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Abstract

Matrix population models are widely applied in conservation ecology to help predict future population
trends and guide conservation effort. Researchers must decide upon an appropriate level of model com-
plexity, yet there is little theoretical work to guide such decisions. In this paper we present an analysis of a
stage-structured model, and prove that the model’s structure can be simplified and parameterised in such a
way that the long-term growth rate, the stable-stage distribution and the generation time are all invariant to
the simplification. We further show that for certain structures of model the simplified models require less
effort in data collection. We also discuss features of the models which are not invariant to the simplification
and the implications of our results for the selection of an appropriate model. We illustrate the ideas using a
population model for short-tailed shearwaters (Puffinus tenuirostris). In this example, model simplification
can increase parameter elasticity, indicating that an intermediate level of complexity is likely to be pre-
ferred.
� 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Stage-structured population models are a popular method in conservation biology for analy-
sing the viability of a population. Once the form of a model has been chosen, a wide range of
analytical tools are available to investigate the dynamics of a population [1]. For example, we can
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estimate the long-term population growth rate (k), stable-stage distribution [1], the sensitivity of k
to changes in parameter values [1–3], and population viability can be predicted [4,5]. Such models
can also include the effects of stochasticity [6,8] and density dependence [7,9,10]. With the prac-
tical limitations on time and resources often faced by conservation projects, these analyses are
increasingly being used to help to guide species management plans by highlighting the life-history
stages towards which conservation efforts should be focused.
Powerful as many of these analysis tools are, their validity ultimately rests upon the underlying

model. Previous studies have found that results can depend upon the structure of the model [11–
13] and even the programs used to analyse the data [14]. Overly complex models are commonly
discouraged on the grounds that the results of an analysis are less clear to interpret, less robust to
changes in the model’s details whilst the model itself is difficult, time consuming and expensive
to accurately parameterise. Yet an overly simple model may have little relevance for practical
conservation issues. This raises the question: how much complexity should we incorporate in a
model?
In this paper we show that simple population models can be parameterised in such a way that

they are equivalent to more complex models, in terms of three essential properties; the long-term
growth rate, the stable-stage distribution and the generation time. We derive this parameterisation
for a commonly applied stage-structured model, where simplification involves the aggregation of
stages. Other properties of the more complex model will not necessarily be conserved, and we
discuss the importance of these variations. It is shown that for a sub-set of models the parame-
terisation of the simple model requires less effort in data collection. Finally, we present an ap-
plication of our results to a model of short-tailed shearwaters (Puffinus tenuirostris) and discuss
the differences between the complex and simple models, as well as the implications for practical
use of such models.

2. The baseline model

We consider a ‘baseline model’ to be any stage-structured population model that can be rep-
resented by the life-cycle graph shown in Fig. 1 (Table 1). The model has C discrete stages. This
structure is commonly used for modelling animal populations. For example, recent examples
include studies on birds [15–18], mammals [19–22], insects [23,24] and fish [25]. The model has a

Fig. 1. The life-cycle graph for the baseline model. All individuals must pass through the same juvenile stage class 1.

Note that because there are no stages beyond C, that pC is necessarily equal to one. The parameters are explained in the
text and in Table 1.
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time step of one breeding cycle, and a projection matrix is used to evolve the present population
structure forwards in time by one breeding cycle. The ith stage has a breeding population of ni
individuals (where a breeding individual is usually taken to mean a breeding female). All indi-
viduals within a stage are assumed to be identical and each stage has three parameters; the fe-
cundity of a breeding individual mi, the individual probability of survival until the next breeding
cycle si and the probability that an individual stays in the same stage the following breeding cycle
pi. Since pi is a constant, this model implies a geometric distribution for stage duration [1], with
the expected duration in a stage, conditional on survival, being ð1� piÞ�1. Our analysis could, in
principle, be extended to more general life-cycles, with the only requirement being that all indi-
viduals must have at least one stage in common during their lifetime. By appropriately para-
metrising the model, this structure can describe more complicated scenarios. For example,
emigration, immigration and proportions of the breeding population that skip breeding.
At equilibrium, ignoring stochastic effects from parameter fluctuations and finite population

size, the population of each stage will be growing at the same rate, k [1]. This implies that the
proportion of the population in each stage is constant, and can be described by the characteristic
equation. We can calculate k by solving the characteristic equation, which for this model has the
form [1]

1 ¼
XC
i¼1

miLi; ð1Þ

where the derived quantity Li can be written in terms of the basic model parameters as

Table 1

The parameters and variables used in the analysis of the baseline stage-structured population model and its simplifi-

cation (see Fig. 1)

Parameter name Description of the parameter

C Total number of stages of the baseline model

N Total number of stage in the simplified model

i, j, k Indices for a stage of the model

a Index of the first stage in the set to be aggregated

b Index of the last stage in the set to be aggregated

si Survival probability of an individual in stage i

mi Fecundity of an individual in stage i

pi Probability that an individual stays in stage i for the following time step

ni Number of individuals in stage i

fi Proportion of the population in stage i

�ss Average survival probability from stages a through to b
�mm Average fecundity from stages a through to b
~ss Survival probability of the aggregated stage

~mm Fecundity of the aggregated stage

~pp Probability of staying in the aggregated stage for the following time step

k Long-term population growth rate (variable)

k̂k Calculated long-term population growth rate for a parametrised model

Tg Generation time of the baseline model
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Li ¼ Li�1si�1ð1� pi�1Þ
1

k � sipi
ð2Þ

andL1 ¼ 1=ðk � s1p1Þ. In a population with a constant size (k̂k ¼ 1, where k̂k is the numerical value
rather than the variable), the derived quantity Li can be interpreted as the probability that an
individual has survived from birth up to stage i (usually denoted by li [26]). In a growing or
shrinking populationLi no longer has a simple interpretation unless pi ¼ 0, in which caseLik

i is
now the probability that an individual survives up to stage i.
We can also define the stable-stage distribution, and the generation time of the model as fol-

lows.

Definition 1. The stable-stage distribution for the baseline model is the fraction, fi, of the pop-
ulation present in stage i at equilibrium [1], and can be written as

fi ¼
niPC
j¼1 nj

¼ LiPC
j¼1Lj

: ð3Þ

Definition 2. The generation time of the baseline model, Tg, is defined as the expected mean age of
mothers from a set of new-born individuals when the population has a stable-stage distribution. It
can be calculated by taking the derivative of the characteristic equation (Eq. (1)) with respect to
logðkÞ [26]. The generation time can be written as

Tg �
XC
i¼1

T ðiÞ; ð4aÞ

where

T ðiÞ ¼ �kmi
oLi

ok
¼ miLiS1;i ð4bÞ

and

Si;j ¼
Pj

k¼i
k

k�skpk
if i6 j;

0 if i > j:

�
ð4cÞ

There are many ways of defining a generation time [1,26], but the above definition is a natural
choice which emerges from the mathematical analysis.

3. Model simplification

The baseline model can be simplified by aggregating a set of stages, say those indexed from a
through to b (see Fig. 1), into a single stage. The most extreme simplification would reduce all C
stages of the baseline model to just one stage. The aggregate stage will have three parameters, ~mm, ~ss
and ~pp, which must be defined in some way. The simplified model carries the advantage of having
fewer parameters to estimate, resulting in either reduced fieldwork effort or increased precision in
estimating the parameters. However, the behaviour of the simplified model will not necessarily be
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identical to the baseline model, leading to the possibility of decreased confidence in the output
from a simplified model.
The correspondence between the behaviour of the simplified model and the baseline model

depends upon the choice of the three parameters ~mm, ~ss and ~pp. It is of interest to consider how the
choice of values for these three parameters affects the outputs from the simplified model. Im-
portant outputs are the growth rate k, the generation time Tg, the stable-stage distribution fi and
the parameter sensitivities. Can the values of ~mm, ~ss and ~pp be chosen so as to preserve some of these
properties of the baseline model? We focus here on three of these properties: k, fi and Tg. The
long-term growth rate is of prime importance because it is commonly used as a measure of
population viability, and is often a key quantity in many analyses [1]. The stable-stage distribution
enters into the model sensitivity [1] and approximations of the stochastic growth rate [6,8] by
providing the relative weightings of the individual stages. Finally, the generation time scales the
model’s sensitivity to all parameters and emerges from a number of analyses. It should be em-
phasised that other properties of the baseline model will not necessarily be conserved in the
simplified model. In calculating ~mm, ~ss and ~pp such that the three properties above are preserved, we
are providing an ‘ideal parameterisation’ upon which applications to real scenarios can be judged.
Before deriving the ‘ideal parameterisation’ we define the following quantities for an aggregated

stage

Definition 3. For stages a through to b, an average fecundity �mm, average survival �ss, aggregated-
stage survivorship L, and aggregated generation time T g can be defined as

�mm �
Xb

i¼a

mi
Li

L
; ð5aÞ

�ss �
Xb

i¼a

si
Li

L
; ð5bÞ

L �
Xb

i¼a

Li; ð5cÞ

T g ¼
Xb

i¼a

T ðiÞ ¼ Tg �
Xa�1
i¼1

T ðiÞ �
XC
i¼bþ1

T ðiÞ: ð5dÞ

The values �mm and �ss can be interpreted as the average fecundity and average survival probability
from an unbiased random sample of individuals in a population that has reached the stable-stage
distribution (see Eq. (3)).

Theorem 1. Given a baseline model with a long-term population growth rate, k, a stable-stage dis-
tribution fi and a generation time Tg, there exists an aggregated model whose parameterisation of the
aggregated-stage ( ~mm, ~ss, ~pp) gives the same long-term population growth rate, same stable-stage dis-
tribution and same generation time as the baseline model. Specifically, this parameterisation is
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~mm ¼ �mm
LfLL ; ð6aÞ

~ss ¼ ~ss~pp þ Wðk � ~ss~ppÞ; ð6bÞ

~pp ¼ ~ss~pp
~ss
; ð6cÞ

where

fLL ¼ La�1
sa�1ð1� pa�1Þ

k � ~ss~pp
; ð7Þ

~ss~pp ¼ k 1

�
� B
A

�
; ð8aÞ

A ¼ T g � S1;a�1 �mmLþ Sa;b

XC
i¼bþ1

miLi; ð8bÞ

B ¼ �mmLþ
XC
i¼bþ1

miLi ð8cÞ

and

W � ~ssð1� ~ppÞ
k � ~ss~pp

¼ Lbþ1

La�1

k � sbþ1pbþ1

sa�1ð1� pa�1Þ
: ð9Þ

Proof. The proof is in three parts. First, the characteristic equation is used to define ~mm. Second, the
stable-stage distribution is used to relate ~ss to ~ss~pp. Finally, the generation time for the baseline
model is compared with the generation time for the simplified model, from which ~ss~pp is calculated,
leading to expressions for ~ss and ~pp.
The characteristic equation for the baseline model can be written as

1 ¼
XC
i¼1

miLi ¼
Xa�1
i¼1

miLi þ �mmLþ
XC
i¼bþ1

miLi: ð10Þ

Similarly the characteristic equation for the simplified model can be written as

1 ¼
Xa�1
i¼1

miLi þ ~mmfLL þ
XC
i¼bþ1

miLi: ð11Þ

Equating Eqs. (10) and (11) and simplifying gives Eq. (6a) for ~mm.
For the stable-stage distribution to remain invariant to stage aggregation it is necessary thatLi

is preserved outside the region of aggregation. Since the Lis are linked by the recursion rela-
tionship of Eq. (2), the Li for i < a are unaffected by the model simplification, whilst the Li for
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i > b are invariant to the model simplification if Lbþ1 remains invariant. Using Eq. (2), the re-
quirement that Lbþ1 remains invariant can be written as

Lbþ1 ¼ fLL ~ssð1� ~ppÞ
k � sbþ1pbþ1

: ð12Þ

Substituting in Eq. (7) for fLL and rearranging gives

Lbþ1ðk � sbþ1pbþ1Þ ¼ La�1sa�1ð1� pa�1Þ
~ssð1� ~ppÞ
k � ~ss~pp

ð13Þ

which can be rewritten to give Eq. (6b) for ~ss in terms of ~ss~pp.
Finally, the parameter ~ss~pp can be calculated using the requirement that the generation time is

preserved. Using Eq. (4a)–(4c), the generation time for the simplified model can be written as

eTTg ¼
Xa�1
i¼1

T ðiÞ þ ~mmfLL S1;a�1

�
þ k

k � ~ss~pp

�
þ

XC
i¼bþ1

T ðiÞ þ miLi
k

k � ~ss~pp

�
� Sa;b

�
; ð14Þ

where Si;j is defined by Eq. (4c). Looking at the difference between Eqs. (4a)–(4c) and (14) givesXb

i¼a

T ðiÞ ¼
Xb

i¼a

miLi S1;a�1

�
þ k

k � ~ss~pp

�
þ

XC
i¼bþ1

miLi
k

k � ~ss~pp

�
� Sa;b

�
: ð15Þ

Rearranging Eq. (15) gives the expression for ~ss~pp of Eq. (8a), which can then be used to calculate ~ss
(Eq. (6b)) and ~pp (Eq. (6c)). �

ffTwo issues arise when selecting an appropriate level of model structure for application to a
real example; the equivalence between a simplified model and the baseline model, and the efficient
parameterisation of the simplified model from field data. This paper concentrates upon the issue
of equivalence, and does not deal in detail with the parameterisation issue. Nevertheless, it can be
seen that Eqs. (5c) and (8b) require a knowledge of the parameters mi, si and pi for stages of the
baseline model which are inside the region of simplification (i.e., stages a through to b). In general,
therefore, the parameterisation of the simplified model depends upon the details of the baseline
model, which is undesirable if the motivation for using the simplified model is to avoid excessive
parameter estimation. This problem may be overcome if new sampling procedures could be de-
veloped to estimate Eqs. (5c) and (8b) more directly. At present though, it is more likely that
average quantities, such as �mm and �ss, can be estimated directly from field data (assuming no
sampling bias between stages), without a detailed knowledge of the underlying structure in the
baseline model.
For a sub-class of models, where pi ¼ 0 for all stages inside the region of simplification (as is

commonly the case for Leslie matrix models), the simplified model can be derived with only a
knowledge of �mm, �ss and the invariant quantities k and Tg.

Corollary 1. If the parameters pa through to pb of the baseline model are zero then the simplified
model can be parameterised without a detailed knowledge of the parameters mi and si for stage a
through to b. Specifically, Eq. (5c) for L and Eq. (8b) for A can now be written in terms of the
average quantities �mm, �ss and parameters from outside the region of aggregation.
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L ¼
sa�1La�1 � kLbþ1 k � sbþ1pbþ1

� 	
k � �ss

; ð16Þ

A ¼ T g � �mmLS1;a�1 þ ðb � a þ 1Þ
XC
i¼bþ1

miLi: ð17Þ

Eq. (16) can be substituted into the characteristic equation to solve for the long-term growth rate,
which can then be used to calculate the other properties of the simplified model.

Corollary 2. If the region of aggregation extends up to stage C (i.e., b ¼ C) then the parameters for
the aggregated region simplify still further to give

~mm ¼ �mm
k � �ssð1� pa�1Þ

T g

�mmL

�
� S1;a�1

��1

; ð18Þ

~ss ¼ k 1

"
� T g

�mmL

�
� S1;a�1

��1#
; ð19Þ

~pp ¼ 1; ð20Þ

eLL ¼ La�1sa�1ð1� pa�1Þ
T g

�mmL

�
� S1;a�1

�
; ð21Þ

L ¼ La�1sa�1
k � �ss

: ð22Þ

Corollary 3. If the parameters of the baseline model are stage independent, such that mi ¼ m, si ¼ s,
pi ¼ p (with the exception that pC ¼ 1, and providing that m 6¼ 0 and s 6¼ 0) then the results simplify
down to the well-known equations

k ¼ mþ s ð23Þ

and

Tg ¼
mk

ðk � sÞ2
¼ 1þ m

s
ð24Þ

and the parameterisation of the aggregated stage (Eqs. (6a)–(6c)) become

~mm ¼ �mm ¼ m; ð25aÞ

~ss ¼ �ss ¼ s; ð25bÞ

~pp ¼ p if b < C
1 if b ¼ C:

�
ð25cÞ

In this case no advantage is gained by analysing a complex model.
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Other quantities of interest, such as the various measures of model sensitivity [1] and ap-
proximations to the stochastic growth rate, can be calculated once the simplified model has been
fully parameterised. In general, these quantities will differ from the baseline model, and will be the
deciding factor in choosing the degree of model complexity. This choice is illustrated by the
following example.

3.1. Example: a model of short-tailed shearwaters

We will apply our results to a model of the short-tailed shearwater (Puffinus tenuirostris), de-
veloped by Hunter et al. [18]. Simplifications of this model have been investigated numerically

Table 2

The parameters of the age-dependent model for short-tailed shearwaters

Age class Stage distribution Age-dependent parameter value

fi mi si pi

Pre-breeders

1 0.4652 0 0.938 0.8934

Breeders

2 0.0384 0.1375 0.9222 0

3 0.0360 0.0945 0.9471 0

4 0.0346 0.1076 0.9590 0

5 0.0336 0.1189 0.9612 0

6 0.0328 0.1283 0.9566 0

7 0.0318 0.1358 0.9477 0

8 0.0306 0.1415 0.9367 0

9 0.0291 0.1453 0.9254 0

10 0.0273 0.1474 0.9151 0

11 0.0254 0.1481 0.9070 0

12 0.0233 0.1476 0.9017 0

13 0.0214 0.1460 0.8995 0

14 0.0195 0.1437 0.9004 0

15 0.0178 0.1407 0.9041 0

16 0.0163 0.1374 0.9096 0

17 0.0151 0.1339 0.9160 0

18 0.0140 0.1305 0.9217 0

19 0.0131 0.1273 0.9248 0

20 0.0123 0.1244 0.9231 0

21 0.0115 0.1221 0.9140 0

22 0.0107 0.1204 0.8946 0

23 0.0097 0.1195 0.8615 0

24 0.0085 0.1195 0.8111 0

25 0.0070 0.1195 0.8111 0

26 0.0151 0.1230 0.6415 1.0000

m is the fecundity, s is the probability of surviving one time step, and p is the probability of staying in the same age class

until the following year. Pre-breeding females are represented by the first age class, and breeding females by the

following 25 age classes. This model gives a long-term growth rate of k̂k ¼ 0:986 year�1 and a generation time of
Tg ¼ 15:6 years.
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[27], with the conclusion that the 25 breeding age classes in the model add little to the model’s
prediction of long-term growth rate. To simplify our analysis we aggregate the original 15 pre-
breeding age classes into one pre-breeding class. Our baseline model therefore has 26 age classes (1
pre-breeder class and 25 breeder classes, Table 2).
This model was progressively simplified. Each simplification involved aggregating from stage N

through to stage 26, giving a simplified model with N stages (N ¼ 2; . . . ; 26). Table 3 shows the
survival and fecundity parameters of the aggregated stage (Eqs. (6a)–(6c)) for the series of sim-
plified models, together with the mean elasticities, and the mean ratio of elasticities. All models,
irrespective of the number of stages, have the same long-term growth rate, generation time and

Table 3

Simplifications of the short-tailed shearwater model obtained by successively aggregating stages containing the oldest

birds

Number of stages in

the model, N

Parameters of the

aggregated stage

Mean elasticities Mean ratio of elastic-

itiesFecundity Survival

~mm ~ss �eem �ees

26 0.12 0.64 0.0018 0.17 5.3

25 0.13 0.65 0.0018 0.17 5.3

24 0.14 0.67 0.0018 0.17 5.4

23 0.15 0.7 0.0019 0.17 5.4

22 0.16 0.72 0.0020 0.17 5.4

21 0.16 0.74 0.0021 0.17 5.4

20 0.17 0.76 0.0022 0.17 5.4

19 0.18 0.77 0.0024 0.18 5.4

18 0.18 0.79 0.0026 0.18 5.4

17 0.18 0.8 0.0029 0.18 5.4

16 0.18 0.81 0.0032 0.18 5.4

15 0.19 0.82 0.0037 0.19 5.4

14 0.19 0.82 0.0043 0.19 5.4

13 0.19 0.83 0.0051 0.20 5.4

12 0.19 0.84 0.0061 0.20 5.4

11 0.19 0.84 0.0073 0.21 5.3

10 0.19 0.85 0.0088 0.23 5.3

9 0.19 0.85 0.011 0.24 5.3

8 0.19 0.86 0.013 0.26 5.2

7 0.19 0.86 0.015 0.28 5.2

6 0.20 0.87 0.017 0.30 5.1

5 0.20 0.87 0.020 0.34 4.9

4 0.19 0.88 0.023 0.37 4.8

3 0.18 0.88 0.027 0.42 4.5

2 0.18 0.89 0.032 0.47 4.5

The parametrisation of the aggregated stage, and the mean elasticity of the long-term growth rate to changes in

fecundity and survival are shown (to two significant figures) for successive model simplifications. The parameter ~pp is
unity for all models, and is not shown. The long-term growth rate for all models is k̂k ¼ 0:986 year�1 and the generation
time is Tg ¼ 15:6 years. The mean elasticities are defined as �eem ¼

PN
i¼1 fiemðiÞ and �ees ¼

PN
i¼1 fiesðiÞ and the mean ratio of

the elasticities is
PN

i¼1 fiesðiÞ=emðiÞ, where esðiÞ ¼ d logðkÞ=d logðsiÞ, emðiÞ ¼ d logðkÞ=d logðmiÞ and fi is the proportion of
the population at equilibrium in stage i (Eq. (3)).

140 J.M. Yearsley, D. Fletcher / Mathematical Biosciences 179 (2002) 131–143



stable-stage distribution. However, there are differences between the models in other respects. For
example, as the number of stages in the model is reduced, the mean elasticity of both fecundity
and survival increases, implying that the model’s predicted growth rate is becoming more sensitive
to uncertainties in the parametrisation. Furthermore, the mean ratio of the elasticities tends to
decrease, showing that the model is becoming relatively more sensitive to uncertainties in the
fecundities as it is simplifed (to calculate the average elasticities it was assumed that there was no
covariance between stages). The main point is that not all properties of a complex model can be
conserved when creating a simplified model, and these differences can be important. The unde-
sirable effects of covariation between a model’s structure and quantities of interest have to be
weighed up against the benefits of model simplification, which include increased precision in
parameter estimation and reduced data collection effort.

4. Discussion

In this paper we considered a commonly applied stage-structured population model and so by
ignoring effects such as stochasticity there is already an implicit simplification in all our models.
We have focused upon the structure of the model and the effect of simplifying its structure by
aggregating stages. In general, the conclusions from a simplified model depend upon the para-
metrisation of the aggregated stage. It is shown how to parameterise an aggregated stage so that
the simplified model and the original ‘baseline’ model are identical with respect to three essential
properties; the long-term growth rate, stable-stage distribution and generation time. For a sub-set
of models, this parametrisation is possible with a knowledge of only the average fecundity and
survival for the aggregated stages. In this case the simplified model will require less fieldwork
effort to parameterise. For all other cases, either new sampling techniques must be developed to
estimate the relevant average quantities, or some knowledge of the original baseline model is
required, although this last option, in part, limits the usefullness of a simplified model.
In general, the other properties of the simplified model will not be the same as for the ‘baseline’

model. Quantities such as the expected lifespan, parameter sensitivity and stochastic growth rate
will be a function of a model’s structure. The application of our results to a model for short-tailed
shearwaters suggests that although precision in parameter estimation may be increased by using a
simple model, parameter elasticity may also increase. This might reduce the benefits of using a
simple model. In using these models, we need to strike a balance between the benefits of a sim-
plified model and the costs of poor prediction.
Previous studies have also addressed the question of model complexity and structure. Van-

dermeer [28] and later Moloney [29] proposed algorithms to choose the size categories in a stage-
structured model. In practice these algorithms are rarely used, and can give misleading results [1],
whilst alternative methods have since been developed which avoid the use discrete stages alto-
gether [30]. More recently the question of model complexity has been addressed by either nu-
merically comparing various models [27], or by defining an index of utility, with which models can
be compared [31]. These studies are motivated by the growing application of models to conser-
vation and management decisions, where the choice of model structure may have a critical effect
upon the accuracy of a prediction. The general conclusion from these studies is that complexity is
rarely justifiable on its own, and that intermediate levels of complexity are often more advisable.
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Other studies have shown that simplified models can capture the essential details of a full matrix
model [32,33]. Heppel et al. [34] found that use of simple age-classified models compared fa-
vourably with the use of full Leslie matrix models in terms of comparing patterns of elasticity,
suggesting that complete life-history information is not important when looking at the elasticity
patterns of a model.
The results presented here allow the accuracy of the predictions from a simplified model to be

calculated, given that the model is ‘ideally parameterised’, so as to conserve the essential prop-
erties of a ‘baseline’ model. In this way the problem of filling the theoretical gap between a model’s
structure and the accuracy of its predictions is divided into two parts. Firstly, the behaviour of a
simplified model given an ideal parametrisation can be studied. This can be viewed as the effect of
model structure. Secondly, the effect of deviations, due to data limitations, from the ideal para-
metrisation can be considered. Such deviations from the ideal parametrisation have not been
considered in this paper and are a topic of current research. An improved theoretical under-
standing of both of these issues is needed to guide the appropriate level of model complexity in
applied situations. Appropriate model selection may be an important consideration for the ac-
curate guidance of conservation and management projects, especially when time and funding is
limited.
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