Second-order Tail Asymptotics of Deflated Risks

Enkelejd Hashorva® Chengxiu Ling® Zuoxiang Peng?
“Faculty of Business and Economics (HEC Lausanne), University of Lausanne, 1015 Lausanne, Switzerland

®School of Mathematics and Statistics, Southwest University, 400715 Chongging, China

April 11, 2014

Abstract: Random deflation of risk models is an interesting topic for both theoretical and practical
actuarial problems. In this paper, we investigate second-order tail asymptotics of the deflated risk X = RS
under the assumptions of second-order regular variation on the survival functions of the risk R and the
deflator S. Our findings are applied to derive second-order expansions of Value-at-Risk. Further we
investigate the estimation of small tail probability for deflated risks and then discuss the asymptotics of

the aggregated deflated risk.

Key words and phrases: Random deflation; Value-at-Risk; Risk aggregation; Second-order regular

variation; Estimation of tail probability.
JEL classification: G22

MSC: 60G70, 62G32, 62G20, 91B30

1 Introduction

Let R be a non-negative random variable (rv) with distribution function (df) F' being independent of the rv S € (0, 1)
with df G. If R models the loss amount of a financial risk, and S models a random deflator for a particular time-
period, then the product X = RS represents the deflated value of R at the end of the time-period under consideration.
Random deflation is a natural phenomena in various actuarial applications attributed to the time-value of money.
When large values or extremes are of interest, for instance for reinsurance pricing and risk management purposes, it
is important to link the behaviors of the risk R and the random deflator S. Intuitively, we expect that large values
observed for R are not significantly influenced by the random deflation. However, this is not always the case; a precise

analysis driven by some extreme value theory models is given in Tang and Tsitsiashvili (2004), Tang (2006, 2008),



Hashorva et al. (2010), Arendarczyk and Debicki (2011), Tang and Yang (2012), Zhu and Li (2012), Hashorva (2013),
Yang and Hashorva (2013), Yang and Wang (2013), and the references therein. The results of the aforementioned
papers are obtained mainly under a first-order asymptotic condition for the survival function or the quantile function
in extreme value theory, i.e., the df F under consideration belongs to the max-domain of attraction (MDA) of a

univariate extreme value distribution @+, € R, abbreviated as F € D(Q~), which means that
F"(apx + by) — exp (—(1 + 796)_1/7) =:Qy(z), 14+~v2>0, n— oo (1.1)

holds for some constants a,, > 0 and b,, € R,n > 1, see Resnick (1987). The parameter + is called the extreme value
index; according to v > 0,y = 0 and v < 0, the df F' belongs to the MDA of the Fréchet distribution, the Gumbel

distribution and the Weibull distribution, respectively.

In order to derive some more informative asymptotic results, second-order regular variation (2RV) conditions are
widely used in extreme value theory. Here we only mention de Haan and Resnick (1996) for the uniform convergence
rate of F™ to its ultimate extreme value distribution () under 2RV, and Beirlant et al. (2009, 2011), Ling et al. (2012)

and the references therein for the asymptotic distributions of the extreme value index estimators under consideration.

Indeed, almost all the common loss distributions including log-gamma, absolute ¢, log-normal, Weibull, Benktander
II, Beta (cf. Table 2 in the Appendix) possess 2RV properties; actuarial applications based on those properties are

developed in the recent contributions Hua and Joe (2011), Mao and Hu (2012, 2013) and Yang (2013).

The main contributions of this paper concern the second-order expansions of the tail probability of the deflated risk
X = RS which are then illustrated by several examples. Our main findings are utilized for the formulations of three
applications, namely approximation of Value-at-Risk, estimation of small tail probability of the deflated risk, and

the derivation of the tail asymptotics of aggregated risk under deflation.

The rest of this paper is organized as follows. In Section 2 we present our main results under second-order regular
variation conditions. Section 3 shows the efficiency of our second-order asymptotics through some illustrating exam-
ples. Section 4 is dedicated to three applications. The proofs of all results are relegated to Section 5. We conclude

the paper with a short Appendix.

2 Main results

We start with the definitions and some properties of regular variation followed by our principal findings. A measurable
function f : [0,00) — R with constant sign near infinity is said to be of second-order regular variation with parameters

a € R and p <0, denoted by f € 2RV, ,, if there exists some function A with constant sign near infinity satisfying



limy_, o0 A(t) = 0 such that for all 2 > 0 (cf. Bingham et al. (1987) and Resnick (2007))

fQtx)/f(t) — 2

. _ * p—1 —.
lim A x /1 u’” du =: Hq p(2). (2.1)

t—o00

Here, A is referred to as the auxiliary function of f. Note that (2.1) implies lim; o f(tz)/f(t) = a%, ie., f is
regularly varying at infinity with index o« € R, denoted by f € RV,. RVj is the class of slowly varying functions.
For f eventually positive, it is of second-order Il-variation with the second-order parameter p < 0, denoted by
f € 2ERV,,, if there exist some functions a and A with constant signs near infinity and lim;_, A(t) = 0 such that

for all x positive

LU —f®) 10 zf-1 <0

. a(t) . L p P )
R 100 =v@)=q (2.2)

==, p=0

(cf. Resnick (2007)), where the functions a and A are referred to as the first-order and the second-order auxiliary
functions of f, respectively. From Theorem B.3.1 in de Haan and Ferreira (2006) we see that a € 2RVq , with
auxiliary function A, and that |A| € RV,. In fact, (2.2) implies lim; oo (f(tx) — f(t))/a(t) = Inz for all x > 0, which
means [ is [I-varying with auxiliary function a, denoted by f € II(a).

We shall keep the notation of the Introduction for R and S € (0,1), denoting their df’s by F' and G, respectively,
whereas the df of X = RS will be denoted by H. Throughout this paper, let Fy = 1 — Fy denote the survival function

of a given df Fy.

Next, we present our main results. Theorem 2.1 gives a second-order counterpart of Breiman’s Lemma (see
Breiman (1965)) while Theorem 2.3 and Theorem 2.6 include refinements of the tail asymptotics of products de-
rived in Hashorva et al. (2010).

Theorem 2.1. If F' € D(Ql/al) satisfies Fe 2RV _q, 7, with auziliary function A for some avy > 0 and 7 <0,

then

((;)) =E{S“} [l +E&(2)], (2.3)

where £(z) = (E{S* T} /E{S*} — 1) A(z)/m (140(1)) as z — oo, and thus H € 2RV _,, ,, with auziliary function

|

Remark 2.2. a) The expression for m = 0 is understood throughout this paper as its limit as 7 — 0.

b) Under the assumptions of Theorem 2.1, Breiman’s Lemma only implies

— E{5™}[1+ & (2)

with lim, o E*(x) = 0, while the error term E(x) in (2.3) not only converges to 0 as x — 0o, but it shows also the

speed of convergence being determined by fl(;v)



Next, we shall consider the cases that F' belongs to the MDA of the Gumbel distribution and the Weibull distribution,
respectively. Compared to the heavy-tail case above, we need to impose some assumptions on the tail of S; see
Hashorva et al. (2010). In our setting, we strengthen L (see (2.4) below for an accurate definition) to be of second-

order regular variation.

We shall write Y ~ @ for some rv Y with df @, whereas Q¢ denotes the generalized left-continuous inverse of )
(also for @ which are not dfs). Since both H and F have the same upper endpoint xg = zp := sup{y : F(y) < 1},

then all the limit relations below are for x 1 xp unless otherwise specified. Further, for some as > 0 we set

(1-p)~2-1

. 1 U=p) 1P, +1), p<O0,
L(z) = 2™G (1 ) ‘) | K(as,p) = 7 et (2.4)

x sl (az+2) —0

2 ) p - )

where I'(+) is the Euler Gamma function, and define
1

w(x) n(z) = zw(x). (2.5)

T E{R—zR>ax}

Hereafter the generalized left-continuous inverses of 1/F and 1/H are denoted respectively by
U=Ugr = (1/F)" and Ux = (1/H)*.

Theorem 2.3. Let F' be strictly increasing and continuous in the left neighborhood of xr and let U € 2ERVq ,, p <0

with auziliary functions 1/w(U) and A. If L € 2RV ,,, 7 < 0 with auziliary function A, then

H(x) _
F@G - 1n@) F(ag +1) 4 E(x), (2.6)
where K (g, p),n(x) are defined in (2.4), (2.5), and
el) = | MO DE RO ) - 22HO T2 g ) () (1 o0,

In view of our second result above, the error term E(x) converges to 0 as x T 2p with a speed which is determined
by A(n(x)),1/n(z) and A(1/F(z)). In general, it is not clear which of these terms is asymptotically relevant for the
definition of the error term &(z). For instance in Example 3.3 below A(1/F(z)) determines &(x). However, Example
3.4 shows the opposite, namely A(1/F(x)) does not appear in our second-order approximation.

Corollary 2.4. Under the conditions of Theorem 2.3, with ¥ and w given by (2.2) and (2.5), respectively, then for

z€eR

H(z + 2/w(z))
exp(—2)H(x)

14+ E@), )= [(¢(6Z) +a2€pzp_ 1) i (ng)) _ ;‘éﬂ (1+0(1), (27

where (e?* —1)/p is interpreted as z for p=0. Thus Ux € 2ERV, ¢ with auziliary functions & and A given by

=i (1- i (rngy ) 40— (rmey ) @9




where a = 1/w(Ux).

Numerous dfs in the MDA of the Gumbel distribution have Weibull tails (see Embrechts et al. (1997) and Table 1 in
the Appendix); specifically such a distribution function F' has the representation

F(x) = exp(=V(x)), V< (z)=2%(x), >0, (2.9)

where ¢ denote a positive slowly varying function at infinity, and 6 is called the Weibull tail coefficient of F'.
Corollary 2.5. Under the conditions of Theorem 2.3, if instead we assume that F is given by (2.9) and { €

2RV, p' <0 with auziliary function b, then

H(z) = exp(=V(2))G (1 - ﬁ) D(ag +1)0*2 [1 + E(x)], (2.10)
with Mlas—m+1)
@) = | Guvie) + Oy - 2222 EE | o),
and thus

H(z) = exp(=V*(2)), (V) (2) = 2"0*(a),
where (* € 2RV - with auziliary function b*(x) = b(x) + 0oz (Inzx)/x, p"* = max(p’, —1).

Theorem 2.1 and Corollary 2.4 illustrate that the tail asymptotics of the product X = RS mainly depends on the
heavier factor R. Corollary 2.5 shows that for the Weibull tail distributions, the Weibull tail properties of X are
inherited from the factor R in the presence of random deflation. The result of Corollary 2.5 is of particular interest

for the estimation of tail probabilities, see Section 4.2.

Our last theorem shows that for both R and S belonging to the MDA of the Weibull distribution, the tail of the
product X = RS is heavier than those of the factors R and S.

Theorem 2.6. Let F' be strictly increasing and continuous in the left neighborhood of xp = 1. Assume that for
some a1 > 0,71 < 0,1 —=U € 2RV_y /4, 7, /a, with auziliary function A. If further L € 2RV ,,, 72 < 0 with auziliary
function A, then

m :alB (061,042+1)+(€(5E), (211)

where

(B (042,041 — 71+ 1) - B (0427041 + 1))/1 <$) + 0410[2B (041 + 1,0&2 + 1) (1 — I)

_|_ﬂ(B(oz1,a2—7'2—|—1)—B(041,042—|—1))A<1ix> (14 o(1)),

T2

with B(a,b) =T'(a)T'(b)/T(a+b),a,b> 0.



Remark 2.7. Recall that for a df F' with a finite upper endpoint xp belonging to MDA of the Weibull distribution,
then for some ay > 0,71 < 0,2p —U € 2RV_1 /4, r,/a, with auxiliary function A, is equivalent that F(zxp —1/z) €
2RV _,, -, with auziliary function A*(z) = —a}A (1/F(zp —1/x)) and |A*| € RV, (cf. Theorem 2.3.8 in de Haan

and Ferreira (2006)). Thus (2.11) holds with

E(z) = %(B(O%al —7m1+1)— B(ag,a1 + 1))[1* (

1—=z
1
1—=z

Remark 2.8. Under the assumptions of Theorem 2.6, H(1 — 1/x) € 2RV_,, with « = a1 + az and T =

. )—l—alagB(al—l—l,az—i—l)(l—:E)
1

—i—ﬂ(B(al,ag—T2+1)—B(041,a2+1))14(

= (1+0(1)

max(—1, 71, 72).

3 Examples

In this section, six examples are presented to illustrate estimation errors of the second-order expansions given by
Section 2 and the first-order asymptotics by Breiman (1965) and Hashorva et al. (2010). We use the R-Project to
calculate the exact value of H(x). Fig. 1~ Fig. 5 illustrate the advantage of our second-order tail approximations.

Example 3.1. (Fréchet case with Pareto distribution) Let R be a random variable with a Pareto df F' given by

_ 0 \¢
F(I)_<x+6‘)’ x>0,0,0>0

denoted in the sequel by R ~ Pareto(a, ). Suppose that S ~ beta(a,b) where beta(a,b) stands for the Beta

distribution with positive parameters a and b and probability density function (pdf)

= 1 —a)tt 1, a,b> 0. 1
g(x) B(a,b)x 1-—z)"", 0<z<1l,ab>0 (3.1)

We have that F € 2RV_,,_; with auxiliary function A(z) = af/z and E{S*} = B(a + &,b)/B(a,b) for all £ > 0.

By Theorem 2.1 with a; =« and 7, = —1

0 )aB(a+a’b)[1+8(;v)],

f(x) = F@E{S} [1 + £(x)] = <x+e B(a,b)
with
a+1 - «

Fig. 1 compares the first-order and the second-order asymptotic expansions with the exact true value H(x) when
R ~ Pareto(a,0),S ~ beta(a,b) with (a,0,a,b) = (1,1,1,2) (left) and (a, 0,a,b) = (2,1,1,2) (right). As expected,

we find that the second-order tail asymptotics is more accurate than the first-order one.



Example 3.2. (Fréchet case with Beta distribution of second kind) Let R be a random variable with Beta distribution
of second kind with positive parameters a, b, i.e., R 4 1/Ry — 1, Ry ~ beta(b,a), denoted by R ~ betas(a,b) (here 4

stands for equality of distribution function). It follows from (3.1) that

P(Ro < x) = z ) [1 _laz Dby 0(1))} .z lo,

bB(b,a 1+0
and thus
xb a
F(x) =P(R > z) —P<R0 < 1-11-:E> = B0 [1— %(1—!—0(1))} , X — 00, (3.2)

ie., F € 2RV_;_; with auxiliary function A(z) = (a 4 b)b/((1 + b)z). Let S ~ beta(c,d), and then E{S"} =

B(c+ k,d)/B(c,d) for all k> 0. In view of Theorem 2.1 with oy =b and 74 = —1

xP a c
H(z) = F@E{S"} 1+ £@)] = j50— {1 - ((1 ié’))z (1+ 0(1))] %d’)@u +E(@)),

with

b1\ a
E(x) = (1 - %) A@)(1 +o(1)) = b+f+d(<lil’)’))z(1+o(1)).

In particular, for a = ¢+ d,

x_b c
: [ S Orob oy,

H@) =tea '~ T o
which is the second-order expansion of survival function of betas(c,b) (cf. (3.2)), and coincides with the fact that
X ~ betas(c,b), see Lemma 5 in Balakrishnan and Hashorva (2011). Fig. 2 compares the first-order and the second-
order expansions with the exact true value H(x) when R ~ betas(a,b), S ~ beta(c,d) with (a,b,c,d) = (3,2,1,2)
(left) and (a,b,c,d) = (2,2,1,2) (right). As expected, we find that the second-order tail asymptotics is more accurate
than the first-order one.

Example 3.3. (Gumbel case with p = 0) Let R be a random variable with df F' given by

F‘(m):exp(—lcx ), 0<zx<le>0, (3.3)

—x
denoted in the sequel by R ~ E(1,c). If follows that F' € D(Qo) with w(z) = ¢/(1 —z)?, and U € 2ERV( o with

auxiliary functions

1 N 2
a(x):w(U(:E))’ ( )__c—l—ln:z:'
If S ~ beta(a,b), then the df G of S satisfies
_ 1 - xb bla—1)
G(l—;) = B (1— (b+1)x(1+0(1))> , T — 00, (3.4)

ie,G(1—1/z) =2"L(x),L € 2RV _; with auxiliary function




Consequently,

1 (1-2)? i1\ _ 21 —x) . :b(a—l)(l—x)2
= a Alwm) e 40w |

By Theorem 2.3 with g = b, 79 = —1 and p =0

)
H(z) = F(z)G (1 — %) b+ 11+ E(x)],
with
£(z) = K(b,0)A (ﬁ) (1+01)) = 22F 1 4 _ a1+ o(1)).

Example 3.4. (Gumbel case with p < 0) Let R ~ F with

F(z) = - exp(—pexp(—x)), r>0,p=1—et (3.5)

It follows that F' € D(Qo) with constant scaling function w(z) = 1 and its tail quantile function is
r p
U(x)=In———(1 1)).
(@) =10 % = Z(1+o(1)

Furthermore, U € 2ERV( _; with auxiliary functions

Next, suppose that S ~ beta(a,b). Thus (see (3.4))

L:%, A( ! ):%e—w, An(z)) = =D

n(z)

By Theorem 2.3 with ay = b, 7 = —1 and p = —1

with
b*(a—1) N b(b+1)
b+ 1)z x

E(z) = — { } (1+o(1)).

Fig. 3 shows the efficiency of the second-order asymptotics of H when R ~ E(1,¢) with ¢ = 1 and S ~ beta(1,1/2)
(left); and when R follows the left-truncated Gumbel distribution (3.5) and S ~ beta(1,1) (right).

Example 3.5. (Gumbel case with Weibull tail) Let R ~ I'(a, \) with pdf

_ A% a—1_—Ax
f(x)—r(a)x e ™M x>0, \,a>0.
The tail quantile function of F is
1 (e —1)Inlnz
=—(lnz —InT 1+ —2— (1 .



Thus F € D(Qo) with w(z) = A and U € 2RV ¢ with second-order auxiliary function

A(x)—l —a

)
In“x

(cf. Table 1 in the Appendix). Next, let S ~ beta(a,b), note that the survival function satisfies (3.4). Consequently,

1 (AN _ia o ba-1)
n(x) Ax’ A<F‘(m)) (Az)2’ Aln(z)) (b+ 1)z’

By Theorem 2.3 with g = b, 7o = —1 and p=0

H(z) = F(z)G (1 - A%) T(b+1)[1+ &),
where
E(x) = —)\% [% +b+ 1] (14 0(1)).
Thus

_ ()\gc)o‘_le_)‘”” [1 n a—1

)b a—
i) = Q0 (\z) P(b+1)<1_b( 1)

v (Ho(l))} bB(a,b) /\(b+1)x(1+0(1))>
b

[ (B i) o)

 (Aa)arbrlemAe { a—>bla+b)—1
- T(a)T(a)/T'(a+b) Az

(1+ 0(1))] . (3.6)

On the other hand, in view of Corollary 2.5, both R and X are in the MDA of the Weibull distribution with (cf.

Table 1 in the Appendix)

1—a)l fas 1 1- b)1
d-o)lz 4 Pt = =1, b (2) = b(a) + —2E _(zaf )nx, (3.7)

0=1, p=-1, b(z) =
T T T

which is consistent with (3.6). In particular, if & = a + b, then (3.6) and (3.7) are consistent with the well-known
result X ~ I'(a, A) (cf. Hashorva (2013)).

In Fig. 4, we choose (a, A\, a,b) = (1,1,1/2,1/2) (left) and (a, A, a,b) = (1,2,1/2,1/2)(right). We observe that the
second-order expansion of the tail probability is much closer to the true values.

Example 3.6. (Weibull case) Let R ~ beta(ay,b1) and S ~ beta(az,b2). By (3.4), 1 —U € 2RV_y s, _1/5, with

auxiliary function

~ a; —1 T —1/h
A({E) - _bl(bl + 1) <blB(a1,b1))

and G(1 — 1/z) = 272 L(x),L € 2RV _; with auxiliary function

- bg(ag — 1)
AW =G, 50

Hence
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By Theorem 2.6 with oy = by, 9 = bo, 71 = 70 = —1 and

H(z) = F(z)G(z) [b1B (b1,b2 + 1) + E(x)] ,

with
a] — 1 as — 1

b1—|—1+b2+1

E(z) = bibaB(by +1,by + 1) (1+ )(1—x)(1+0(1)).

In particular, for as + by = a1

_ (1—I)b1+b2B(b1,b2+1) by + boy a; — 1 as — 1
H = 1 1
@) = BB | T st Ut Ty
bl (al — 1) bg(ag — 1)
( P B 1= a1+ o)

- (1 — I)b1+b2 |:1 B (b1 + bQ)(aQ — 1)
- (01 +b2)B(ag,b1 + b9) b1 +ba+1

(1 —2)1+ o<1>>] ,

which is the second-order expansion of survival function of beta(az, by + b2) (cf. (3.4)), and coincides with the fact
that X ~ beta(az, b1 + b2) (cf. Hashorva (2013)).
In Fig. 5, we simulate the cases with (a1,b1,a2,b2) = (4,2,2,2) (left) and (a1,b1,a2,b2) = (4,2,2,3) (right). We

observe that the second-order expansion of the tail probability is much closer to the true values.

4 Applications

4.1 Approximation of Value-at-Risk

In insurance and risk management applications, Value-at-Risk (denoted by VaR) is an important risk measure; see
e.g., Denuit et al. (2006). In the following we shall analyse the asymptotics of VaR,(X) in case that R has a heavy

tail and a Weibull tail, respectively. Recall that VaR at probability level p for R is defined by
VaR,(R) = inf{y : F(y) > p} = U(1/(1 - p)). (4.1)
With the same notation introduced as before, if F € RV_,,a > 0, then by Breiman’s Lemma
H(2)=E{S°} F(x)(1 + o(1)) = F(E{S°})~/"2)(1 + o(1)),
implying the following first-order asymptotics
VaR,(X) = (E{S*})Y*VaR,(R)(1 + o(1)), p11. (4.2)

Refining the above, we derive the following second-order asymptotics

N

E{s"7)

VaR,(X) = (E {S°})/*VaR, (R)[1 + £(p)], E(p) — <(E{Sa})“/a - 1) (VaR,(R))

(1+ o(1)) (4.3)
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provided that F € 2RV_4 +,a > 0,7 < 0 with auxiliary function A.

Indeed, there exists some positive constant ¢ such that (cf. Hua and Joe (2011))

F(zx)=cx™®

1+ A(T:L“)

(1+ 0(1))]

for sufficiently large x. Thus, by Theorem 2.1

E{5*7} Ax)
E{S*} 7

H(z) = cx “E{S“} |1+

(1+ 0(1))] .

Therefore, in view of Theorem 1.5.12 in Bingham et al. (1987)

VaRp(R)—< ¢ >1/a

A(VaR,(R))

aT

1
1—p *

(1 +0(1))] , pTl

and

VaR,(X) = (

B {51\ 1/~ E{S°~7} A(VaR,(X))
1—p ) l1+ E{S~} ar

(1+ 0(1))1 , pTL
Consequently, by |[A| € RV, and (4.2) we obtain the second-order asymptotics (4.3).

In what follows, we will consider the case that F'is in the MDA of the Gumbel distribution. Since most of such
distributions are Weibull tail distributions (cf. Table 1 and Table 2 in the Appendix), we focus on the asymptotics
of VaR,(X) in terms of VaR,(R) (see (4.4) below) under the conditions of Corollary 2.5. Note that F' has a Weibull

tail satisfying the second-order condition (cf. (2.9))

F(z) = exp(=V(z)), with V< (z)=2%(x), 6 >0
and ¢ € 2RV 7, p’ < 0 with auxiliary function b. By (4.1)

VaR,(R) = V(= In(1 - p)) = (~In(1 — p))°6(~n(1 - p)).
In view of Corollary 2.5 (see (2.10))

H(z)=exp(—V(z) —aeIlnV(xz) + In L*(V(x))),

where L* denotes a slowly varying function. Recalling that In L*(V(x)) = o(ln V' (z)) (see Bingham et al. (1987)), we

have as p 1 1
VaR,(X) = V< (— In(1 — p) {1 — m%(l + 0(1))D
- (ln 1 ip)e [l — s (p)(1 + 0(1))] £ (m : ip) N amp(/p))p/ -1, (m 1 ip> 1 0(1))1

— VaR,(R)[1 — fasw(p)(1 +0(1))], with @ (p) — W. (4.4)
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4.2 Estimations of tail probability

In many insurance applications it is important to estimate the tail probability of the extreme risks. In what follows,
we investigate this problem under the random scaling framework. Let {(R;,S;),i = 1,...,n} be a random sample
from (R, S), and thus X; := R;S;,i < n is a sample of size n from X £ RS. Our goal is to estimate p = P(X > z)
with sufficiently large x. One possible estimation is via the empirical df if x is in the region of the sample X;,7 < n
with X; = R;S;,i = 1,...,n. In general, we consider how to estimate p, := P(X > z,,) as x, — oo. Hereafter, we
write Ry —k41,n, Sn—k+1,n and Xp_py1 0,k < n as the associated increasing order statistics, and assume that R ~ F

and S € (0,1) are independent.

First we consider the case that F € 2RV_4 7, > 0,7 < 0 with the second-order auxiliary function A. By Hua and

Joe (2011), there exists a positive constant ¢ such that
F(z)=cx=*(1+ A(z)/7(1 + o(1))) =: cx*(1 + ad(z)),
ie., F'€ Fijq, with 6(z) = A(z)/(aT) in the terminology of Beirlant et al. (2009). By Theorem 2.1
H(z)=F(z) (E{S*} + E{S*(S77 — 1)} ad(z)(1 + o(1))) . (4.5)

In order to estimate H(z) with z = x,, given, we use the estimators of «, 6, 7 and F proposed by Beirlant et al. (2009).
Let yxn = ©/Rn—km, T = Pn/Hrn with p, some weakly consistent estimator of p = 7/« based on samples from

the parent R, denote

1< Ry_it1n 1< Rn—iv1,n n
Hk,n:Ei;lnm, Ejon(s E; T *5<0
and
~ n /A’n o < ~ ~ \3~—~4 ﬁn 1
Qyp, = <Hkn - 5knﬁ> v Ok = Hen(1—2p,)(1 = pn)°p, <Ek1n(Hk:,n)_ T ﬁn) . (4.6)
Thus, by (4.5), the tail probability p,, can be estimated as (denoted by py (R, S))
Pin(R. ) = F(2) (E{Sa} (815} 557 de ) , (@)

with

—Qk.n

F(z) = g (ven (1 +0n(t—vii))) "0 E{S7} = %Zsfm, E{Se 7} = %Zs?mﬂvn. (4.8)
i=1 =1

On the other hand, by Theorem 2.1, X has the same second-order tail behavior as that of R. Consequently, p,, can

be directly estimated by using samples from X. We denote that estimator by pi . (X), given as (in contrast to (4.7),

(4.8))

~x

(v (102000 = @i)T0)) (4.9)

Slw

]/D\k:,n (X)



13

with yi ,, = x/Xn—kn and g};n, ?/:,n7 a;yn are gk,n, Th.n, Ok n, With the order statistics replaced by X, _p11n,k <n—1.
Relying on (4.7) and (4.9), we shall perform some simulations to compare the finite sample behaviors of &y, ., Di.n (R, S)
and a;yn,ﬁk,n(x). Since 7 = —1 holds in most applications, we take 7, , = —1 and p,, = —Hy, ,, in the simulations.
Here we simulate 100 samples of size n = 1000 from R ~ Pareto(2,1) and S ~ beta(1,2), and estimate 1/a = 0.5
and p = P(X > 3) = 0.01298. It turns out that the bias as well as the mean squared errors based on the information

of R and S is much smaller than that on the reduced information of RS, see Fig. 6.

Next, we investigate the case of F' € D(Qq). For convenience, we consider only the estimation comparisons for F'
having Weibull tails. Since by Corollary 2.5, both R and X have Weibull tails with the same Weibull tail coefficient
0 and further the second-order parameter p’* is greater than —1, we consider the bias-reduced Weibull tail coefficient

estimators @ by Diebolt et al. (2008)

6 =0(k, R) = Zy — b(In(n/k))Zx, (4.10)
with
k
[ Zz
b(In(n/k)) = Zz:l(x k)
> iz (i — Tk)?
and
k k
In(n/k) on. Ry_jiin _ PR 7 . 217
Ty ln(n/])v J Jn ] n Rn—jﬂz y Lk L ) k A

Based on the bias-reduced tail quantile estimators provided by Diebolt et al. (2008), given by

’ o
B = R (i ) exo <Ban<n/k>>““(1/pn>/1;§n/k» 1)

with p,, known, we can solve the dual problem and estimate the tail probability F(x) for given x as follows

1/0 70 _
) Gexp <—3(ln(n/k))(x/ B tn)” 1)) (4.11)

0y

f‘(az) = exp (— In(n/k) <R ’

n—k,n

where ' is a consistent estimator of p’. Since F(z) = exp(—V (x)), we have

~

Vie) = —InF(z), b(V(zx))=0bln(n/k)) <1nv(7i%> . (4.12)

Further, we remark that S ~ G with G(1 — 1/z) € 2RV_,, ., is equivalent to S*:=1/(1 — S) ~ G* with G* €
2RV _q, -, Hence, using the estimations of tail probability by Beirlant et al. (2009), we have

)az(k)

A 1 k < T2 1T ~ ~ < T2
GO‘V‘>:a®mﬂ+%4Lw@%> L AW (@) = (k) vy (4.13)

(z)
where vy, = V(x)/S;_kn and gk)n,?g(k),ag(k) are estimated with the order statistics replaced by Sy, =

1/(1 = Sy_kn) in (4.8). Therefore, combining (4.10)-(4.13), the estimator of p = H(x), denoted by pi (R, S), is then

in view of Corollary 2.5 given by

o~ ~

Prn(R, S) = F(x)G(1 — 1)V (2))T (@2 (k) + 1)(8)%2*)
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= -1 ~
a ~ ()T (& ~
6 72(k) 2V (z)
On the other hand, by Corollary 2.5, we can estimate p = H(z) directly based on samples from X as
1/9 ~ P _
Brn(X) = exp [ —In(n/k) ( : ) exp | 5" (In(nk)) G Xn=kn) L), (4.15)
ank,n epl*

where p™*

is a consistent estimator of p* and 5,3* are computed by (4.10) with samples R;,i < n replaced by
X, =R;S;,i <n.

Now, we generate 100 samples of size n = 1000 from R ~ W(2,1) and S ~ beta(2,3) to compare the finite
sample behaviors of estimators of § = 1/2 and p = P(X > 3) = 2.1186 x 10~7 given by (4.10), (4.14) and (4.15).
o

In the simulation we take 75(k) = —1,5' = p’* = —1 and plot mean values and mean squared errors of 8 and

In(pr/p), k = 50, ...,4500, with px, = Dk.n(R,S), Pk.n(X), respectively (cf. (4.14) and (4.15)).

Fig. 7 shows that our estimators of 6 and tail probability based on the original data (indicated by the red dotted

line (- —-)) have much wider stable regions with less bias even the true value of p’ is —oo, see Table 1.
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Figure 1: Tail H when R ~ Pareto(1,1),S ~ beta(1,2) (left) and R ~ Pareto(2,1),S ~ beta(1,2) (right).

4.3 Linear combinations of random contractions

Motivated by the dependence structure of elliptical random vectors, Hashorva et al. (2010) discussed the first-order
tail asymptotics of the aggregated risks of certain bivariate random vectors which we shall introduce next. Let

therefore (V1, V) be a bivariate scale mixture random vector with stochastic representation

(Vi,Va) £ R(I,S, I,\/1 — S2), (4.16)
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Figure 2: Tail H when R ~ betas(3,2),S ~ beta(1,2) (left) and R ~ betas(2,2),S ~ beta(1,2) (right).
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Figure 3: Tail H when R ~ E(1,¢) with ¢ = 1 and S ~ beta(1,1/2) (left) and R is left-truncated Gumbel distributed

and S ~ beta(1,1) (right).
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Figure 4: Tail H ~ I'(a, \) when R ~ I'(a, A) and S ~ beta(a, b) for (o, A, a,b) = (1,1,1/2,1/2) (left) and (a, A, a,b) =

(1,2,1/2,1/2) (right).



Figure 5: Tail H when R ~ beta(4,2),S ~ beta(2,2) (left) and R ~ beta(4,2),S ~ beta(2,3) (right).
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Figure 6: Finite behaviors of mean values (left) and mean squared errors (right) of 1/ay, , and Dy = pr.n (R, S), Dk,n(X)

respectively give by (4.6), (4.7) and (4.9), where 1/a = 1/2 and p = P(X > 3) = 0.01298, which are indicated by the

horizontal lines. The line and the dotted line stand for the estimators based on the original samples from RS and

RS with R ~ Pareto(2,1),S ~ beta(1,2), respectively.
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Figure 7: Finite behaviors of mean values (left) and mean squared errors (right) of ) (above) and In(py/p) (bottom)
with 8, pr = Dien(R,S), Prn(X) respectively given by (4.10), (4.14) and (4.15), where § =1/2 and p = P(X > 3) =
2.1186 x 10~ 7, which are indicated by the horizontal lines. The line and the dotted line stand for the estimators

based on the original samples from R, S and RS with R ~ Weibull(2,1), S ~ beta(2, 3), respectively.
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where R ~ F, is almost surely positive, S ~ G is a scaling random variable taking values in (0, 1), while I, I assume

values in {1, —1}. Hashorva et al. (2010) studied the tail asymptotics of the aggregated risk

VA = AVi 4+ V1 = X2Vy = RALS 4+ V1 — X215\/1 — §2) =: RS*()\) (4.17)

for A € (0,1). In what follows, we derive the second-order tail asymptotics of V() given by (4.17). Specifically, we

suppose that for small z > 0

P(|S = A <z) =cxx® (1 + Lx(x)z™), ax,7a € (0,00) and X €[0,1], (4.18)
where ¢ is a positive constant and |L,| is slowly varying at 0. Set

p=P(h=L=1)I\e (0,1)} +P(I, = 1)I{A =0} + P(I; = 1)I{) = 1}, (4.19)

with I{-} the indicator function.

Lemma 4.1. Let I1, Iy be two random variables taking values —1,1 with probability qx € (0, 1] defined by (4.19) and
being independent of the scaling random variable S ~ G. For given X € [0, 1], suppose further that the df G satisfies
(4.18) for small x > 0. Then for S*(\) defined in (4.17) we have as x | 0

a) If A € (0,1), then

P(S*(A) > 1 — z) = grea(22(1 — A2)* 2 [1 + Ay (2)]
with
Ax(z) = (LA(\/E)(QIQ NV B S
b) If A\ =0, then

Q)T

P(S*(\) > 1 —z) = gaea(22)2 [1 + Ax(z)], An(z) = (L)\(\/E)(Z'E)T’\m - ) (1+0(1)).

c) If \=1, then

P(S*(A) > 1 —x) = grexx™ [1+ Ax(z)], Aa(z) = Lx(z)z™.

In view of Lemma 4.1, we have P(S*(\) > 1 —1/x) € 2RV_,, » with «, 7 and auxiliary function A defined by

—min(7y,1)/2, A€ (0,1),
ax/2, Ae0,1),
a= T=4 —min(m\,2)/2, A=0, A(z) = 7A\(1/). (4.20)
), A= 1;
—TXs A= 13

Next, utilizing Theorem 2.3, Theorem 2.6 and Lemma 4.1, we give the second-order tail approximation of V(\).
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Theorem 4.2. Let V/(\) be defined in (4.17) for X € [0,1] and suppose that the conditions of Lemma 4.1 hold.
a) If F € D(Qo) and its tail quantile function U € 2ERV ,, p < 0 with auziliary functions 1/w(U) and A, then for

x T ap (recall n(z) = zw(x))

P(V(A) > ) = F(2)P (s*(x) 11— %)

MNa—7+1)-T(a+1)

y [r(a 1)+ ( A(n(z)) + K (a, p)A (L» (1+ 0(1))} .

F(x)
b) If ' € D(Q-1/a,);c1 > 0 and xp = 1. Furthermore, we assume that its tail quantile function U satisfies

1—=U €2RV_y/4,,7 /o, with auziliary function A, then for x L 0

PV(A)>1—a)=F(1—2)P(S*(\) >1—1)

X O[lB(Oél,Oé—Fl)"' <OZT;.;1[B(og,og1+1)—B(0¢,Ozl—7’1+1)]A<ﬁ>

—i—% [B(a1,a—7+1) = B(a,a+1)]A (%)) (1"‘0(1))} :

Here a, 7 and A are those defined in (4.20), and P(S*(\) > 1 — z) is given by Lemma 4.1.
Remark 4.3. a) If S has Beta distribution with positive parameters a and b, then (4.18) holds for A = 0,1 and

ag =a,a; =b,19g =7 =1,

e @=L o), o=l L =-S5

Co = (I+0(1)).

b) If G has pdf g which has a continuous third derivative g"', then condition (4.18) holds for any A € (0,1) and

" ()\
69'(A)

N

Q

ax=1, cx=29(\), Li(z)= (1+0(1)), m™=2.

¢) If S has Beta distribution with parameters 1/2,1/2 and Iy, Iy are independent with mean 0 being further indepen-

dent of S, then (V1,V3) is spherically distributed, and
VN L LRS L LRV - 82

for all X € [0,1]. Thus the tail asymptotics of V(X) can be directly obtained by Theorem 2.3 and Theorem 2.6 in

Section 2.

5 Proofs

Proor oF THEOREM 2.1 It follows from Breiman’s Lemma that
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We consider two cases 71 < 0 and 73 = 0 separately. For 7 < 0, by Lemma 5.2 of Draisma et al. (1999), for every

€ > 0, there exists 9 = z9(€) > 0 such that for all x > ¢ and all s € (0,1)

F(z/s)/F(x) — s s —1 o
- — g™ < e(C C58%1 £ (lag®1—T1—¢
‘ Az) ’ T (G +Cos™ + Cis )

with some positive constants C7,Ce and C5 not depending on x and s. Therefore, by the dominated convergence

theorem

(B ) - s = g 21

For 71 = 0, note that for all o3 > 0, the function f(s) = s* In(1/s) is continuous in (0,1] and limgo f(s) = 0. We

have that f(s) is bounded on [0,1] and E {f(S)} exists. Similarly as above for 71 < 0, we have if 71 = 0 that

. 1 H(I> (31 . (31 n —1
ml;rx;om(ﬁ(x)—E{S }>—E{S InS—'}

establishing the proof. a

PRrROOF OF THEOREM 2.3 Letting ¢t = 1/F(z), note that x 1 zp if and only if t — oo, and

- [ o) - [0 (58) a(-2) - [ o)
We rewrite the left-hand side of (2.6) as (recall G(1 — 1/x) = =2 L(x))

 H@) /1G(l—<_U<t/s>—U(t>>/U(t/s>>ds
F@)G - 1/n(2) ~ Jo G (1= a(h)/U(1)

- [ (pua-v v )“QL([iff?/ (7 airs)
o T am o L ()

S

M e HE)
- [ @y =t s 6.1
where
- Pt Ul(t)
@t(S)ZQt(S)¢t(5)a :t(S)*Gt(S), ©Yr = a(t)
and
LU -Uw LU
) =——m  W=gmay Y= Ta)

Further we decompose (5.1) as

1

F(I)Gg(f)l/n(x)) “flear = /0 ((g:())™ — In™(1/5)) ds — /0 (g:(5))* (1 = (de(s))**) ds
1 = (s
+/0 (©:(s))2 (% - 1) ds=: I, — II; + I11,. (5.2)

Since (5.1) tends to I'(az + 1) by Theorem 3.1 in Hashorva et al. (2010), the rest of the proof is concerned with the

derivation of the convergence rates of the three terms on the right-hand side of (5.2).
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By Lemma 5.2 in Draisma et al. (1999), for every e > 0, there exists to = to(e) > 0 such that for all ¢ > ¢( and all

s€(0,1)

qt(s) - In(1/s)

A0) —¢(1/s)

< E(Cl + C3S_p_6),

with some positive constants C; and Cs not depending on s and t. Therefore, by Taylor’s expansion and the

dominated convergence theorem

tl_lg)lo % = /01 a1 (1/8)(1/s) ds = K (ua, p), (5.3)
with ¢(-) and K (as, p) defined in (2.2) and (2.4), respectively.
For the second term IT;, recall that U € II(a) implies that U € RV and ¢; — oo as ¢ — co. By Corollary B.2.10 of
de Haan and Ferreira (2006), for all s € (0,1) and sufficiently large ¢
~1
0<q(s) <es™ 0<(s) = (1 + %j)) <1 (5.4)
for some ¢ > 1 and any € > 0 implying

1 — (bt(S)

— 2 < q(s) <es™C.
1/%5 _Qt( )_

Therefore, again by Taylor’s expansion and the dominated convergence theorem

im 11
t—00 1/<Pt

1
= az/ In***t(1/s) ds
0

sl (0 + 2). (5.5)

Finally, we show below that (5.6) holds for the third term I11;

I, T(aa—7+1)—T(ag+1)

t1i>rgo A(Sﬁt) N To
! as [ L(Ei(s))/L(pr) =1 (Ofs)) ™ -1 _
= tim [ @u(5) ( oy . ) ds = 0. (5.6)

Recall that L € 2RV ,, with auxiliary function A. Again by Lemma 5.2 in Draisma et al. (1999), for every € > 0,

there exists t9 = to(€) > 0 such that for all ¢, > ¢, the integral of the right-hand side of (5.6) is dominated by

/ €(0:(5))** (C1 + C3(O1(s)) ™ exp(e[In(O4(s))|) ds
{s:5€(0,1),E¢(s)>to}

L= L —1
+/ (O4(s))? (Ed(s)/Liet) ‘ ds
{s:5€(0,1),2¢(s)<to} A(pr)
S T2 ]
+/ (O4(s))* %‘ ds =: Jy + Jog + Jay. (5.7)
{s:5€(0,1),E¢(s)<to} T2

Recall that (5.4) implies that f;(s) = (0+(s))*, s € (0,1) is integrable for all @ > 0 and sufficiently large ¢t. Thus, Ji;

tends to O since e is arbitrarily small, whereas Js; tends to 0 due to ¢ /tg — 0.



22

It suffices to prove that lim; ,o Jo = 0. To this end, we need the two statements as in (5.8) and (5.9) below. Next,

note that L € 2RV ,,, 7> < 0 implies that L is ultimately bounded away from 0 and
L) =t*G(1 —1/t) <t*>, L(t)>1/M

hold for some given M > 0 and sufficiently large ¢t. By Potter bounds (cf. Proposition B.1.9 in de Haan and

Ferreira (2006)), for any € > 0, there exists to = to(€) > 0 such that min(p;, Z¢(s)) > to

7L(Et(8)) cmax s))¢ s))”"°¢
sl < cmax((€4(5)", (€(5) ),

otherwise for ¢; > to, Z¢(s) < to such that

L(E(s)) _ (Eu(s)™ o
< < Mty2. 5.8

Leo = 1 = M0 >
Note that |A| is ultimately decreasing and |A| € RV,,. By the Karamata Representation (cf. Resnick (1987), p.17),

for any given 6 > 0 and ty < p: < O¢(s)to
[A(pi)| > [A(O1(s)to)] > Ka(O1(s))™°|A(to), (5.9)

with K5 € (0,1) a constant. Therefore, the integrand of Jo; is dominated by

Mty +1

Mte? +1
__ v = - 6 s O¢2—T2+(5 < 0
KalAtto)] 1)

s~ ¢ a2—72+5'
< TalAwo] )

Hence, by the dominated convergence theorem, Jo; tends to 0 as ¢ — oo. Consequently, we have that (5.7) tends to
0 as t — oo, and thus (5.6) follows establishing the proof. a

PROOF OF COROLLARY 2.4 For a = 1/w(U) the first-order auxiliary function of U, note that, by Theorem B.3.1 in

de Haan and Ferreira (2006), we have a € 2RV ,, p < 0 with auxiliary function A. Thus, for sufficiently large =

w(r+z/w(@) o e 1.0 1 o
e =1 5 A (F(x)) (1+0(1)) (5.10)

holds for all z € R (here (e”* — 1)/p is interpreted as z for p = 0). Since further G(1 — 1/z) € 2RV_,, ,, and
|A| € RV;,, we have

~(1_ 1 W natz/w@)\ ™ _
G (1~ soremy) (n<w+z/w<w))> |, +( ) -

A(n(z))(1 + o(1))

G(1—1/n(x)) n(z) Ty
- () e () o (4(#))
—1- L‘;‘&Z) - azepzp_ L <F(1x))] (1+ o(1)). (5.11)

Recall that U € 2ERV , with auxiliary function A, and
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The claim (2.7) follows from (2.6), (5.10)—(5.12) and the fact that

, o 1N Al
Am n(@)A (F@)) = A U (5.13)

for p < 0 (cf. Lemma B.3.16 in de Haan and Ferreira (2006)).

Using (5.13) and the relation h(h* (t)) = t(1 + o(1)) as t — oo with h = 1/H in (2.7), we have that Ux € 2ERV g

with auxiliary functions @ and A stated by (2.8). O

PROOF OF COROLLARY 2.5 First, note that U(¢) = V< (Int) = (Int)?/(Int) with £ € 2RV, with auxiliary function

b. We have

U(tr) = V< (Intz) = (Int)?0(Int) (1 n 1“)0 ((nt(l +Inz/Int))

Int {(Int)

Inz 6(0—1)In*z

=U(t) (1+9_+ (I+nz/Int)” —1

(1 +0(1))) (1 +b(Int) . (1 +o(1))>.

Int 2 In?¢

Therefore, U € 2ERV( o with auxiliary functions a and A as

aft) = 0 +lf1(11€nt)U(t)’ Alt) = 60— 1—|—(p’1;t1)b(lnt)/9'
This implies that
o) — x V() . 0= 1+(p = 1)b(V(x))/6
") = 7y~ e AR - V() | o1
By Theorem 2.3,
2\ 02 n(ﬂ;) "
A(z) = F(2)G <1 - ﬁ) <%) {1 + %A(V(x))(l + 0(1))] T(as + 1)
FNag —m+1) 1
e | ezt (I i)
- <9 TN ) P _21)1)(1/(35))/9) az({j‘f;)r 1)) (1+ 0(1))}
=exp(—V(z))G <1 - ﬁ) I(ag +1)0%
FNag — 1+ 1) 1
a 0™ (ag + 1) 0+ Daz(az +1)
x |1+ | V(@) + - AV @) - e (1+0(1) (5.15)
=: exp(—=V(2))(V(x))~** L*(V (), (5.16)

where (5.15) is due to (5.14) and G(1 — 1/x) € 2RV _,, ,, with auxiliary function A. Clearly, L* is a slowly varying
function. Therefore, letting the right-hand side of (5.16) equal to 1/s, and solving the equation of x, we have
V(z) =Ins(l 4 o(1)) and

Ux(s)=V* (ln M)

(V ()
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- (s (1~ ZEON 1y tarin (1 LT

= (Ins—azlnlns(1+0(1))? £(ns)(1 + o(Inlns/Ins)).

The last step is due to £ € 2RV, and the property of slowly varying function: InL*(V(x))/InV(z) — 0 (see

Bingham et al. (1987)). Hence

0
H(z) = exp(=V*(z)), (V) (z) =2’ (1 — a21r17x> 0 ().

Thus the claim in Corollary 2.5 follows from ¢* € 2RV ,~ with p™* = max(p’, —1) and auxiliary function

BasInx
-

We complete the proof. O

PRrROOF OF THEOREM 2.6 First, by arguments similar to (5.1) for the case that F' € D(Qq), we have

H(@z) (" . as L(pt/O4(s)) s
_F(:v_)é(:v)_/o(@t( N =Ty %

where t = 1/F(z),x = U(t) and

O1) = as)n(9). ¢ = e vith a(s) = Uﬁ/ji[]‘(g(” 0(5) = g
Next,
F(I;[)(é)(x) —aBlaga: 1) = /01 (a:())"* = (1 = s"/1)* ds
T 01<qt<s>>a2<<¢t<s>>a2 v+ | (@)™ (% - 1) ds
= I, + II, + ITI,. (5.17)

It remains thus to derive the convergence rate of each term above. By Lemma 5.2 in Draisma et al. (1999), for every

€ > 0, there exists to = to(€) > 0 such that for all ¢ > ¢y and all s € (0,1)

@ls) = (L=sM) s/ — 1

X < €(Cy + Cos ™ 4 Cyst=T)/e1—€),
A(t) 1/ }_ = ’ ’ )

with some positive constants C7,Cy and C3 not depending on s and t. Therefore, by Taylor’s expansion and the

dominated convergence theorem

! —Ti/on
lim i = —a2/ (1 _ 81/041)042*181/0118 1 ds
t=o0 A(t) 0 /0
2
= —ajal (B(ag,a1 — 11 + 1) — B(ag, a1 + 1)).
1

Here, (5.18) for 71 = 0 is understood as

1 —T1/C
_a2/ (1 — st/onyaz=lgl/an iy ‘91/71_1653
0 71—0 7'1/041
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(B(ag,oq — 71+ 1) — B(OQ,OQ + 1))

(cf. Corollary 4.4 in Mao and Hu (2012)). For II;, note that ¢.(s) € (0,1), ¢ — oo and thus for all s € (0,1)

o) =1 (- (—q)e) 1 1—g(s) |
0= T /o BEEO R e

as t — oo. Therefore, by Taylor’s expansion and the dominated convergence theorem

1, " (o (gnyez LT (Be(8) =) —1
tilgo 1/(,015 _/O th(qt( )) 1/(,015 d

1
= 042/ (1 —st/oyezgl/on ds — oo Blog + 1, a9 4 1). (5.18)
0

Finally, we consider the third term III;. By Lemma 5.2 in Draisma et al. (1999), for every ¢ > 0, there exists
to = to(e) > 0 such that for all ¢, > ¢y and all s € (0,1)

L(s2=) /L) =1 (@,(s)-" —
<@t<s>>a2< (Ot(sii(/%()w e 1)

< €(Cr + Ca(O4(8))** + C3(04(s))* 7™ 7°) < e(C1 + C2 + C3).

The last step is due to ©;(s) <1 for all s € (0,1) and ¢t > 0. Hence, by the dominated convergence theorem

1 —T2 _
lim L2t :/ lim (@t(s))w(@t(s))—lds
t—oo A(t) o t—oo T2
1 _ gl/ary—T2 _
:/ (1—31/0‘1)0‘2(1 5 ) 1d8=ﬂ(B(al,Oéz—T2+1)—B(041,a2+1)). (5.19)
0 T2 T2
Consequently, the claim follows from (5.18), (5.18) and (5.19). a

Proor or LEMMA 4.1 We only give the proof of the case A € (0,1). The other cases can be verified by similar
arguments. Clearly, for A € (0,1),5*(\) < 1 and it is bounded away from unit unless Iy = I = 1, and when the

event {I; = Iy = 1} occurs, S*(\) 11 if and only if |[S — A| | 0. For small 2 > 0, the event
{S*(\) > 1—a} ={(S— N +2\zS < 2z — 2%}

occurs is equivalent that

(S =A% <2z((1 =A%) — A/22(1 = A2)(1 + 0,(1))).

Consequently, the claim follows from (4.18). m|

6 Appendix

This appendix includes two tables. Table 1 contains Weibull tail distributions satisfying the second-order reg-
ular varying conditions and Table 2 shows several distributions in the maximum domain of attraction of the

Fréchet distribution, the Gumbel distribution and the Weibull distribution in the second-order framework.



Table 1: Weibull tail distributions
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Weibull tail distributions Tail F or pdf f 0| p b(z)
Gamma (I'(av, \)) flx)= F)(‘Z)xo‘_le_’\m, Aa>0,a#1 1| -1 (1_0;)1“1
Absolute Normal (|N(0,1)]) flz) = %278712/2 1l -1 Ing
Weibull (W (8, ¢c)) F(z) = exp(—c2?), ¢, >0 % —00 0
Perturbed Weibull (PW(B,q)) | F(z) = e=*"(C+P="*) « B.C >0,D € R 5| -5 | R/ Pigmelp
Modified Weibull (MW (8,¢)) | YInY ~ E)Y ~ W(8,¢) % 0 =
Benktander I (BII(3,)\)) F(z)=2"0"Pexp(-3(" = 1)), A>0,0<B<1| 3| -1 —
Extended Weibull (EW(8,a)) | F(z) = r(z)exp(—z?), B € (0,1),r € RV_,,a € R % -1 0‘[515’;
Logistic F(r) = 2= 1] -1 —n2
Gumbel (G(u)) F(z) =1—exp(—exp(pu—xz)), p#0 -1 -

Weibull tail distributions: F(x) = exp(=V (z)), V" (2) = 2%4(x) and £ € 2RV, , with auxiliary function b.



Table 2: Risks satisfying the second-order regular variation conditions
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Fréchet MDA Tail F or pdf f ! T A(x)
Pareto F(z) = (0_%) , 0,aa>0 e -1 ab
Fréchet F(z) =1—exp(—z~%) a —a 0””2706
Burr Flz)=(1+2%"° ab —b abr—
Hall-Weiss F(z)=1z"%(14+27), a>0,7<0 e T "
m/n)™/? m/2— ma\ —(m+n)/2 n m+n)n?
F(m,n) flz) = 73((“1//2),71/2)5” P21+ ) ) -1 72(m(n+)2)z
Log-gamma f(z) = %(lnx)ﬁ_lgc_o‘_l, o, >0 o 0 %
Inv-gamma flz) = Ffiz)x*a’lefﬁ/z, a,f>0 a -1 ﬁ
v —(v v2 (v
Absolute ¢ f(z) = %’m(l + 22 u)~ /20y e N v -2 (vi;)jg
Weibull MDA Tail F(zp — 1/z) or pdf f ! T A(x)
a— — bla—
Beta f(x)zﬁx 1—2)t a,b>0 b —1(a#1) (l(;+1)132
Reverse-Burr F(zp—1/z) = (1 + %)~ ab -b abz~?
Extreme value Weibull F(zp —1/7) =1 — exp(—2~%) a -« az °
Gumbel MDA Tail F or pdf f p a(x) A(x)
Gamma fla) = gaa®le™™, A a>0 0 | A+ /A =2
Absolute Normal f(z) = \/%6_12/2 0 % — i
2 ex T
Log-normal F(z) = Jzz exp(-125%) 0| R | v
Logistic F(z) = 1f€m -1 1 =
Truncated Gumbel F(r) = 17C1X_p(eif 0 -1 1 1_26171
Exponential with finite 2 | F(z) = exp(—3-5 +5), ¢>0,2p>0 0 (Y=Yt =
Weibull F(z) = exp(—czf), ¢>0,8€(0,1) 0 | oo /61
Benktander I F(z) = (1 + % In .I') exp(—f1In®z — (a+1)Inx) 0 262,(11)1 2\/611”
Benktander II F(x) =2~0-9 exp(—%(wﬁ -1)),a>0,0<p8<1| 0 a*(z) 1/15;1

a*(@) = SRR @),

Ui(z) =V2Inz —

U(x)

In(47 Inz)

(2((a/8 +mz) ~ (1~ HUE)) "

Inln z+1n(45/a2)+(a+1)2/(25)

— _atl Inz
2v2Inz ’ Ug(x)—exp( 2 + B +

4/BInzx

)

For the Fréchet MDA F' € 2RV _,, , with auxiliary function A. Further for the Weibull MDA F(zp—1/x) € 2RV_, ,

with auxiliary function A and a finite upper endpoint . Finally, note that for the Gumbel MDA the tail quantile

function U € 2ERV, , with the first-order auxiliary function a and the second-order auxiliary function A.
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