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Abstract

Effective coordination is key to many situations that affect the well-being of two or more humans. Social coordination can
be studied in coordination games between individuals located on networks of contacts. We study the behavior of humans
in the laboratory when they play the Stag Hunt game – a game that has a risky but socially efficient equilibrium and an
inefficient but safe equilibrium. We contrast behavior on a cliquish network to behavior on a random network. The cliquish
network is highly clustered and resembles more closely to actual social networks than the random network. In contrast to
simulations, we find that human players dynamics do not converge to the efficient outcome more often in the cliquish
network than in the random network. Subjects do not use pure myopic best-reply as an individual update rule. Numerical
simulations agree with laboratory results once we implement the actual individual updating rule that human subjects use in
our laboratory experiments.
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Introduction

Game theory [1] is a useful tool in the study of economic, social,

and biological situations for describing interactions between agents

having possibly different and often conflicting objectives. Paradig-

matic games such as the Prisoner’s Dilemma have been used in

order to represent the tension that appears in society when

individual objectives are in conflict with socially desirable

outcomes. Indeed, most of the vast research literature has focused

on conflicting situations in order to uncover the mechanisms that

could lead to cooperation instead of socially harmful outcomes.

However, there are important situations in social and economic

contexts that do not require players to use aggressive strategies but

simply to coordinate their actions on a common goal, since in

many cases the best course of action is to conform to the standard

behavior. For example, if one is used to drive on the right side of

the road and travels to a country where the norm is reversed, it

pays off to follow the local norm. Games that express this

extremely common kind of interactions are called coordination games.

One important consideration is the interaction structure of the

playing agents. It is frequently assumed, especially in theoretical

work but also in many laboratory experiments, that agents interact

globally with any other agent in the population. However,

everyday observation tells us that in animal and human societies,

individuals usually tend to interact more often with some specified

subset of partners; for instance, teenagers tend to adopt the

fashions of their close friends group; closely connected groups

usually follow the same religion, and so on. In short, social

interaction is mediated by networks, in which vertices identify

people, firms etc., and edges identify some kind of relation between

the concerned vertices such as friendship, collaboration, economic

exchange and so on. Thus, locality of interaction plays an

important role. The dynamical behavior of games on networks has

been investigated both theoretically and by numerical simulation

methods (see [2–6] for comprehensive recent reviews).

Several analytically rigorous results are available for coordina-

tion games in well-mixed populations [7,8], as well as populations

with a simple local interaction structure such as rings and grids

[9,10]. These results are very useful and will be summarized later

on; however, while game theory has normative value, its

prescriptions are not always reflected in the way people act when

confronted with these situations. This has been made manifest by a

host of results of experiments with people [11]. Coordination

games are no exception and also confront the theory with many

puzzles. For coordination games on small-worlds and regular

networks the laboratory experiments carried out in [12] and in

[13–15] are particularly relevant.

In this paper we describe and discuss a laboratory experiment

on coordination games using particular local network structures

that are characteristic of real social interactions and thus go

beyond the simple and well-known rings and grids usually

employed in such experiments. By doing so we wish to understand

how well the theoretical or simulated actions of automata align

with choices by humans. If theory and simulations line up well

with actual choices in the laboratory this re-inforces the use of

these relatively cheap tools to understanding behavior. In contrast,

if the laboratory reveals results that are not to be expected from

theory or simulations, there is a need to refine theory and

simulation methods.

The paper is organized as follows. In the next section we present

a brief introduction to the subject of coordination games and we

summarize the main known theoretical results in order to provide

the right context for the experimental part. The following sections

deal with the main theme of the present study where, after a

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e55033

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Serveur académique lausannois

https://core.ac.uk/display/77149985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


discussion of previous related work, we present the setup and the

results of our laboratory experiment related to the relevant

network structures. Finally, we present a detailed discussion of the

results in the context of related work and give our conclusions.

Coordination Games
As in most previous work, we shall restrict ourselves to two-

person, two-strategies, symmetric coordination games. General

two-person, two-strategies coordination games have the normal

form of Table 1. Here we shall assume that awb and

(a{d)ƒ(b{c); then (b,b) is the risk-dominant equilibrium,

while (a,a) is the Pareto-dominant one. This simply means that

players get a higher payoff by coordinating on (a,a) but they risk

less by using strategy b instead. There is also a third equilibrium in

mixed strategies but it is evolutionarily unstable. The Pareto-

efficient equilibrium (a,a) is socially preferable but mis-coordina-

tion may happen easily leading to inefficient outcomes. This type

of game is the so-called Stag-Hunt game [16]; it has been

extensively studied analytically using stochastic processes [7,9] and

by numerical simulation on several model network types [6,16,17].

In well-mixed populations, agents may use myopic best-reply [8] to

revise their strategy. This is a deterministic, bounded-rationality

adaptive learning rule in which, in each time step, an agent has the

opportunity of revising her current strategy with probability p. She

does so by considering the previous actions of the rest of the

population and switches to the action that would maximize her

payoff if the other players stick to their previous choices. In other

words, ŝsi is a myopic best-reply for player i if

Pi(ŝsi(t),s{i(t{1))wPi(si(t),s{i(t{1)), Vsi, where s{i(t{1)
is the strategy profile of all players other than i at time t{1. In

case of a tie, agent i keeps its current strategy.

For best reply both monomorphic populations of all a and all b
are asymptotically stable states [18]. However, if some noise is

introduced in best response dynamics to simulate strategy update

errors of various kinds then the stochastically stable state in the

long run will be the risk-dominant strategy b since the risk-

dominant strategy has the largest basin [7,8].

When the population has a network structure the strategy-

revision rule described above is slightly modified in such a way that

it works for pairs of agents that are neighbors [6,8,9]. For

populations structured as rings, the risk-dominant strategy b
should take over the population in the long run [8,9] if the agents

play according to myopic best-reply. If, instead, agents imitate the

strategy of their most successful neighbor and the neighborhood

size is large enough, then the payoff-dominant strategy becomes

the unique long-run equilibrium [4]. In two-dimensional grids,

both equilibria can be reached depending on the evolution rules

considered and, most remarkably, dimorphic states, i.e. population

states in which a and b players coexist in a stable manner, become

possible [4,10,16,19]. An important feature of these local models is

that the convergence is faster than in global interaction models [4].

No general theoretical results on coordination games are

available for arbitrary networks. However, the simulation results

show that the presence of a local interaction structure provided by

a network tends to increase the region of the game’s parameter

space in which the Pareto-dominant outcome prevails [6,16].

Moreover, dimorphic populations may be stable in complex

networks thanks to the existence of recognizable communities of

tightly linked agents [20].

The conclusion of this brief summary on theoretical results is

that either the all-a or all-b convention can be reached as a stable

state in well-mixed populations depending on details such as agent

matching, noise, and strategy revision rule. On rings, the stable

state in the long-run is most probably the risk-efficient equilibrium

all-b, although all-a can also arise if agents imitate the best

neighbor and neighborhoods are large. On grids and complex

networks in general both monomorphic and dimorphic popula-

tions can be stable, thus both strategies can coexist.

Previous Experimental Results on Coordination Games
with Local Interactions

We have seen that theory alone is not discriminating enough to

solve the equilibrium selection problem by analytical means and

thus empirical approaches are very valuable. Indeed, coordination

games have been the object of a number of experimental works in

the last two decades. Among the most well-known studies dealing

with randomly mixing populations and groups, we may cite e.g.

[21–25] and chapter seven of Camerer’s book [11], where an

informative summary is provided.

Given the focus of our work, we concentrate here on situations

in which local interaction structures and thus networks play a

fundamental role. To our knowledge, there have been few

experiments in which the population structure that has been

recreated in the laboratory only allows for local interactions.

Possibly among others, the works of My et al. [13]. of Keser et al.

[14], of Berninghaus et al. [15], and of Cassar [12] are relevant in

this context.

Keser at al. used a ring structure where each player has a

neighbor on either side and a well-mixed structure for comparison.

Their conclusions are that in the ring the preferred equilibrium is

the risk-dominant one, while the payoff-dominant equilibrium was

the more frequent result in the globally communicating popula-

tion. This is in qualitative agreement with the theoretical

predictions of Ellison [9] for the ring and of Kandori et al. [7]

for the mixing case.

My et al. performed a comparative experimental study of Stag

Hunt games with three different payoff matrices on mixing and

structured populations. The population with local structure was

composed by a circle of eight people where each player only

interacted with her immediate right and left neighbors. They find

that the first period modal choice of strategy, which is the payoff

dominant one, plays a major role in the final outcome. In the

global population case, the steady state generally lies in the same

basin of attraction as the initial state. For the ring structure, the

convergence to the risk-dominant outcome is more frequent than

in the well-mixed case, especially when the payoff matrix values

are such that the Pareto-superior basin shrinks. However, still

often times the system converges to the Pareto-dominant state,

which disagrees with the theoretical predictions of Ellison [9]

based on noisy best reply dynamics. By examining the detailed

history of play, the experimenters have found that, while in the

global population subjects on average play myopic best response,

in the ring with local structure a kind of imitation rule fits the data

better than best reply.

In the study of Berninghaus et al. the authors find that a ring of

eight or sixteen players leads to less coordination on the Pareto-

efficient strategy a in the average than in groups of three

Table 1. A general two-person, two-strategies symmetric
game.

a b

a a, a c, d

b d, c b, b

doi:10.1371/journal.pone.0055033.t001
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completely connected players. In addition, with the same

neighborhood size, grids of sixteen individuals are less effective

in evolving coordination on the efficient equilibrium.

Our study is close to three other studies. The first study is the

modeling and simulation work of Roca et al. [26], with some

unavoidable limitations related to the small size achievable in the

laboratory. Roca et al. studied cooperation and coordination on a

couple of actual social networks and identified a different behavior:

in one of the networks the Pareto-efficient strategy a cannot

propagate and the final equilibrium results in a dimorphic

population. They attributed the phenomenon, which is deemed

to be quite general, to the existence of topological traps, which are

local network features characterized by local bridges [27] and

scarcity of redundant paths. These structures make it difficult for

any flow to easily propagate past the trap.

The second is the study of Cassar [12], which is the closest one

from the standpoint of the present paper as it investigates network

structures that are more realistic than the ring and the two-

dimensional lattice, although the ring is also used in the

experiments for comparison. Basically, the main finding of Cassar

was that small-world networks were apparently the more

conducive to coordination on the Pareto-efficient outcome, and

she attributed this effect to the higher clustering of these networks

with respect to random structures. We shall discuss her settings

and results in more detail later.

The third article describes a recent experimental investigation

on coordination games on various kinds of small-size networks

[28]. The authors focus on equilibrium selection in these networks

by the experimental subjects as compared with theoretical

predictions. They found little support for the prediction that

network effects have an influence on the emergence of a given

equilibrium, as most groups coordinated on the efficient equilib-

rium irrespective of the network shape. However, they did find a

difference between inexperienced subjects and those that have

already played the game. After the first run, most groups

coordinated on the efficient equilibrium very quickly. We also

observed a strong initial bias towards playing strategy a at the

beginning of a run, a tendency that becomes stronger when

subjects have gained some better understanding of the game (see

section Results). Although the study is interesting, it is not really

comparable to ours since the network size is very small (six) and

this of course makes network effects more difficult to assess.

Moreover, in most runs the participants had full information on

the strategies and positions of all the other players, while in our

case knowledge was effectively restricted to the first neighbors.

Materials and Methods

Ethics Statement
The use of human subjects in economics laboratory experiments

has been approved by the ethics committee of the University of

Lausanne. The participants were fully informed of the nature of

the experiment and signed an informed consent to participate.

Their anonymity has been guaranteed at all stages of the

experiment.

Network Design
We designed two basic network topologies containing 20 nodes

each: a random network and a cliquish network. The random

network, shown in Fig. 1a, is a regular random graph of degree

five and is used as a baseline case in which no topological traps are

present. The average clustering coefficient of this graph is 0.15.

Two different matches of this topology, denoted by R1 and R2

respectively, were tested with random relabeling of nodes between

them. The idea behind a constant degree and relabeling of nodes

is to avoid confusing the effect of the topology itself with that of the

particular location of the node in it. This structure was used as a

baseline against which the following is to be compared with respect

to the game behavior.

The cliquish network is reproduced in Fig. 1b. Here each agent

has the same number of neighbors (five) but she is more strongly

connected to four of them, those belonging to the five-clique

structure. This network was designed to reproduce the kind of

topological traps of Roca et al. [26] introduced above, as the low

number of links between cliques could, in principle, play the role

of traps. This graph has an average clustering coefficient of 0.6,

Figure 1. Network topologies used in the experiments. a: regular random graph; b: cliquish network.
doi:10.1371/journal.pone.0055033.g001
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much higher than the random graph one (see above). Again, two

matches of this topology were tested, that we denote as C1 and C2.

In our opinion, the non-random network used in the

experiments is much closer to actual social networks in its local

structure than any previously used topology in the laboratory as

rings and grids. Indeed, we found that comparable structures were

independently used by Suri and Watts in a Web-based experi-

mental study of public goods games [29].

Specific Coordination Game
With reference to Table 1, we have chosen a particular game in

the coordination game space by fixing a~1, b~0, and c~{1.

Then, using numerical simulations, we have varied the last

parameter d in the interval ½0,1� in such a way as to choose the

value of d that approximately maximizes the difference in

equilibrium fractions of a strategists and b strategists between

the random network and the cliquish one. Figure 2 shows the

average results of 100 simulation runs on each of the networks,

considering myopic best-response as update rule and an initial

fraction of 0.7 a-strategists. This last value is rather typical, being

close to the initial frequencies of a that have been observed in

many laboratory experiments. Absolute values of the differences in

steady state frequencies of a between the random graph and the

cliquish network are reported on the y-axis as a function of d and

are systematically higher for d about 0:35ƒdƒ0:75. We fixed

d~0:5, a value that lies in the interior of the interval that

discriminates well between the cliquish and the random network.

From these values, in order to obtain positive integer payoff values,

we have performed an affine transformation of the matrix which

leaves the NE invariant and leads to the matrix used in the

experiment shown in Table 2.

For the particular coordination game represented by this

matrix, the mixed equilibrium is found to be (a~2=3, b~1=3)
and the corresponding basins are sketched in Fig. 3. It is worth

noting that the game used here is formally equivalent to the one

employed in Cassar’s experiments [12].

We performed many numerical simulations on the graph

structures shown in Fig. 1. We only present a summary of the

results to save space; detailed data are available on request. Using

pure best response as a strategy update rule on the cliquish

network (Fig. 1b) and starting with 50% a-strategists the dynamics

converges on all-b 90% of the time, after 1000 repetitions;

otherwise there is one clique of a players that remain stable and

the rest of the population plays b. With an initial fraction of a of

about 80%, we never observe convergence on a b monomorphic

population. Instead, in 96% of the runs the game dynamics

converged on dimorphic populations with cliques conquered

either by a or b strategists and only 4% went to the all-a
equilibrium. This last result shows that, in the absence of noise and

errors of some kind, weak links do indeed cause freezing of the

strategies in some parts of the network. In a series of runs we

perturbed deterministic best response by adding a 0:1 probability

of making errors. In these conditions we always found convergence

on the all-b fixed point with both initial proportions. This is

understandable as, with noise added, dimorphic configurations

that were stable with pure best response, are destabilized and

ultimately broken.

The baseline case of the regular random network of Fig. 1a is

indeed rather different. With pure best response and an initial

proportion of 50% a, the dynamics always converges to all b. With

80% a initially, convergence is on all a in 92% of the cases, with

some runs converging to dimorphic populations. As soon as noise

is added to pure best response, all the runs converged to the b
fixed point for both initial conditions.

Implementation
We conducted a total of four experimental sessions that counted

20 participants each using the z-Tree environment [30]. Partic-

ipants were recruited from a subject pool that includes students

from several faculties. In each session, subjects played the

coordination game in four different network topologies, and each

topology lasted for 30 periods. In other words, the location of

nodes in a network remained unchanged during 30 periods.

Table 3 summarizes the order in which the different network

topologies were implemented in each session.

Each period counted two stages. In the first stage, players had to

select one of the two strategies, that we called ‘‘square’’ and

‘‘circle’’ instead of a and b in order to avoid suggesting an implicit

ranking. Subjects were allowed to take as much time as they

Figure 2. x-axis: payoff value d; y-axis: absolute value of the
difference between fractions of a strategy at steady state in
random and cliquish networks. The values are averages over
100 simulation runs for each network structure (see text).
doi:10.1371/journal.pone.0055033.g002

Table 2. Specific coordination game used in the experiment.

a b

a 5, 5 1, 4

b 4, 1 3, 3

doi:10.1371/journal.pone.0055033.t002

Figure 3. Basins of attraction for a strategy (right basin) and for
b (left basin) when using the numerical payoffs of the
experimental coordination game. P�(a)~2=3 is the unstable
dimorphic equilibrium.
doi:10.1371/journal.pone.0055033.g003
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wanted to reach a decision. The average response time was 2

seconds so most subjects were very fast in selecting their strategy.

In the second stage, subjects observed on the screen their own

choice, the number of neighbors that selected each strategy and

their own gain of the period. In particular, they were never

informed about their neighbors’ payoffs, nor about their individual

strategy choices. This implies that payoff-based imitation rules are

ruled out, since subjects cannot identify the most successful

strategy.

Students read a detailed description of the experiment before

the started playing the game. After reading the instructions,

subjects had to respond to a set of control questions that insured

common understanding of the game and the computation of

payoffs. A translation of the instructions distributed to subjects is

provided as supplementary material to this paper. After one round

of 30 periods, subjects were informed that they would play the

same game for another 30 periods, but that their neighbors (and

their neighbors’ neighbors) would be different than the ones met in

the previous round. They were not informed about the particular

network topology of the society, but they were aware that they

(and everyone else) would always play the game with five

neighbors. Each session lasted for about 80 minutes and subjects

earned, on average, 36.6 swiss francs, or about 30 EUR (37 USD).

Results

Aggregate Behavior
Fig. 4 reports the proportion of players choosing the efficient

strategy a aggregated over all sessions and periods. Strategy a is

the preferred choice at any time period in both topologies. Players

on random networks coordinate a bit more often on the payoff-

dominant strategy a than players on the cliquish network (Fig. 4a).

Yet, a standard t-test that accounts for clustering across individuals

does not reject the hypothesis that the proportion of a-strategists is

the same in both topologies.

When dis-aggregating by period (Fig. 4b), we see that subjects

seem to understand payoff-dominance from the very first period,

where no more than 20% of the population minimizes risk by

choosing strategy b. From this high initial rate of a-choices,

convergence to almost full coordination on the payoff-dominant

strategy is quite rapid.

Estimating Individual Behavior
Our interest lies in understanding how subjects make their

choices in response to their neighbor’s choices. The key graph

compares the choice of strategy with the information received

about the strategy choice of neighbors in the previous period. Fig. 5

plots the proportion of individual a-choices against the proportion

of a-choices in the neighborhood in the previous period.

First of all, it is evident that most subjects are sensitive to the

information regarding their neighbors’ choices, since their own

decisions are correlated to it. Moreover, the effect of this

information is monotone: the higher the proportion of a-choices

in my neighborhood, the higher the probability that I also choose

a in the next period. Second, the effect seems to be non-linear or,

more precisely, S-shaped. This would suggest that the biggest

change in individual behavior occurs at intermediate values of the

neighborhood’s distribution of a-choices. We now discuss how to

use this evidence to infer whether individuals play myopic best-

reply or not.

Remember that a player’s strategy s in any given period is a

myopic best-reply if, assuming that the distribution of her

neighbors’ strategies remains unchanged, it gives her a higher

payoff than any other strategy.

Let �ppi,t{1(a) denote the fraction of neighbors of individual i that

chose s~a in the previous period. That is

�ppi,t{1(a)~DNi D{1
X
j[Ni

aj,t{1 with aj,t~
1 if sj,t~a

0 if sj,t~b

�
:

where Ni is the neighborhood of i and DNi D its cardinality (i.e. the

degree of node i). Given the payoffs used in this experiment, the

(myopic) expected gains to subject i of choosing each strategy in

period t are

E½Pi,tDsi,t~a�~5|�ppi,t{1(a)z1|½1{�ppi,t{1(a)�

E½Pi,tDsi,t~b�~4|�ppi,t{1(a)z3|½1{�ppi,t{1(a)�

Thus, choosing the payoff-dominant strategy a is a best response

if.

E½Pi,tDsi,t~a�{E½P i,tDsi,t~b�w0

u Di,t:3�ppi,t{1(a){2w0 ð1Þ

Borrowing the terminology used in Cassar [12], we will refer to

the amount Di,t as the ‘‘payoff advantage’’ of choosing strategy a.

Myopic best-reply means that an individual switches to playing a
as soon as more than 2 out of 3 of her neighbors play a, i.e. as soon

as the payoff advantage becomes positive.

If a subject uses myopic best-reply as update rule, we should

observe si,t~a whenever (1) holds, i.e. the payoff advantage of

choosing a is positive, and si,t~b otherwise. Hence, we can

estimate a model of the form

Table 3. Summary of experimental sessions.

Session Date Subjects Network 1 Network 2 Network 3 Network 4

1 03.10.2011 20 C1 C2 R1 R2

2 07.10.2011 20 R1 R2 C1 C2

3 07.10.2011 20 C1 R1 C2 R2

4 14.10.2011 20 R1 C1 R2 C2

doi:10.1371/journal.pone.0055033.t003
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Prob(si,t~aj�ppi,t{1(a))

~G(c0zc1Di,tzc2Ci,tzc3Di,tCi,tzx0i,tw)
ð2Þ

where Ci,t~1(Di,tw0), and xi,t includes other relevant control

variables. G(:) is a cumulative distribution function.

The parameter c1 measures the effect of the payoff advantage

on the probability of choosing a, when this advantage is negative.

If the subject follows myopic best-reply this parameter is zero

because a negative payoff advantage, regardless of its size, should

translate into a zero probability of choosing strategy a. The

parameter c2 measures the discrete jump in the probability of

playing a once more than two thirds of neighbors play a. A myopic

best-replier should go from choosing a with zero probability to

choosing it with certainty as soon as the payoff advantage becomes

Figure 4. Proportion of a-choices by network topology. Proportions are aggregated over all sessions and periods in A, and over session in
B.
doi:10.1371/journal.pone.0055033.g004

Figure 5. Proportion of a-choices as a function of the fraction of neighbors that chose a in the previous period. Dashed line at two
thirds: at the left of the dashed line a myopic best replier chooses a with probability zero; at the right of the dashed line a myopic best replier chooses
a with probability one.
doi:10.1371/journal.pone.0055033.g005
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positive. This means that c2 is 1 for a pure myopic best-replier.

Finally, c1zc3 measures the effect of the payoff advantage on the

probability of choosing a, when this advantage is positive. Again,

c1 and c3 are zero for a player who plays myopic best-reply.

The specification (2) amounts to fitting the S-shaped relation-

ship observed in the data of Fig. 5. To estimate the model, we

consider G(:) to be the uniform cdf and we include as control

variables the lagged individual choice (to control for lock-in due to

either inertia or unobserved heterogeneity), dummies for 5-period

intervals and for the order in which the particular topology was

played in the session. We have also explored estimating model (1)

adopting a logistic specification for G(:), but did not pursue this

approach since players ended up playing the a strategy with

probability 1 in one repetition of the experiment. The logistic

specification rules out such cases whereas the uniform specification

allows for it. Table 4 reports the sensitivity of the probability of

playing a to the excess payoff (Di,t), the change in that probability

as the fraction playing a exceeds 2 out of 3 (Ci,t), and the change in

the sensitivity as the fraction of players playing a exceeds two

thirds (Di,tCi,t). Inference is based on standard errors that account

for clustering within individuals.

The parameter c1 is estimated to be positive and significantly

different from zero in both network topologies. This means that

subjects are more likely to play a the less negative the payoff

advantage of playing a is. Second, there is some evidence of an

increase in the probability of choosing a when the payoff

advantage becomes positive, but the magnitude of the shift is

small (c2 close to zero). Subjects are no longer sensitive to the

Table 4. Estimation of a-choice.

Random Cliquish

Di,t 0.202* 0.271***

(0.085) (0.046)

Ci,t 0.065 0.088*

(0.047) (0.033)

Di,t Ci,t 20.193* 20.247***

(0.084) (0.046)

ai,t–1 0.572*** 0.500***

(0.097) (0.099)

periods6to10 20.023** 20.008

(0.007) (0.009)

periods11to15 20.022** 20.009

(0.008) (0.007)

periods16to20 20.023** 20.010

(0.008) (0.008)

periods21to25 20.014 20.007

(0.007) (0.006)

periods26to30 20.019 20.008

(0.010) (0.008)

order2 0.029 0.006

(0.018) (0.009)

order3 0.018 0.003

(0.011) (0.008)

order4 0.022 0.002

(0.014) (0.009)

Session dummies Yes Yes

N 4640 4640

Notes: standard errors clustered by individual in parentheses.
***pv0.01,
**pv0.05,
*pv0.1.
Table presents marginal effects from a linear probability model. Di,t is the payoff
advantage of choosing a given the distribution of neighbors’ choices in
previous period; Ci,t = 1(Di,t.0); a = 1 (si,j = a); Ci,t = 1(Di periods# are dummies
for 5-period intervals; Order# = 1 if network played in the #th order in a
session; cliquish = 1 if cliquish topology, = 0 if random. Session dummies were
included but turned out to be not significant.
doi:10.1371/journal.pone.0055033.t004

Table 5. Estimation of a-choice (interacted specification).

All repetitions First repetition

Delta 0.213 0.232

(0.086)* (0.087)**

{0.011}*** {0.006}***

[0.112]*

C 0.074 0.069

(0.048) (0.056)

{0.016}* {0.036}

[0.062]

Delta*C 20.197 20.220

(0.084)* (0.090)*

[0.105]*

Delta*cliquish 0.044 0.014

(0.090) (0.120)

[0.118]

C*cliquish 0.003 20.011

(0.057) (0.077)

[0.081]

Delta*C*cliquish 20.034 0.048

(0.092) (0.128)

[0.112]

cliquish 20.005 20.015

(0.057) (0.072)

[0.058]

l.alpha 0.540 0.482

(0.092)*** (0.064)***

[0.025]***

Constant 0.364 0.406

(0.087)*** (0.073)***

[0.023]***

N 9280 2320

r2 0.525 0.378

Order dummies yes no

Session dummies yes no

Period-interval dummies yes yes

Standard errors clustered by individual in parentheses. Restricted standard
errors in square brackets (assuming independent sessions, no correlation
between unconnected subjects in a session, no contemporaneous correlation
between connected subjects, no correlation at lagsw1 between connected
subjects). * pv:05, ** pv:01, and *** pv:001 (t-distribution with G{1 degrees
of freedom, with G the number of clusters. The restricted standard errors
consider the same distribution as the individual clustering.).
doi:10.1371/journal.pone.0055033.t005
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payoff advantage as soon as more than two out of three of their

neighbors have switched to playing a. These results reject the

hypothesis that all subjects in the laboratory adopted pure myopic

best reply as update rule.

Regarding the other variables, we see evidence of lock-in in that

past individual choices are correlated to current ones. This could

either be due to inertia or, as stressed by Berninghaus et al. [15], to

unobserved heterogeneity. Players are significantly less likely to

play a in rounds 6 to 20 (compared to rounds 1 to 5) in the random

network. This effect is not present in the cliquish network.

Moreover, the order in which the topologies were played do not

matter.

Results suggest that players are somewhat more sensitive to their

neighbor’s choices in cliquish networks than in random ones.

Moreover, clustering could also be present across individuals

within the same network. Table 5 reports an empirical specifica-

tion that allows testing whether the updating rule differs between

the cliquish and the random network. Column ‘‘All repetitions’’

reports results that use all repetitions in the experiment. Column

‘‘First repetition’’ reports results based on the first network

topology that subjects played. All estimates report the standard

errors clustered by individual in parentheses. The ‘‘first repetition’’

estimates report the standard error in brackets that allow for

clustering at the individual level and for correlation between

individual i’s choice in period t with the decisions of her neighbors

in t21. We do not report these standard errors in column 1 since

we have been able to figured out how to calculate these standard

errors only for the first repetition. The standard solution to

account for clustering within sessions would be to assume arbitrary

clustering within networks. While this assumption is realistic we do

not have a sufficient number of sessions to apply this solution.

Table 5 shows two main results. First, the parameters in the

update rule do not differ by topology. The terms Di,tcliquish,

Ci,t � cliquish, and Di,t � Ci,t � cliquish measure the difference in

update rule parameters between the cliquish and the random

network. None of these three parameters is significantly different

from zero, regardless of the standard errors we use to perform the

test. Second, column two indicates that our main result that

subjects do not use myopic best reply is valid, again regardless of

the type of standard error we use.

Figure 6 plots the predicted probabilities of choosing a against

the actual choices as a function of the previous period proportion

of a-choices in the neighborhood. It appears that model (2) does a

very good job in fitting the observed data, in particular for cliquish

networks.

Discussion

Influence of the Network Structure
The analysis of the previous section has shown that human

subjects do not use myopic best reply as an update rule. The

analysis also shows that interaction structure has no influence on

the aggregate fraction of individuals playing the efficient strategy

a. We also do not find that network structure is important for how

subjects adapt to their neighbor’s choices.

It is worthwhile to try to relate our observations with the

theoretical predictions of Roca et al. [26]. In the experimental

results we didn’t see clear signs of the fact that topological traps re-

created in the laboratory by having cliques of players weakly

connected to each other (see Fig. 1) do actually cause freezing of

inefficient b coordination zones or, equivalently, prevent a to

spread further past the trap. There can be several reasons for this.

First of all, while the strategy revision rule for the artificial agents

was noiseless and always the same for all players, human subjects

make errors and may try to experiment to gain more knowledge

about the neighbors’ behavior. In particular, even a stable

situation may become unstable if agents do not apply strict best

response at the next time step. In fact, the update rule in Roca et

al. [26] was payoff-based imitation dynamics, which cannot arise

in any form here since the players are not informed about the

payoffs of their neighbors. In addition, in the experiments strategy

a is always predominant in the first time step. Whatever the

psychological or strategic reasons for that, it makes it more difficult

for strategy b to gain a stronghold in a clique. Taken together,

these two reasons make stable dimorphic states more difficult to

attain than in theory or simulations based on simple and invariant

protocol revision rules.

Moreover, while we were able to study small human networks of

twenty people because of financial and equipment limitation,

reasons that are common in this kind of laboratory work,

simulations can be done on much larger systems in which the

Figure 6. Actual and predicted proportion of a-choices as a function of the fraction of neighbors that chose a in the previous
period.
doi:10.1371/journal.pone.0055033.g006
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number of possible dimorphic stable states is higher. Finally,

because of the size limitations of our networks, the degree

correlation between agents at distance two and three, to which

Roca et al. attribute an important role, are not meaningful. In

spite of this, dimorphic situations in which some cliques were

playing b have been observed in the experiment. We identified

such a state when at least one clique counted at least four a-

strategists during the last five periods of a round and, at the same

time, at least one clique counted at least four b-strategists during

the last five periods of a round. Indeed, two out of the eight

cliquish networks implemented ended up in a dimorphic stable

state. In four of the cliquish networks all cliques became a-stable,

while in the remaining two cliquish networks some cliques became

a-stable while the others remained unstable. In terms of cliques,

we find that 75 % of the cliques end up in a state where all players

choose the a strategy in the final round, 12.5 % of the cliques have

4 out of 5 players choosing a, and the remaining cliques 12.5 % of

the cliques were uniformly distributed between no-one choosing a
and 3 out of 5 choosing a.

Interestingly, our results differ strongly from our own simula-

tions that were based on the exact same network structures as in the

laboratory and best response. The simulations predicted that from

a 85% initial proportion of a-strategies, (i) most random networks

end up in an all-b equilibrium while some of them end up in

dimorphic states, and (ii) most cliquish networks end up in

dimorphic states while a few of them end up in an all-a
equilibrium. Figure 7 reports the difference in the proportion of

players choosing a in the random network compared to the

cliquish network assuming that the initial proportion of players

choosing a equals 85 % (this is the average fraction we observe in

the laboratory over the four treatments). The simulations that

assume myopic best reply as an update rule predict that the

random network will have about 31 % fewer players choosing a
than the cliquish network from round 11 onwards. This prediction

contrasts sharply with the main result from the laboratory

experiment that the proportion of players choosing a does not

differ by topology. Interestingly, we are able to reproduce this

laboratory result once we run simulations that implement the

Figure 7. Difference in proportion of players choosing a between random network and cliquish network. The figure reports
simulations that use myopic best reply, the actual observed difference in the laboratory, and simulations that use the observed updating rule in
Figure 5, averaged over topologies.
doi:10.1371/journal.pone.0055033.g007
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empirical updating rule that players use in the laboratory

experiment (we implement the updating rule reported in

Figure 5, averaged over topologies). This result highlights the

usefulness of laboratory experiments to update the common

behaviors implemented in the automata used in numerical

simulations. See also the work of Grujic’ et al. [31] that does

another step in this direction.

Comparison with Related Experimental Results
Here we compare our results with the conclusions of a recent

experimental study by Cassar [12]. Cassar’s work is the more

related to ours since it is the only one we could find in the

literature that explicitly tests for the influence of complex network

structure on coordination games, with the exception of [28] which

however deals with very small networks. She conducted a

laboratory study in which eighteen subjects were virtually disposed

as networks of three types: ring, small-world of the Watts-Strogatz

class [32], and a random network, all with four neighbors per

agent on average. The small-world networks in particular have a

high clustering coefficient and a short path length. Aside from that,

neither the ring nor the random or small-world networks featured

cliques and weak links as in our settings (Fig. 1b). Each run

consisted of eighty periods on average and three realizations of

each network class were used. Ten runs were monitored in total

for the three network types. The information available to the

subjects was similar to ours including the number of randomly

assigned neighbors and the fact that they were to stay the same

during a given run. Cassar studied both the Prisoner’s Dilemma as

well as the Stag Hunt games. Here we only comment about the

Stag Hunt case. The payoff matrix for the coordination game in

Cassar is equivalent to ours through an affine transformation.

Most of Cassar’s runs started with high initial rates of a strategies

and ended in the all a state, with the small-world networks being

apparently the more conducive to coordination on the Pareto-

efficient outcome. The differences, however, are small and their

statistical significance is doubtful (see also the discussion of Cassar’s

Prisoner Dilemma results in [29], where some doubt is cast on

their statistical interpretation).

Our results also show a consistent preference for a initially as

well as later in the runs. However, we do not find that network

structure plays a role. In the Prisoner’s Dilemma case, similar

conclusions have been reached in a recent very large-scale

experimental study on grids and scale-free networks by Gracia-

Lázaro et al. [33] in which the authors conclude that the level of

cooperation reached in both structures is the same. Likewise, Suri

and Watts conclude that the network topology had no statistically

significant effect on the average contribution in a public goods

game [29].

Cassar also analyzed the individual player decision making and

came to the conclusion that best reply and inertia are significant in

explaining behavior. While we also find evidence of inertia, we

reject that subjects in our experiment use best-reply as update rule.

Conclusions
We study the role of network topology for coordination

decisions in a Stag Hunt game. Numerical simulations of the

setting suggest that populations of 20 players will end up in a

dimorphic state more often in the cliquish network than in the

random network. Also, players choose the efficient strategy a more

often in the random network. While we find that human subjects

in a laboratory setting do converge more often to dimorphic states

in cliquish networks than in random networks, there is no

difference in terms of the proportion coordinating on the efficient

outcome between the two topologies. Moreover, subjects do not

use best-reply as update rule. Numerical simulations agree with

laboratory results once we implement the actual updating rule that

human subjects in our laboratory experiments use.

This evidence suggests that numerical simulations can be a

useful tool to understanding coordination in small scale societies.

However, they should incorporate more empirical knowledge on

their strategy update functions, which are currently too simplistic.

These methods can then be updated and improved, hopefully not

only for small scale but also for large scale societies – settings

where laboratory studies are hard and very costly to implement.
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5. Szabó G, Fáth G (2007) Evolutionary games on graphs. Physics Reports 446:

97–216.

6. Roca CP, Cuesta JA, Sánchez A (2009) Evolutionary game theory: temporal and

spatial effects beyond replicator dynamics. Physics of Life Reviews 6: 208–249.

7. KandoriM, Mailath G, Rob R (1993) Learning, mutation, and long-run

equilibria in games. Econometrica 61: 29–56.

8. Young HP (1998) Individual Strategy and Social Structure. Princeton University

Press, Princeton.

9. Ellison G (1993) Learning, local interaction, and coordination. Econometrica 61:
1047–1071.

10. Morris S (2000) Contagion. Review of Economic Studies 67: 1844–1849.

11. Camerer CF (2003) Behavioral Game Theory. Princeton, NJ: Princeton

University Press.

12. Cassar A (2007) Coordination and cooperation in local, random and small world

networks: Experimental evidence. Games and Economic Behavior 58: 209–230.

13. My KB, Willinger M, Ziegelmeyer A (1999) Global versus local interaction in

coordination games: an experimental investigation. Technical Report
9923,Working papers of BETA. ULP, Strasbourg.

14. Keser C, K-M-Erhart, Berninghaus S (1998) Coordination and local interaction:
experimental evidence. Economics Letters 59: 269–275.

15. Berninghaus SK, Ehrhart KM, Keser C (2002) Conventions and local

interaction structures: experimental evidence. Games and Economic Behavior
39: 177–205.

16. Skyrms B (2004) The Stag Hunt and the Evolution of Social Structure.

Cambridge University Press, Cambridge, UK.

17. Luthi L, Pestelacci E, Tomassini M (2008) Cooperation and community

structure in social networks. Physica A 387: 955–966.

18. Samuelson L (1997) Evolutionary Games and Equilibrium Selection. MIT Press,
Cambridge, MA.

19. Ellison G (2000) Basins of attraction, long-run stochastic stability, and and the

speed of step-bystep evolution. Rev Econ Stud 67: 17–45.

20. Tomassini M, Pestelacci E (2010) Evolution of coordination is social networks: A
numerical study. J Int Mod Phys C 21: 1277–1296.

21. Cooper R, DeJong DV, Forsythe R, Ross TW (1992) Communication in

coordination games. Quarterly Journal of Economics 107: 739–771.

22. Battalio R, Samuelson L, Huyck JV (2001) Optimization incentive and

coordination failure in laboratory stag hunt games. Econometrica 61: 989–1018.

23. Huyck JBV, Battalio RC, Beil RO (1990) Tacit coordination games, strategic
uncertainty, and coordination failure. Amer Econ Rev 80: 234–249.

24. Huyck JBV, Battalio RC, Beil RO (1993) Asset markets as an equilibrium

selection mechanism: Coordination failure, game form auctions, and tacit
communication. Games Econ Behav 5: 485–504.

25. Efferson C, Lalive R, Fehr E (2008) The coevolution of cultural groups and

ingroup favoritism. Science 321: 57–78.

26. Roca CP, Lozano S, Arenas A, Sánchez A (2010) Topological traps control flow

on real networks: the case of coordination failures. PloS One 5: e15210.

27. Easley D, Kleinberg J (2010) Networks, Crowds, and Markets. Cambridge
University Press, New York.

Coordination on Networks: Does Topology Matter?

PLOS ONE | www.plosone.org 10 February 2013 | Volume 8 | Issue 2 | e55033



28. Frey V, Corten R, Buskens V (2012) Equilibrium selection in network

coordination games. Review of Network Economics 11: 1–26.

29. Suri S, Watts DJ (2011) Cooperation and contagion in web-based, networked

public goods experiments. PloS One 6: e16836.
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