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1 Introdution

Let R be a non-negative random variable (rv) with distribution funtion (df) F being independent of the rv S ∈ (0, 1)

with df G. If R models the loss amount of a �nanial risk, and S models a random de�ator for a partiular time-

period, then the produtX = RS represents the de�ated value of R at the end of the time-period under onsideration.

Random de�ation is a natural phenomena in various atuarial appliations attributed to the time-value of money.

When large values or extremes are of interest, for instane for reinsurane priing and risk management purposes, it

is important to link the behaviors of the risk R and the random de�ator S. Intuitively, we expet that large values

observed for R are not signi�antly in�uened by the random de�ation. However, this is not always the ase; a preise

analysis driven by some extreme value theory models is given in Tang and Tsitsiashvili (2004), Tang (2006, 2008),

1



2

Hashorva et al. (2010), Arendarzyk and D�ebiki (2011), Tang and Yang (2012), Zhu and Li (2012), Hashorva (2013),

Yang and Hashorva (2013), Yang and Wang (2013), and the referenes therein. The results of the aforementioned

papers are obtained mainly under a �rst-order asymptoti ondition for the survival funtion or the quantile funtion

in extreme value theory, i.e., the df F under onsideration belongs to the max-domain of attration (MDA) of a

univariate extreme value distribution Qγ , γ ∈ R, abbreviated as F ∈ D(Qγ), whih means that

Fn(anx+ bn) → exp
(
−(1 + γx)−1/γ

)
=: Qγ(x), 1 + γx > 0, n→ ∞ (1.1)

holds for some onstants an > 0 and bn ∈ R, n ≥ 1, see Resnik (1987). The parameter γ is alled the extreme value

index; aording to γ > 0, γ = 0 and γ < 0, the df F belongs to the MDA of the Fréhet distribution, the Gumbel

distribution and the Weibull distribution, respetively.

In order to derive some more informative asymptoti results, seond-order regular variation (2RV) onditions are

widely used in extreme value theory. Here we only mention de Haan and Resnik (1996) for the uniform onvergene

rate of Fn
to its ultimate extreme value distribution Qγ under 2RV, and Beirlant et al. (2009, 2011), Ling et al. (2012)

and the referenes therein for the asymptoti distributions of the extreme value index estimators under onsideration.

Indeed, almost all the ommon loss distributions inluding log-gamma, absolute t, log-normal, Weibull, Benktander

II, Beta (f. Table 2 in the Appendix) possess 2RV properties; atuarial appliations based on those properties are

developed in the reent ontributions Hua and Joe (2011), Mao and Hu (2012, 2013) and Yang (2013).

The main ontributions of this paper onern the seond-order expansions of the tail probability of the de�ated risk

X = RS whih are then illustrated by several examples. Our main �ndings are utilized for the formulations of three

appliations, namely approximation of Value-at-Risk, estimation of small tail probability of the de�ated risk, and

the derivation of the tail asymptotis of aggregated risk under de�ation.

The rest of this paper is organized as follows. In Setion 2 we present our main results under seond-order regular

variation onditions. Setion 3 shows the e�ieny of our seond-order asymptotis through some illustrating exam-

ples. Setion 4 is dediated to three appliations. The proofs of all results are relegated to Setion 5. We onlude

the paper with a short Appendix.

2 Main results

We start with the de�nitions and some properties of regular variation followed by our prinipal �ndings. A measurable

funtion f : [0,∞) → R with onstant sign near in�nity is said to be of seond-order regular variation with parameters

α ∈ R and ρ ≤ 0, denoted by f ∈ 2RVα,ρ, if there exists some funtion A with onstant sign near in�nity satisfying
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limt→∞ A(t) = 0 suh that for all x > 0 (f. Bingham et al. (1987) and Resnik (2007))

lim
t→∞

f(tx)/f(t)− xα

A(t)
= xα

∫ x

1

uρ−1 du =: Hα,ρ(x). (2.1)

Here, A is referred to as the auxiliary funtion of f . Note that (2.1) implies limt→∞ f(tx)/f(t) = xα, i.e., f is

regularly varying at in�nity with index α ∈ R, denoted by f ∈ RVα. RV0 is the lass of slowly varying funtions.

For f eventually positive, it is of seond-order Π-variation with the seond-order parameter ρ ≤ 0, denoted by

f ∈ 2ERV0,ρ, if there exist some funtions a and A with onstant signs near in�nity and limt→∞A(t) = 0 suh that

for all x positive

lim
t→∞

f(tx)−f(t)
a(t) − lnx

A(t)
= ψ(x) :=





xρ−1
ρ , ρ < 0,

ln2 x
2 , ρ = 0

(2.2)

(f. Resnik (2007)), where the funtions a and A are referred to as the �rst-order and the seond-order auxiliary

funtions of f , respetively. From Theorem B.3.1 in de Haan and Ferreira (2006) we see that a ∈ 2RV0,ρ with

auxiliary funtion A, and that |A| ∈ RVρ. In fat, (2.2) implies limt→∞(f(tx)− f(t))/a(t) = lnx for all x > 0, whih

means f is Π-varying with auxiliary funtion a, denoted by f ∈ Π(a).

We shall keep the notation of the Introdution for R and S ∈ (0, 1), denoting their df's by F and G, respetively,

whereas the df of X = RS will be denoted by H . Throughout this paper, let F̄0 = 1−F0 denote the survival funtion

of a given df F0.

Next, we present our main results. Theorem 2.1 gives a seond-order ounterpart of Breiman's Lemma (see

Breiman (1965)) while Theorem 2.3 and Theorem 2.6 inlude re�nements of the tail asymptotis of produts de-

rived in Hashorva et al. (2010).

Theorem 2.1. If F ∈ D(Q1/α1
) satis�es F̄ ∈ 2RV−α1,τ1 with auxiliary funtion Ã for some α1 > 0 and τ1 ≤ 0,

then

H̄(x)

F̄ (x)
= E {Sα1} [1 + E(x)] , (2.3)

where E(x) = (E {Sα1−τ1}/E {Sα1} − 1) Ã(x)/τ1(1+o(1)) as x→ ∞, and thus H̄ ∈ 2RV−α1,τ1 with auxiliary funtion

A∗(x) =
E {Sα1−τ1}
E {Sα1} Ã(x).

Remark 2.2. a) The expression for τ1 = 0 is understood throughout this paper as its limit as τ1 → 0.

b) Under the assumptions of Theorem 2.1, Breiman's Lemma only implies

H̄(x)

F̄ (x)
= E {Sα1} [1 + E∗(x)]

with limx→∞ E∗(x) = 0, while the error term E(x) in (2.3) not only onverges to 0 as x → ∞, but it shows also the

speed of onvergene being determined by Ã(x).
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Next, we shall onsider the ases that F belongs to the MDA of the Gumbel distribution and the Weibull distribution,

respetively. Compared to the heavy-tail ase above, we need to impose some assumptions on the tail of S; see

Hashorva et al. (2010). In our setting, we strengthen L (see (2.4) below for an aurate de�nition) to be of seond-

order regular variation.

We shall write Y ∼ Q for some rv Y with df Q, whereas Q← denotes the generalized left-ontinuous inverse of Q

(also for Q whih are not dfs). Sine both H and F have the same upper endpoint xH = xF := sup{y : F (y) < 1},

then all the limit relations below are for x ↑ xF unless otherwise spei�ed. Further, for some α2 > 0 we set

L(x) = xα2Ḡ

(
1− 1

x

)
, K(α2, ρ) =





(1−ρ)−α2−1
ρ Γ(α2 + 1), ρ < 0,

α2Γ(α2+2)
2 , ρ = 0,

(2.4)

where Γ(·) is the Euler Gamma funtion, and de�ne

w(x) =
1

E {R− x|R > x} , η(x) = xw(x). (2.5)

Hereafter the generalized left-ontinuous inverses of 1/F̄ and 1/H̄ are denoted respetively by

U=UR = (1/F̄ )← and UX = (1/H̄)←.

Theorem 2.3. Let F be stritly inreasing and ontinuous in the left neighborhood of xF and let U ∈ 2ERV0,ρ, ρ ≤ 0

with auxiliary funtions 1/w(U) and Ã. If L ∈ 2RV0,τ2 , τ2 < 0 with auxiliary funtion A, then

H̄(x)

F̄ (x)Ḡ (1− 1/η(x))
= Γ(α2 + 1) + E(x), (2.6)

where K(α2, ρ), η(x) are de�ned in (2.4), (2.5), and

E(x) =
[
Γ(α2 − τ2 + 1)− Γ(α2 + 1)

τ2
A(η(x)) − α2Γ(α2 + 2)

η(x)
+K(α2, ρ)Ã

(
1

F̄ (x)

)]
(1 + o(1)).

In view of our seond result above, the error term E(x) onverges to 0 as x ↑ xF with a speed whih is determined

by A(η(x)), 1/η(x) and Ã(1/F̄ (x)). In general, it is not lear whih of these terms is asymptotially relevant for the

de�nition of the error term E(x). For instane in Example 3.3 below Ã(1/F̄ (x)) determines E(x). However, Example

3.4 shows the opposite, namely Ã(1/F̄ (x)) does not appear in our seond-order approximation.

Corollary 2.4. Under the onditions of Theorem 2.3, with ψ and w given by (2.2) and (2.5), respetively, then for

z ∈ R

H̄(x+ z/w(x))

exp(−z)H̄(x)
= 1 + E(x), E(x) =

[(
ψ(e−z) + α2

eρz − 1

ρ

)
Ã

(
1

F̄ (x)

)
− α2z

η(x)

]
(1 + o(1)), (2.7)

where (eρz − 1)/ρ is interpreted as z for ρ = 0. Thus UX ∈ 2ERV0,0 with auxiliary funtions ă and Ă given by

ă(x) = ã(x)

(
1− α2ã(x)

UX(x)
+α2Ã

(
1

F̄ (UX(x))

))
, Ă(x) = −α

2
2ã

2(x)

U2
X(x)

+Ã

(
1

F̄ (UX(x))

)
, (2.8)
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where ã = 1/w(UX).

Numerous dfs in the MDA of the Gumbel distribution have Weibull tails (see Embrehts et al. (1997) and Table 1 in

the Appendix); spei�ally suh a distribution funtion F has the representation

F̄ (x) = exp(−V (x)), V←(x) = xθℓ(x), θ > 0, (2.9)

where ℓ denote a positive slowly varying funtion at in�nity, and θ is alled the Weibull tail oe�ient of F .

Corollary 2.5. Under the onditions of Theorem 2.3, if instead we assume that F is given by (2.9) and ℓ ∈

2RV0,ρ′ , ρ′ ≤ 0 with auxiliary funtion b, then

H̄(x) = exp(−V (x))Ḡ

(
1− 1

V (x)

)
Γ(α2 + 1)θα2 [1 + E(x)] , (2.10)

with

E(x) =



α2

θ
b(V (x)) +

Γ(α2 − τ2 + 1)

θτ2Γ(α2 + 1)
− 1

τ2
A(V (x))− α2(α2 + 1)(θ + 1)

2V (x)


 (1 + o(1)),

and thus

H̄(x) = exp(−V ∗(x)), (V ∗)←(x) = xθℓ∗(x),

where ℓ∗ ∈ 2RV0,ρ′∗
with auxiliary funtion b∗(x) = b(x) + θα2(lnx)/x, ρ

′∗ = max(ρ′,−1).

Theorem 2.1 and Corollary 2.4 illustrate that the tail asymptotis of the produt X = RS mainly depends on the

heavier fator R. Corollary 2.5 shows that for the Weibull tail distributions, the Weibull tail properties of X are

inherited from the fator R in the presene of random de�ation. The result of Corollary 2.5 is of partiular interest

for the estimation of tail probabilities, see Setion 4.2.

Our last theorem shows that for both R and S belonging to the MDA of the Weibull distribution, the tail of the

produt X = RS is heavier than those of the fators R and S.

Theorem 2.6. Let F be stritly inreasing and ontinuous in the left neighborhood of xF = 1. Assume that for

some α1 > 0, τ1 ≤ 0, 1− U ∈ 2RV−1/α1,τ1/α1
with auxiliary funtion Ã. If further L ∈ 2RV0,τ2 , τ2 ≤ 0 with auxiliary

funtion A, then

H̄(x)

F̄ (x)Ḡ(x)
= α1B (α1, α2 + 1) + E(x), (2.11)

where

E(x) =
[
−α

2
1α2

τ1

(
B (α2, α1 − τ1 + 1)−B (α2, α1 + 1)

)
Ã

(
1

F̄ (x)

)
+ α1α2B (α1 + 1, α2 + 1) (1 − x)

+
α1

τ2

(
B (α1, α2 − τ2 + 1)−B (α1, α2 + 1)

)
A

(
1

1− x

)]
(1 + o(1)),

with B(a, b) = Γ(a)Γ(b)/Γ(a+ b), a, b > 0.
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Remark 2.7. Reall that for a df F with a �nite upper endpoint xF belonging to MDA of the Weibull distribution,

then for some α1 > 0, τ1 ≤ 0, xF − U ∈ 2RV−1/α1,τ1/α1
with auxiliary funtion Ã, is equivalent that F̄ (xF − 1/x) ∈

2RV−α1,τ1 with auxiliary funtion Ã∗(x) = −α2
1Ã
(
1/F̄ (xF − 1/x)

)
and |Ã∗| ∈ RVτ1 (f. Theorem 2.3.8 in de Haan

and Ferreira (2006)). Thus (2.11) holds with

E(x) =
[
α2

τ1

(
B (α2, α1 − τ1 + 1)−B (α2, α1 + 1)

)
Ã∗
(

1

1− x

)
+ α1α2B (α1 + 1, α2 + 1) (1− x)

+
α1

τ2

(
B (α1, α2 − τ2 + 1)−B (α1, α2 + 1)

)
A

(
1

1− x

)]
(1 + o(1)).

Remark 2.8. Under the assumptions of Theorem 2.6, H̄(1 − 1/x) ∈ 2RV−α,τ with α = α1 + α2 and τ =

max(−1, τ1, τ2).

3 Examples

In this setion, six examples are presented to illustrate estimation errors of the seond-order expansions given by

Setion 2 and the �rst-order asymptotis by Breiman (1965) and Hashorva et al. (2010). We use the R-Projet to

alulate the exat value of H̄(x). Fig. 1∼ Fig. 5 illustrate the advantage of our seond-order tail approximations.

Example 3.1. (Fréhet ase with Pareto distribution) Let R be a random variable with a Pareto df F given by

F̄ (x) =

(
θ

x+ θ

)α

, x > 0, α, θ > 0

denoted in the sequel by R ∼ Pareto(α, θ). Suppose that S ∼ beta(a, b) where beta(a, b) stands for the Beta

distribution with positive parameters a and b and probability density funtion (pdf)

g(x) =
1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1, a, b > 0. (3.1)

We have that F̄ ∈ 2RV−α,−1 with auxiliary funtion Ã(x) = αθ/x and E {Sκ} = B(a + κ, b)/B(a, b) for all κ > 0.

By Theorem 2.1 with α1 = α and τ1 = −1

H̄(x) = F̄ (x)E {Sα} [1 + E(x)] =
(

θ

x+ θ

)α
B(a+ α, b)

B(a, b)
[1 + E(x)],

with

E(x) =
(
1− E

{
Sα+1

}

E {Sα}

)
Ã(x)(1 + o(1)) =

αθb

(α+ a+ b)x
(1 + o(1)).

Fig. 1 ompares the �rst-order and the seond-order asymptoti expansions with the exat true value H̄(x) when

R ∼ Pareto(α, θ), S ∼ beta(a, b) with (α, θ, a, b) = (1, 1, 1, 2) (left) and (α, θ, a, b) = (2, 1, 1, 2) (right). As expeted,

we �nd that the seond-order tail asymptotis is more aurate than the �rst-order one.
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Example 3.2. (Fréhet ase with Beta distribution of seond kind) Let R be a random variable with Beta distribution

of seond kind with positive parameters a, b, i.e., R
d
= 1/R0 − 1, R0 ∼ beta(b, a), denoted by R ∼ beta2(a, b) (here

d
=

stands for equality of distribution funtion). It follows from (3.1) that

P(R0 < x) =
xb

bB(b, a)

[
1− (a− 1)b

1 + b
x(1 + o(1))

]
, x ↓ 0,

and thus

F̄ (x) = P(R > x) = P

(
R0 <

1

1 + x

)
=

x−b

bB(b, a)

[
1− (a+ b)b

(1 + b)x
(1 + o(1))

]
, x→ ∞, (3.2)

i.e., F̄ ∈ 2RV−b,−1 with auxiliary funtion Ã(x) = (a + b)b/((1 + b)x). Let S ∼ beta(c, d), and then E {Sκ} =

B(c+ κ, d)/B(c, d) for all κ > 0. In view of Theorem 2.1 with α1 = b and τ1 = −1

H̄(x) = F̄ (x)E
{
Sb
}
[1 + E(x)] = x−b

bB(b, a)

[
1− (a+ b)b

(1 + b)x
(1 + o(1))

]
B(b + c, d)

B(c, d)
[1 + E(x)],

with

E(x) =
(
1− E

{
Sb+1

}

E {Sb}

)
Ã(x)(1 + o(1)) =

d

b+ c+ d

(a+ b)b

(1 + b)x
(1 + o(1)).

In partiular, for a = c+ d,

H̄(x) =
x−b

bB(b, c)

[
1− (b+ c)b

(1 + b)x
(1 + o(1))

]
,

whih is the seond-order expansion of survival funtion of beta2(c, b) (f. (3.2)), and oinides with the fat that

X ∼ beta2(c, b), see Lemma 5 in Balakrishnan and Hashorva (2011). Fig. 2 ompares the �rst-order and the seond-

order expansions with the exat true value H̄(x) when R ∼ beta2(a, b), S ∼ beta(c, d) with (a, b, c, d) = (3, 2, 1, 2)

(left) and (a, b, c, d) = (2, 2, 1, 2) (right). As expeted, we �nd that the seond-order tail asymptotis is more aurate

than the �rst-order one.

Example 3.3. (Gumbel ase with ρ = 0) Let R be a random variable with df F given by

F̄ (x) = exp

(
− cx

1− x

)
, 0 < x < 1, c > 0, (3.3)

denoted in the sequel by R ∼ E(1, c). If follows that F ∈ D(Q0) with w(x) = c/(1− x)2, and U ∈ 2ERV0,0 with

auxiliary funtions

a(x)=
1

w(U(x))
, Ã(x) = − 2

c+ lnx
.

If S ∼ beta(a, b), then the df G of S satis�es

Ḡ

(
1− 1

x

)
=

x−b

bB(a, b)

(
1− b(a− 1)

(b+ 1)x
(1 + o(1))

)
, x→ ∞, (3.4)

i.e., Ḡ(1− 1/x) = x−bL(x), L ∈ 2RV0,−1 with auxiliary funtion

A(x) =
b(a− 1)

(b + 1)x
.
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Consequently,

1

η(x)
=

(1 − x)2

cx
, Ã

(
1

F̄ (x)

)
= −2(1− x)

c
, A(η(x)) =

b(a− 1)

(b+ 1)

(1− x)2

cx
.

By Theorem 2.3 with α2 = b, τ2 = −1 and ρ = 0

H̄(x) = F̄ (x)Ḡ

(
1− (1− x)2

cx

)
Γ(b+ 1)[1 + E(x)],

with

E(x) = K(b, 0)Ã

(
1

F̄ (x)

)
(1 + o(1)) =

b(b+ 1)

c
(1− x)(1 + o(1)).

Example 3.4. (Gumbel ase with ρ < 0) Let R ∼ F with

F̄ (x) =
1− exp(− exp(−x))

p
, x > 0, p = 1− e−1. (3.5)

It follows that F ∈ D(Q0) with onstant saling funtion w(x) = 1 and its tail quantile funtion is

U(x) = ln
x

p
− p

2x
(1 + o(1)).

Furthermore, U ∈ 2ERV0,−1 with auxiliary funtions

a(x) = 1, Ã(x) =
p

2x
.

Next, suppose that S ∼ beta(a, b). Thus (see (3.4))

1

η(x)
=

1

x
, Ã

(
1

F̄ (x)

)
=

1

2
e−x, A(η(x)) =

b(a− 1)

(b + 1)x
.

By Theorem 2.3 with α2 = b, τ2 = −1 and ρ = −1

H̄(x) = F̄ (x)Ḡ

(
1− 1

x

)
Γ(b+ 1)[1 + E(x)],

with

E(x) = −
[
b2(a− 1)

(b+ 1)x
+
b(b+ 1)

x

]
(1 + o(1)).

Fig. 3 shows the e�ieny of the seond-order asymptotis of H̄ when R ∼ E(1, c) with c = 1 and S ∼ beta(1, 1/2)

(left); and when R follows the left-trunated Gumbel distribution (3.5) and S ∼ beta(1, 1) (right).

Example 3.5. (Gumbel ase with Weibull tail) Let R ∼ Γ(α, λ) with pdf

f(x) =
λα

Γ(α)
xα−1e−λx, x > 0, λ, α > 0.

The tail quantile funtion of F is

U(x)=
1

λ
(ln x− ln Γ(α))

[
1 +

(α − 1) ln lnx

lnx− ln Γ(α)
(1 + o(1))

]
.
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Thus F ∈ D(Q0) with w(x) = λ and U ∈ 2RV0,0 with seond-order auxiliary funtion

Ã(x)=
1− α

ln2 x

(f. Table 1 in the Appendix). Next, let S ∼ beta(a, b), note that the survival funtion satis�es (3.4). Consequently,

1

η(x)
=

1

λx
, Ã

(
1

F̄ (x)

)
=

1− α

(λx)2
, A(η(x)) =

b(a− 1)

(b + 1)λx
.

By Theorem 2.3 with α2 = b, τ2 = −1 and ρ = 0

H̄(x) = F̄ (x)Ḡ

(
1− 1

λx

)
Γ(b+ 1)[1 + E(x)],

where

E(x) = − b

λx

[
b(a− 1)

b+ 1
+ b+ 1

]
(1 + o(1)).

Thus

H̄(x) =
(λx)α−1e−λx

Γ(α)

[
1 +

α− 1

λx
(1 + o(1))

]
(λx)−bΓ(b+ 1)

bB(a, b)

(
1− b(a− 1)

λ(b + 1)x
(1 + o(1))

)

×
[
1− b

λx

(
b(a− 1)

b + 1
+ b+ 1

)
(1 + o(1))

]

=
(λx)α−b−1e−λx

Γ(a)Γ(α)/Γ(a+ b)

[
1 +

α− b(a+ b)− 1

λx
(1 + o(1))

]
. (3.6)

On the other hand, in view of Corollary 2.5, both R and X are in the MDA of the Weibull distribution with (f.

Table 1 in the Appendix)

θ = 1, ρ′ = −1, b(x) =
(1 − α) lnx

x
and ρ′∗ = −1, b∗(x) = b(x) +

θα2 lnx

x
=

(1− α+ b) lnx

x
, (3.7)

whih is onsistent with (3.6). In partiular, if α = a + b, then (3.6) and (3.7) are onsistent with the well-known

result X ∼ Γ(a, λ) (f. Hashorva (2013)).

In Fig. 4, we hoose (α, λ, a, b) = (1, 1, 1/2, 1/2) (left) and (α, λ, a, b) = (1, 2, 1/2, 1/2)(right). We observe that the

seond-order expansion of the tail probability is muh loser to the true values.

Example 3.6. (Weibull ase) Let R ∼ beta(a1, b1) and S ∼ beta(a2, b2). By (3.4), 1 − U ∈ 2RV−1/b1,−1/b1 with

auxiliary funtion

Ã(x) = − a1 − 1

b1(b1 + 1)

(
x

b1B(a1, b1)

)−1/b1

and Ḡ(1− 1/x) = x−b2L(x), L ∈ 2RV0,−1 with auxiliary funtion

A(x) =
b2(a2 − 1)

(b2 + 1)x
.

Hene

Ã

(
1

F̄ (x)

)
= − a1 − 1

b1(b1 + 1)
(1 − x), A

(
1

1− x

)
=
b2(a2 − 1)

b2 + 1
(1− x).
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By Theorem 2.6 with α1 = b1, α2 = b2, τ1 = τ2 = −1 and

H̄(x) = F̄ (x)Ḡ(x) [b1B (b1, b2 + 1) + E(x)] ,

with

E(x) = b1b2B(b1 + 1, b2 + 1)

(
1 +

a1 − 1

b1 + 1
+
a2 − 1

b2 + 1

)
(1− x)(1 + o(1)).

In partiular, for a2 + b2 = a1

H̄(x) =
(1− x)b1+b2B(b1, b2 + 1)

b2B(a1, b1)B(a2, b2)

[
1 +

(
b1 + b2

b1 + b2 + 1

(
1 +

a1 − 1

b1 + 1
+
a2 − 1

b2 + 1

)

−
(
b1(a1 − 1)

b1 + 1
+
b2(a2 − 1)

b2 + 1

))
(1− x)(1 + o(1))

]

=
(1− x)b1+b2

(b1 + b2)B(a2, b1 + b2)

[
1− (b1 + b2)(a2 − 1)

b1 + b2 + 1
(1 − x)(1 + o(1))

]
,

whih is the seond-order expansion of survival funtion of beta(a2, b1 + b2) (f. (3.4)), and oinides with the fat

that X ∼ beta(a2, b1 + b2) (f. Hashorva (2013)).

In Fig. 5, we simulate the ases with (a1, b1, a2, b2) = (4, 2, 2, 2) (left) and (a1, b1, a2, b2) = (4, 2, 2, 3) (right). We

observe that the seond-order expansion of the tail probability is muh loser to the true values.

4 Appliations

4.1 Approximation of Value-at-Risk

In insurane and risk management appliations, Value-at-Risk (denoted by VaR) is an important risk measure; see

e.g., Denuit et al. (2006). In the following we shall analyse the asymptotis of VaRp(X) in ase that R has a heavy

tail and a Weibull tail, respetively. Reall that VaR at probability level p for R is de�ned by

VaRp(R) = inf{y : F (y) ≥ p} = U(1/(1− p)). (4.1)

With the same notation introdued as before, if F̄ ∈ RV−α, α > 0, then by Breiman's Lemma

H̄(x)=E {Sα} F̄ (x)(1 + o(1)) = F̄ ((E {Sα})−1/αx)(1 + o(1)),

implying the following �rst-order asymptotis

VaRp(X) = (E {Sα})1/αVaRp(R)(1 + o(1)), p ↑ 1. (4.2)

Re�ning the above, we derive the following seond-order asymptotis

VaRp(X) = (E {Sα})1/αVaRp(R)[1 + E(p)], E(p) =
(

E {Sα−τ}
(E {Sα})1−τ/α − 1

)
Ã(VaRp(R))

ατ
(1 + o(1)) (4.3)
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provided that F̄ ∈ 2RV−α,τ , α > 0, τ < 0 with auxiliary funtion Ã.

Indeed, there exists some positive onstant c suh that (f. Hua and Joe (2011))

F̄ (x) = cx−α
[
1 +

Ã(x)

τ
(1 + o(1))

]

for su�iently large x. Thus, by Theorem 2.1

H̄(x) = cx−αE {Sα}
[
1 +

E {Sα−τ}
E {Sα}

Ã(x)

τ
(1 + o(1))

]
.

Therefore, in view of Theorem 1.5.12 in Bingham et al. (1987)

VaRp(R) =

(
c

1− p

)1/α
[
1 +

Ã(VaRp(R))

ατ
(1 + o(1))

]
, p ↑ 1

and

VaRp(X) =

(
cE {Sα}
1− p

)1/α
[
1 +

E {Sα−τ}
E {Sα}

Ã(VaRp(X))

ατ
(1 + o(1))

]
, p ↑ 1.

Consequently, by |Ã| ∈ RVτ and (4.2) we obtain the seond-order asymptotis (4.3).

In what follows, we will onsider the ase that F is in the MDA of the Gumbel distribution. Sine most of suh

distributions are Weibull tail distributions (f. Table 1 and Table 2 in the Appendix), we fous on the asymptotis

of VaRp(X) in terms of VaRp(R) (see (4.4) below) under the onditions of Corollary 2.5. Note that F̄ has a Weibull

tail satisfying the seond-order ondition (f. (2.9))

F̄ (x) = exp(−V (x)), with V←(x) = xθℓ(x), θ > 0

and ℓ ∈ 2RV0,ρ′ , ρ′ ≤ 0 with auxiliary funtion b. By (4.1)

VaRp(R) = V←(− ln(1 − p)) = (− ln(1− p))θℓ(− ln(1 − p)).

In view of Corollary 2.5 (see (2.10))

H̄(x) = exp (−V (x) − α2 lnV (x) + lnL∗(V (x))) ,

where L∗ denotes a slowly varying funtion. Realling that lnL∗(V (x)) = o(ln V (x)) (see Bingham et al. (1987)), we

have as p ↑ 1

VaRp(X) = V←
(
− ln(1− p)

[
1− α2

ln(− ln(1 − p))

− ln(1− p)
(1 + o(1))

])

=

(
ln

1

1− p

)θ

[1− θα2̟(p)(1 + o(1))] ℓ

(
ln

1

1− p

)[
1 +

(1− α2̟(p))
ρ′

− 1

ρ′
b

(
ln

1

1− p

)
(1 + o(1))

]

= VaRp(R) [1− θα2̟(p)(1 + o(1))] , with ̟(p) =
ln(− ln(1 − p))

− ln(1− p)
. (4.4)
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4.2 Estimations of tail probability

In many insurane appliations it is important to estimate the tail probability of the extreme risks. In what follows,

we investigate this problem under the random saling framework. Let {(Ri, Si), i = 1, . . . , n} be a random sample

from (R,S), and thus Xi := RiSi, i ≤ n is a sample of size n from X
d
= RS. Our goal is to estimate p = P(X > x)

with su�iently large x. One possible estimation is via the empirial df if x is in the region of the sample Xi, i ≤ n

with Xi = RiSi, i = 1, . . . , n. In general, we onsider how to estimate pn := P(X > xn) as xn → ∞. Hereafter, we

write Rn−k+1,n, Sn−k+1,n and Xn−k+1,n, k ≤ n as the assoiated inreasing order statistis, and assume that R ∼ F

and S ∈ (0, 1) are independent.

First we onsider the ase that F̄ ∈ 2RV−α,τ , α > 0, τ < 0 with the seond-order auxiliary funtion Ã. By Hua and

Joe (2011), there exists a positive onstant c suh that

F̄ (x)=cx−α(1 + Ã(x)/τ(1 + o(1))) =: cx−α(1 + αδ(x)),

i.e., F ∈ F1/α,τ with δ(x) = Ã(x)/(ατ) in the terminology of Beirlant et al. (2009). By Theorem 2.1

H̄(x)=F̄ (x)
(
E {Sα}+ E

{
Sα(S−τ − 1)

}
αδ(x)(1 + o(1))

)
. (4.5)

In order to estimate H̄(x) with x = xn given, we use the estimators of α, δ, τ and F̄ proposed by Beirlant et al. (2009).

Let yk,n = x/Rn−k,n, τ̂k,n = ρ̂n/Hk,n with ρ̂n some weakly onsistent estimator of ρ = τ/α based on samples from

the parent R, denote

Hk,n =
1

k

k∑

i=1

ln
Rn−i+1,n

Rn−k,n
, Ek,n(s) =

1

k

k∑

i=1

(Rn−i+1,n

Rn−k,n

)s
, s ≤ 0

and

α̂k,n =

(
Hk,n − δ̂k,n

ρ̂n
1− ρ̂n

)−1
, δ̂k,n = Hk,n(1 − 2ρ̂n)(1 − ρ̂n)

3ρ̂−4n

(
Ek,n

( ρ̂n
Hk,n

)
− 1

1− ρ̂n

)
. (4.6)

Thus, by (4.5), the tail probability pn an be estimated as (denoted by p̂k,n(R,S))

p̂k,n(R,S) =
̂̄F (x)

(
Ê {Sα}+ ( ̂E {Sα−τ} − Ê {Sα}) δ̂k,n

Hk,n

)
, (4.7)

with

̂̄F (x) = k

n

(
yk,n

(
1 + δ̂k,n(1− y

τ̂k,n

k,n )
))−α̂k,n

, Ê {Sα} =
1

n

n∑

i=1

S
α̂k,n

i , ̂E {Sα−τ} =
1

n

n∑

i=1

S
α̂k,n−τ̂k,n

i . (4.8)

On the other hand, by Theorem 2.1, X has the same seond-order tail behavior as that of R. Consequently, pn an

be diretly estimated by using samples from X . We denote that estimator by p̂k,n(X), given as (in ontrast to (4.7),

(4.8))

p̂k,n(X) =
k

n

(
y∗k,n

(
1 + δ̂∗k,n(1− (y∗k,n)

τ̂∗

k,n)
))−α̂∗

k,n

, (4.9)
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with y∗k,n = x/Xn−k,n and δ̂∗k,n, τ̂
∗
k,n, α̂

∗
k,n are δ̂k,n, τ̂k,n, α̂k,n with the order statistis replaed by Xn−k+1,n, k ≤ n−1.

Relying on (4.7) and (4.9), we shall perform some simulations to ompare the �nite sample behaviors of α̂k,n, p̂k,n(R,S)

and α̂∗k,n, p̂k,n(X). Sine τ = −1 holds in most appliations, we take τ̂k,n = −1 and ρ̂n = −Hk,n in the simulations.

Here we simulate 100 samples of size n = 1000 from R ∼ Pareto(2, 1) and S ∼ beta(1, 2), and estimate 1/α = 0.5

and p = P(X > 3) = 0.01298. It turns out that the bias as well as the mean squared errors based on the information

of R and S is muh smaller than that on the redued information of RS, see Fig. 6.

Next, we investigate the ase of F ∈ D(Q0). For onveniene, we onsider only the estimation omparisons for F

having Weibull tails. Sine by Corollary 2.5, both R and X have Weibull tails with the same Weibull tail oe�ient

θ and further the seond-order parameter ρ′∗ is greater than −1, we onsider the bias-redued Weibull tail oe�ient

estimators θ̂ by Diebolt et al. (2008)

θ̂ = θ̂(k,R) = Z̄k − b̂(ln(n/k))x̄k, (4.10)

with

b̂(ln(n/k)) =

∑k
i=1(xi − x̄k)Zi∑k
i=1(xi − x̄k)2

and

xj =
ln(n/k)

ln(n/j)
, Zj = j ln

n

j
ln
Rn−j+1,n

Rn−j,n
, x̄k =

∑k
j=1 xj

k
, Z̄k =

∑k
j=1 Zj

k
.

Based on the bias-redued tail quantile estimators provided by Diebolt et al. (2008), given by

x̂pn = Rn−k,n

(
ln(1/pn)

ln(n/k)

)θ̂

exp

(
b̂(ln(n/k))

(ln(1/pn)/ ln(n/k))
ρ̂′ − 1

ρ̂′

)

with pn known, we an solve the dual problem and estimate the tail probability F̄ (x) for given x as follows

̂̄F (x) = exp

(
− ln(n/k)

(
x

Rn−k,n

)1/θ̂

exp

(
−b̂(ln(n/k)) (x/Rn−k,n)ρ̂

′/θ̂ − 1

θ̂ρ̂′

))
, (4.11)

where ρ̂′ is a onsistent estimator of ρ′. Sine F̄ (x) = exp(−V (x)), we have

V̂ (x) = − ln ̂̄F (x), b̂(V (x)) = b̂(ln(n/k))

(
V̂ (x)

ln(n/k)

)ρ̂′

. (4.12)

Further, we remark that S ∼ G with Ḡ(1 − 1/x) ∈ 2RV−α2,τ2 is equivalent to S∗:=1/(1 − S) ∼ G∗ with Ḡ∗ ∈

2RV−α2,τ2 . Hene, using the estimations of tail probability by Beirlant et al. (2009), we have

̂̄G
(
1− 1

V (x)

)
=
k

n

(
yk,n(1 + δ̂k,n(1− y

τ̂2(k)
k,n ))

)α̂2(k)

, Â(V (x)) = α̂2(k)τ̂2(k)δ̂k,ny
τ̂2(k)
k,n , (4.13)

where yk,n = V̂ (x)/S∗n−k,n and δ̂k,n, τ̂2(k), α̂2(k) are estimated with the order statistis replaed by S∗n−k,n :=

1/(1−Sn−k,n) in (4.8). Therefore, ombining (4.10)�(4.13), the estimator of p = H̄(x), denoted by pk(R,S), is then

in view of Corollary 2.5 given by

p̂k,n(R,S) =
̂̄F (x) ̂̄G(1− 1/V (x))Γ(α̂2(k) + 1)(θ̂)α̂2(k)
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×


1 +

α̂2(k)

θ̂
b̂(V (x)) +

Γ(α̂2(k)− τ̂2(k) + 1)

(θ̂)τ̂2(k)Γ(α̂2(k) + 1)
− 1

τ̂2(k)
Â(V (x))− α̂2(k)(α̂2(k) + 1)(θ̂ + 1)

2V̂ (x)


 . (4.14)

On the other hand, by Corollary 2.5, we an estimate p = H̄(x) diretly based on samples from X as

p̂k,n(X) = exp

(
− ln(n/k)

(
x

Xn−k,n

)1/θ̂

exp

(
−b̂∗(ln(n/k)) (x/Xn−k,n)ρ̂

′∗/θ̂ − 1

θ̂ρ̂′∗

))
, (4.15)

where ρ̂′∗ is a onsistent estimator of ρ′∗ and θ̂, b̂∗ are omputed by (4.10) with samples Ri, i ≤ n replaed by

Xi = RiSi, i ≤ n.

Now, we generate 100 samples of size n = 1000 from R ∼ W (2, 1) and S ∼ beta(2, 3) to ompare the �nite

sample behaviors of estimators of θ = 1/2 and p = P(X > 3) = 2.1186 × 10−7 given by (4.10), (4.14) and (4.15).

In the simulation we take τ̂2(k) = −1, ρ̂′ = ρ̂′∗ = −1 and plot mean values and mean squared errors of θ̂ and

ln(p̂k/p), k = 50, . . . , 4500, with p̂k = p̂k,n(R,S), p̂k,n(X), respetively (f. (4.14) and (4.15)).

Fig. 7 shows that our estimators of θ and tail probability based on the original data (indiated by the red dotted

line (· − ·)) have muh wider stable regions with less bias even the true value of ρ′ is −∞, see Table 1.
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Figure 1: Tail H̄ when R ∼ Pareto(1, 1), S ∼ beta(1, 2) (left) and R ∼ Pareto(2, 1), S ∼ beta(1, 2) (right).

4.3 Linear ombinations of random ontrations

Motivated by the dependene struture of elliptial random vetors, Hashorva et al. (2010) disussed the �rst-order

tail asymptotis of the aggregated risks of ertain bivariate random vetors whih we shall introdue next. Let

therefore (V1, V2) be a bivariate sale mixture random vetor with stohasti representation

(V1, V2)
d
= R(I1S, I2

√
1− S2), (4.16)
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Figure 2: Tail H̄ when R ∼ beta2(3, 2), S ∼ beta(1, 2) (left) and R ∼ beta2(2, 2), S ∼ beta(1, 2) (right).
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Figure 3: Tail H̄ when R ∼ E(1, c) with c = 1 and S ∼ beta(1, 1/2) (left) and R is left-trunated Gumbel distributed

and S ∼ beta(1, 1) (right).
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Figure 5: Tail H̄ when R ∼ beta(4, 2), S ∼ beta(2, 2) (left) and R ∼ beta(4, 2), S ∼ beta(2, 3) (right).
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Figure 6: Finite behaviors of mean values (left) and mean squared errors (right) of 1/α̂k,n and p̂k = p̂k,n(R,S), p̂k,n(X)

respetively give by (4.6), (4.7) and (4.9), where 1/α = 1/2 and p = P(X > 3) = 0.01298, whih are indiated by the

horizontal lines. The line and the dotted line stand for the estimators based on the original samples from RS and

RS with R ∼ Pareto(2, 1), S ∼ beta(1, 2), respetively.
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with θ̂, p̂k = p̂k,n(R,S), p̂k,n(X) respetively given by (4.10), (4.14) and (4.15), where θ = 1/2 and p = P(X > 3) =

2.1186 × 10−7, whih are indiated by the horizontal lines. The line and the dotted line stand for the estimators

based on the original samples from R,S and RS with R ∼Weibull(2, 1), S ∼ beta(2, 3), respetively.
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where R ∼ F, is almost surely positive, S ∼ G is a saling random variable taking values in (0, 1), while I1, I2 assume

values in {1,−1}. Hashorva et al. (2010) studied the tail asymptotis of the aggregated risk

V (λ) = λV1 +
√
1− λ2V2 = R(λI1S +

√
1− λ2I2

√
1− S2) =: RS∗(λ) (4.17)

for λ ∈ (0, 1). In what follows, we derive the seond-order tail asymptotis of V (λ) given by (4.17). Spei�ally, we

suppose that for small x > 0

P(|S − λ| ≤ x) = cλx
αλ(1 + Lλ(x)x

τλ ), αλ, τλ ∈ (0,∞) and λ ∈ [0, 1], (4.18)

where cλ is a positive onstant and |Lλ| is slowly varying at 0. Set

qλ = P(I1 = I2 = 1)I{λ ∈ (0, 1)}+ P(I2 = 1)I{λ = 0}+ P(I1 = 1)I{λ = 1}, (4.19)

with I{·} the indiator funtion.

Lemma 4.1. Let I1, I2 be two random variables taking values −1, 1 with probability qλ ∈ (0, 1] de�ned by (4.19) and

being independent of the saling random variable S ∼ G. For given λ ∈ [0, 1], suppose further that the df G satis�es

(4.18) for small x > 0. Then for S∗(λ) de�ned in (4.17) we have as x ↓ 0

a) If λ ∈ (0, 1), then

P(S∗(λ) > 1− x) = qλcλ(2x(1− λ2))αλ/2 [1 +Aλ(x)] ,

with

Aλ(x) =

(
Lλ(

√
x)(2x(1 − λ2))τλ/2 − λαλ√

2(1− λ2)
x1/2

)
(1 + o(1)).

b) If λ = 0, then

P(S∗(λ) > 1− x) = qλcλ(2x)
αλ/2 [1 +Aλ(x)] , Aλ(x) =

(
Lλ(

√
x)(2x)τλ/2 − αλx

4

)
(1 + o(1)).

) If λ = 1, then

P(S∗(λ) > 1− x) = qλcλx
αλ [1 +Aλ(x)] , Aλ(x) = Lλ(x)x

τλ .

In view of Lemma 4.1, we have P(S∗(λ) > 1− 1/x) ∈ 2RV−α,τ with α, τ and auxiliary funtion A de�ned by

α =





αλ/2, λ ∈ [0, 1),

αλ, λ = 1;
τ =





−min(τλ, 1)/2, λ ∈ (0, 1),

−min(τλ, 2)/2, λ = 0,

−τλ, λ = 1;

A(x) = τAλ(1/x). (4.20)

Next, utilizing Theorem 2.3, Theorem 2.6 and Lemma 4.1, we give the seond-order tail approximation of V (λ).
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Theorem 4.2. Let V (λ) be de�ned in (4.17) for λ ∈ [0, 1] and suppose that the onditions of Lemma 4.1 hold.

a) If F ∈ D(Q0) and its tail quantile funtion U ∈ 2ERV0,ρ, ρ ≤ 0 with auxiliary funtions 1/w(U) and Ã, then for

x ↑ xF (reall η(x) = xw(x))

P(V (λ) > x) = F̄ (x)P

(
S∗(λ) > 1− 1

η(x)

)

×
[
Γ(α+ 1) +

(
Γ(α− τ + 1)− Γ(α+ 1)

τ
A(η(x)) +K(α, ρ)Ã

(
1

F̄ (x)

))
(1 + o(1))

]
.

b) If F ∈ D(Q−1/α1
), α1 > 0 and xF = 1. Furthermore, we assume that its tail quantile funtion U satis�es

1− U ∈ 2RV−1/α1,τ1/α1
with auxiliary funtion Ã, then for x ↓ 0

P(V (λ) > 1− x) = F̄ (1− x)P(S∗(λ) > 1− x)

×
[
α1B (α1, α+ 1) +

(
αα2

1

τ1
[B (α, α1 + 1)−B (α, α1 − τ1 + 1)] Ã

(
1

F̄ (1− x)

)

+
α1

τ
[B (α1, α− τ + 1)−B (α1, α+ 1)]A

(
1

x

))
(1 + o(1))

]
.

Here α, τ and A are those de�ned in (4.20), and P(S∗(λ) > 1− x) is given by Lemma 4.1.

Remark 4.3. a) If S has Beta distribution with positive parameters a and b, then (4.18) holds for λ = 0, 1 and

α0 = a, α1 = b, τ0 = τ1 = 1,

c0 =
1

aB(a, b)
, L0(x) = − (b− 1)a

a+ 1
(1 + o(1)), c1 =

1

bB(a, b)
, L1(x) = − (a− 1)b

b+ 1
(1 + o(1)).

b) If G has pdf g whih has a ontinuous third derivative g′′′, then ondition (4.18) holds for any λ ∈ (0, 1) and

αλ = 1, cλ = 2g(λ), Lλ(x) =
g′′′(λ)

6g′(λ)
(1 + o(1)), τλ = 2.

) If S has Beta distribution with parameters 1/2, 1/2 and I1, I2 are independent with mean 0 being further indepen-

dent of S, then (V1, V2) is spherially distributed, and

V (λ)
d
= I1RS

d
= I2R

√
1− S2

for all λ ∈ [0, 1]. Thus the tail asymptotis of V (λ) an be diretly obtained by Theorem 2.3 and Theorem 2.6 in

Setion 2.

5 Proofs

Proof of Theorem 2.1 It follows from Breiman's Lemma that

lim
x→∞

H̄(x)

F̄ (x)
= E {Sα1} .
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We onsider two ases τ1 < 0 and τ1 = 0 separately. For τ1 < 0, by Lemma 5.2 of Draisma et al. (1999), for every

ǫ > 0, there exists x0 = x0(ǫ) > 0 suh that for all x > x0 and all s ∈ (0, 1)

∣∣∣∣
F̄ (x/s)/F̄ (x)− sα1

Ã(x)
− sα1

s−τ1 − 1

τ1

∣∣∣∣ ≤ ǫ(C1 + C2s
α1 + C3s

α1−τ1−ǫ),

with some positive onstants C1, C2 and C3 not depending on x and s. Therefore, by the dominated onvergene

theorem

lim
x→∞

1

Ã(x)

(
H̄(x)

F̄ (x)
− E {Sα1}

)
=

∫ 1

0

lim
x→∞

F̄ (x/s)/F̄ (x)− sα1

Ã(x)
dG(s) = E

{
Sα1

S−τ1 − 1

τ1

}
.

For τ1 = 0, note that for all α1 > 0, the funtion f(s) = sα1 ln(1/s) is ontinuous in (0, 1] and lims↓0 f(s) = 0. We

have that f(s) is bounded on [0, 1] and E {f(S)} exists. Similarly as above for τ1 < 0, we have if τ1 = 0 that

lim
x→∞

1

Ã(x)

(
H̄(x)

F̄ (x)
− E {Sα1}

)
= E

{
Sα1 lnS−1

}

establishing the proof. ✷

Proof of Theorem 2.3 Letting t = 1/F̄ (x), note that x ↑ xF if and only if t→ ∞, and

H̄(x) =

∫ xF

x

Ḡ

(
x

y

)
dF (y) =

∫ ∞

t

Ḡ

(
U(t)

U(s)

)
d

(
1− 1

s

)
= t−1

∫ 1

0

Ḡ

(
1− U(t/s)− U(t)

U(t/s)

)
ds.

We rewrite the left-hand side of (2.6) as (reall Ḡ(1− 1/x) = x−α2L(x))

H̄(x)

F̄ (x)Ḡ (1− 1/η(x))
=

∫ 1

0

Ḡ (1− (U(t/s)− U(t))/U(t/s))

Ḡ (1− a(t)/U(t))
ds

=

∫ 1

0

(
U(t/s)− U(t)

a(t)

U(t)

U(t/s)

)α2 L
(

U(t)
a(t)

/(
U(t/s)−U(t)

a(t)
U(t)

U(t/s)

))

L
(

U(t)
a(t)

) ds

=

∫ 1

0

(Θt(s))
α2
L(Ξt(s))

L(ϕt)
ds, (5.1)

where

Θt(s) = qt(s)φt(s), Ξt(s) =
ϕt

Θt(s)
, ϕt =

U(t)

a(t)

and

qt(s) =
U(t/s)− U(t)

a(t)
, a(t) =

1

w(U(t))
, φt(s) =

U(t)

U(t/s)
.

Further we deompose (5.1) as

H̄(x)

F̄ (x)Ḡ (1− 1/η(x))
− Γ(α2 + 1) =

∫ 1

0

((qt(s))
α2 − lnα2(1/s)) ds−

∫ 1

0

(qt(s))
α2 (1− (φt(s))

α2) ds

+

∫ 1

0

(Θt(s))
α2

(
L(Ξt(s))

L(ϕt)
− 1

)
ds =: It − IIt + IIIt. (5.2)

Sine (5.1) tends to Γ(α2 + 1) by Theorem 3.1 in Hashorva et al. (2010), the rest of the proof is onerned with the

derivation of the onvergene rates of the three terms on the right-hand side of (5.2).
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By Lemma 5.2 in Draisma et al. (1999), for every ǫ > 0, there exists t0 = t0(ǫ) > 0 suh that for all t > t0 and all

s ∈ (0, 1) ∣∣∣∣
qt(s)− ln(1/s)

Ã(t)
− ψ(1/s)

∣∣∣∣ ≤ ǫ(C1 + C3s
−ρ−ǫ),

with some positive onstants C1 and C3 not depending on s and t. Therefore, by Taylor's expansion and the

dominated onvergene theorem

lim
t→∞

It

Ã(t)
=

∫ 1

0

α2 ln
α2−1(1/s)ψ(1/s) ds = K(α2, ρ), (5.3)

with ψ(·) and K(α2, ρ) de�ned in (2.2) and (2.4), respetively.

For the seond term IIt, reall that U ∈ Π(a) implies that U ∈ RV0 and ϕt → ∞ as t→ ∞. By Corollary B.2.10 of

de Haan and Ferreira (2006), for all s ∈ (0, 1) and su�iently large t

0 ≤ qt(s) ≤ cs−ǫ, 0 ≤ φt(s) =

(
1 +

qt(s)

ϕt

)−1
≤ 1 (5.4)

for some c > 1 and any ǫ > 0 implying

1− φt(s)

1/ϕt
≤ qt(s) ≤ cs−ǫ.

Therefore, again by Taylor's expansion and the dominated onvergene theorem

lim
t→∞

IIt
1/ϕt

= α2

∫ 1

0

lnα2+1(1/s) ds

= α2Γ(α2 + 2). (5.5)

Finally, we show below that (5.6) holds for the third term IIIt

lim
t→∞

IIIt
A(ϕt)

− Γ(α2 − τ2 + 1)− Γ(α2 + 1)

τ2

= lim
t→∞

∫ 1

0

(Θt(s))
α2

(
L(Ξt(s))/L(ϕt)− 1

A(ϕt)
− (Θt(s))

−τ2 − 1

τ2

)
ds = 0. (5.6)

Reall that L ∈ 2RV0,τ2 with auxiliary funtion A. Again by Lemma 5.2 in Draisma et al. (1999), for every ǫ > 0,

there exists t0 = t0(ǫ) > 0 suh that for all ϕt > t0, the integral of the right-hand side of (5.6) is dominated by

∫

{s:s∈(0,1),Ξt(s)>t0}
ǫ(Θt(s))

α2 (C1 + C3(Θt(s))
−τ2 exp(ǫ|ln(Θt(s))|) ds

+

∫

{s:s∈(0,1),Ξt(s)<t0}
(Θt(s))

α2

∣∣∣∣
L(Ξt(s))/L(ϕt)− 1

A(ϕt)

∣∣∣∣ ds

+

∫

{s:s∈(0,1),Ξt(s)<t0}
(Θt(s))

α2

∣∣∣∣
(Θt(s))

−τ2 − 1

τ2

∣∣∣∣ ds =: J1t + J2t + J3t. (5.7)

Reall that (5.4) implies that ft(s) = (Θt(s))
α, s ∈ (0, 1) is integrable for all α > 0 and su�iently large t. Thus, J1t

tends to 0 sine ǫ is arbitrarily small, whereas J3t tends to 0 due to ϕt/t0 → ∞.
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It su�es to prove that limt→∞ J2t = 0. To this end, we need the two statements as in (5.8) and (5.9) below. Next,

note that L ∈ 2RV0,τ2 , τ2 < 0 implies that L is ultimately bounded away from 0 and

L(t) = tα2Ḡ(1− 1/t) ≤ tα2 , L(t) > 1/M

hold for some given M > 0 and su�iently large t. By Potter bounds (f. Proposition B.1.9 in de Haan and

Ferreira (2006)), for any ǫ > 0, there exists t0 = t0(ǫ) > 0 suh that min(ϕt,Ξt(s)) > t0

L(Ξt(s))

L(ϕt)
≤ cmax((Θt(s))

ǫ, (Θt(s))
−ǫ),

otherwise for ϕt > t0,Ξt(s) ≤ t0 suh that

L(Ξt(s))

L(ϕt)
≤ (Ξt(s))

α2

1/M
≤Mtα2

0 . (5.8)

Note that |A| is ultimately dereasing and |A| ∈ RVτ2 . By the Karamata Representation (f. Resnik (1987), p.17),

for any given δ > 0 and t0 < ϕt < Θt(s)t0

|A(ϕt)| ≥ |A(Θt(s)t0)| ≥ K2(Θt(s))
τ2−δ|A(t0)|, (5.9)

with K2 ∈ (0, 1) a onstant. Therefore, the integrand of J2t is dominated by

Mtα2

0 + 1

K2|A(t0)|
(Θt(s))

α2−τ2+δ ≤ Mtα2

0 + 1

K2|A(t0)|
(cs−ǫ)α2−τ2+δ.

Hene, by the dominated onvergene theorem, J2t tends to 0 as t → ∞. Consequently, we have that (5.7) tends to

0 as t→ ∞, and thus (5.6) follows establishing the proof. ✷

Proof of Corollary 2.4 For a = 1/w(U) the �rst-order auxiliary funtion of U , note that, by Theorem B.3.1 in

de Haan and Ferreira (2006), we have a ∈ 2RV0,ρ, ρ ≤ 0 with auxiliary funtion Ã. Thus, for su�iently large x

w (x+ z/w(x))

w(x)
=1− eρz − 1

ρ
Ã

(
1

F̄ (x)

)
(1 + o(1)) (5.10)

holds for all z ∈ R (here (eρz − 1)/ρ is interpreted as z for ρ = 0). Sine further Ḡ(1 − 1/x) ∈ 2RV−α2,τ2 and

|A| ∈ RVτ2 , we have

Ḡ
(
1− 1

η(x+z/w(x))

)

Ḡ(1− 1/η(x))
=

(
η(x + z/w(x))

η(x)

)−α2


1 +

(
η(x+z/w(x))

η(x)

)τ2
− 1

τ2
A(η(x))(1 + o(1))




=

(
x+ z/w(x)

x

w(x+ z/w(x))

w(x)

)−α2
[
1 + o

(
1

η(x)

)
+ o

(
Ã

(
1

F̄ (x)

))]

= 1−
[
α2z

η(x)
− α2

eρz − 1

ρ
Ã

(
1

F̄ (x)

)]
(1 + o(1)). (5.11)

Reall that U ∈ 2ERV0,ρ with auxiliary funtion Ã, and

F̄ (x+ z/w(x))

F̄ (x)
= e−z

(
1 + ψ(e−z)Ã

(
1

F̄ (x)

))
. (5.12)
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The laim (2.7) follows from (2.6), (5.10)�(5.12) and the fat that

lim
x→xF

η(x)Ã

(
1

F̄ (x)

)
= lim

t→∞
Ã(t)

a(t)/U(t)
= 0 (5.13)

for ρ < 0 (f. Lemma B.3.16 in de Haan and Ferreira (2006)).

Using (5.13) and the relation h(h←(t)) = t(1 + o(1)) as t → ∞ with h = 1/H̄ in (2.7), we have that UX ∈ 2ERV0,0

with auxiliary funtions ă and Ă stated by (2.8). ✷

Proof of Corollary 2.5 First, note that U(t) = V←(ln t) = (ln t)θℓ(ln t) with ℓ ∈ 2RV0,ρ′
with auxiliary funtion

b. We have

U(tx) = V←(ln tx) = (ln t)θℓ(ln t)

(
1 +

lnx

ln t

)θ
ℓ(ln t(1 + lnx/ ln t))

ℓ(ln t)

=U(t)

(
1 + θ

lnx

ln t
+
θ(θ − 1)

2

ln2 x

ln2 t
(1 + o(1))

)(
1 + b(ln t)

(1 + lnx/ ln t)ρ
′ − 1

ρ′
(1 + o(1))

)
.

Therefore, U ∈ 2ERV0,0 with auxiliary funtions a and Ã as

a(t) =
θ + b(ln t)

ln t
U(t), Ã(t) =

θ − 1+(ρ′ − 1)b(ln t)/θ

ln t
.

This implies that

η(x) =
x

a(1/F̄ (x))
=

V (x)

θ + b(V (x))
, Ã

(
1

F̄ (x)

)
=
θ − 1+(ρ′ − 1)b(V (x))/θ

V (x)
. (5.14)

By Theorem 2.3,

H̄(x) = F̄ (x)Ḡ

(
1− 1

V (x)

)(
η(x)

V (x)

)−α2


1 +

(
η(x)
V (x)

)τ2
− 1

τ2
A(V (x))(1 + o(1))


Γ(α2 + 1)

×


1 +




Γ(α2 − τ2 + 1)

Γ(α2 + 1)
− 1

τ2

(
η(x)

V (x)

)τ2

A(V (x))

−
(
θ + b(V (x)) − θ − 1+(ρ′ − 1)b(V (x))/θ

2

)
α2(α2 + 1)

V (x)

)
(1 + o(1))

]

= exp(−V (x))Ḡ

(
1− 1

V (x)

)
Γ(α2 + 1)θα2

×


1 +



α2

θ
b(V (x)) +

Γ(α2 − τ2 + 1)

θτ2Γ(α2 + 1)
− 1

τ2
A(V (x)) − (θ + 1)α2(α2 + 1)

2V (x)


 (1 + o(1))


 (5.15)

=: exp(−V (x))(V (x))−α2L∗(V (x)), (5.16)

where (5.15) is due to (5.14) and Ḡ(1− 1/x) ∈ 2RV−α2,τ2 with auxiliary funtion A. Clearly, L∗ is a slowly varying

funtion. Therefore, letting the right-hand side of (5.16) equal to 1/s, and solving the equation of x, we have

V (x) = ln s(1 + o(1)) and

UX(s) = V←
(
ln
sL∗(V (x))

(V (x))α2

)
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=

(
ln s− α2 lnV (x)

(
1− lnL∗(V (x))

α2 lnV (x)

))θ

ℓ

(
ln s− α2 lnV (x)

(
1− lnL∗(V (x))

α2 lnV (x)

))

= (ln s− α2 ln ln s(1 + o(1)))
θ
ℓ(ln s)(1 + o(ln ln s/ ln s)).

The last step is due to ℓ ∈ 2RV0,ρ′
and the property of slowly varying funtion: lnL∗(V (x))/ lnV (x) → 0 (see

Bingham et al. (1987)). Hene

H̄(x) = exp(−V ∗(x)), (V ∗)←(x) = xθ
(
1− α2

lnx

x

)θ

ℓ∗(x).

Thus the laim in Corollary 2.5 follows from ℓ∗ ∈ 2RV0,ρ′∗
with ρ′∗ = max(ρ′,−1) and auxiliary funtion

b∗(x) = b(x) +
θα2 lnx

x
.

We omplete the proof. ✷

Proof of Theorem 2.6 First, by arguments similar to (5.1) for the ase that F ∈ D(Q0), we have

H̄(x)

F̄ (x)Ḡ(x)
=

∫ 1

0

(Θt(s))
α2
L(ϕt/Θt(s))

L(ϕt)
ds,

where t = 1/F̄ (x), x = U(t) and

Θt(s) = qt(s)φt(s), ϕt =
1

1− U(t)
, with qt(s) =

U(t/s)− U(t)

1− U(t)
, φt(s) =

1

U(t/s)
.

Next,

H̄(x)

F̄ (x)Ḡ(x)
− α1B(α1, α2 + 1) =

∫ 1

0

(
qt(s)

)α2 − (1− s1/α1)α2 ds

+

∫ 1

0

(qt(s))
α2((φt(s))

α2 − 1) ds+

∫ 1

0

(Θt(s))
α2

(
L(ϕt/Θt(s))

L(ϕt)
− 1

)
ds

=: It + IIt + IIIt. (5.17)

It remains thus to derive the onvergene rate of eah term above. By Lemma 5.2 in Draisma et al. (1999), for every

ǫ > 0, there exists t0 = t0(ǫ) > 0 suh that for all t > t0 and all s ∈ (0, 1)

∣∣∣∣
qt(s)− (1 − s1/α1)

Ã(t)
+ s1/α1

s−τ1/α1 − 1

τ1/α1

∣∣∣∣ ≤ ǫ(C1 + C2s
1/α1 + C3s

(1−τ1)/α1−ǫ),

with some positive onstants C1, C2 and C3 not depending on s and t. Therefore, by Taylor's expansion and the

dominated onvergene theorem

lim
t→∞

It

Ã(t)
= −α2

∫ 1

0

(1− s1/α1)α2−1s1/α1
s−τ1/α1 − 1

τ1/α1
ds

= −α2α
2
1

τ1
(B(α2, α1 − τ1 + 1)−B(α2, α1 + 1)).

Here, (5.18) for τ1 = 0 is understood as

−α2

∫ 1

0

(1 − s1/α1)α2−1s1/α1 lim
τ1→0

s−τ1/α1 − 1

τ1/α1
ds
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= lim
τ1→0

−α2α
2
1

τ1

(
B(α2, α1 − τ1 + 1)−B(α2, α1 + 1)

)

(f. Corollary 4.4 in Mao and Hu (2012)). For IIt, note that qt(s) ∈ (0, 1), ϕt → ∞ and thus for all s ∈ (0, 1)

0 ≤ φt(s)− 1

1/ϕt
=

(1− (1 − qt(s))/ϕt)
−1 − 1

1/ϕt
=

1− qt(s)

1− (1− qt(s))/ϕt
≤ 1

1− 1/ϕt
→ 1

as t→ ∞. Therefore, by Taylor's expansion and the dominated onvergene theorem

lim
t→∞

IIt
1/ϕt

=

∫ 1

0

lim
t→∞

(qt(s))
α2

(1 + (φt(s)− 1))α2 − 1

1/ϕt
ds

= α2

∫ 1

0

(1− s1/α1)α2s1/α1 ds = α1α2B(α1 + 1, α2 + 1). (5.18)

Finally, we onsider the third term IIIt. By Lemma 5.2 in Draisma et al. (1999), for every ǫ > 0, there exists

t0 = t0(ǫ) > 0 suh that for all ϕt > t0 and all s ∈ (0, 1)
∣∣∣∣∣(Θt(s))

α2

(
L
(

ϕt

Θt(s)

)
/L(ϕt)− 1

A(ϕt)
− (Θt(s))

−τ2 − 1

τ2

)∣∣∣∣∣

≤ ǫ(C1 + C2(Θt(s))
α2 + C3(Θt(s))

α2−τ2−ǫ) ≤ ǫ(C1 + C2 + C3).

The last step is due to Θt(s) ≤ 1 for all s ∈ (0, 1) and t > 0. Hene, by the dominated onvergene theorem

lim
t→∞

IIIt
A(t)

=

∫ 1

0

lim
t→∞

(Θt(s))
α2

(Θt(s))
−τ2 − 1

τ2
ds

=

∫ 1

0

(1 − s1/α1)α2
(1 − s1/α1)−τ2 − 1

τ2
ds =

α1

τ2

(
B (α1, α2 − τ2 + 1)−B (α1, α2 + 1)

)
. (5.19)

Consequently, the laim follows from (5.18), (5.18) and (5.19). ✷

Proof of Lemma 4.1 We only give the proof of the ase λ ∈ (0, 1). The other ases an be veri�ed by similar

arguments. Clearly, for λ ∈ (0, 1), S∗(λ) ≤ 1 and it is bounded away from unit unless I1 = I2 = 1, and when the

event {I1 = I2 = 1} ours, S∗(λ) ↑ 1 if and only if |S − λ| ↓ 0. For small x > 0, the event

{S∗(λ) > 1− x} = {(S − λ)2 + 2λxS < 2x− x2}

ours is equivalent that

(S − λ)2 < 2x
(
(1− λ2)− λ

√
2x(1 − λ2)(1 + op(1))

)
.

Consequently, the laim follows from (4.18). ✷

6 Appendix

This appendix inludes two tables. Table 1 ontains Weibull tail distributions satisfying the seond-order reg-

ular varying onditions and Table 2 shows several distributions in the maximum domain of attration of the

Fréhet distribution, the Gumbel distribution and the Weibull distribution in the seond-order framework.
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Table 1: Weibull tail distributions

Weibull tail distributions Tail F̄ or pdf f θ ρ b(x)

Gamma (Γ(α, λ)) f(x) = λα

Γ(α)x
α−1e−λx, λ, α > 0, α 6= 1 1 −1 (1−α)ln x

x

Absolute Normal (|N(0, 1)|) f(x) = 2√
2π
e−x

2/2 1
2 −1 ln x

4x

Weibull (W (β, c)) F̄ (x) = exp(−cxβ), c, β > 0 1
β −∞ 0

Perturbed Weibull (PW (β, α)) F̄ (x) = e−x
β(C+Dx−α), α, β, C > 0, D ∈ R 1

β −α
β

αD
β2 C

α/β−1x−α/β

Modi�ed Weibull (MW (β, c)) Y lnY ∼ F, Y ∼W (β, c) 1
β 0

1
ln x

Benktander II (BII(β, λ)) F̄ (x) = x−(1−β) exp(−λ
β (x

β − 1)), λ > 0, 0 < β < 1 1
β −1 (1−β) ln x

β2x

Extended Weibull (EW (β, α)) F̄ (x) = r(x) exp(−xβ), β ∈ (0, 1), r ∈ RV−α, α ∈ R 1
β −1 α ln x

β2x

Logisti F̄ (x) = 2
1+ex 1 −1 − ln 2

x

Gumbel (G(µ)) F̄ (x) = 1− exp(− exp(µ− x)), µ 6= 0 1 −1 −µ
x

Weibull tail distributions: F̄ (x) = exp(−V (x)), V←(x) = xθℓ(x) and ℓ ∈ 2RV0,ρ with auxiliary funtion b.
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Table 2: Risks satisfying the seond-order regular variation onditions

Fréhet MDA Tail F̄ or pdf f α τ A(x)

Pareto F̄ (x) =
(

θ
θ+x

)α
, θ, α > 0 α −1 αθ

x

Fréhet F̄ (x) = 1− exp(−x−α) α −α αx−α

2

Burr F̄ (x) = (1 + xb)−a ab −b abx−b

Hall-Weiss F̄ (x) = 1
2x
−α(1 + xτ ), α > 0, τ < 0 α τ τxτ

F (m,n) f(x) = (m/n)m/2

B(m/2,n/2)x
m/2−1 (1 + mx

n

)−(m+n)/2 n
2 −1 (m+n)n2

2m(n+2)x

Log-gamma f(x) = αβ

Γ(β) (lnx)
β−1x−α−1, α, β > 0 α 0

β−1
ln x

Inv-gamma f(x) = βα

Γ(α)x
−α−1e−β/x, α, β > 0 α −1 αβ

(α+1)x

Absolute t f(x) = 2Γ((v+1)/2)√
vπΓ(v/2)

(1 + x2/v)−(v+1)/2, v ∈ N v −2 v2(v+1)
(v+2)x2

Weibull MDA Tail F̄ (xF − 1/x) or pdf f α τ A(x)

Beta f(x) = 1
B(a,b)x

a−1(1− x)b−1, a, b > 0 b −1 (a 6= 1) b(a−1)
(b+1)x

Reverse-Burr F̄ (xF − 1/x) = (1 + xb)−a ab −b abx−b

Extreme value Weibull F̄ (xF − 1/x) = 1− exp(−x−α) α −α αx−α

2

Gumbel MDA Tail F̄ or pdf f ρ a(x) A(x)

Gamma f(x) = λα

Γ(α)x
α−1e−λx, λ, α > 0 0

(
1 + α−1

ln x

) /
λ 1−α

ln2 x

Absolute Normal f(x) = 2√
2π
e−x

2/2
0

U1(2x)
2 ln(2x) − 1

2 ln x

Log-normal f(x) = 1√
2πx

exp(− ln2 x
2 ) 0

exp(U1(x))√
2 ln x

1√
2 ln x

Logisti F̄ (x) = 2
1+ex −1 1 1

2x

Trunated Gumbel F̄ (x) = 1−exp(−e−x)
1−e−1 −1 1

1−e−1

2x

Exponential with �nite xF F̄ (x) = exp(− c
xF−x + c

xF
), c > 0, xF > 0 0

c
(ln x+c/xF )2 − 2

ln x

Weibull F̄ (x) = exp(−cxβ), c > 0, β ∈ (0, 1) 0

(ln x)1/β−1

βc1/β
1/β−1
ln x

Benktander I F̄ (x) =
(
1 + 2β

α lnx
)
exp(−β ln2 x− (α+ 1) lnx) 0

U2(x)

2
√
β ln x

1
2
√
β ln x

Benktander II F̄ (x) = x−(1−β) exp(−α
β (x

β − 1)), α > 0, 0 < β < 1 0 a∗(x) 1/β−1
ln x

a∗(x) = 1−(1−β)/(β(α/β+lnx))
β(α/β+lnx) U(x), U(x) =

(
β
α ((α/β + lnx)− (1− β) lnU(x))

)1/β

U1(x) =
√
2 lnx− ln(4π ln x)

2
√
2 ln x

, U2(x) = exp
(
−α+1

2β +
√

lnx
β + ln ln x+ln(4β/α2)+(α+1)2/(2β)

4
√
β ln x

)

For the Fréhet MDA F̄ ∈ 2RV−α,τ with auxiliary funtion A. Further for the Weibull MDA F̄ (xF −1/x) ∈ 2RV−α,τ

with auxiliary funtion A and a �nite upper endpoint xF . Finally, note that for the Gumbel MDA the tail quantile

funtion U ∈ 2ERV0,ρ with the �rst-order auxiliary funtion a and the seond-order auxiliary funtion A.
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