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Summary 

Creatine deficiency syndromes, either due to AGAT, GAMT or SLC6A8 deficiencies, lead to 

a complete absence, or a very strong decrease, of creatine within the brain, as measured by 

magnetic resonance spectroscopy. While the mammalian CNS express AGAT, GAMT and 

SLC6A8, the lack of SLC6A8 in astrocytes around blood-brain barrier limits the brain 

capacity to import creatine from periphery, and suggests that CNS has to rely mainly on 

endogenous creatine synthesis through AGAT and GAMT expression. This seems 

contradictory with SLC6A8 deficiency, which, despite AGAT and GAMT expression, also 

leads to creatine deficiency in CNS. We present novel data showing that in cortical grey 

matter, AGAT and GAMT are expressed in a dissociated way: e.g. only a few cells co-express 

both genes. This suggests that to allow synthesis of creatine within CNS, at least for a 

significant part of it, guanidinoacetate must be transported from AGAT- to GAMT-expressing 

cells, possibly through SLC6A8. This would explain the creatine deficiency observed in 

SLC6A8-deficient patients. By bringing together creatine deficiency syndromes, AGAT, 

GAMT and SLC6A8 distribution in CNS, as well as a synthetic view on creatine and 

guanidinoacetate levels in the brain, this review presents a comprehensive frame, including 

new hypotheses, on brain creatine metabolism and transport, both in normal conditions and in 

case of creatine deficiency. 
 

1 sentence “take-home message”: This review brings together creatine deficiency 

syndromes with AGAT, GAMT and SLC6A8 distribution in CNS, and presents a 

comprehensive frame on brain creatine metabolism and transport, both in normal conditions 

and in case of creatine deficiency. 
 

Abbreviated title: CNS creatine deficiencies, AGAT, GAMT & SLC6A8  
 

References to electronic databases: L-arginine:glycine amidinotransferase (EC 2.1.4.1; 

AGAT/GATM; Agat/Gatm) deficiency: OMIM  602360; Guanidinoacetate N-

methyltransferase (EC 2.1.1.2; GAMT; Gamt) deficiency: OMIM 601240; Creatine 

transporter (SLC6A8; Slc6a8) deficiency: OMIM 300352. 
 

List of abbreviations: AGAT: L-arginine:glycine amidinotransferase; BBB: blood-brain 

barrier; CAT: cationic amino acid transporter (system y+); CK: creatine kinase; CNS: central 

nervous system; Cr: creatine; CSF: cerebrospinal fluid; GAA: guanidinoacetate; GAMT: 

guanidinoacetate methyltransferase; MCEC: microcapillary endothelial cell; MRS: magnetic 

resonance spectroscopy; SLC6A8: creatine transporter; tCr: total creatine (creatine + 

phosphocreatine). 



 
 

         3 

Introduction 

 

In mammals, creatine (Cr) is taken up from the diet, or can be synthesized endogenously by a 

two-step mechanism involving (i) L-arginine:glycine amidinotransferase (AGAT), which, 

from arginine and glycine as substrates, yields the intermediate guanidinoacetate (GAA), and  

(ii) guanidinoacetate methyltransferase (GAMT), which converts GAA to Cr. Cr is distributed 

through the blood and is taken up by cells with high energy demands through a specific Cr 

transporter, SLC6A8, also abbreviated CT1, CRT1, CRTR, CTR or CreaT (for a review, see 

Wyss and Kaddurah-Daouk, 2000). With the discovery of Cr deficiency syndromes due to 

either AGAT, GAMT or SLC6A8 deficiency (Item et al 2001; Salomons et al 2001; Stöckler 

et al 1994; for a review, see Stöckler et al 2007), the last 15 years have seen a boost in the Cr 

research field, particularly in the central nervous system (CNS). In this review, we aim at 

bringing together what is known on Cr deficiency syndromes with the latest research on 

AGAT, GAMT and SLC6A8 distribution within the brain, in order to delineate a 

comprehensive frame on Cr metabolism and transport in CNS, both in normal conditions and 

in case of Cr deficiency. New hypotheses will also be presented. 

 

 

Functions of creatine within the brain 

 

The Cr / phosphocreatine / creatine kinase (CK) system is essential for the buffering and 

transport of high-energy phosphates. In CNS, Cr has been shown essential in the growth 

cones migration as well as dendritic and axonal elongation, in Na+/K+-ATPase activity, 

neurotransmitter release, maintenance of membrane potential, Ca2+ homeostasis and the 

restoration of ion gradients (Wallimann et al 1992; Wyss and Kaddurah-Daouk 2000). Cr was 

also recently hypothesized to act as a central neuromodulator, and particularly as co-
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transmitter on GABA postsynaptic receptors (Almeida et al 2006). Finally, Cr has been 

proposed to regulate appetite and weight by acting on specific hypothalamic nuclei (Galbraith 

et al 2006). 

 

 

Creatine deficiency syndromes 

 

The CNS is the main organ affected in patients suffering from Cr deficiency syndromes 

caused by either AGAT, GAMT or SLC6A8 deficiency (Item et al 2001; Salomons et al 

2001; Stöckler et al 1994). These patients present neurological symptoms in infancy (Battini 

et al 2002; DeGrauw et al 2002; Schulze et al 1997). In particular, mental retardation and 

delays in speech acquisition can be observed (AGAT, GAMT and SLC6A8 deficiencies), as 

well as epilepsy (GAMT and SLC6A8 deficiencies), autism, automutilating behavior, 

extrapyramidal syndrome and hypotonia (GAMT deficiency) (for a review, see Stöckler et al 

2007). 

 

AGAT, GAMT and SLC6A8 present a wide pattern of expression in the mammalian brain, 

which has been demonstrated in rat (AGAT, GAMT and SLC6A8), mouse (GAMT and 

SLC6A8) and human (GAMT) (see below; and Braissant et al 2001a; Braissant et al 2005; 

Galbraith et al 2006; Schmidt et al 2004; Tachikawa et al 2004). This may, at least in part, 

contribute to the diverse phenotypic spectrum of neurological symptoms observed in AGAT, 

GAMT and SLC6A8 deficient patients (Anselm et al 2006; Battini et al 2006; Mercimek-

Mahmutoglu et al 2006; Schulze 2003). The recently proposed roles of Cr as co-transmitter 

on GABA postsynaptic receptors (Almeida et al 2006), and of regulator of appetite and 

weight on specific hypothalamic nuclei (Galbraith et al 2006), might also contribute to this 

phenotypic diversity. Specific features of GAMT deficiency are probably due to the 
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epileptogenic effect of the accumulated GAA (Schulze et al 2001), the activation of GABAA 

receptors by GAA (Neu et al 2002) and its inhibitory effect on Na+/K+-ATPase and CK 

(Zugno et al 2006). 

 

All three deficiencies are characterized by an absence, or a severe decrease, of Cr in CNS, as 

measured by magnetic resonance spectroscopy (MRS) (Stromberger et al 2003; Sykut-

Cegielska et al 2004). AGAT and GAMT deficient patients can be treated with oral Cr 

supplementation. Although very high doses of Cr are being used, the replenishment of 

cerebral Cr takes months and results only in the partial restoration of the cerebral Cr pool 

(Battini et al 2002; Ganesan et al 1997; Item et al 2001; Schulze et al 1998; Stöckler et al 

1996b). The pre-symptomatic treatment of AGAT- and GAMT-deficient patients has been 

reported, and appears to ameliorate the outcome for these patients (Battini et al 2006; Schulze 

et al 2006; Schulze and Battini 2007). For GAMT deficiency, lowering GAA by arginine-

restricted diet with low-dose ornithine supplementation (Schulze et al 2001) or by sole high-

dose supplementation of ornithine (Schulze et al 2005) have been shown effective. Cr 

supplementation of SLC6A8 deficient patients is inefficient to restore cerebral Cr levels 

(Bizzi et al 2002; Cecil et al 2001; DeGrauw et al 2002; Póo-Argüelles et al 2006). 

 

 

Expression of AGAT, GAMT and SLC6A8 within the central nervous system 

 

It has long been thought that most, if not all, of the Cr necessary for the brain is of peripheral 

origin, be it taken from the diet or synthesized endogenously through AGAT and GAMT 

activities in kidney, pancreas and liver (Wyss and Kaddurah-Daouk 2000). It is known 

however since a long time that the mammalian brain is able to synthesize Cr (Pisano et al 

1963; Van Pilsum et al 1972), which is also true for primary cultures of brain cells and nerve 
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cell lines (Braissant et al 2002; Braissant et al 2008; Cagnon and Braissant 2007; Daly 1985; 

Dringen et al 1998). It has now been clearly established that both AGAT and GAMT are 

expressed within the brain, both during development and in adulthood (Braissant et al 2001b; 

Braissant et al 2005; Braissant et al 2007; Lee et al 1998; Nakashima et al 2005; Schmidt et al 

2004; Tachikawa et al 2004; Tachikawa et al 2007). AGAT is expressed throughout the adult 

rat CNS, including the retina, and can be found in all the main types of brain cells, namely 

neurons, astrocytes and oligodendrocytes (Braissant et al 2001b; Nakashima et al 2005). In 

the structures regulating exchanges between periphery and CNS, as well as between brain 

parenchyma and cerebrospinal fluid (CSF), AGAT is expressed in microcapillary endothelial 

cells (MCEC) and the astrocytes contacting them at the blood-brain barrier (BBB), as well as 

in the choroid plexus and ependymal epithelia (Braissant et al 2001b). GAMT is also 

expressed throughout the main structures of the adult mammalian brain, as shown in rat, 

mouse and human; furthermore, GAMT is expressed by neurons, astrocytes and 

oligodendrocytes, with higher levels found in both glial cell types (Braissant et al 2001b; 

Nakashima et al 2005; Schmidt et al 2004; Tachikawa et al 2004). GAMT is not expressed in 

MCEC but is present in the astrocytes contacting them (at the BBB), as well as in the choroid 

plexus and ependymal epithelia (Braissant et al 2001b; Tachikawa et al 2004). 

  

Organotypic rat cortical cultures, primary brain cell cultures – either neuronal, glial or mixed 

– and neuroblastoma cell cultures have Cr uptake activity (Almeida et al 2006; Braissant et al 

2002; Braissant et al 2008; Daly 1985; Möller and Hamprecht 1989). In vivo, mouse and rat 

CNS are able to take up Cr from the blood against its concentration gradient, but this uptake 

of Cr through BBB seems relatively inefficient (Ohtsuki et al 2002; Perasso et al 2003). 

SLC6A8 is expressed throughout the adult mammalian brain (Braissant et al 2001b; Galbraith 

et al 2006; Guimbal and Kilimann 1993; Happe and Murrin 1995; Saltarelli et al 1996; 

Schloss et al 1994). In rat and mouse, SLC6A8 is found in neurons and oligodendrocytes, but, 
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in contrast to AGAT and GAMT, cannot be detected in astrocytes (Braissant et al 2001b; 

Ohtsuki et al 2002; Tachikawa et al 2004). This holds true also for the retina, where SLC6A8 

is expressed in retinal neurons, but not in astrocytes (Acosta et al 2005; Nakashima et al 

2004). In contrast to the absence of SLC6A8 in astrocytes lining microcapillaries, MCEC 

which form the BBB and the blood-retina barrier do express SLC6A8  (Acosta et al 2005; 

Braissant et al 2001b; Nakashima et al 2004; Ohtsuki et al 2002; Tachikawa et al 2004), and 

are able to take up Cr (Ohtsuki et al 2002). SLC6A8 is also expressed by choroid plexus and 

the ependymal epithelia (Braissant et al 2001b). 

 

 

Creatine and guanidinoacetate within the normal versus creatine deficient CNS 

 

In normal conditions, Cr within human CSF is maintained in the 17-90µM range (Table 1 and 

references therein). By MRS, tCr is measured between 5.5mM and 6.4mM in the cortical gray 

matter, and between 4.8mM and 5.1mM in the cortical white matter (Table 1). GAA is 

maintained in human CSF at a 1000x lower level than Cr, with a 0.015-0.114µM range, while 

its levels in gray and white matters were estimated to 1.6mM and 0.9mM respectively (Table 

1). 

 

With the exception of SLC6A8-deficient heterozygous females, where brain Cr deficiency 

appears partial (Cecil et al 2003), all three Cr deficiencies present the virtual absence (or a 

very stong decrease) of the Cr peak measured by MRS in the cortical gray and white matters 

or in basal ganglia (Stöckler et al 2007). However, despite the lack of detection or decrease 

under MRS measure, Cr remains present within the brain of Cr deficient patients (Table 1). 
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In SLC6A8 deficiency, Cr levels in CSF do not seem different from age-matched controls 

(Cecil et al 2001; DeGrauw et al 2002; Salomons et al 2001) (Table 1). In AGAT deficiency, 

tCr levels in cortical gray and white matters are decreased to 12% and 10% respectively of 

age-matched controls (Battini et al 2002) (Table 1), which suggests that tCr levels in these 

regions are in the 500µM range. In GAMT deficiency, CSF levels of Cr are strongly 

decreased (<2µM) as compared to controls (Ensenauer et al 2004; Schulze et al 1997; Schulze 

et al 2003), while in cortical gray and white matters, tCr were found to be in the 0.2-1.5mM 

and 0.3-1.9mM ranges respectively (Mancini et al 2005; Stöckler et al 1994) (Table 1). 

 

GAA accumulation in body fluids is characteristic of GAMT deficiency, and the CSF of 

GAMT-deficient patients presents levels of GAA 60-1000x higher than age-matched controls 

(Table 1), while it was estimated to be 3.6mM and 3.4mM within cortical gray and white 

matters respectively. No precise data are available on GAA levels within the AGAT- and 

SLC6A8-deficient CNS, but it was shown recently by MRS that GAA can also accumulate in 

the brain of SLC6A8-deficient patients (Sijens et al 2005) (see also below). 

 

In the rodent brain, Cr concentrations were 8.5mM (rats) and 8.2mM (mice) (Renema et al 

2003), or 10-11µmol/g of tissue (mice) (Schmidt et al 2004; Torremans et al 2005) (Table 2). 

In mice, GAA is maintained at a 1000x lower level than Cr within CNS (0.012µmol/g of 

tissue). As expected, GAMT-/- KO mice show decreased levels of Cr within their brain, which 

however still reach 1.4mM or 0.4-0.5µmol/g of tissue, and a very significant increase in GAA 

(1.9µmol/g tissue; Table 2). As for GAMT-deficient patients, GAMT-/- KO mice slowly 

replenish their brain Cr upon Cr treatment (Kan et al 2007). 
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Synthesis or uptake of creatine by the brain ? 

 

The in vivo expression of AGAT and GAMT within the mammalian brain, as well as the in 

vitro endogenous synthesis of Cr by various types of cultured brain cells, suggest that the 

CNS synthesizes Cr (for a review, see Braissant et al 2007). However, it was thought for a 

long time that most, if not all, of the Cr needed by the brain comes from the periphery through 

BBB (for a review, see Wyss and Kaddurah-Daouk 2000). 

 

The discovery that SLC6A8 cannot be detected in astrocytes, particularly in their feet 

sheathing microcapillaries at BBB suggested however that in the mature brain, the BBB has a 

limited permeability for Cr, despite the expression of SLC6A8 by MCEC and their capacity to 

import Cr (Acosta et al 2005; Braissant et al 2001b; Nakashima et al 2004; Ohtsuki et al 

2002; Tachikawa et al 2004). This is further confirmed in vivo, both in rodents and humans. 

The blood to brain transport of Cr through BBB has been demonstrated in rats and mice, but 

is relatively inefficient (Ohtsuki et al 2002; Perasso et al 2003). Moreover, the long-term 

treatment of AGAT- and GAMT-deficient patients with high doses of Cr allows the 

replenishement of their brain Cr pools, but is very slow and only partial (Stromberger et al 

2003; Sykut-Cegielska et al 2004). Similarly, GAMT-/- KO mice treated with high doses of Cr 

replenish their brain Cr, but only slowly (Kan et al 2007). One possibility for the limited entry 

of Cr into the brain parenchyma, without going through astrocytes, could be the use of the 

limited surface of CNS capillary endothelium that is free of astrocytic endings (Ohtsuki 2004; 

Virgintino et al 1997). This would explain that the AGAT- or GAMT-deficient CNS, despite 

its very significant decrease in Cr, still presents measurable levels of Cr (Tables 1 and 2). 

 

SLC6A8 deficient patients have normal levels of Cr in CSF (Table 1), but are unable to 

import Cr from the blood (Bizzi et al 2002; Cecil et al 2001; DeGrauw et al 2002; Póo-
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Argüelles et al 2006). In contrast, GAMT-deficient patients have strongly decreased levels of 

Cr in CSF (Table 1), but are able to import Cr from the blood (Schulze et al 1997; Stöckler et 

al 1994). These observations are in favour of endogenous synthesis of Cr within CNS, which 

would still be operational, at least in part of brain cells, under SLC6A8 deficiency, while 

completely blocked in AGAT and GAMT deficiencies (Figure 1). 

 

Thus, under normal physiological conditions, the adult mammalian brain might depend more 

on its own Cr synthesis, through the expression of AGAT and GAMT, than on Cr supply from 

the blood (Braissant et al 2001b; Braissant et al 2007). The brain capacity for Cr synthesis 

would thus depend on the efficient supply of arginine, the limiting substrate for Cr synthesis, 

from blood to CNS, and then also on the local trafficking of arginine between brain cells. We 

and others have shown that the cationic amino acid transporters (CATs) might fulfill these 

roles in the adult rat brain, as CAT1 is expressed at the BBB as well as ubiquitously in 

neuronal and glial cells, as CAT2(B) is present in neurons and oligodendrocytes, and as 

CAT3 is restricted to neurons (Braissant et al 2001a; Braissant et al 1999; Hosokawa et al 

1999). 

 

However, the hypothesis of endogenous Cr synthesis in the brain might seem contradictory 

with the in vivo characteristics of SLC6A8 deficiency, which, despite expression of AGAT 

and GAMT within CNS, shows an absence or a very low level of brain Cr by MRS, as in 

AGAT and GAMT deficiencies (Salomons et al 2003). This apparent contradiction might be 

explained by the AGAT, GAMT and SLC6A8 expression pattern in CNS: AGAT and GAMT 

can be found in every cell type of the brain (Braissant et al 2001b), while they rarely seem co-

expressed within the same cell. 
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Dissociated expression of AGAT, GAMT and SLC6A8 within the brain 

 

To elucidate this, we hypothesized that within the different cell types of the brain, AGAT, 

GAMT and SLC6A8 might be expressed in a dissociated way, and that GAA, which is known 

to compete for Cr uptake through SLC6A8 (Ohtsuki et al 2002; Saltarelli et al 1996), had to 

be transported from AGAT- to GAMT-expressing cells, possibly through SLC6A8, for Cr to 

be synthesized within CNS (Braissant et al 2007). This could explain the absence of Cr 

synthesis in the brain of SLC6A8 deficient patients. Our aim was thus first to dissect the cell-

to-cell (co-)expression of AGAT, GAMT and SLC6A8 within the adult rat brain. 

 

To achieve this, in situ hybridization coupled to immunohistochemistry was applied to 

cryosections of the rat brain (Braissant 2004), where the expression pattern of AGAT, GAMT 

and SLC6A8 was analyzed within the grey matter of cortex. Specific RNA probes and 

polyclonal antibodies were used (Braissant et al 2001b; Braissant et al 2005) to unravel, on 

adjacent sections, the 3 different “2 by 2” combinations of the 3 genes (AGAT+GAMT; 

AGAT+SLC6A8; GAMT+SLC6A8). For each combination, in situ hybridization for gene 

n°1 was coupled to immunohistochemistry for gene n°2, followed on adjacent section by in 

situ hybridization for gene n°2 coupled to immunohistochemistry for gene n°1. All 

combinations were repeated twice, allowing a total of 4 labelling “2 by 2” of each 

combinations of the 3 genes. With each combination, the proportion of cells with (i) no 

expression of either genes 1 or 2, (ii) expression of gene 1 only, (iii) expression of gene 2 

only, or (iv) co-expression of genes 1 and 2, was obtained, which finally allowed the 

calculation of the expression pattern of AGAT, GAMT and SLC6A8 taken “3 by 3” (Table 

3). 
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These experiments revealed that within grey matter of the rat cortex, significant proportions 

of cells do no express either AGAT, GAMT or SLC6A8 (30.9%), or express AGAT only 

(14.8%), GAMT only (13.4%) or SLC6A8 only (13.9%). Cortical cells co-expressing 

AGAT+GAMT but not SLC6A8 were 7.9%, AGAT+SLC6A8 but not GAMT were 6.7%, and 

GAMT+SLC6A8 but not AGAT were 7.9%. Finally, cells co-expressing 

AGAT+GAMT+SLC6A8 were 4.1%. 

 

Altogether, we show that in the rat cortex, a low proportion of cells (12%) appears able of its 

own Cr synthesis (i.e. co-express AGAT+GAMT), in agreement with the Cr deficiency 

observed by MRS in SLC6A8-deficient patients. Cells co-expressing GAMT+SLC6A8, thus 

equipped for Cr synthesis if GAA is taken up by SLC6A8, were also 12%. 

 

Future work will aim at deciphering whether the proportions in the cortical expression pattern 

of AGAT, GAMT and SLC6A8 are respected within the other regions of the brain, or if 

differential expression patterns for AGAT, GAMT and SLC6A8 occurs between these 

structures. 

 

 

Models and hypotheses to understand creatine synthesis and transport within the brain 

 

Taken together, (i) the expression pattern of AGAT, GAMT and SLC6A8 within CNS, (ii) the 

absence (or strong decrease) of Cr within CNS of Cr deficient patients, (iii) the low 

permeability of BBB for Cr, and (iv) the Cr and GAA concentrations within the brain, both in 

normal and Cr deficient conditions, lead us to propose the following model to understand Cr 

synthesis and trafficking within CNS (Figure 1): 
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In normal conditions (Figure 1A), SLC6A8 is expressed by CEMC, but not by the feet of 

surrounding astrocytes, implying that very limited amounts of Cr can enter the brain through 

BBB, possibly through the limited surface of CNS capillary endothelium that is free of 

astrocytic endings (Ohtsuki 2004; Virgintino et al 1997). Within the cortical grey matter, the 

high proportion of cells without expression of AGAT, GAMT and SLC6A8, and the low 

proportion of cells expressing SLC6A8 alone, suggest that brain cells express AGAT, GAMT 

and SLC6A8 on demand to timely adapt their Cr needs. Cells equipped with the full Cr 

synthesis pathway (i.e. co-expressing AGAT and GAMT), are only 12%. Finally, the 

dissociated expression of AGAT and GAMT amongst different cells suggests that to allow 

synthesis of Cr within CNS, at least for a significant part of it, GAA must be transported from 

AGAT- to GAMT-expressing cells, possibly through SLC6A8 as 12% of cortical cells co-

express SLC6A8 and GAMT.  

 

Cr supplementation of SLC6A8 deficient patients (Figure 1B) does not restore Cr levels in 

their brain, as MCEC of these patients lack functional SLC6A8. Moreover, if SLC6A8 also 

allows GAA uptake, SLC6A8 deficient patients should lack the Cr synthesis pathway from 

AGAT-expressing to GAMT+SLC6A8 co-expressing cells. This would explain why 

SLC6A8-deficient patients lack (or present a significant decrease in) Cr in CNS as measured 

by MRS, having only a small proportion of their brain cells equipped to self-synthesize Cr. 

 

In AGAT deficiency (Figure 1C), no Cr can be synthesized within the brain, but the 

expression of SLC6A8 in MCEC allows the very limited entry of Cr within CNS. Because of 

the SLC6A8 expression in MCEC, the brain of AGAT-deficient patients can be replenished in 

Cr by oral Cr treatment. 
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Finally in GAMT deficiency (Figure 1D), no Cr can be synthesized within the brain, and 

GAA accumulates. As for AGAT deficiency, the expression of SLC6A8 in MCEC allows the 

very limited entry of Cr within CNS, as well as the replenishement of the GAMT-deficient 

CNS through oral Cr treatment. 

 

To clarify these models and hypotheses, important questions remain to be solved. Future 

research in the brain Cr field should aim at analyzing the capacity of brain cells to take up 

GAA, and if yes to demonstrate whether this uptake occurs through SLC6A8 or not. Another 

important point is to identify how Cr (and GAA) can leave the cells, and whether SLC6A8 or 

another mechanism is involved. Finally, does the brain of SLC6A8 deficient patients 

accumulate GAA as suggested in our model? So far, data are poor on the GAA level in the 

brain of SLC6A8-deficient patients. However, a recent work indeed demonstrates that GAA 

does not accumulate in CNS only in the case of GAMT deficiency, but can also be augmented 

in the brain of SLC6A8 deficient patients (Sijens et al 2005). The fact that SLC6A8-deficient 

patients can also develop epilepsy (Hahn et al 2002; Mancardi et al 2007; Póo-Argüelles et al 

2006) is also suggestive of GAA accumulation in the SLC6A8-deficient CNS. 
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Figure legends : 

 

Figure 1 : A  proposed model for creatine synthesis and transport within central nervous 

system. A: normal conditions. A high  proportion of cells do not express AGAT, GAMT and 

SLC6A8 (1). Endogenous synthesis of Cr within CNS can be achieved between AGAT- and 

GAMT-expressing cells and the concomitant trafficking of GAA between them (2), or in cells 

co-expressing AGAT+GAMT (3). A low proportion of brain cells only express SLC6A8 (4; 

i.e. Cr users-only). B: creatine transporter (SLC6A8) deficiency; C: L-arginine:glycine 

amidinotransferase (AGAT) deficiency; D: guanidinoacetate methyltransferase (GAMT) 

deficiency. Other abbreviations: Arg: arginine; Astr.: astrocytes ; BBB: blood brain barrier; 

Cr: creatine; GAA: guanidinoacetate; Gly: glycine; MCEC: microcapillary endothelial cells; 

Neur.: neurons; Olig.: oligodendrocytes. 
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Table 1 : Creatine and guanidinoacetate in the human brain of controls and SLC6A8, 
AGAT or GAMT deficient patients. 
 
 Cr CSF tCr GMa tCr WMa GAA CSF GAA GMa GAA WMa References 
 µM mM VOI mM VOI µM mM VOI mM VOI      
Controls 
 n.d. 5.5 ± 0.8 5.1 ± 0.9 n.d. 1.6 ± 1.0 0.9 ± 0.9 Stöckler et al 1994 
 n.d. 6.3 ± 0.7 5.1 ± 0.5 n.d. n.d. n.d. Stöckler et al 1996a 
 25-70 n.e n.d. n.d. n.d. n.d. Schulze et al 1997 
 n.d. n.d. n.d. 0.114 ± 0.068 n.d. n.d. Struys et al 1998 
 n.d. 6.4 ± 0.3 4.8 ± 0.6 n.d. n.d. n.d. Dechent et al 1999 
 n.d. n.d. n.d. 0.062 ± 0.028 n.d. n.d. Leuzzi et al 2000 
 35-90 n.d. n.d. 0.015-0.100 n.d. n.d. Schulze et al 2001 
 24-66 n.d. n.d. 0.036-0.224 n.d. n.d. DeGrauw et al 2002 
 24-53 n.d. n.d. n.d. n.d. n.d. Salomons et al 2003 
 17-87 n.d. n.d. 0.020-0.560 n.d. n.d. Almeida et al 2004 
 n.d. 6.2 ± 0.5 4.9 ± 0.4 n.d. n.d. n.d. Mancini et al 2005 
 n.d. n.d. n.d. 0.068-0.114 n.d. n.d. Caldeira Araujo et al 2005 
            
SLC6A8           
deficiency 62b n.d. n.d. n.d. n.d. n.d. Cecil et al 2001 
 56 n.d. n.d. n.d. n.d. n.d. DeGrauw et al 2002 
 n.d. 37%cd n.d. n.d. n.d. n.d. Cecil et al 2003 
            
AGAT 
deficiency n.d. 12%c 10%c n.d. n.d. n.d. Battini et al 2002 
            
GAMT 
deficiency n.d. 0.2  0.3 n.d. 3.6 3.4 Stöckler et al 1994 
 < 2.0 n.d. n.d. n.d. n.d. n.d. Schulze et al 1997 
 n.d. n.d. n.d. 13.7 n.d. n.d. Struys et al 1998 
 n.d. n.d. n.d. 11.0 n.d. n.d. Leuzzi et al 2000 
 1.4 n.d. n.d. 6.6 n.d. n.d. Schulze et al 2003 
 1.8 n.d. n.d. 15.3 n.d. n.d. Ensenauer et al 2004 
 n.d. n.d. n.d. 14.0,15.0 n.d. n.d. Almeida et al 2004 
 n.d. 1.4, 1.5 1.9, 1.6 n.d. n.d. n.d. Mancini et al 2005 
 n.d. n.d. n.d. 11.0-12.4 n.d. n.d. Caldeira Araujo et al 2005 
 
a: cortical gray (GM) and white (WM) matters. c: % as compared to age-matched controls. 
b: while on Cr treatment. d: basal ganglia, heterozygous female. 
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Table 2 : Creatine and guanidinoacetate in the rodent brain, including in GAMT-/- KO 
mice. 
 
 tCr brain Cr brain GAA brain References 
 mM VOI µmol/g tissue µmol/g tissue     
Control rats 
 8.5   Renema et al 2003 
        
Control mice      
 8.2 ± 1.2   Renema et al 2003 
  10.2 ± 1.1 0.012 ± 0.002 Schmidt et al 2004 
  11.3 ± 0.4 0.012 ± 0.001 Torremans et al 2005 
        
GAMT-/- KO mice 
 1.4 ± 0.4   Renema et al 2003 
  0.43 ± 0.09 1.87 ± 0.07 Schmidt et al 2004 
  0.47 ± 0.09  1.85 ± 0.06 Torremans et al 2005 
 
 
 
 
 
 
 
 
 
 
Table 3 : Dissociated expression of AGAT, GAMT and SLC6A8 in the telencephalic cortex 
or the rat (gray matter). The proportions (%) of cells with the respective (co-)expression 
patterns for AGAT, GAMT and SLC6A8 are indicated. Mean ± SD (n=4). 
 
 (Co)-expression pattern for % of cells within 
 AGAT, GAMT and SLC6A8 gray matter (cortex)   
 
1 - (no expression) 30.9 ± 6.5 
 

2 AGAT alone 14.8 ± 2.3 
3 GAMT alone 13.4 ± 3.6 
4 SLC6A8 alone 13.9 ± 4.1 
  

5 AGAT + GAMT  7.9 ± 2.1 
6 AGAT + SLC6A8   6.7 ± 1.4 
7 GAMT + SLC6A8 7.9 ± 3.3 
  

8 AGAT + GAMT + SLC6A8  4.1 ± 1.6 
 
No AGAT, no GAMT, no SLC6A8 (1) 30.9 ± 6.5 
 

Total AGAT + GAMT (5+8) 12.0 ± 3.7 
 

Total GAMT + SLC6A8 (7+8)  12.0 ± 4.9 
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