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Abstra
t: Random de�ation of risk models is an interesting topi
 for both theoreti
al and pra
ti
al

a
tuarial problems. In this paper, we investigate se
ond-order tail asymptoti
s of the de�ated riskX = RS

under the assumptions of se
ond-order regular variation on the survival fun
tions of the risk R and the

de�ator S. Our �ndings are applied to derive se
ond-order expansions of Value-at-Risk. Further we

investigate the estimation of small tail probability for de�ated risks and then dis
uss the asymptoti
s of

the aggregated de�ated risk.
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1 Introdu
tion

Let R be a non-negative random variable (rv) with distribution fun
tion (df) F being independent of the rv S ∈ (0, 1)

with df G. If R models the loss amount of a �nan
ial risk, and S models a random de�ator for a parti
ular time-

period, then the produ
tX = RS represents the de�ated value of R at the end of the time-period under 
onsideration.

Random de�ation is a natural phenomena in various a
tuarial appli
ations attributed to the time-value of money.

When large values or extremes are of interest, for instan
e for reinsuran
e pri
ing and risk management purposes, it

is important to link the behaviors of the risk R and the random de�ator S. Intuitively, we expe
t that large values

observed for R are not signi�
antly in�uen
ed by the random de�ation. However, this is not always the 
ase; a pre
ise

analysis driven by some extreme value theory models is given in Tang and Tsitsiashvili (2004), Tang (2006, 2008),
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Hashorva et al. (2010), Arendar
zyk and D�ebi
ki (2011), Tang and Yang (2012), Zhu and Li (2012), Hashorva (2013),

Yang and Hashorva (2013), Yang and Wang (2013), and the referen
es therein. The results of the aforementioned

papers are obtained mainly under a �rst-order asymptoti
 
ondition for the survival fun
tion or the quantile fun
tion

in extreme value theory, i.e., the df F under 
onsideration belongs to the max-domain of attra
tion (MDA) of a

univariate extreme value distribution Qγ , γ ∈ R, abbreviated as F ∈ D(Qγ), whi
h means that

Fn(anx+ bn) → exp
(
−(1 + γx)−1/γ

)
=: Qγ(x), 1 + γx > 0, n→ ∞ (1.1)

holds for some 
onstants an > 0 and bn ∈ R, n ≥ 1, see Resni
k (1987). The parameter γ is 
alled the extreme value

index; a

ording to γ > 0, γ = 0 and γ < 0, the df F belongs to the MDA of the Fré
het distribution, the Gumbel

distribution and the Weibull distribution, respe
tively.

In order to derive some more informative asymptoti
 results, se
ond-order regular variation (2RV) 
onditions are

widely used in extreme value theory. Here we only mention de Haan and Resni
k (1996) for the uniform 
onvergen
e

rate of Fn
to its ultimate extreme value distribution Qγ under 2RV, and Beirlant et al. (2009, 2011), Ling et al. (2012)

and the referen
es therein for the asymptoti
 distributions of the extreme value index estimators under 
onsideration.

Indeed, almost all the 
ommon loss distributions in
luding log-gamma, absolute t, log-normal, Weibull, Benktander

II, Beta (
f. Table 2 in the Appendix) possess 2RV properties; a
tuarial appli
ations based on those properties are

developed in the re
ent 
ontributions Hua and Joe (2011), Mao and Hu (2012, 2013) and Yang (2013).

The main 
ontributions of this paper 
on
ern the se
ond-order expansions of the tail probability of the de�ated risk

X = RS whi
h are then illustrated by several examples. Our main �ndings are utilized for the formulations of three

appli
ations, namely approximation of Value-at-Risk, estimation of small tail probability of the de�ated risk, and

the derivation of the tail asymptoti
s of aggregated risk under de�ation.

The rest of this paper is organized as follows. In Se
tion 2 we present our main results under se
ond-order regular

variation 
onditions. Se
tion 3 shows the e�
ien
y of our se
ond-order asymptoti
s through some illustrating exam-

ples. Se
tion 4 is dedi
ated to three appli
ations. The proofs of all results are relegated to Se
tion 5. We 
on
lude

the paper with a short Appendix.

2 Main results

We start with the de�nitions and some properties of regular variation followed by our prin
ipal �ndings. A measurable

fun
tion f : [0,∞) → R with 
onstant sign near in�nity is said to be of se
ond-order regular variation with parameters

α ∈ R and ρ ≤ 0, denoted by f ∈ 2RVα,ρ, if there exists some fun
tion A with 
onstant sign near in�nity satisfying
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limt→∞ A(t) = 0 su
h that for all x > 0 (
f. Bingham et al. (1987) and Resni
k (2007))

lim
t→∞

f(tx)/f(t)− xα

A(t)
= xα

∫ x

1

uρ−1 du =: Hα,ρ(x). (2.1)

Here, A is referred to as the auxiliary fun
tion of f . Note that (2.1) implies limt→∞ f(tx)/f(t) = xα, i.e., f is

regularly varying at in�nity with index α ∈ R, denoted by f ∈ RVα. RV0 is the 
lass of slowly varying fun
tions.

For f eventually positive, it is of se
ond-order Π-variation with the se
ond-order parameter ρ ≤ 0, denoted by

f ∈ 2ERV0,ρ, if there exist some fun
tions a and A with 
onstant signs near in�nity and limt→∞A(t) = 0 su
h that

for all x positive

lim
t→∞

f(tx)−f(t)
a(t) − lnx

A(t)
= ψ(x) :=





xρ−1
ρ , ρ < 0,

ln2 x
2 , ρ = 0

(2.2)

(
f. Resni
k (2007)), where the fun
tions a and A are referred to as the �rst-order and the se
ond-order auxiliary

fun
tions of f , respe
tively. From Theorem B.3.1 in de Haan and Ferreira (2006) we see that a ∈ 2RV0,ρ with

auxiliary fun
tion A, and that |A| ∈ RVρ. In fa
t, (2.2) implies limt→∞(f(tx)− f(t))/a(t) = lnx for all x > 0, whi
h

means f is Π-varying with auxiliary fun
tion a, denoted by f ∈ Π(a).

We shall keep the notation of the Introdu
tion for R and S ∈ (0, 1), denoting their df's by F and G, respe
tively,

whereas the df of X = RS will be denoted by H . Throughout this paper, let F̄0 = 1−F0 denote the survival fun
tion

of a given df F0.

Next, we present our main results. Theorem 2.1 gives a se
ond-order 
ounterpart of Breiman's Lemma (see

Breiman (1965)) while Theorem 2.3 and Theorem 2.6 in
lude re�nements of the tail asymptoti
s of produ
ts de-

rived in Hashorva et al. (2010).

Theorem 2.1. If F ∈ D(Q1/α1
) satis�es F̄ ∈ 2RV−α1,τ1 with auxiliary fun
tion Ã for some α1 > 0 and τ1 ≤ 0,

then

H̄(x)

F̄ (x)
= E {Sα1} [1 + E(x)] , (2.3)

where E(x) = (E {Sα1−τ1}/E {Sα1} − 1) Ã(x)/τ1(1+o(1)) as x→ ∞, and thus H̄ ∈ 2RV−α1,τ1 with auxiliary fun
tion

A∗(x) =
E {Sα1−τ1}
E {Sα1} Ã(x).

Remark 2.2. a) The expression for τ1 = 0 is understood throughout this paper as its limit as τ1 → 0.

b) Under the assumptions of Theorem 2.1, Breiman's Lemma only implies

H̄(x)

F̄ (x)
= E {Sα1} [1 + E∗(x)]

with limx→∞ E∗(x) = 0, while the error term E(x) in (2.3) not only 
onverges to 0 as x → ∞, but it shows also the

speed of 
onvergen
e being determined by Ã(x).
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Next, we shall 
onsider the 
ases that F belongs to the MDA of the Gumbel distribution and the Weibull distribution,

respe
tively. Compared to the heavy-tail 
ase above, we need to impose some assumptions on the tail of S; see

Hashorva et al. (2010). In our setting, we strengthen L (see (2.4) below for an a

urate de�nition) to be of se
ond-

order regular variation.

We shall write Y ∼ Q for some rv Y with df Q, whereas Q← denotes the generalized left-
ontinuous inverse of Q

(also for Q whi
h are not dfs). Sin
e both H and F have the same upper endpoint xH = xF := sup{y : F (y) < 1},

then all the limit relations below are for x ↑ xF unless otherwise spe
i�ed. Further, for some α2 > 0 we set

L(x) = xα2Ḡ

(
1− 1

x

)
, K(α2, ρ) =





(1−ρ)−α2−1
ρ Γ(α2 + 1), ρ < 0,

α2Γ(α2+2)
2 , ρ = 0,

(2.4)

where Γ(·) is the Euler Gamma fun
tion, and de�ne

w(x) =
1

E {R− x|R > x} , η(x) = xw(x). (2.5)

Hereafter the generalized left-
ontinuous inverses of 1/F̄ and 1/H̄ are denoted respe
tively by

U=UR = (1/F̄ )← and UX = (1/H̄)←.

Theorem 2.3. Let F be stri
tly in
reasing and 
ontinuous in the left neighborhood of xF and let U ∈ 2ERV0,ρ, ρ ≤ 0

with auxiliary fun
tions 1/w(U) and Ã. If L ∈ 2RV0,τ2 , τ2 < 0 with auxiliary fun
tion A, then

H̄(x)

F̄ (x)Ḡ (1− 1/η(x))
= Γ(α2 + 1) + E(x), (2.6)

where K(α2, ρ), η(x) are de�ned in (2.4), (2.5), and

E(x) =
[
Γ(α2 − τ2 + 1)− Γ(α2 + 1)

τ2
A(η(x)) − α2Γ(α2 + 2)

η(x)
+K(α2, ρ)Ã

(
1

F̄ (x)

)]
(1 + o(1)).

In view of our se
ond result above, the error term E(x) 
onverges to 0 as x ↑ xF with a speed whi
h is determined

by A(η(x)), 1/η(x) and Ã(1/F̄ (x)). In general, it is not 
lear whi
h of these terms is asymptoti
ally relevant for the

de�nition of the error term E(x). For instan
e in Example 3.3 below Ã(1/F̄ (x)) determines E(x). However, Example

3.4 shows the opposite, namely Ã(1/F̄ (x)) does not appear in our se
ond-order approximation.

Corollary 2.4. Under the 
onditions of Theorem 2.3, with ψ and w given by (2.2) and (2.5), respe
tively, then for

z ∈ R

H̄(x+ z/w(x))

exp(−z)H̄(x)
= 1 + E(x), E(x) =

[(
ψ(e−z) + α2

eρz − 1

ρ

)
Ã

(
1

F̄ (x)

)
− α2z

η(x)

]
(1 + o(1)), (2.7)

where (eρz − 1)/ρ is interpreted as z for ρ = 0. Thus UX ∈ 2ERV0,0 with auxiliary fun
tions ă and Ă given by

ă(x) = ã(x)

(
1− α2ã(x)

UX(x)
+α2Ã

(
1

F̄ (UX(x))

))
, Ă(x) = −α

2
2ã

2(x)

U2
X(x)

+Ã

(
1

F̄ (UX(x))

)
, (2.8)
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where ã = 1/w(UX).

Numerous dfs in the MDA of the Gumbel distribution have Weibull tails (see Embre
hts et al. (1997) and Table 1 in

the Appendix); spe
i�
ally su
h a distribution fun
tion F has the representation

F̄ (x) = exp(−V (x)), V←(x) = xθℓ(x), θ > 0, (2.9)

where ℓ denote a positive slowly varying fun
tion at in�nity, and θ is 
alled the Weibull tail 
oe�
ient of F .

Corollary 2.5. Under the 
onditions of Theorem 2.3, if instead we assume that F is given by (2.9) and ℓ ∈

2RV0,ρ′ , ρ′ ≤ 0 with auxiliary fun
tion b, then

H̄(x) = exp(−V (x))Ḡ

(
1− 1

V (x)

)
Γ(α2 + 1)θα2 [1 + E(x)] , (2.10)

with

E(x) =



α2

θ
b(V (x)) +

Γ(α2 − τ2 + 1)

θτ2Γ(α2 + 1)
− 1

τ2
A(V (x))− α2(α2 + 1)(θ + 1)

2V (x)


 (1 + o(1)),

and thus

H̄(x) = exp(−V ∗(x)), (V ∗)←(x) = xθℓ∗(x),

where ℓ∗ ∈ 2RV0,ρ′∗
with auxiliary fun
tion b∗(x) = b(x) + θα2(lnx)/x, ρ

′∗ = max(ρ′,−1).

Theorem 2.1 and Corollary 2.4 illustrate that the tail asymptoti
s of the produ
t X = RS mainly depends on the

heavier fa
tor R. Corollary 2.5 shows that for the Weibull tail distributions, the Weibull tail properties of X are

inherited from the fa
tor R in the presen
e of random de�ation. The result of Corollary 2.5 is of parti
ular interest

for the estimation of tail probabilities, see Se
tion 4.2.

Our last theorem shows that for both R and S belonging to the MDA of the Weibull distribution, the tail of the

produ
t X = RS is heavier than those of the fa
tors R and S.

Theorem 2.6. Let F be stri
tly in
reasing and 
ontinuous in the left neighborhood of xF = 1. Assume that for

some α1 > 0, τ1 ≤ 0, 1− U ∈ 2RV−1/α1,τ1/α1
with auxiliary fun
tion Ã. If further L ∈ 2RV0,τ2 , τ2 ≤ 0 with auxiliary

fun
tion A, then

H̄(x)

F̄ (x)Ḡ(x)
= α1B (α1, α2 + 1) + E(x), (2.11)

where

E(x) =
[
−α

2
1α2

τ1

(
B (α2, α1 − τ1 + 1)−B (α2, α1 + 1)

)
Ã

(
1

F̄ (x)

)
+ α1α2B (α1 + 1, α2 + 1) (1 − x)

+
α1

τ2

(
B (α1, α2 − τ2 + 1)−B (α1, α2 + 1)

)
A

(
1

1− x

)]
(1 + o(1)),

with B(a, b) = Γ(a)Γ(b)/Γ(a+ b), a, b > 0.
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Remark 2.7. Re
all that for a df F with a �nite upper endpoint xF belonging to MDA of the Weibull distribution,

then for some α1 > 0, τ1 ≤ 0, xF − U ∈ 2RV−1/α1,τ1/α1
with auxiliary fun
tion Ã, is equivalent that F̄ (xF − 1/x) ∈

2RV−α1,τ1 with auxiliary fun
tion Ã∗(x) = −α2
1Ã
(
1/F̄ (xF − 1/x)

)
and |Ã∗| ∈ RVτ1 (
f. Theorem 2.3.8 in de Haan

and Ferreira (2006)). Thus (2.11) holds with

E(x) =
[
α2

τ1

(
B (α2, α1 − τ1 + 1)−B (α2, α1 + 1)

)
Ã∗
(

1

1− x

)
+ α1α2B (α1 + 1, α2 + 1) (1− x)

+
α1

τ2

(
B (α1, α2 − τ2 + 1)−B (α1, α2 + 1)

)
A

(
1

1− x

)]
(1 + o(1)).

Remark 2.8. Under the assumptions of Theorem 2.6, H̄(1 − 1/x) ∈ 2RV−α,τ with α = α1 + α2 and τ =

max(−1, τ1, τ2).

3 Examples

In this se
tion, six examples are presented to illustrate estimation errors of the se
ond-order expansions given by

Se
tion 2 and the �rst-order asymptoti
s by Breiman (1965) and Hashorva et al. (2010). We use the R-Proje
t to


al
ulate the exa
t value of H̄(x). Fig. 1∼ Fig. 5 illustrate the advantage of our se
ond-order tail approximations.

Example 3.1. (Fré
het 
ase with Pareto distribution) Let R be a random variable with a Pareto df F given by

F̄ (x) =

(
θ

x+ θ

)α

, x > 0, α, θ > 0

denoted in the sequel by R ∼ Pareto(α, θ). Suppose that S ∼ beta(a, b) where beta(a, b) stands for the Beta

distribution with positive parameters a and b and probability density fun
tion (pdf)

g(x) =
1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1, a, b > 0. (3.1)

We have that F̄ ∈ 2RV−α,−1 with auxiliary fun
tion Ã(x) = αθ/x and E {Sκ} = B(a + κ, b)/B(a, b) for all κ > 0.

By Theorem 2.1 with α1 = α and τ1 = −1

H̄(x) = F̄ (x)E {Sα} [1 + E(x)] =
(

θ

x+ θ

)α
B(a+ α, b)

B(a, b)
[1 + E(x)],

with

E(x) =
(
1− E

{
Sα+1

}

E {Sα}

)
Ã(x)(1 + o(1)) =

αθb

(α+ a+ b)x
(1 + o(1)).

Fig. 1 
ompares the �rst-order and the se
ond-order asymptoti
 expansions with the exa
t true value H̄(x) when

R ∼ Pareto(α, θ), S ∼ beta(a, b) with (α, θ, a, b) = (1, 1, 1, 2) (left) and (α, θ, a, b) = (2, 1, 1, 2) (right). As expe
ted,

we �nd that the se
ond-order tail asymptoti
s is more a

urate than the �rst-order one.
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Example 3.2. (Fré
het 
ase with Beta distribution of se
ond kind) Let R be a random variable with Beta distribution

of se
ond kind with positive parameters a, b, i.e., R
d
= 1/R0 − 1, R0 ∼ beta(b, a), denoted by R ∼ beta2(a, b) (here

d
=

stands for equality of distribution fun
tion). It follows from (3.1) that

P(R0 < x) =
xb

bB(b, a)

[
1− (a− 1)b

1 + b
x(1 + o(1))

]
, x ↓ 0,

and thus

F̄ (x) = P(R > x) = P

(
R0 <

1

1 + x

)
=

x−b

bB(b, a)

[
1− (a+ b)b

(1 + b)x
(1 + o(1))

]
, x→ ∞, (3.2)

i.e., F̄ ∈ 2RV−b,−1 with auxiliary fun
tion Ã(x) = (a + b)b/((1 + b)x). Let S ∼ beta(c, d), and then E {Sκ} =

B(c+ κ, d)/B(c, d) for all κ > 0. In view of Theorem 2.1 with α1 = b and τ1 = −1

H̄(x) = F̄ (x)E
{
Sb
}
[1 + E(x)] = x−b

bB(b, a)

[
1− (a+ b)b

(1 + b)x
(1 + o(1))

]
B(b + c, d)

B(c, d)
[1 + E(x)],

with

E(x) =
(
1− E

{
Sb+1

}

E {Sb}

)
Ã(x)(1 + o(1)) =

d

b+ c+ d

(a+ b)b

(1 + b)x
(1 + o(1)).

In parti
ular, for a = c+ d,

H̄(x) =
x−b

bB(b, c)

[
1− (b+ c)b

(1 + b)x
(1 + o(1))

]
,

whi
h is the se
ond-order expansion of survival fun
tion of beta2(c, b) (
f. (3.2)), and 
oin
ides with the fa
t that

X ∼ beta2(c, b), see Lemma 5 in Balakrishnan and Hashorva (2011). Fig. 2 
ompares the �rst-order and the se
ond-

order expansions with the exa
t true value H̄(x) when R ∼ beta2(a, b), S ∼ beta(c, d) with (a, b, c, d) = (3, 2, 1, 2)

(left) and (a, b, c, d) = (2, 2, 1, 2) (right). As expe
ted, we �nd that the se
ond-order tail asymptoti
s is more a

urate

than the �rst-order one.

Example 3.3. (Gumbel 
ase with ρ = 0) Let R be a random variable with df F given by

F̄ (x) = exp

(
− cx

1− x

)
, 0 < x < 1, c > 0, (3.3)

denoted in the sequel by R ∼ E(1, c). If follows that F ∈ D(Q0) with w(x) = c/(1− x)2, and U ∈ 2ERV0,0 with

auxiliary fun
tions

a(x)=
1

w(U(x))
, Ã(x) = − 2

c+ lnx
.

If S ∼ beta(a, b), then the df G of S satis�es

Ḡ

(
1− 1

x

)
=

x−b

bB(a, b)

(
1− b(a− 1)

(b+ 1)x
(1 + o(1))

)
, x→ ∞, (3.4)

i.e., Ḡ(1− 1/x) = x−bL(x), L ∈ 2RV0,−1 with auxiliary fun
tion

A(x) =
b(a− 1)

(b + 1)x
.



8

Consequently,

1

η(x)
=

(1 − x)2

cx
, Ã

(
1

F̄ (x)

)
= −2(1− x)

c
, A(η(x)) =

b(a− 1)

(b+ 1)

(1− x)2

cx
.

By Theorem 2.3 with α2 = b, τ2 = −1 and ρ = 0

H̄(x) = F̄ (x)Ḡ

(
1− (1− x)2

cx

)
Γ(b+ 1)[1 + E(x)],

with

E(x) = K(b, 0)Ã

(
1

F̄ (x)

)
(1 + o(1)) =

b(b+ 1)

c
(1− x)(1 + o(1)).

Example 3.4. (Gumbel 
ase with ρ < 0) Let R ∼ F with

F̄ (x) =
1− exp(− exp(−x))

p
, x > 0, p = 1− e−1. (3.5)

It follows that F ∈ D(Q0) with 
onstant s
aling fun
tion w(x) = 1 and its tail quantile fun
tion is

U(x) = ln
x

p
− p

2x
(1 + o(1)).

Furthermore, U ∈ 2ERV0,−1 with auxiliary fun
tions

a(x) = 1, Ã(x) =
p

2x
.

Next, suppose that S ∼ beta(a, b). Thus (see (3.4))

1

η(x)
=

1

x
, Ã

(
1

F̄ (x)

)
=

1

2
e−x, A(η(x)) =

b(a− 1)

(b + 1)x
.

By Theorem 2.3 with α2 = b, τ2 = −1 and ρ = −1

H̄(x) = F̄ (x)Ḡ

(
1− 1

x

)
Γ(b+ 1)[1 + E(x)],

with

E(x) = −
[
b2(a− 1)

(b+ 1)x
+
b(b+ 1)

x

]
(1 + o(1)).

Fig. 3 shows the e�
ien
y of the se
ond-order asymptoti
s of H̄ when R ∼ E(1, c) with c = 1 and S ∼ beta(1, 1/2)

(left); and when R follows the left-trun
ated Gumbel distribution (3.5) and S ∼ beta(1, 1) (right).

Example 3.5. (Gumbel 
ase with Weibull tail) Let R ∼ Γ(α, λ) with pdf

f(x) =
λα

Γ(α)
xα−1e−λx, x > 0, λ, α > 0.

The tail quantile fun
tion of F is

U(x)=
1

λ
(ln x− ln Γ(α))

[
1 +

(α − 1) ln lnx

lnx− ln Γ(α)
(1 + o(1))

]
.
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Thus F ∈ D(Q0) with w(x) = λ and U ∈ 2RV0,0 with se
ond-order auxiliary fun
tion

Ã(x)=
1− α

ln2 x

(
f. Table 1 in the Appendix). Next, let S ∼ beta(a, b), note that the survival fun
tion satis�es (3.4). Consequently,

1

η(x)
=

1

λx
, Ã

(
1

F̄ (x)

)
=

1− α

(λx)2
, A(η(x)) =

b(a− 1)

(b + 1)λx
.

By Theorem 2.3 with α2 = b, τ2 = −1 and ρ = 0

H̄(x) = F̄ (x)Ḡ

(
1− 1

λx

)
Γ(b+ 1)[1 + E(x)],

where

E(x) = − b

λx

[
b(a− 1)

b+ 1
+ b+ 1

]
(1 + o(1)).

Thus

H̄(x) =
(λx)α−1e−λx

Γ(α)

[
1 +

α− 1

λx
(1 + o(1))

]
(λx)−bΓ(b+ 1)

bB(a, b)

(
1− b(a− 1)

λ(b + 1)x
(1 + o(1))

)

×
[
1− b

λx

(
b(a− 1)

b + 1
+ b+ 1

)
(1 + o(1))

]

=
(λx)α−b−1e−λx

Γ(a)Γ(α)/Γ(a+ b)

[
1 +

α− b(a+ b)− 1

λx
(1 + o(1))

]
. (3.6)

On the other hand, in view of Corollary 2.5, both R and X are in the MDA of the Weibull distribution with (
f.

Table 1 in the Appendix)

θ = 1, ρ′ = −1, b(x) =
(1 − α) lnx

x
and ρ′∗ = −1, b∗(x) = b(x) +

θα2 lnx

x
=

(1− α+ b) lnx

x
, (3.7)

whi
h is 
onsistent with (3.6). In parti
ular, if α = a + b, then (3.6) and (3.7) are 
onsistent with the well-known

result X ∼ Γ(a, λ) (
f. Hashorva (2013)).

In Fig. 4, we 
hoose (α, λ, a, b) = (1, 1, 1/2, 1/2) (left) and (α, λ, a, b) = (1, 2, 1/2, 1/2)(right). We observe that the

se
ond-order expansion of the tail probability is mu
h 
loser to the true values.

Example 3.6. (Weibull 
ase) Let R ∼ beta(a1, b1) and S ∼ beta(a2, b2). By (3.4), 1 − U ∈ 2RV−1/b1,−1/b1 with

auxiliary fun
tion

Ã(x) = − a1 − 1

b1(b1 + 1)

(
x

b1B(a1, b1)

)−1/b1

and Ḡ(1− 1/x) = x−b2L(x), L ∈ 2RV0,−1 with auxiliary fun
tion

A(x) =
b2(a2 − 1)

(b2 + 1)x
.

Hen
e

Ã

(
1

F̄ (x)

)
= − a1 − 1

b1(b1 + 1)
(1 − x), A

(
1

1− x

)
=
b2(a2 − 1)

b2 + 1
(1− x).
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By Theorem 2.6 with α1 = b1, α2 = b2, τ1 = τ2 = −1 and

H̄(x) = F̄ (x)Ḡ(x) [b1B (b1, b2 + 1) + E(x)] ,

with

E(x) = b1b2B(b1 + 1, b2 + 1)

(
1 +

a1 − 1

b1 + 1
+
a2 − 1

b2 + 1

)
(1− x)(1 + o(1)).

In parti
ular, for a2 + b2 = a1

H̄(x) =
(1− x)b1+b2B(b1, b2 + 1)

b2B(a1, b1)B(a2, b2)

[
1 +

(
b1 + b2

b1 + b2 + 1

(
1 +

a1 − 1

b1 + 1
+
a2 − 1

b2 + 1

)

−
(
b1(a1 − 1)

b1 + 1
+
b2(a2 − 1)

b2 + 1

))
(1− x)(1 + o(1))

]

=
(1− x)b1+b2

(b1 + b2)B(a2, b1 + b2)

[
1− (b1 + b2)(a2 − 1)

b1 + b2 + 1
(1 − x)(1 + o(1))

]
,

whi
h is the se
ond-order expansion of survival fun
tion of beta(a2, b1 + b2) (
f. (3.4)), and 
oin
ides with the fa
t

that X ∼ beta(a2, b1 + b2) (
f. Hashorva (2013)).

In Fig. 5, we simulate the 
ases with (a1, b1, a2, b2) = (4, 2, 2, 2) (left) and (a1, b1, a2, b2) = (4, 2, 2, 3) (right). We

observe that the se
ond-order expansion of the tail probability is mu
h 
loser to the true values.

4 Appli
ations

4.1 Approximation of Value-at-Risk

In insuran
e and risk management appli
ations, Value-at-Risk (denoted by VaR) is an important risk measure; see

e.g., Denuit et al. (2006). In the following we shall analyse the asymptoti
s of VaRp(X) in 
ase that R has a heavy

tail and a Weibull tail, respe
tively. Re
all that VaR at probability level p for R is de�ned by

VaRp(R) = inf{y : F (y) ≥ p} = U(1/(1− p)). (4.1)

With the same notation introdu
ed as before, if F̄ ∈ RV−α, α > 0, then by Breiman's Lemma

H̄(x)=E {Sα} F̄ (x)(1 + o(1)) = F̄ ((E {Sα})−1/αx)(1 + o(1)),

implying the following �rst-order asymptoti
s

VaRp(X) = (E {Sα})1/αVaRp(R)(1 + o(1)), p ↑ 1. (4.2)

Re�ning the above, we derive the following se
ond-order asymptoti
s

VaRp(X) = (E {Sα})1/αVaRp(R)[1 + E(p)], E(p) =
(

E {Sα−τ}
(E {Sα})1−τ/α − 1

)
Ã(VaRp(R))

ατ
(1 + o(1)) (4.3)
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provided that F̄ ∈ 2RV−α,τ , α > 0, τ < 0 with auxiliary fun
tion Ã.

Indeed, there exists some positive 
onstant c su
h that (
f. Hua and Joe (2011))

F̄ (x) = cx−α
[
1 +

Ã(x)

τ
(1 + o(1))

]

for su�
iently large x. Thus, by Theorem 2.1

H̄(x) = cx−αE {Sα}
[
1 +

E {Sα−τ}
E {Sα}

Ã(x)

τ
(1 + o(1))

]
.

Therefore, in view of Theorem 1.5.12 in Bingham et al. (1987)

VaRp(R) =

(
c

1− p

)1/α
[
1 +

Ã(VaRp(R))

ατ
(1 + o(1))

]
, p ↑ 1

and

VaRp(X) =

(
cE {Sα}
1− p

)1/α
[
1 +

E {Sα−τ}
E {Sα}

Ã(VaRp(X))

ατ
(1 + o(1))

]
, p ↑ 1.

Consequently, by |Ã| ∈ RVτ and (4.2) we obtain the se
ond-order asymptoti
s (4.3).

In what follows, we will 
onsider the 
ase that F is in the MDA of the Gumbel distribution. Sin
e most of su
h

distributions are Weibull tail distributions (
f. Table 1 and Table 2 in the Appendix), we fo
us on the asymptoti
s

of VaRp(X) in terms of VaRp(R) (see (4.4) below) under the 
onditions of Corollary 2.5. Note that F̄ has a Weibull

tail satisfying the se
ond-order 
ondition (
f. (2.9))

F̄ (x) = exp(−V (x)), with V←(x) = xθℓ(x), θ > 0

and ℓ ∈ 2RV0,ρ′ , ρ′ ≤ 0 with auxiliary fun
tion b. By (4.1)

VaRp(R) = V←(− ln(1 − p)) = (− ln(1− p))θℓ(− ln(1 − p)).

In view of Corollary 2.5 (see (2.10))

H̄(x) = exp (−V (x) − α2 lnV (x) + lnL∗(V (x))) ,

where L∗ denotes a slowly varying fun
tion. Re
alling that lnL∗(V (x)) = o(ln V (x)) (see Bingham et al. (1987)), we

have as p ↑ 1

VaRp(X) = V←
(
− ln(1− p)

[
1− α2

ln(− ln(1 − p))

− ln(1− p)
(1 + o(1))

])

=

(
ln

1

1− p

)θ

[1− θα2̟(p)(1 + o(1))] ℓ

(
ln

1

1− p

)[
1 +

(1− α2̟(p))
ρ′

− 1

ρ′
b

(
ln

1

1− p

)
(1 + o(1))

]

= VaRp(R) [1− θα2̟(p)(1 + o(1))] , with ̟(p) =
ln(− ln(1 − p))

− ln(1− p)
. (4.4)
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4.2 Estimations of tail probability

In many insuran
e appli
ations it is important to estimate the tail probability of the extreme risks. In what follows,

we investigate this problem under the random s
aling framework. Let {(Ri, Si), i = 1, . . . , n} be a random sample

from (R,S), and thus Xi := RiSi, i ≤ n is a sample of size n from X
d
= RS. Our goal is to estimate p = P(X > x)

with su�
iently large x. One possible estimation is via the empiri
al df if x is in the region of the sample Xi, i ≤ n

with Xi = RiSi, i = 1, . . . , n. In general, we 
onsider how to estimate pn := P(X > xn) as xn → ∞. Hereafter, we

write Rn−k+1,n, Sn−k+1,n and Xn−k+1,n, k ≤ n as the asso
iated in
reasing order statisti
s, and assume that R ∼ F

and S ∈ (0, 1) are independent.

First we 
onsider the 
ase that F̄ ∈ 2RV−α,τ , α > 0, τ < 0 with the se
ond-order auxiliary fun
tion Ã. By Hua and

Joe (2011), there exists a positive 
onstant c su
h that

F̄ (x)=cx−α(1 + Ã(x)/τ(1 + o(1))) =: cx−α(1 + αδ(x)),

i.e., F ∈ F1/α,τ with δ(x) = Ã(x)/(ατ) in the terminology of Beirlant et al. (2009). By Theorem 2.1

H̄(x)=F̄ (x)
(
E {Sα}+ E

{
Sα(S−τ − 1)

}
αδ(x)(1 + o(1))

)
. (4.5)

In order to estimate H̄(x) with x = xn given, we use the estimators of α, δ, τ and F̄ proposed by Beirlant et al. (2009).

Let yk,n = x/Rn−k,n, τ̂k,n = ρ̂n/Hk,n with ρ̂n some weakly 
onsistent estimator of ρ = τ/α based on samples from

the parent R, denote

Hk,n =
1

k

k∑

i=1

ln
Rn−i+1,n

Rn−k,n
, Ek,n(s) =

1

k

k∑

i=1

(Rn−i+1,n

Rn−k,n

)s
, s ≤ 0

and

α̂k,n =

(
Hk,n − δ̂k,n

ρ̂n
1− ρ̂n

)−1
, δ̂k,n = Hk,n(1 − 2ρ̂n)(1 − ρ̂n)

3ρ̂−4n

(
Ek,n

( ρ̂n
Hk,n

)
− 1

1− ρ̂n

)
. (4.6)

Thus, by (4.5), the tail probability pn 
an be estimated as (denoted by p̂k,n(R,S))

p̂k,n(R,S) =
̂̄F (x)

(
Ê {Sα}+ ( ̂E {Sα−τ} − Ê {Sα}) δ̂k,n

Hk,n

)
, (4.7)

with

̂̄F (x) = k

n

(
yk,n

(
1 + δ̂k,n(1− y

τ̂k,n

k,n )
))−α̂k,n

, Ê {Sα} =
1

n

n∑

i=1

S
α̂k,n

i , ̂E {Sα−τ} =
1

n

n∑

i=1

S
α̂k,n−τ̂k,n

i . (4.8)

On the other hand, by Theorem 2.1, X has the same se
ond-order tail behavior as that of R. Consequently, pn 
an

be dire
tly estimated by using samples from X . We denote that estimator by p̂k,n(X), given as (in 
ontrast to (4.7),

(4.8))

p̂k,n(X) =
k

n

(
y∗k,n

(
1 + δ̂∗k,n(1− (y∗k,n)

τ̂∗

k,n)
))−α̂∗

k,n

, (4.9)
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with y∗k,n = x/Xn−k,n and δ̂∗k,n, τ̂
∗
k,n, α̂

∗
k,n are δ̂k,n, τ̂k,n, α̂k,n with the order statisti
s repla
ed by Xn−k+1,n, k ≤ n−1.

Relying on (4.7) and (4.9), we shall perform some simulations to 
ompare the �nite sample behaviors of α̂k,n, p̂k,n(R,S)

and α̂∗k,n, p̂k,n(X). Sin
e τ = −1 holds in most appli
ations, we take τ̂k,n = −1 and ρ̂n = −Hk,n in the simulations.

Here we simulate 100 samples of size n = 1000 from R ∼ Pareto(2, 1) and S ∼ beta(1, 2), and estimate 1/α = 0.5

and p = P(X > 3) = 0.01298. It turns out that the bias as well as the mean squared errors based on the information

of R and S is mu
h smaller than that on the redu
ed information of RS, see Fig. 6.

Next, we investigate the 
ase of F ∈ D(Q0). For 
onvenien
e, we 
onsider only the estimation 
omparisons for F

having Weibull tails. Sin
e by Corollary 2.5, both R and X have Weibull tails with the same Weibull tail 
oe�
ient

θ and further the se
ond-order parameter ρ′∗ is greater than −1, we 
onsider the bias-redu
ed Weibull tail 
oe�
ient

estimators θ̂ by Diebolt et al. (2008)

θ̂ = θ̂(k,R) = Z̄k − b̂(ln(n/k))x̄k, (4.10)

with

b̂(ln(n/k)) =

∑k
i=1(xi − x̄k)Zi∑k
i=1(xi − x̄k)2

and

xj =
ln(n/k)

ln(n/j)
, Zj = j ln

n

j
ln
Rn−j+1,n

Rn−j,n
, x̄k =

∑k
j=1 xj

k
, Z̄k =

∑k
j=1 Zj

k
.

Based on the bias-redu
ed tail quantile estimators provided by Diebolt et al. (2008), given by

x̂pn = Rn−k,n

(
ln(1/pn)

ln(n/k)

)θ̂

exp

(
b̂(ln(n/k))

(ln(1/pn)/ ln(n/k))
ρ̂′ − 1

ρ̂′

)

with pn known, we 
an solve the dual problem and estimate the tail probability F̄ (x) for given x as follows

̂̄F (x) = exp

(
− ln(n/k)

(
x

Rn−k,n

)1/θ̂

exp

(
−b̂(ln(n/k)) (x/Rn−k,n)ρ̂

′/θ̂ − 1

θ̂ρ̂′

))
, (4.11)

where ρ̂′ is a 
onsistent estimator of ρ′. Sin
e F̄ (x) = exp(−V (x)), we have

V̂ (x) = − ln ̂̄F (x), b̂(V (x)) = b̂(ln(n/k))

(
V̂ (x)

ln(n/k)

)ρ̂′

. (4.12)

Further, we remark that S ∼ G with Ḡ(1 − 1/x) ∈ 2RV−α2,τ2 is equivalent to S∗:=1/(1 − S) ∼ G∗ with Ḡ∗ ∈

2RV−α2,τ2 . Hen
e, using the estimations of tail probability by Beirlant et al. (2009), we have

̂̄G
(
1− 1

V (x)

)
=
k

n

(
yk,n(1 + δ̂k,n(1− y

τ̂2(k)
k,n ))

)α̂2(k)

, Â(V (x)) = α̂2(k)τ̂2(k)δ̂k,ny
τ̂2(k)
k,n , (4.13)

where yk,n = V̂ (x)/S∗n−k,n and δ̂k,n, τ̂2(k), α̂2(k) are estimated with the order statisti
s repla
ed by S∗n−k,n :=

1/(1−Sn−k,n) in (4.8). Therefore, 
ombining (4.10)�(4.13), the estimator of p = H̄(x), denoted by pk(R,S), is then

in view of Corollary 2.5 given by

p̂k,n(R,S) =
̂̄F (x) ̂̄G(1− 1/V (x))Γ(α̂2(k) + 1)(θ̂)α̂2(k)
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×


1 +

α̂2(k)

θ̂
b̂(V (x)) +

Γ(α̂2(k)− τ̂2(k) + 1)

(θ̂)τ̂2(k)Γ(α̂2(k) + 1)
− 1

τ̂2(k)
Â(V (x))− α̂2(k)(α̂2(k) + 1)(θ̂ + 1)

2V̂ (x)


 . (4.14)

On the other hand, by Corollary 2.5, we 
an estimate p = H̄(x) dire
tly based on samples from X as

p̂k,n(X) = exp

(
− ln(n/k)

(
x

Xn−k,n

)1/θ̂

exp

(
−b̂∗(ln(n/k)) (x/Xn−k,n)ρ̂

′∗/θ̂ − 1

θ̂ρ̂′∗

))
, (4.15)

where ρ̂′∗ is a 
onsistent estimator of ρ′∗ and θ̂, b̂∗ are 
omputed by (4.10) with samples Ri, i ≤ n repla
ed by

Xi = RiSi, i ≤ n.

Now, we generate 100 samples of size n = 1000 from R ∼ W (2, 1) and S ∼ beta(2, 3) to 
ompare the �nite

sample behaviors of estimators of θ = 1/2 and p = P(X > 3) = 2.1186 × 10−7 given by (4.10), (4.14) and (4.15).

In the simulation we take τ̂2(k) = −1, ρ̂′ = ρ̂′∗ = −1 and plot mean values and mean squared errors of θ̂ and

ln(p̂k/p), k = 50, . . . , 4500, with p̂k = p̂k,n(R,S), p̂k,n(X), respe
tively (
f. (4.14) and (4.15)).

Fig. 7 shows that our estimators of θ and tail probability based on the original data (indi
ated by the red dotted

line (· − ·)) have mu
h wider stable regions with less bias even the true value of ρ′ is −∞, see Table 1.
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Figure 1: Tail H̄ when R ∼ Pareto(1, 1), S ∼ beta(1, 2) (left) and R ∼ Pareto(2, 1), S ∼ beta(1, 2) (right).

4.3 Linear 
ombinations of random 
ontra
tions

Motivated by the dependen
e stru
ture of ellipti
al random ve
tors, Hashorva et al. (2010) dis
ussed the �rst-order

tail asymptoti
s of the aggregated risks of 
ertain bivariate random ve
tors whi
h we shall introdu
e next. Let

therefore (V1, V2) be a bivariate s
ale mixture random ve
tor with sto
hasti
 representation

(V1, V2)
d
= R(I1S, I2

√
1− S2), (4.16)
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Figure 2: Tail H̄ when R ∼ beta2(3, 2), S ∼ beta(1, 2) (left) and R ∼ beta2(2, 2), S ∼ beta(1, 2) (right).
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Figure 3: Tail H̄ when R ∼ E(1, c) with c = 1 and S ∼ beta(1, 1/2) (left) and R is left-trun
ated Gumbel distributed

and S ∼ beta(1, 1) (right).
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Figure 5: Tail H̄ when R ∼ beta(4, 2), S ∼ beta(2, 2) (left) and R ∼ beta(4, 2), S ∼ beta(2, 3) (right).

0 200 400 600 800 1000

0
.2

0
.6

1
.0

k

100 200 300 400 500

0
.0

0
0

.0
6

k

100 200 300 400 500

0
.0

0
0

.0
3

k

100 200 300 400 500

0
.0

0
0

.0
3

k

Figure 6: Finite behaviors of mean values (left) and mean squared errors (right) of 1/α̂k,n and p̂k = p̂k,n(R,S), p̂k,n(X)

respe
tively give by (4.6), (4.7) and (4.9), where 1/α = 1/2 and p = P(X > 3) = 0.01298, whi
h are indi
ated by the

horizontal lines. The line and the dotted line stand for the estimators based on the original samples from RS and

RS with R ∼ Pareto(2, 1), S ∼ beta(1, 2), respe
tively.



17

0 1000 2000 3000 4000

0
.2

0
.6

1
.0

1
.4

k

0 1000 2000 3000 4000

−
6

−
2

2
4

6

J

0 1000 2000 3000 4000

0
.0

0
0

0
.0

0
4

0
.0

0
8

k

0 1000 2000 3000 4000

0
e

+
0

0
4

e
−

1
1

8
e

−
1

1

J
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with θ̂, p̂k = p̂k,n(R,S), p̂k,n(X) respe
tively given by (4.10), (4.14) and (4.15), where θ = 1/2 and p = P(X > 3) =

2.1186 × 10−7, whi
h are indi
ated by the horizontal lines. The line and the dotted line stand for the estimators

based on the original samples from R,S and RS with R ∼Weibull(2, 1), S ∼ beta(2, 3), respe
tively.
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where R ∼ F, is almost surely positive, S ∼ G is a s
aling random variable taking values in (0, 1), while I1, I2 assume

values in {1,−1}. Hashorva et al. (2010) studied the tail asymptoti
s of the aggregated risk

V (λ) = λV1 +
√
1− λ2V2 = R(λI1S +

√
1− λ2I2

√
1− S2) =: RS∗(λ) (4.17)

for λ ∈ (0, 1). In what follows, we derive the se
ond-order tail asymptoti
s of V (λ) given by (4.17). Spe
i�
ally, we

suppose that for small x > 0

P(|S − λ| ≤ x) = cλx
αλ(1 + Lλ(x)x

τλ ), αλ, τλ ∈ (0,∞) and λ ∈ [0, 1], (4.18)

where cλ is a positive 
onstant and |Lλ| is slowly varying at 0. Set

qλ = P(I1 = I2 = 1)I{λ ∈ (0, 1)}+ P(I2 = 1)I{λ = 0}+ P(I1 = 1)I{λ = 1}, (4.19)

with I{·} the indi
ator fun
tion.

Lemma 4.1. Let I1, I2 be two random variables taking values −1, 1 with probability qλ ∈ (0, 1] de�ned by (4.19) and

being independent of the s
aling random variable S ∼ G. For given λ ∈ [0, 1], suppose further that the df G satis�es

(4.18) for small x > 0. Then for S∗(λ) de�ned in (4.17) we have as x ↓ 0

a) If λ ∈ (0, 1), then

P(S∗(λ) > 1− x) = qλcλ(2x(1− λ2))αλ/2 [1 +Aλ(x)] ,

with

Aλ(x) =

(
Lλ(

√
x)(2x(1 − λ2))τλ/2 − λαλ√

2(1− λ2)
x1/2

)
(1 + o(1)).

b) If λ = 0, then

P(S∗(λ) > 1− x) = qλcλ(2x)
αλ/2 [1 +Aλ(x)] , Aλ(x) =

(
Lλ(

√
x)(2x)τλ/2 − αλx

4

)
(1 + o(1)).


) If λ = 1, then

P(S∗(λ) > 1− x) = qλcλx
αλ [1 +Aλ(x)] , Aλ(x) = Lλ(x)x

τλ .

In view of Lemma 4.1, we have P(S∗(λ) > 1− 1/x) ∈ 2RV−α,τ with α, τ and auxiliary fun
tion A de�ned by

α =





αλ/2, λ ∈ [0, 1),

αλ, λ = 1;
τ =





−min(τλ, 1)/2, λ ∈ (0, 1),

−min(τλ, 2)/2, λ = 0,

−τλ, λ = 1;

A(x) = τAλ(1/x). (4.20)

Next, utilizing Theorem 2.3, Theorem 2.6 and Lemma 4.1, we give the se
ond-order tail approximation of V (λ).
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Theorem 4.2. Let V (λ) be de�ned in (4.17) for λ ∈ [0, 1] and suppose that the 
onditions of Lemma 4.1 hold.

a) If F ∈ D(Q0) and its tail quantile fun
tion U ∈ 2ERV0,ρ, ρ ≤ 0 with auxiliary fun
tions 1/w(U) and Ã, then for

x ↑ xF (re
all η(x) = xw(x))

P(V (λ) > x) = F̄ (x)P

(
S∗(λ) > 1− 1

η(x)

)

×
[
Γ(α+ 1) +

(
Γ(α− τ + 1)− Γ(α+ 1)

τ
A(η(x)) +K(α, ρ)Ã

(
1

F̄ (x)

))
(1 + o(1))

]
.

b) If F ∈ D(Q−1/α1
), α1 > 0 and xF = 1. Furthermore, we assume that its tail quantile fun
tion U satis�es

1− U ∈ 2RV−1/α1,τ1/α1
with auxiliary fun
tion Ã, then for x ↓ 0

P(V (λ) > 1− x) = F̄ (1− x)P(S∗(λ) > 1− x)

×
[
α1B (α1, α+ 1) +

(
αα2

1

τ1
[B (α, α1 + 1)−B (α, α1 − τ1 + 1)] Ã

(
1

F̄ (1− x)

)

+
α1

τ
[B (α1, α− τ + 1)−B (α1, α+ 1)]A

(
1

x

))
(1 + o(1))

]
.

Here α, τ and A are those de�ned in (4.20), and P(S∗(λ) > 1− x) is given by Lemma 4.1.

Remark 4.3. a) If S has Beta distribution with positive parameters a and b, then (4.18) holds for λ = 0, 1 and

α0 = a, α1 = b, τ0 = τ1 = 1,

c0 =
1

aB(a, b)
, L0(x) = − (b− 1)a

a+ 1
(1 + o(1)), c1 =

1

bB(a, b)
, L1(x) = − (a− 1)b

b+ 1
(1 + o(1)).

b) If G has pdf g whi
h has a 
ontinuous third derivative g′′′, then 
ondition (4.18) holds for any λ ∈ (0, 1) and

αλ = 1, cλ = 2g(λ), Lλ(x) =
g′′′(λ)

6g′(λ)
(1 + o(1)), τλ = 2.


) If S has Beta distribution with parameters 1/2, 1/2 and I1, I2 are independent with mean 0 being further indepen-

dent of S, then (V1, V2) is spheri
ally distributed, and

V (λ)
d
= I1RS

d
= I2R

√
1− S2

for all λ ∈ [0, 1]. Thus the tail asymptoti
s of V (λ) 
an be dire
tly obtained by Theorem 2.3 and Theorem 2.6 in

Se
tion 2.

5 Proofs

Proof of Theorem 2.1 It follows from Breiman's Lemma that

lim
x→∞

H̄(x)

F̄ (x)
= E {Sα1} .
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We 
onsider two 
ases τ1 < 0 and τ1 = 0 separately. For τ1 < 0, by Lemma 5.2 of Draisma et al. (1999), for every

ǫ > 0, there exists x0 = x0(ǫ) > 0 su
h that for all x > x0 and all s ∈ (0, 1)

∣∣∣∣
F̄ (x/s)/F̄ (x)− sα1

Ã(x)
− sα1

s−τ1 − 1

τ1

∣∣∣∣ ≤ ǫ(C1 + C2s
α1 + C3s

α1−τ1−ǫ),

with some positive 
onstants C1, C2 and C3 not depending on x and s. Therefore, by the dominated 
onvergen
e

theorem

lim
x→∞

1

Ã(x)

(
H̄(x)

F̄ (x)
− E {Sα1}

)
=

∫ 1

0

lim
x→∞

F̄ (x/s)/F̄ (x)− sα1

Ã(x)
dG(s) = E

{
Sα1

S−τ1 − 1

τ1

}
.

For τ1 = 0, note that for all α1 > 0, the fun
tion f(s) = sα1 ln(1/s) is 
ontinuous in (0, 1] and lims↓0 f(s) = 0. We

have that f(s) is bounded on [0, 1] and E {f(S)} exists. Similarly as above for τ1 < 0, we have if τ1 = 0 that

lim
x→∞

1

Ã(x)

(
H̄(x)

F̄ (x)
− E {Sα1}

)
= E

{
Sα1 lnS−1

}

establishing the proof. ✷

Proof of Theorem 2.3 Letting t = 1/F̄ (x), note that x ↑ xF if and only if t→ ∞, and

H̄(x) =

∫ xF

x

Ḡ

(
x

y

)
dF (y) =

∫ ∞

t

Ḡ

(
U(t)

U(s)

)
d

(
1− 1

s

)
= t−1

∫ 1

0

Ḡ

(
1− U(t/s)− U(t)

U(t/s)

)
ds.

We rewrite the left-hand side of (2.6) as (re
all Ḡ(1− 1/x) = x−α2L(x))

H̄(x)

F̄ (x)Ḡ (1− 1/η(x))
=

∫ 1

0

Ḡ (1− (U(t/s)− U(t))/U(t/s))

Ḡ (1− a(t)/U(t))
ds

=

∫ 1

0

(
U(t/s)− U(t)

a(t)

U(t)

U(t/s)

)α2 L
(

U(t)
a(t)

/(
U(t/s)−U(t)

a(t)
U(t)

U(t/s)

))

L
(

U(t)
a(t)

) ds

=

∫ 1

0

(Θt(s))
α2
L(Ξt(s))

L(ϕt)
ds, (5.1)

where

Θt(s) = qt(s)φt(s), Ξt(s) =
ϕt

Θt(s)
, ϕt =

U(t)

a(t)

and

qt(s) =
U(t/s)− U(t)

a(t)
, a(t) =

1

w(U(t))
, φt(s) =

U(t)

U(t/s)
.

Further we de
ompose (5.1) as

H̄(x)

F̄ (x)Ḡ (1− 1/η(x))
− Γ(α2 + 1) =

∫ 1

0

((qt(s))
α2 − lnα2(1/s)) ds−

∫ 1

0

(qt(s))
α2 (1− (φt(s))

α2) ds

+

∫ 1

0

(Θt(s))
α2

(
L(Ξt(s))

L(ϕt)
− 1

)
ds =: It − IIt + IIIt. (5.2)

Sin
e (5.1) tends to Γ(α2 + 1) by Theorem 3.1 in Hashorva et al. (2010), the rest of the proof is 
on
erned with the

derivation of the 
onvergen
e rates of the three terms on the right-hand side of (5.2).
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By Lemma 5.2 in Draisma et al. (1999), for every ǫ > 0, there exists t0 = t0(ǫ) > 0 su
h that for all t > t0 and all

s ∈ (0, 1) ∣∣∣∣
qt(s)− ln(1/s)

Ã(t)
− ψ(1/s)

∣∣∣∣ ≤ ǫ(C1 + C3s
−ρ−ǫ),

with some positive 
onstants C1 and C3 not depending on s and t. Therefore, by Taylor's expansion and the

dominated 
onvergen
e theorem

lim
t→∞

It

Ã(t)
=

∫ 1

0

α2 ln
α2−1(1/s)ψ(1/s) ds = K(α2, ρ), (5.3)

with ψ(·) and K(α2, ρ) de�ned in (2.2) and (2.4), respe
tively.

For the se
ond term IIt, re
all that U ∈ Π(a) implies that U ∈ RV0 and ϕt → ∞ as t→ ∞. By Corollary B.2.10 of

de Haan and Ferreira (2006), for all s ∈ (0, 1) and su�
iently large t

0 ≤ qt(s) ≤ cs−ǫ, 0 ≤ φt(s) =

(
1 +

qt(s)

ϕt

)−1
≤ 1 (5.4)

for some c > 1 and any ǫ > 0 implying

1− φt(s)

1/ϕt
≤ qt(s) ≤ cs−ǫ.

Therefore, again by Taylor's expansion and the dominated 
onvergen
e theorem

lim
t→∞

IIt
1/ϕt

= α2

∫ 1

0

lnα2+1(1/s) ds

= α2Γ(α2 + 2). (5.5)

Finally, we show below that (5.6) holds for the third term IIIt

lim
t→∞

IIIt
A(ϕt)

− Γ(α2 − τ2 + 1)− Γ(α2 + 1)

τ2

= lim
t→∞

∫ 1

0

(Θt(s))
α2

(
L(Ξt(s))/L(ϕt)− 1

A(ϕt)
− (Θt(s))

−τ2 − 1

τ2

)
ds = 0. (5.6)

Re
all that L ∈ 2RV0,τ2 with auxiliary fun
tion A. Again by Lemma 5.2 in Draisma et al. (1999), for every ǫ > 0,

there exists t0 = t0(ǫ) > 0 su
h that for all ϕt > t0, the integral of the right-hand side of (5.6) is dominated by

∫

{s:s∈(0,1),Ξt(s)>t0}
ǫ(Θt(s))

α2 (C1 + C3(Θt(s))
−τ2 exp(ǫ|ln(Θt(s))|) ds

+

∫

{s:s∈(0,1),Ξt(s)<t0}
(Θt(s))

α2

∣∣∣∣
L(Ξt(s))/L(ϕt)− 1

A(ϕt)

∣∣∣∣ ds

+

∫

{s:s∈(0,1),Ξt(s)<t0}
(Θt(s))

α2

∣∣∣∣
(Θt(s))

−τ2 − 1

τ2

∣∣∣∣ ds =: J1t + J2t + J3t. (5.7)

Re
all that (5.4) implies that ft(s) = (Θt(s))
α, s ∈ (0, 1) is integrable for all α > 0 and su�
iently large t. Thus, J1t

tends to 0 sin
e ǫ is arbitrarily small, whereas J3t tends to 0 due to ϕt/t0 → ∞.
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It su�
es to prove that limt→∞ J2t = 0. To this end, we need the two statements as in (5.8) and (5.9) below. Next,

note that L ∈ 2RV0,τ2 , τ2 < 0 implies that L is ultimately bounded away from 0 and

L(t) = tα2Ḡ(1− 1/t) ≤ tα2 , L(t) > 1/M

hold for some given M > 0 and su�
iently large t. By Potter bounds (
f. Proposition B.1.9 in de Haan and

Ferreira (2006)), for any ǫ > 0, there exists t0 = t0(ǫ) > 0 su
h that min(ϕt,Ξt(s)) > t0

L(Ξt(s))

L(ϕt)
≤ cmax((Θt(s))

ǫ, (Θt(s))
−ǫ),

otherwise for ϕt > t0,Ξt(s) ≤ t0 su
h that

L(Ξt(s))

L(ϕt)
≤ (Ξt(s))

α2

1/M
≤Mtα2

0 . (5.8)

Note that |A| is ultimately de
reasing and |A| ∈ RVτ2 . By the Karamata Representation (
f. Resni
k (1987), p.17),

for any given δ > 0 and t0 < ϕt < Θt(s)t0

|A(ϕt)| ≥ |A(Θt(s)t0)| ≥ K2(Θt(s))
τ2−δ|A(t0)|, (5.9)

with K2 ∈ (0, 1) a 
onstant. Therefore, the integrand of J2t is dominated by

Mtα2

0 + 1

K2|A(t0)|
(Θt(s))

α2−τ2+δ ≤ Mtα2

0 + 1

K2|A(t0)|
(cs−ǫ)α2−τ2+δ.

Hen
e, by the dominated 
onvergen
e theorem, J2t tends to 0 as t → ∞. Consequently, we have that (5.7) tends to

0 as t→ ∞, and thus (5.6) follows establishing the proof. ✷

Proof of Corollary 2.4 For a = 1/w(U) the �rst-order auxiliary fun
tion of U , note that, by Theorem B.3.1 in

de Haan and Ferreira (2006), we have a ∈ 2RV0,ρ, ρ ≤ 0 with auxiliary fun
tion Ã. Thus, for su�
iently large x

w (x+ z/w(x))

w(x)
=1− eρz − 1

ρ
Ã

(
1

F̄ (x)

)
(1 + o(1)) (5.10)

holds for all z ∈ R (here (eρz − 1)/ρ is interpreted as z for ρ = 0). Sin
e further Ḡ(1 − 1/x) ∈ 2RV−α2,τ2 and

|A| ∈ RVτ2 , we have

Ḡ
(
1− 1

η(x+z/w(x))

)

Ḡ(1− 1/η(x))
=

(
η(x + z/w(x))

η(x)

)−α2


1 +

(
η(x+z/w(x))

η(x)

)τ2
− 1

τ2
A(η(x))(1 + o(1))




=

(
x+ z/w(x)

x

w(x+ z/w(x))

w(x)

)−α2
[
1 + o

(
1

η(x)

)
+ o

(
Ã

(
1

F̄ (x)

))]

= 1−
[
α2z

η(x)
− α2

eρz − 1

ρ
Ã

(
1

F̄ (x)

)]
(1 + o(1)). (5.11)

Re
all that U ∈ 2ERV0,ρ with auxiliary fun
tion Ã, and

F̄ (x+ z/w(x))

F̄ (x)
= e−z

(
1 + ψ(e−z)Ã

(
1

F̄ (x)

))
. (5.12)
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The 
laim (2.7) follows from (2.6), (5.10)�(5.12) and the fa
t that

lim
x→xF

η(x)Ã

(
1

F̄ (x)

)
= lim

t→∞
Ã(t)

a(t)/U(t)
= 0 (5.13)

for ρ < 0 (
f. Lemma B.3.16 in de Haan and Ferreira (2006)).

Using (5.13) and the relation h(h←(t)) = t(1 + o(1)) as t → ∞ with h = 1/H̄ in (2.7), we have that UX ∈ 2ERV0,0

with auxiliary fun
tions ă and Ă stated by (2.8). ✷

Proof of Corollary 2.5 First, note that U(t) = V←(ln t) = (ln t)θℓ(ln t) with ℓ ∈ 2RV0,ρ′
with auxiliary fun
tion

b. We have

U(tx) = V←(ln tx) = (ln t)θℓ(ln t)

(
1 +

lnx

ln t

)θ
ℓ(ln t(1 + lnx/ ln t))

ℓ(ln t)

=U(t)

(
1 + θ

lnx

ln t
+
θ(θ − 1)

2

ln2 x

ln2 t
(1 + o(1))

)(
1 + b(ln t)

(1 + lnx/ ln t)ρ
′ − 1

ρ′
(1 + o(1))

)
.

Therefore, U ∈ 2ERV0,0 with auxiliary fun
tions a and Ã as

a(t) =
θ + b(ln t)

ln t
U(t), Ã(t) =

θ − 1+(ρ′ − 1)b(ln t)/θ

ln t
.

This implies that

η(x) =
x

a(1/F̄ (x))
=

V (x)

θ + b(V (x))
, Ã

(
1

F̄ (x)

)
=
θ − 1+(ρ′ − 1)b(V (x))/θ

V (x)
. (5.14)

By Theorem 2.3,

H̄(x) = F̄ (x)Ḡ

(
1− 1

V (x)

)(
η(x)

V (x)

)−α2


1 +

(
η(x)
V (x)

)τ2
− 1

τ2
A(V (x))(1 + o(1))


Γ(α2 + 1)

×


1 +




Γ(α2 − τ2 + 1)

Γ(α2 + 1)
− 1

τ2

(
η(x)

V (x)

)τ2

A(V (x))

−
(
θ + b(V (x)) − θ − 1+(ρ′ − 1)b(V (x))/θ

2

)
α2(α2 + 1)

V (x)

)
(1 + o(1))

]

= exp(−V (x))Ḡ

(
1− 1

V (x)

)
Γ(α2 + 1)θα2

×


1 +



α2

θ
b(V (x)) +

Γ(α2 − τ2 + 1)

θτ2Γ(α2 + 1)
− 1

τ2
A(V (x)) − (θ + 1)α2(α2 + 1)

2V (x)


 (1 + o(1))


 (5.15)

=: exp(−V (x))(V (x))−α2L∗(V (x)), (5.16)

where (5.15) is due to (5.14) and Ḡ(1− 1/x) ∈ 2RV−α2,τ2 with auxiliary fun
tion A. Clearly, L∗ is a slowly varying

fun
tion. Therefore, letting the right-hand side of (5.16) equal to 1/s, and solving the equation of x, we have

V (x) = ln s(1 + o(1)) and

UX(s) = V←
(
ln
sL∗(V (x))

(V (x))α2

)
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=

(
ln s− α2 lnV (x)

(
1− lnL∗(V (x))

α2 lnV (x)

))θ

ℓ

(
ln s− α2 lnV (x)

(
1− lnL∗(V (x))

α2 lnV (x)

))

= (ln s− α2 ln ln s(1 + o(1)))
θ
ℓ(ln s)(1 + o(ln ln s/ ln s)).

The last step is due to ℓ ∈ 2RV0,ρ′
and the property of slowly varying fun
tion: lnL∗(V (x))/ lnV (x) → 0 (see

Bingham et al. (1987)). Hen
e

H̄(x) = exp(−V ∗(x)), (V ∗)←(x) = xθ
(
1− α2

lnx

x

)θ

ℓ∗(x).

Thus the 
laim in Corollary 2.5 follows from ℓ∗ ∈ 2RV0,ρ′∗
with ρ′∗ = max(ρ′,−1) and auxiliary fun
tion

b∗(x) = b(x) +
θα2 lnx

x
.

We 
omplete the proof. ✷

Proof of Theorem 2.6 First, by arguments similar to (5.1) for the 
ase that F ∈ D(Q0), we have

H̄(x)

F̄ (x)Ḡ(x)
=

∫ 1

0

(Θt(s))
α2
L(ϕt/Θt(s))

L(ϕt)
ds,

where t = 1/F̄ (x), x = U(t) and

Θt(s) = qt(s)φt(s), ϕt =
1

1− U(t)
, with qt(s) =

U(t/s)− U(t)

1− U(t)
, φt(s) =

1

U(t/s)
.

Next,

H̄(x)

F̄ (x)Ḡ(x)
− α1B(α1, α2 + 1) =

∫ 1

0

(
qt(s)

)α2 − (1− s1/α1)α2 ds

+

∫ 1

0

(qt(s))
α2((φt(s))

α2 − 1) ds+

∫ 1

0

(Θt(s))
α2

(
L(ϕt/Θt(s))

L(ϕt)
− 1

)
ds

=: It + IIt + IIIt. (5.17)

It remains thus to derive the 
onvergen
e rate of ea
h term above. By Lemma 5.2 in Draisma et al. (1999), for every

ǫ > 0, there exists t0 = t0(ǫ) > 0 su
h that for all t > t0 and all s ∈ (0, 1)

∣∣∣∣
qt(s)− (1 − s1/α1)

Ã(t)
+ s1/α1

s−τ1/α1 − 1

τ1/α1

∣∣∣∣ ≤ ǫ(C1 + C2s
1/α1 + C3s

(1−τ1)/α1−ǫ),

with some positive 
onstants C1, C2 and C3 not depending on s and t. Therefore, by Taylor's expansion and the

dominated 
onvergen
e theorem

lim
t→∞

It

Ã(t)
= −α2

∫ 1

0

(1− s1/α1)α2−1s1/α1
s−τ1/α1 − 1

τ1/α1
ds

= −α2α
2
1

τ1
(B(α2, α1 − τ1 + 1)−B(α2, α1 + 1)).

Here, (5.18) for τ1 = 0 is understood as

−α2

∫ 1

0

(1 − s1/α1)α2−1s1/α1 lim
τ1→0

s−τ1/α1 − 1

τ1/α1
ds
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= lim
τ1→0

−α2α
2
1

τ1

(
B(α2, α1 − τ1 + 1)−B(α2, α1 + 1)

)

(
f. Corollary 4.4 in Mao and Hu (2012)). For IIt, note that qt(s) ∈ (0, 1), ϕt → ∞ and thus for all s ∈ (0, 1)

0 ≤ φt(s)− 1

1/ϕt
=

(1− (1 − qt(s))/ϕt)
−1 − 1

1/ϕt
=

1− qt(s)

1− (1− qt(s))/ϕt
≤ 1

1− 1/ϕt
→ 1

as t→ ∞. Therefore, by Taylor's expansion and the dominated 
onvergen
e theorem

lim
t→∞

IIt
1/ϕt

=

∫ 1

0

lim
t→∞

(qt(s))
α2

(1 + (φt(s)− 1))α2 − 1

1/ϕt
ds

= α2

∫ 1

0

(1− s1/α1)α2s1/α1 ds = α1α2B(α1 + 1, α2 + 1). (5.18)

Finally, we 
onsider the third term IIIt. By Lemma 5.2 in Draisma et al. (1999), for every ǫ > 0, there exists

t0 = t0(ǫ) > 0 su
h that for all ϕt > t0 and all s ∈ (0, 1)
∣∣∣∣∣(Θt(s))

α2

(
L
(

ϕt

Θt(s)

)
/L(ϕt)− 1

A(ϕt)
− (Θt(s))

−τ2 − 1

τ2

)∣∣∣∣∣

≤ ǫ(C1 + C2(Θt(s))
α2 + C3(Θt(s))

α2−τ2−ǫ) ≤ ǫ(C1 + C2 + C3).

The last step is due to Θt(s) ≤ 1 for all s ∈ (0, 1) and t > 0. Hen
e, by the dominated 
onvergen
e theorem

lim
t→∞

IIIt
A(t)

=

∫ 1

0

lim
t→∞

(Θt(s))
α2

(Θt(s))
−τ2 − 1

τ2
ds

=

∫ 1

0

(1 − s1/α1)α2
(1 − s1/α1)−τ2 − 1

τ2
ds =

α1

τ2

(
B (α1, α2 − τ2 + 1)−B (α1, α2 + 1)

)
. (5.19)

Consequently, the 
laim follows from (5.18), (5.18) and (5.19). ✷

Proof of Lemma 4.1 We only give the proof of the 
ase λ ∈ (0, 1). The other 
ases 
an be veri�ed by similar

arguments. Clearly, for λ ∈ (0, 1), S∗(λ) ≤ 1 and it is bounded away from unit unless I1 = I2 = 1, and when the

event {I1 = I2 = 1} o

urs, S∗(λ) ↑ 1 if and only if |S − λ| ↓ 0. For small x > 0, the event

{S∗(λ) > 1− x} = {(S − λ)2 + 2λxS < 2x− x2}

o

urs is equivalent that

(S − λ)2 < 2x
(
(1− λ2)− λ

√
2x(1 − λ2)(1 + op(1))

)
.

Consequently, the 
laim follows from (4.18). ✷

6 Appendix

This appendix in
ludes two tables. Table 1 
ontains Weibull tail distributions satisfying the se
ond-order reg-

ular varying 
onditions and Table 2 shows several distributions in the maximum domain of attra
tion of the

Fré
het distribution, the Gumbel distribution and the Weibull distribution in the se
ond-order framework.
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Table 1: Weibull tail distributions

Weibull tail distributions Tail F̄ or pdf f θ ρ b(x)

Gamma (Γ(α, λ)) f(x) = λα

Γ(α)x
α−1e−λx, λ, α > 0, α 6= 1 1 −1 (1−α)ln x

x

Absolute Normal (|N(0, 1)|) f(x) = 2√
2π
e−x

2/2 1
2 −1 ln x

4x

Weibull (W (β, c)) F̄ (x) = exp(−cxβ), c, β > 0 1
β −∞ 0

Perturbed Weibull (PW (β, α)) F̄ (x) = e−x
β(C+Dx−α), α, β, C > 0, D ∈ R 1

β −α
β

αD
β2 C

α/β−1x−α/β

Modi�ed Weibull (MW (β, c)) Y lnY ∼ F, Y ∼W (β, c) 1
β 0

1
ln x

Benktander II (BII(β, λ)) F̄ (x) = x−(1−β) exp(−λ
β (x

β − 1)), λ > 0, 0 < β < 1 1
β −1 (1−β) ln x

β2x

Extended Weibull (EW (β, α)) F̄ (x) = r(x) exp(−xβ), β ∈ (0, 1), r ∈ RV−α, α ∈ R 1
β −1 α ln x

β2x

Logisti
 F̄ (x) = 2
1+ex 1 −1 − ln 2

x

Gumbel (G(µ)) F̄ (x) = 1− exp(− exp(µ− x)), µ 6= 0 1 −1 −µ
x

Weibull tail distributions: F̄ (x) = exp(−V (x)), V←(x) = xθℓ(x) and ℓ ∈ 2RV0,ρ with auxiliary fun
tion b.
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Table 2: Risks satisfying the se
ond-order regular variation 
onditions

Fré
het MDA Tail F̄ or pdf f α τ A(x)

Pareto F̄ (x) =
(

θ
θ+x

)α
, θ, α > 0 α −1 αθ

x

Fré
het F̄ (x) = 1− exp(−x−α) α −α αx−α

2

Burr F̄ (x) = (1 + xb)−a ab −b abx−b

Hall-Weiss F̄ (x) = 1
2x
−α(1 + xτ ), α > 0, τ < 0 α τ τxτ

F (m,n) f(x) = (m/n)m/2

B(m/2,n/2)x
m/2−1 (1 + mx

n

)−(m+n)/2 n
2 −1 (m+n)n2

2m(n+2)x

Log-gamma f(x) = αβ

Γ(β) (lnx)
β−1x−α−1, α, β > 0 α 0

β−1
ln x

Inv-gamma f(x) = βα

Γ(α)x
−α−1e−β/x, α, β > 0 α −1 αβ

(α+1)x

Absolute t f(x) = 2Γ((v+1)/2)√
vπΓ(v/2)

(1 + x2/v)−(v+1)/2, v ∈ N v −2 v2(v+1)
(v+2)x2

Weibull MDA Tail F̄ (xF − 1/x) or pdf f α τ A(x)

Beta f(x) = 1
B(a,b)x

a−1(1− x)b−1, a, b > 0 b −1 (a 6= 1) b(a−1)
(b+1)x

Reverse-Burr F̄ (xF − 1/x) = (1 + xb)−a ab −b abx−b

Extreme value Weibull F̄ (xF − 1/x) = 1− exp(−x−α) α −α αx−α

2

Gumbel MDA Tail F̄ or pdf f ρ a(x) A(x)

Gamma f(x) = λα

Γ(α)x
α−1e−λx, λ, α > 0 0

(
1 + α−1

ln x

) /
λ 1−α

ln2 x

Absolute Normal f(x) = 2√
2π
e−x

2/2
0

U1(2x)
2 ln(2x) − 1

2 ln x

Log-normal f(x) = 1√
2πx

exp(− ln2 x
2 ) 0

exp(U1(x))√
2 ln x

1√
2 ln x

Logisti
 F̄ (x) = 2
1+ex −1 1 1

2x

Trun
ated Gumbel F̄ (x) = 1−exp(−e−x)
1−e−1 −1 1

1−e−1

2x

Exponential with �nite xF F̄ (x) = exp(− c
xF−x + c

xF
), c > 0, xF > 0 0

c
(ln x+c/xF )2 − 2

ln x

Weibull F̄ (x) = exp(−cxβ), c > 0, β ∈ (0, 1) 0

(ln x)1/β−1

βc1/β
1/β−1
ln x

Benktander I F̄ (x) =
(
1 + 2β

α lnx
)
exp(−β ln2 x− (α+ 1) lnx) 0

U2(x)

2
√
β ln x

1
2
√
β ln x

Benktander II F̄ (x) = x−(1−β) exp(−α
β (x

β − 1)), α > 0, 0 < β < 1 0 a∗(x) 1/β−1
ln x

a∗(x) = 1−(1−β)/(β(α/β+lnx))
β(α/β+lnx) U(x), U(x) =

(
β
α ((α/β + lnx)− (1− β) lnU(x))

)1/β

U1(x) =
√
2 lnx− ln(4π ln x)

2
√
2 ln x

, U2(x) = exp
(
−α+1

2β +
√

lnx
β + ln ln x+ln(4β/α2)+(α+1)2/(2β)

4
√
β ln x

)

For the Fré
het MDA F̄ ∈ 2RV−α,τ with auxiliary fun
tion A. Further for the Weibull MDA F̄ (xF −1/x) ∈ 2RV−α,τ

with auxiliary fun
tion A and a �nite upper endpoint xF . Finally, note that for the Gumbel MDA the tail quantile

fun
tion U ∈ 2ERV0,ρ with the �rst-order auxiliary fun
tion a and the se
ond-order auxiliary fun
tion A.
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