Tissue and lesions segmentation and images registration

Morphobox [103] was used to segment tissues and structures (lobes, deep gray mater nuclei

etc...) on MPRAGE images for both time-points. Images were registered to the MP2RAGE

space using the same approach presented in Chapter 2.

Lesions were manually segmented on 3D FLAIR, DIR and MP2RAGE images also for the second

time-point by an expert technician, who reviewed also the first time-point for consistency.

The lesions masks of the second time-point were all registered with lesions masks of the first

time-point (TP1) so we could match the same lesions identification number.

5.2.2 Image processing and lesions classification

For both time-points, we extracted mean T1, T2, T2* and MTR in the gray and white matter

components of the following ROIs: frontal lobe, temporal lobe, parietal lobe, occipital lobe,

cerebellum, thalamus and basal ganglia. Normal appearing tissue was obtained in each ROI

by subtracting the lesions union mask.

The lesions were processed separately using the methodology presented in chapter 3. We com-

puted T1, T2 and MTR z-scores for all lesions and we assigned each lesions to its corresponding

combination and group (see Chapter 3.2.2).

5.2.3 Statistical analysis

Normal appearing tissue and volumetry

MANOVA was used to study the influence of a number of independent variables (age, gender,

patients group, MRI sequence and time-points) on the four dependent variables represented

by T1, T2, T2* and MTR mean in each brain ROI (WM, GM, cerebellum, thalamus and basal

ganglia).

Based on the MANOVA results, we then performed a number of ANOVA tests to assess the

influence of the time-points and of the group, on each MRI sequence (T1, T2 and MTR).

Time-point 1 vs. Time-point 2

In order to analyse the changes over 2 years, we performed paired t-tests for each contrast and

group. This analysis considered multiple pairs of observations (mean of the corresponding

contrast and region) to assess the following H0 hypotheses:

• There are no differences in the mean T1, T2 and MTR of the GM and WM of the temporal,

frontal, parietal and occipital lobes between TP1 and TP2.

• There are no differences in the mean of the T1, T2 and MTR of the GM and WM of the

cerebellum between TP1 and TP2.

• There are no differences in the mean of the T1, T2 and MTR of the thalamus, caudate,
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putamen and pallidum between TP1 and TP2.

All tests were corrected for multiple comparison using Bonferroni.

Patients vs. Controls Group

In order to differentiate normal aging and pathological effects, we computed the difference

between the time-points in each contrast for all patients and controls, and performed two-

sampled t-tests to assess the following H0 hypotheses:

• There are no differences in the evolution of the T1, T2 and MTR of the GM and WM

of the temporal, frontal, parietal and occipital lobes between the control and patient

group.

• There are no differences in the evolution of the T1, T2 and MTR of the GM and WM of

the cerebellum between the control and patient group.

• There are no differences in the evolution of the T1, T2 and MTR of the thalamus, caudate,

putamen and pallidum between the control and patient group.

All tests were corrected for multiple comparison using Bonferroni.

Volumetry

We performed two-sampled t-tests analysis to measure the difference of normalized volume

of the global GM and WM, as well as the thalamus and basal ganglia between patients and

controls groups. All tests were corrected for multiple comparison using Bonferroni.

Lesions

In order to detect changes in lesions evolution, we measured changes in lesions combinations

and groups. We grouped the 12 combinations in 4 main groups and we performed a paired

two-sampled t-tests in each group. Results were corrected for multiple comparisons using

Bonferroni.

In order to assess the potential of mcMRI to predict the appearance of new lesions or lesions

expansion, we computed the mean T1, T2 and MTR value at TP1 of the region corresponding

to new lesions and expanding lesions at TP2. Then we performed a two-sampled t-test for

each contrast between the mean value of the region defined previously and the mean value

of the healthy tissue in the corresponding lobe. Last, we repeated the analysis by replacing

healthy tissue mean value by the normal appearing tissue characteristic T1, T2, T2* and MTR

at TP1.
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Regression analysis

A multivariate linear regression of clinical scores was performed using a general linear model

(GLM) on TP1 MRI data (regressors) and TP2 clinical scores (predicted variables). Age, gender

and educational years were considered as covariates.

Due to the small cohort of subjects, we considered global measurements and not lobe-wise

mean. We also added T1, T2, T2* and MTR lesion z-scores to assess their prediction potential

in clinical scores. Cognitive scores were adapted using Box-Cox transformation to satisfy

model assumption for normalization. EDSS scores were not considered, as they were positive

only in patients. We performed seven regressions, where we used a stepwise approach to select

the best prediction model for each dependent variable (clinical scores). Bonferroni correction

was applied for multiple comparisons (seven tests).

“Leave-one-out” cross validation (LOOV) was applied to assess the prediction quality and

robustness of each model. This last analysis extracted a correlation coefficient between the

predicted value and the real one. All regression analyses were performed using R software

(http://www.R-project.org).

5.3 Results

5.3.1 Normal appearing tissue and volume analysis

The MANOVA showed that the time-points, the group and the age significantly influenced the

evolution of all contrasts. Therefore we performed ANOVA on time-points and group effect

separately considering age as a covariates.

Time-points effects

In patients normal appearing tissue, we observed a significant increase in the T1 in the WM

of the occipital and lobe frontal lobes (occipital : p = 1.2e-04, frontal : p = 0.012), as well as

in the WM and GM of the temporal lobe (WM : p = 5.86e-05; GM : p = 0.011) between the 2

time-points Figure 1-a. We also measured an increase in T1 in the WM of the cerebellum (p =

0.016) and a significant decrease in the pallidum (p = 0.0089).

We observed a decrease of T2-rt in the WM of the occipital and parietal lobes (occipital : p =

3.2e-07; parietal : p = 3.99e-06), as well as the GM of the frontal lobe (p=0.026) between the 2

time-points. We also measured a decrease in T2-rt in the pallidum and putamen (pallidum : p

= 0.0206; putamen : p = 0.04), and an increase in T2 in the caudate (p = 0.039).

T2* was greatly increased in the frontal and temporal lobes of MS patients vs controls (frontal

: p = 1.37e-04; temporal : p = 3.60e-10), nevertheless we mainly attributed those differences

to strong distortion artefact that we observed in these regions at TP2. In the cerebellum, we

found a significant increase of T2* in WM (p = 0.027) as well as in the caudate (p = 0002) and

the putamen (p = 0.0003). The MTR showed a significant decrease in the GM of the occipital
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lobe (p = 0.003).

Significant changes were also measured in normal appearing tissue of controls with an increase

of the T1 of the temporal WM (p = 0.0002), and a decrease of the T2 of the parietal WM (p =

0.007). We measured significant decrease of the T2 in the putamen of controls (p = 0.0012), as

well as an increase of T2* in the caudate (p = 0.023) and putamen (p = 0.044).

All graphs illustrating changes in T1, T2 , T2* and MTR are in Appendix A.3-A.7.

GM WM

Occipital Frontal Temporal Parietal Occipital Frontal Temporal Cerebellum

T1 n.s n.s 0.011* n.s 0.00012** 0.012* 5.86e-05*** 0.016*

T2 n.s 0.026* n.s 3.99e-06*** 3.2e-07*** 0.007* n.s n.s

T2* n.s n.s n.s n.s n.s n.s n.s 0.027*

MTR 0.003* n.s n.s n.s n.s n.s n.s n.s

Caudate Putamen Pallidum

T1 n.s n.s 0.0089*

T2 0.039* 0.04* 0.0206*

T2* 0.002* 0.0003** n.s

MTR n.s n.s n.s

Table 5.1: Paired two-sampled t-tests p-values for RRMS patients in significant ROIs for all
contrast between TP1 and TP2. n.s : non significant.

WM CN

Parietal Temporal Caudate Putamen

T1 n.s n.s n.s 0.0002**

T2 0.007* n.s n.s 0.0012*

T2* n.s n.s 0.023* 0.044*

Table 5.2: Paired two-sampled t-tests p-values for controls in significant ROIs for all contrast
between TP1 and TP2. n.s : non significant.

Groups effects

We did not find any significant difference between changes observed in RRMS patients and

control group. The volumetric analysis did not show any significant group differences in the

observed changes in T1, T2, T2* relaxation times and MTR between time-points.

5.3.2 Lesions

The paired t-tests on lesions revealed significant decrease of T1-rt and T2-rt and an increase

of MTR (T1 : p = 6.18e-43; T2 : p = 6.54e-04; MTR : p =1.60e-04) Figure A.8. The analysis of the

longitudinal evolutions of lesions combinations and groups showed different effects in the

50



5.3. Results

four groups. The first group, composed by lesion with no difference in T1, T2, T2* and MTR

with healthy tissue, showed no significant changes between the time-points (p = 0.5). This

group counted for 35% of the total number of lesions at the TP1, and 45% at TP2. Most of the

lesions from this group (88%) remained in the same group, while the rest equally divided in

the Class2 (6%), Class3 (4%) and CLass4 (2%) Figure(5.1).

Figure 5.1: Evolution of lesions among the different group based on qMRI combination.

Also the second group, composed by lesions exhibiting prevalent inflammation, did not show

any significant changes between the two time-points (p = 0.3). This group counted for 6%

of the total number of lesions at TP1 and increase to 20% of the lesions of TP2. 45% of the

lesions of this group remained in the same group, while 47% evolved to the Class1 and the rest

evolved to Class3 (8%) Figure(5.1).

The third group of lesions, including lesions with micro-degeneration with or without in-

flammation showed significant changes (p = 6e-06), characterized by an evolution toward

combinations reflecting milder tissue alterations. This group counted for 50% of the total

number of lesions at TP1 and increased to 53% at TP2. Twenty-three percent of the lesions of

this group evolved to Class1 (23%) and few of them in Class2 (6%) and Class4 (6%), while more

than the half of the lesions (65%) remained in the same group Figure(5.1).

Similarly the Class4, composed by lesion with predominant tissue loss, showed significant

changes between the two time-points (p = 3.06e-09) (Figure 4). This group counted for 8% of
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the total number of lesions at TP1, and decreased to 7% at TP2. Most of the lesions evolved to

Class3 lesions (58%) and few to Class1 lesions (8%), while the rest remained in the same group

(34%) Figure(5.1).

Finally, the analysis of the tissue in TP1 where new lesions will appear on TP2, showed a

significant increase in T1 (p = 1.24e-05) and T2 (p = 1.24e-06) in patients compared with

healthy tissue as well as with normal appearing tissue surrounding the analyzed regions (T1

: p = 0.018; T2 : p = 5e-04). We also observed a significant decrease of MTR compared with

healthy tissue (p = 0.005), but no changes with normal appearing tissue (p = 0.4). Figure A.9.

Likewise, the regions where lesions expanded also showed significant increase of T1 compared

with healthy tissue (p = 1e-56) and with NA tissue (p = 1e-46), as well as an increase of T2

(healthy tissue : p = 2.8e-71; NA : p = 7.7e-54) and T2* (healthy tissue : p = 4.07e-13; NA : p =

1.05e-05), and a decrease of MTR (healthy tissue : p = 7.7e-41; NA : p = 1.07e-36) Figure 5.2,

Figure A.10.

Figure 5.2: Example of new lesions on q/sq MRI contrasts. Though we found significant
difference between normal appearing tissue and HC in regions where lesions will appear (red
square), we can not see any evidence of changes in q/sq MRI before lesions appearance.

5.3.3 Regression analysis

GLM using stepwise regression revealed a highly significant association, confirmed by cross-

validation results, between multi-contrast MRI features and three clinical scores (Table 2):

• T1, T2 mean z-score of lesions and T1, T2, T2*, and MTR mean of NAWM and NAGM

together with age and education predicted the word list generation (memory function)
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score ( Adj-R2: 0.97, p = 0.0001; LOOV : 0.28).

• T1, T2, T2* and MTR mean z-score of lesions and T1, T2, T2*, and MTR mean of NAWM

and NAGM together with age, gender and education predicted the FSMC cognitive

(fatigue) score (Adj-R2: 0.97, p = 0.006; LOOV : 0.61).

• T1 T1, T2, T2* and MTR mean z-score of lesions and T1, T2, T2*, and MTR mean of

NAWM and NAGM together with age, gender and education predicted the FSMC motor

(fatigue) score ( Adj-R2: 0.93, p = 0.01; LOOV : 0.41).

Word list

generation

FSMC

cognitive
FSMC motor

p-value 1.27e-04*** 0.006* 0.0105***

Adj-R2 0.9795 0.9750 0.9391

Leave-one-out 0.28 0.61 0.41

Table 5.3: Regression results using MRI data from Time-point 1 to predict clinical scores from
Time-point 2.

5.4 Discussion

Our longitudinal study shows that multicontrast quantitative and semiquantitative MRI is

sensitive to local and diffuse pathology evolution in a group of RRMS patients under im-

munomodulatory and immunodepressive therapy. In addition, multi-contrast MRI metrics

provided strong predictors of memory function and fatigue at two years follow-up.

In RRMS patients, we observed a small difference between time-points in mean T1, T2, T2*

and MTR in normal appearing tissue. These minor parametric variations (<3%) over two

years follow-up are compatible with changes observed during normal aging processes. In fact,

Callaghan et al. observed similar T1 increases in several regions of the brain (1% to 1.6% over

one year [161]). Likewise, the same authors and several others studies [162–164] reported a

decrease of quantitative MT value between 1.5% and 2.5% in one year, while we measured a

decrease of MTR around 5% in two years.

The changes in T1 are associated with degenerative changes on myelin sheaths due to normal

aging [38, 165]. The decrease of MT ratio in GM may reflect neuronal or nerve fibers loss [166].

We also observed an increase of T2*-rt in the caudate and putamen (<5%) over the two years,

which was accompanied by an increase in T1-rt and T2-rt in the caudate, and a decrease of

T1 and T2 in the putamen. This effect might originate from iron loss due to degenerative

changes in the basal ganglia [161] but since changes in the other parameters were quite

modest (<5%), the interpretation of these findings remain challenging. Future studies in
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larger cohorts, including patients at more advanced disease stages, may help distangling the

pathophysiological mechanisms T2* changes in the basal ganglia.

The analysis of T1, T2 and MTR of lesions showed an improvement revealed by a significant

global decrease of T1-rt and T2-rt, and combined with a global increase of MTR. These results

suggest a repair activity within the lesions. The individual analysis of MS lesions revealed

changes in all lesion groups though only changes in Class3 (lesion with both inflammation

and degeneration) and Class4 (lesions with predominant degeneration) reached significance.

A significant part of Class3 (p=6e-06) and Class4 (p=3.06e-09) lesions evolved to lesions with

milder alterations (Classes 1-3). In Class3, we observed a decrease of T1, T2 and or T2*

reflected by an evolution of the lesions toward Class1 ( 20%) and Class2( 6%). This changes

might indicate an attenuation of inflammatory and degenerative phenomena. Nonetheless,

most of Class3 lesions (65%) remained in the same group suggesting that micro-degeneration

is counterbalanced by remyelination process [118]. Only few lesions from Class3 evolved to

more advanced stage in Class4 (6%) where MTR decrease reveal a destruction of tissue and

may suggest an acute phase of the lesions. In group 4, we observed an increase of MTR in

lesions that evolved to Class3 (58%). These changes suggest a reparative activity characterized

by remyelination and/or scar tissue formation [118, 167]. A third of Class4 lesions remained in

the same group, providing evidence that repair mechanisms did not counter-balanced the

tissue loss.

Although we did not measured significant changes in lesions from Class1 (p=0.5) and Class2

(p=0.3), a minority of Class1 lesions (12%) evolved toward more advanced stages including

inflammatory and degenerative activity. As to Class2, a very small number (8%) showed

evidence of micro-degeneration or tissue loss after 2 years, but almost half of Class2 lesions

even evolved toward milder stage, which may be due to reabsorption of inflammatory oedema

[118]. In summary, therefore, the analysis of lesions evolution revealed different underlying

processes that modified tissue microstructure, and that reflect the balance between injury and

repair capacity of the brain.

Interestingly, the analysis of the normal tissue at TP1 that evolved into lesion tissue at 2

years follow-up showed a significant increase of T1-rt and T2-rt and a decrease of MTR when

compared with healthy tissue in HC and tissue surrounding the lesions in patients. This

suggests an increase in water content of the pre-lesion tissue and/or tissue loss. Filippi

and Pike previously observed MTR abnormalities up to 2 years before lesions appearance,

suggesting primary myelin damage before inflammatory mediated brain-blood barrier dis-

ruption [168, 169]. Fazekas et al. also measured a significant drop of MTR six month before

lesions appearance, combined with an increase of T1 native relaxation time [170]. Though

MTR decrease was interpreted as demyelination, it could actually suggest water accumulation

in the form of micro-oedema, which is what we observed in a previous study [80].

Last, relaxation times and MTR in NA tissue combined with mean lesions z-scores at the first

MRI strongly predict patients cognitive (Adj-R2: 0.97, p = 0.006) and motor fatigue (Adj-R2:
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0.97, p = 0.0001) as well as memory (Adj-R2: 0.97, p = 0.01) at 2 years follow-up. This study

extend results obtained at TP1 (Chapter 2), by showing the longitudinal predictive power of

mcMRI even in patients with mild clinical deficits.

5.5 Conclusion

In conclusion, mcMRI provided sensitive measures to assess longitudinal changes of diffuse

and focal brain tissue abnormalities, over 2 years. We also measured quantitative T1 and T2

abnormalities preceding lesions appearance suggesting presence of micro-edema. Finally,

we provided evidence of the strong prognostic value of baseline mcMRI metrics to predict

motor and cognitive performance at 2 years in MS patients. Future studies should confirm

and extend our findings in other MS disease subtypes and with longer follow-up.
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6 Conclusion : Achievements and Per-
spectives

This thesis aimed at studying the micro-properties of brain tissue in MS patients using new

advanced techniques in MRI. Initially, we established a methodology combining different

q/sqMRI contrasts to detect diffuse subtle pathological changes in brain tissue of MS patients

as well as focal alterations. We also showed how to take advantage of the complementarity of

q/sqMRI sensitivity (i.e. changes in water, macro-molecules, iron...), to identify the physio-

pathological process underlying tissue microstructure alterations in MS. Then, we extended

our multi-contrast approach to model the heterogeneity of tissue damage in MS lesions

through a classification framework. We also presented an innovative technique based on

partial volume estimation, to disentangle the WM and GM components in deep gray matter

structures, providing additional information on the micro-properties of the tissue affected by

MS pathology. Last, we showed the potential of our approach to monitor MS patients over a 2

years period, and particularly to identify repair and degeneration activity in brain tissue.

6.1 Achievements

The results we reported in this thesis may have potential impact both at a methodological and

clinical application level.

On a methodological level, we established that multi-contrast q/sq MRI provides higher

sensitivity and specificity than single contrast approaches.

• We showed the sensitivity of q/sqMRI to subtle changes in large regions as well as in

focal areas and provided metrics to estimate the physiopathology of observed tissue

alterations.

• Based on these metrics, we proposed a new classification method of MS lesions pathol-

ogy and their evolution, which recalls histopathological data in MS patients.

• Last, we revealed the potential of a partial volume approach based on T1 relaxometry

contrast, to detect subtle pathological and tissue-specific effect in the deep gray matter
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nuclei.

In term of clinical applications, the constant development of MR technology and the accel-

eration of MR sequences acquisition might render q/sq MRI clinically compatible in a near

future. Of course, extension to more advanced and bigger MS cohorts as well as reproducibility

studies in a multi-centre settings are required before foreseen the introduction of q/sq MRI in

clinical protocols; however, the current work sets the basis for future investigations.

6.2 Perspectives

In this thesis, we performed a comparison between MS patients and healthy controls groups.

Yet, clinical applications are based on single-patients evaluations. Therefore, we conceived a

pipeline model to perform analysis of tissue microstructure in a single MS patients. Specifically,

we created a voxel-wise deviation map of an individual by computing z-score maps for each

q/sq contrast. We then incorporated the partial volume estimation technique in the pipeline

to identify the WM and GM components in each brain structure.

Figure 6.1: Pipeline for deviation maps computation. The inputs are the q/sq MRI concentra-
tion maps, as well as the normative ranges of WM and GM in each brain structure.

Subsequently, we computed the normative ranges of 3 contrasts (T1, T2, MTR) in all brain

regions (lobes, basal ganglia, cerebellum) for each tissue (GM, WM) in the control population

(n=18). Then, we computed the z-score map of the 3 contrasts from the concentration maps

for each a single patient. Figure 6.1.
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We performed our pipeline on T1, T2 and MTR contrasts. The results show relevant repre-

sentation of diffuse changes, particularly in the T2 relaxation time Figure 6.2. The analysis of

lesions show strong changes in T1, T2 and MTR inside the lesions but also in the surrouding

area. Our maps provide evidence of diffuse alteration of the tissue characterized by T2 and

MTR variations. These results may help to improve our understanding of tissue alterations,

and should help to identify more precisely areas where pathology occurs.

Figure 6.2: Deviation maps of T1, T2 and MTR contrast. In order to adapt the colormap to
theT1 and T2 contrasts, the MTR deviation map shows the opposite of the MTR z-score (zMT R

= -z). The color code shows in dark blue the negative z-scores (decrease of T1, T2 and an
increase of MTR), in light blue a positive z-score, and in yellow to red a high z-score (increase
of T1, T2 and decrease of MTR). Based on this color code, the analysis of the lesions shows
strong changes in T1, T2 and MTR z-scores within the lesions but also in the surrounding area.

This technique which showed promising preliminary results, presents advantages compared

with existing methods such as voxel based morphometry. First of all, this methodology is based

on brain tissue identification (GM, WM, CSF) and comparison with normative ranges which

does not require any inter-subject registration. This technique combined with partial volume

method giving precise tissue concentration information, may also allow a finer analysis of
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challenging areas such cortex and cerebellum. Nevertheless, this approach requires a large

cohort of healthy subjects to correctly set the normative ranges. In addition, lesions masks

are required rendering this approach only feasible when an automatic and reliable lesion

detection tool is available.

In summary, we set up a method that we foresee can be easily applied in the future to provide

a visual map of brain tissue pathology in single MS patients. Future work should focusl in

building up robust normative ranges in the healthy population as well as integrating automatic

lesion assessment algorithms in the current pipeline.
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A Appendix

A.1 Preliminary analysis on lesions classification

In a preliminary analysis of MS lesions, we performed correlation analysis between the z-

score distribution of each contrast (Figure A.1). We also analysed outliers and the association

between distribution of lesions z-score among the 4 q/sqMRI with lesions size, type (GM, WM,

mixed GM/WM), and location (Figure A.2). Finally we performed an automatic classification

of lesions according to their 4 z-scores using a simple K-mean algorithm.

As excepted, we noticed a strong positive correlation between T1 and T2 z-scores, as well as a

negative correlation between T1 and MTR z-scores (Figure A.1). The analysis of the outlier

pointed out segmentation issue in periventricular lesions, where CSF is wrongly include in the

lesions leading to very high z-score. In fact it compared wrong tissue type. The distribution

of lesions z-score did not show any significant association with lesions size, type or location.

Finally, the K-mean algorithm showed no significant results, reflecting absence of cluster in

the data. The distribution of lesions z-scores appear indeed continuous in the 4 contrasts.
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Figure A.1: Distribution of all lesions according to their T1, T2 and MTR z-score. The distri-
bution shows no cluster. The red dashed lines delimit the threshold manually set for lesion
classification.
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A.1. Preliminary analysis on lesions classification

Figure A.2: Distribution of lesions z-scores according to their type, size and location. Cortical
lesions appeared to have lower z-score, due to their low contrast. No sign of correlation
between T1, T2, T2* and MTRz-score value and lesions size and location.
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A.2 Longitudinal analysis of RRMS patients and controls

We present here the figures illustrating the changes in T1, T2, T2* and MTR in the regions were

it appeared significant.

Figure A.3: Boxplot of the difference of T1 of normal appearing tissue in patients between
time-points. T1 relaxation times increase in WM and GM of the temporal lobe and in the WM
of the cerebellum.
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A.2. Longitudinal analysis of RRMS patients and controls

Figure A.4: Boxplot of the difference of T1 of normal appearing tissue of controls between
time-points. T1 relaxation times increase in WM and GM of the temporal lobe and in the WM
of the cerebellum.
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Figure A.5: Boxplot of T2 difference of normal appearing tissue in patients between time-
points. T2 relaxation times decrease in pallidum, putamen and WM of the parietal, frontal
and parietal lobes but increases in the caudate and MG of the frontal lobe.
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A.2. Longitudinal analysis of RRMS patients and controls

Figure A.6: Boxplot of T2 difference of normal appearing tissue in controls between time-
points. T2 relaxation times decrease in pallidum, putamen and WM of the parietal, frontal
and parietal lobes but increases in the caudate and MG of the frontal lobe.
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Figure A.7: Boxplot of T2* and MTR differences of normal appearing tissue between time-
points. T2* relaxation times increases in caudate, putamen and WM of the cerebellum, while
MTR decreases in the GM of the occipital lobe.
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A.2. Longitudinal analysis of RRMS patients and controls

The following figures illustrate the evolution of T1, T2 and MTRz-scores in MS lesions, as well

as in regions where lesions will appear or expand.

Figure A.8: Evolution of lesions among the different group based on qMRI combination.
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Figure A.9: Difference between T1, T2 and MTR in RRMS patients at TP1 in regions where
lesions appear at TP2 and T1, T2, MTR of the healthy normal appearing tissue in the corre-
sponding lobes (HC), and T1, T2, MTR at TP1 in the normal appearing tissue surrounding the
region (NA).

Figure A.10: Difference between T1, T2, T2* and MTR in RRMS patients at TP1 in regions
where lesions expand at TP2 and the T1, T2, T2* and MTR in healthy normal appearing tissue
in the corresponding lobes (HC) and T1, T2, T2* and MTR in the normal appearing tissue
surrounding the region (NA).
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