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ABSTRACT 

Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) is frequently 

employed for the analysis of minute isotope contents in the presence of a background noise. 

Distinguishing between the sample signal and the background noise at a given confidence 

level thus represents a routine challenge. For count numbers Nb and Ns collected during 

(equally long) background and sample measurements, respectively, the statistical 

significance of their net value, Ns − Nb, can be evaluated: how probable is it to obtain such 

value by subtracting two count number estimates coming from a common statistical 

distribution (i.e., when Ns and Nb represent measured estimates of the same mean activity)? 

If, based on the analysis of a model distribution of the net count numbers, we decide that 

this is probable, the signal is statistically indistinguishable from the background: the 

analysed isotope is not detected. If the corresponding (one-sided) probability is below some 

threshold, it is detected. The net signal value on the divide between the above alternatives, 

given in net counts or mass (content) units, is called critical level; optionally, it can be 

complemented by the computation of the detection limit; such values are often reported in 

the literature. Less discussed is the appropriateness of computational methods used to 

estimate these values. Troubles arise from attempts to apply Gaussian confidence intervals 

to small, discretely distributed count numbers contained in real LA-ICPMS acquisitions, 

and from a non-optimal estimation of the net count number standard deviation in some of 

the methods used for the computation of critical levels for paired measurements. Combined, 

these factors may result in uncontrolled, excessively high rates of false detections 

(background reported as detection of analyte in the sample). Here, we provide a review of 

methods, otherwise called decision rules, available for the critical level estimation and 

discuss how to evaluate the performances of these rules to enable an educated computation 

of LA-ICPMS detection capabilities, including the case of small count numbers. 
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INTRODUCTION 

The International Union of Pure and Applied Chemistry (IUPAC) defines the chemical 

measurement process as ‘a fully specified analytical method that has achieved a state of 

statistical control’.1 The latter part of this definition implies that routines to evaluate 

accuracy, precision, and detection capabilities of the method are available, and that the 

measurement results are reported accordingly. At this time, in the field of trace element 

LA-ICPMS, a ‘state of statistical control’ does not seem to be achieved. This review covers 

questions related to the estimation of LA-ICPMS detection capabilities. The appropriate 

solutions have been available for a while, most of them remaining beyond the ICPMS 

literature – in texts of mathematical statistics, radioactivity monitoring/protection, and 

biometrics. 

The problem of quantifying the detection capability of an analytical method has several 

aspects. Firstly, one may wish knowing if a sample signal is statistically distinguishable 

from the background noise. This question can be formalised somewhat differently, 

depending on the amount of data available to characterise the background noise and the 

way chosen to correct the gross signal for the background value in order to estimate the net 

activity (net count number, or count number per second/intensity, cps). In the general case, 

the hypothesis is discussed that the measured sample signal value and the measured 

background value(s), expressed in count number or intensity units, belong to statistical 

distributions having the same mean. As a special case of this hypothesis, when the 

background is well characterised, it is often discussed if the measured sample signal value 

belongs to the distribution of the background values. A net value, or level, characterising 

the difference between the sample signal and the background values is usually provided, 

above which the one-sided probability of accepting this hypothesis, when it is true, is below 

some threshold set by the analyst. Mathematical statistics and metrology offer a number of 

methods (decision rules, tests), to quantify this level; above it, the sample signal is 

considered detected. In modern terminology, this level is usually called critical level, or 

critical value.1–3 As alternatives, the terms decision level, decision threshold and minimum 
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significant measured activity are used, e.g., in studies on the detection of Poisson-

distributed signals in the field of radioactivity monitoring.4–6 Secondly, for a sample 

showing some specified, precisely known net activity, or containing a precisely known 

amount of analyte, calculations can be made to obtain the probability that the signal will be 

detected using a decision rule above. This probability characterises the power of the 

decision rule selected, which is, in turn, closely related to the concept of detection limit in 

its actual understanding.1–3 It follows that critical level and detection limit values are 

always associated with some probability of false detection and false non-detection, 

respectively. For some decision rules, declared and actually observed values of this 

probability are poorly matched in the range of small count numbers; studying the difference 

between them is an important part in the evaluation of a decision rule.5–8 Finally, in 

addition to the computational aspects above, discussing detection capabilities has a 

potential for terminological controversy. A record of such controversy is contained in the 

annals of chemical metrology.1–3,9 

Still, quantifying detection capabilities is worth discussing. Otherwise, (i) too frequently 

reporting the background noise as the detected presence of analyte in a sample becomes 

possible; (ii) performances of analytical instruments and methods cannot be adequately 

compared; it becomes difficult to numerically describe the improvement of an analytical 

technique operating with trace analyte contents. 

In this review, we mainly focus on the definition and computation of the critical level: this 

parameter is sufficient for taking the decision ‘detected’ or ‘not detected’ and for the 

corresponding screening of the data collected.1–6 Such screening is part of all trace element 

LA-ICPMS data reduction programmes and is applied to most trace element LA-ICPMS 

analyses obtained in practice. In particular, we consider decision rules suitable for the 

computation of critical levels for weak LA-ICPMS backgrounds containing very few 

counts: this practically important topic is not covered in the available ICPMS literature, 

albeit receiving much attention in the literature of biometrics and radioactivity monitoring. 

In compliance with the past and most of the recent LA-ICPMS practices, the concept of 

about:reader?url=http%3A%2F%2Fpubs.rsc.org%2Fen%2Fcontent%2Farticlehtml%2F2016%2Fja%2Fc5ja00378d#cit1
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detection limit is given less attention. The latter rather represents a tool to characterise the 

inherent performance of a method (instrument) than to decide if the analyte is detected or 

not in an individual sample signal; besides, it is derived from and defined relative to the 

critical level.1–4,6 Still, we provide an introduction to the field of detection limits also, to 

help the reader to avoid mixing the different detection concepts and terms. The current 

IUPAC recommendations and terminology1,2 are followed when possible; in the domain of 

small counts, the IUPAC recommendations are insufficient and substituted by an 

introduction to the original literature on tests for the equality of two Poisson means. 

This review includes two parts. Part 1 covers general questions of chemical metrology and 

mathematical statistics, including the formal definitions of critical level and detection limit 

and associated concepts from the theory of hypothesis testing, as well as the statistical 

interpretation of count number distributions and calculation of standard deviations. 

Whenever possible, the concepts are introduced in a distribution-independent form, but 

illustrated by examples from the Poisson distribution, given the importance of the latter for 

the description of ICPMS data. This part can be omitted by an experienced reader, or by a 

reader that looks for a ready solution for the practical calculation of critical levels. Part 2 

covers questions related to the construction, performance evaluation, comparison and 

application of selected decision rules and their different realisations, including one or two 

recommendable, well performing and computation-friendly solutions suitable for the 

practical treatment of LA-ICPMS data. 

It is worth noting that, although selected to fit with the analytical protocol and data statistics 

typical of trace element LA-ICPMS, decision rules described in this review can be used for 

the quantification of detection capabilities in other areas of analytical chemistry where 

weak Poisson-distributed noise is encountered, e.g., in secondary ion mass spectrometry. 

Some relevant details are contained in Part 2. 
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PART 1. MATHEMATICAL TOOLS OF DETECTION 

1.1. CRITICAL LEVEL: BASIC NOTIONS 

Traditionally, two concepts related to the definition and calculation of critical levels in 

metrology are distinguished – well-known background and paired measurements.1–4,6 The 

basic difference between them consists in the precision, with which the net activity is 

defined. There are, however, practically important situations when these concepts converge, 

which leads to the construction of identically formulated decision rules. Below, both of 

these concepts are introduced from the standpoint of the theory of hypothesis testing, 

followed by a more detailed analysis of the ‘paired’ concept in Part 2. 

Well-known background. Let us consider a sample signal measurement that yields Ns 

counts. Besides, some number (k) of replicate background measurements, each of them 

yielding Nbi counts and performed during an acquisition time and at operating conditions 

identical to the sample measurement, are available to estimate the mean value of the 

background activity, which is further used to obtain the net sample activity value. If k is 

very large, such setup is called well-known background, or well-known blank. The 

requirement for k to be large can be alleviated, and the above setup-extended to any number 

of background replicates (k ≥ 1), ultimately allowing to consider the well-known 

background as a generalisation of the concept of paired measurements. Although at smaller 

k the background value becomes less precise, the core idea of the background being well 

known suffers little alteration: to compute the net activity in the most precise way possible, 

all available background replicates are averaged.  

In the context of a well-known background, one may wish to test the hypothesis that the 

signal and the background values come from the same statistical distribution, representing 

measured estimates of the same ‘true’ mean count number value equal to the mathematical 

expectation for this distribution. In statistics, this hypothesis is usually called null 

hypothesis (H0). The competing hypothesis states that the signal and the background values 
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come from two different distributions, with the mean signal value being larger than the 

mean background value. It is called alternative hypothesis (H1). The null hypothesis above 

can be given in an equivalent formulation stating that the mean net signal count number is 

equal to zero, which immediately means that the mean signal count number is equal to the 

mean background count number. It is this formulation that is used (and is most convenient 

to use) in mathematical realisations of most statistical tests, including metrological 

applications. 

If the null hypothesis holds true at a specified level of confidence, then the signal is 

considered as not detected. If it is false (meaning that the alternative hypothesis is true), 

then it is considered as detected. Let us discuss how to test if the null hypothesis, as 

formulated in the previous paragraph, is true. 

From k individual background count number acquisitions, each of them yielding Nbi counts, 

a mean count number value b is computed: 

b = (Nb1 + … + Nbk)/k (1) 

This mean value can be obtained with a high precision that improves with increasing k. At 

large k (typically, >15–20 in practical calculations), it can be considered precisely, or 

‘well’, known. 

Besides, a net count number value is defined for each of the individual background 

acquisitions: 

Nb neti = Nbi − b (2) 

and also for the sample signal: 

Ns net = Ns − b (3) 

Under the null hypothesis, all net values for the individual background acquisitions and the 

net sample value (eqn (2) and (3), respectively) form a common distribution with a mean 



[8] 
 

value of zero. The net sample value is then compared to the common distribution above, to 

find out if it is probable for the net sample value to be part of this distribution, i.e. to test 

the null hypothesis for contradiction. 

The standard deviation of the common distribution constructed under the null hypothesis 

[denoted as s(Ns − b)] is not explicitly specified and needs to be estimated. By error 

propagation, we obtain:3,6 

 

(4) 

Under the null hypothesis, there is no difference between sample signal values and 

background values. Thus, N in the above equation denotes the number of counts in any 

measurement, including both background and sample measurements. Pooling these 

measurements to estimate s(N), and computing the corresponding confidence intervals can 

be done in several ways, depending on the number of measurements available, type of their 

statistical distribution and the way used to estimate the standard deviation. For example, in 

the widely known two-sample Student's t-test, variances (squares of standard deviation) for 

the signal and the background are estimated from the sums of squared residuals, after which 

s(N) is pooled as their weighted mean.10,11 This way to estimate standard deviations is 

relatively imprecise; using t-values can be necessary to account for the increased 

uncertainty of the pooled standard deviation in the absence of a large number of 

replicates.10,11 In the case of ordinary Poisson statistics often applicable for the description 

of ICPMS data, the corresponding standard deviation can be pooled as a square root of the 

mean count number computed from all available measurements, including both background 

measurements and sample measurement:7,8 

 

(5) 

http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2016/JA/c5ja00378d/c5ja00378d-t1_hi-res.gif
http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2016/JA/c5ja00378d/c5ja00378d-t2_hi-res.gif


[9] 
 

The value under the radical of eqn (5) represents the most probable estimate for the mean, 

or mathematical expectation, of the count number distribution under the null hypothesis; it 

is also called constrained maximum likelihood estimate, CMLE.7,8 This estimate is very 

precise [                             see the section ‘Statistical distributions, standard deviations, and 

ICPMS data’]. 

Eqn (4) and (5) are applicable at any positive integer k. At k = 1, for ordinary Poisson 

distributed data, they yield the famous relationship 

 

(6) 

which constitutes the basis of some of the earliest decision rules for Poisson distributed 

data known in mathematical statistics and metrology;4 it will be discussed in detail in Part 2 

of this text.  

At large k, eqn (4) and (5) can be simplified. In the expression under the radical of the 

right-hand part of eqn (5), the background values have a much larger weight than the signal 

value, provided k is indeed large. Consequently, it is a common practice to pool the 

standard deviation of the common count number distribution arising under the null 

hypothesis from the background values only, e.g.: 

 

(7) 

and simultaneously simplify the formula for the net activity standard deviation: 

 

(8) 

The null hypothesis is then restated as follows: the net signal count number value belongs 

to the statistical distribution of the net background count numbers, with the mean and 
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standard deviation of this distribution being estimated from the background acquisitions 

only (Fig. 1a). 

If the net sample value falls in the range where encountering a value from the common 

distribution of the net activities constructed under the null hypothesis is probable, we 

conclude that the null hypothesis holds true and the sample activity is not detected. At large 

k, this condition is usually reformulated according to the modification of the null 

hypothesis from the previous paragraph: if the net sample value falls in the range where 

encountering a net background value is probable, the null hypothesis holds true and the 

sample activity is not detected, as there are too many chances to obtain such activity as part 

of the net background activity distribution (Fig. 1a). If the net sample value falls in the 

range of higher values (critical range, critical region) where the probability to encounter a 

net value from the common distribution constructed under the null hypothesis is below 

some (reasonably small) threshold set by the analyst, then the null hypothesis is rejected as 

contradictory and the sample activity is detected: obtaining the corresponding net sample 

value from the common distribution is unlikely. 

The decision ‘detected’ vs. ‘not detected’ is thus probabilistic rather than absolute: it is 

made at a confidence level and allows for the presence of a fraction of false detections, 

when the net values from the common distribution constructed under the null hypothesis 

fall, albeit rarely, in the critical region (Fig. 1a). Such false detections are called false 

positive errors, or just false positives; syn.: α-type errors, type I errors. The rate of false 

positives is called size, or significance level, of decision rule. The actual (observed, 

simulated) and the declared (nominal) sizes are distinguished; they do not always coincide. 

Based on the probabilistic approach above and assuming that the actual distribution of the 

net values of Poisson distributed count numbers is well approximated by the Gauss 

distribution, the critical level for detection decision can be defined as follows (Fig. 1a):1–6 
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(9) 

where quantile zα characterises the confidence level, at which the detection decision is 

made, and is defined through the cumulative function of the Gauss distribution: 

 

(10) 

where α denotes the probability of false positive error (declared rate of false detections, 

declared size). Some frequently used values of zα and the corresponding 

probabilities/confidence intervals are shown in Fig. 1a and b. At Ns net > Lc, the signal is 

considered as detected, at Ns net ≤ Lc, – as not detected.  

Paired measurements. Replicating background acquisitions is not always practical or 

possible. Acquiring a large number of such acquisitions takes time and cannot be done 

anew before the execution of each particular sample analysis. Thus, the same ‘pack’ of 

background acquisitions has to be used to compute the critical value for several consecutive 

analyses. Contamination/drift issues arise. For example, fast ablation of standards or 

samples with moderately high trace element contents, such as the NIST 612 and especially 

610 glasses, leaves elevated gas blanks slowly decreasing during at least several minutes, 

provided a sensitive spectrometer is used (perhaps, combined with a non-optimal design of 

the ablation cell). Thus, background acquisitions acquired prior to sample analyses do not 

always represent a good proxy to the blank level at the time of analysis of a given sample. 

Estimating the background prior to each particular analysis becomes advisable; in LA-

ICPMS, this is done by measuring the gas blank for some time before each sample ablation. 

The corresponding metrological concept is called paired measurements to emphasize that 

each sample acquisition receives its own background estimate that is supposed to better 

characterise the actual background activity during the sample analysis.  

Mathematical statistics, biometrics and metrology offer a plethora of different, partly 

related decision rules for paired measurements. To simplify their study, distinguishing 

http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2016/JA/c5ja00378d/c5ja00378d-t7_hi-res.gif
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replicate and true paired measurements is helpful. Replicate paired measurements represent 

an educational concept rarely used (but readily misused) in practice; learning it helps better 

understanding relationships between the different detection rules. In replicate paired 

measurements, the background (mean value and standard deviation) is well-known, defined 

by replication, but the net activity is calculated by subtracting a background activity 

estimate obtained from a single measurement (and not its ‘well-known’ value) from an 

other background activity estimate, or signal estimate, obtained during another single 

measurement. In true paired measurements, both background activity (its mean and 

standard deviation) and net activity values are estimated from one analysis made of two 

parts: background measurement and signal measurement. True paired measurements are not 

only an educational but also a practical concept with many applications in biometrics, 

radioactivity monitoring, chemical metrology, and in LA-ICPMS. 

Let us consider a paired analysis containing a measurement of background activity (Nb) 

followed by the ablation of a sample to record its gross signal (Ns); for simplicity, we 

assume the same counting times for both background and signal. The net sample activity is 

calculated as follows: 

Ns net = Ns − Nb (11) 

Besides, some number (k ≥ 1) of paired background acquisitions are collected, of which the 

structure is shown in Fig. 1b. For each of them, a net value can be computed: 

Nb neti = Nbi2 − Nbi1 (12) 

The null hypothesis is formulated as usual: both signal and background activity values 

come from a common distribution (i.e., they represent measured estimates of the same 

mean activity). An equivalent formulation of it states that the net signal and net background 

activity values come from a common distribution with a mean value of zero. The 

alternative hypothesis states that the signal and the background values come from two 

different distributions, the mean signal value being larger than the mean background value. 
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Under the null hypothesis, the signal is not detected. If this hypothesis is rejected at a pre-

set confidence level, the alternative hypothesis is accepted; the signal is detected. To 

construct the common statistical distribution above and to estimate its standard deviation, 

both signal and background values need to be pooled: they are indistinguishable under the 

null hypothesis (cf.eqn (4)–(6)). For the simplest case of ordinary Poisson distributed data, 

this can be done as follows: 

 

(13) 

Here, s(Ns − Nb) denotes the standard deviation of the common distribution of net count 

number under the null hypothesis, and N – the number of counts in any measurement, 

including both background measurements and sample measurement. Eqn (13) is applicable 

at any non-negative integer k. At k = 0 (true paired measurements: only two values, Nb and 

Ns, are available), it degenerates as follows: 

 

(14) 

Eqn (14) is identical to eqn (6) from the previous section; this is one important case when 

the concepts of well-known background and paired measurements converge. The second 

case of convergence implies that the background is measured longer than the sample; it is 

considered in detail in Part 2. 

At large k, the weight of the net sample value in the common distribution is insignificant, 

and the null hypothesis is usually restated as follows: the net signal value belongs to the 

statistical distribution of the net background values, with the standard deviation of this 

distribution being estimated as follows: 
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(15) 

For ordinary Poisson distributed count numbers, we obtain: 

 

(16) 

The net background values form a distribution with larger ‘wings’ (larger standard 

deviation) compared to the net background activity, as it is defined in the previous section 

(cf.eqn (8) and (15), (16)). 

We compare the net sample activity value to the common distribution constructed under the 

null hypothesis (of which the standard deviation is pooled using all available 

measurements; eqn (13)). When the null hypothesis is modified for large k, this condition is 

reformulated: we compare the net sample activity obtained during a paired measurement to 

a model distribution of the net background activities with a standard deviation defined by 

eqn (15), (16) (Fig. 1b). If the net sample activity value is large enough to fall in the range 

where the probability to encounter a net value from the common distribution is below some 

threshold, the null hypothesis is rejected and the signal – detected (Fig. 1b). 

Assuming the Gaussian approximation of genuinely Poisson data, the critical level can be 

given as follows (Fig. 1b): 

 

(17) 

At large k, based on eqn (15), we obtain: 

 

(18) 
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Comparing eqn (9) and (18) shows that, at large k, the detection capability deteriorates by a 

factor of √2, if replicate paired measurements are employed (for background and signal of 

equal duration). This explains why the concept of replicate paired measurements and the 

‘imprecise’ net activity definition used in this concept have little use in practice: the amount 

of work to characterise the background is similar to the realisation of a ‘well-known’ 

background, whereas the detection capability is worse. 

It must be noted that eqn (13), (14), frequently used in scientific disciplines beyond 

chemical metrology,4,6–8 are somewhat at odds with the current practice of analytical 

chemistry. In fact, rule (18), otherwise known as ‘√2s(Nb)’ or ‘√2Nb’ rule, is often 

employed in analytical chemistry. It appears for the first time in a canonical article by H. 

Kaiser,12 and can be found in a number of later texts, including an influential review by 

L. A. Currie3 and the IUPAC recommendations currently in vigour.1,2 In the practice of LA-

ICPMS, this rule has been used for twenty years now.13,14 It, and its generalised forms, are 

included in data reduction packages and are traceable in most trace element LA-ICPMS 

data available at this time. The explanation is simple: it is unconsciously employed for the 

treatment of true paired measurements without background replication [using time-resolved 

background count number acquisitions or Poissonian statistic to estimate s(Nb) from a 

single background measurement]. Then, eqn (15), (16) return a negatively biased standard 

deviation estimate of the net activity, and eqn (18) – the correspondingly biased estimate of 

the critical level. An unbiased (Poissonian) estimate is given by eqn (13), (14) and (17). At 

large count numbers, the difference between the above estimates is insignificant and has no 

harmful consequences in practice. At small count numbers, the situation is detailed in Part 2 

of this text, along with a systematic discussion of decision rules4–8,15–19 indeed capable of 

handling true paired measurements. 

1.2. DETECTION LIMIT: BASIC NOTIONS 

Critical values are estimated relative to an arbitrarily selected rate of false positives errors 

that appears acceptable to the analyst, who thus consciously allows some fraction of the 
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background acquisitions to be reported as detection of the sample signal. A complementary 

problem may also be considered: how often will the application of a given decision rule 

(e.g., eqn (9) or (17), (18)) result in the detection of analyte in a sample with some mean, 

precisely known, activity above the mean background value? The result is clearly below 

100%. For example, for a mean net sample activity equal to Lc, and for a symmetrical 

distribution of the net activity estimates, only 50% of all replicate sample measurements 

fall in the critical range (Fig. 2a and b). The power of the decision rule equals 0.50 in this 

case. Confidently detecting the presence of analyte in a sample, provided its mean activity 

equals Lc, is clearly impossible. In the past, there was an animated discussion in the 

metrological literature regarding how to describe this situation in appropriate terms. It was 

concluded (and later reflected in the IUPAC recommendations)1–3 that, to minimise 

controversy, detection limit must be introduced as a separate concept of chemical 

metrology not synonymous with critical value, although related to it. It is defined as a 

mean, precisely known sample activity that ensures some arbitrarily set power (probability, 

e.g., 95%) of analyte detection in the sample using a given decision rule. Still, a fraction of 

replicate sample measurements will fall below the critical level (Fig. 2a and b). Such false 

non-detections are called false negative errors, or just false negatives; syn.: β-type errors, 

type II errors. 

Distinguishing when each of the complementary concepts, critical level and detection limit, 

applies is quite important. If we perform a sample measurement, we compare the net 

sample signal to the critical level. If the net sample signal is above the critical level, it is 

detected. Otherwise, it can be labelled as not detected (n.d.) or below detection (b.d.). 

Detection limit does not even need to be calculated to take the detection decision. Its area 

of application is different. It is most frequently used to characterise the performance of an 

instrument or method against requirements set by a particular analytical task or customer: a 

specific power of detection, usually set to be high (e.g., 95%), is ensured for a sample, of 

which the mean, precisely known signal is equal to the detection limit. If detection of such 

signal with a specified probability, and detection of stronger signals with even larger 

probability, meets the customer's requirement, the method is approved.1,2 Besides, detection 
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limits are used to compare two analytical methods,1,2 although critical levels can also be 

applied for this purpose. 

Applications of the detection limit concept can be illustrated by the following example. Let 

us consider a set of samples. We need to identify those of these samples that contain more 

than x activity units (x being a threshold for the maximum admissible level of 

contamination, or of radiation exposure, or a minimum commercially interesting analyte 

content, etc.). If, for the analyte in question, our analytical method ensures a detection limit 

equal to x, then the probability to miss a potentially important sample because it is labelled 

‘below detection’ – and its activity is likely to come from the distribution of the 

background fluctuations – corresponds to the rate of false negative errors associated with 

the detection limit formulation. This probability is usually set to be small (e.g., 5%). 

Interestingly, if the presence of analyte is detected, then we still cannot tell for sure if its 

‘true’, precisely known activity or abundance in the sample is above x; the only result 

ensured at this stage is that this sample will not be lost for further study aimed to quantify x 

more precisely (e.g., by replication). 

Undoubtedly, there are applications that require samples to be checked against a threshold, 

as in the examples above. Environmental pollution control and quality monitoring in 

industry are among them. In LA-ICPMS, such applications are still rare, as are studies 

illustrating a practical need for the quantification of detection limits. For years, detection 

limits in the field of LA-ICPMS were defined, calculated and applied, as they would be 

critical levels, to decide if an individual sample signal is detected.13 This is an odd 

testament to the limited practical use of the detection limit concept in the range of 

established LA-ICPMS applications. Besides, estimating the critical level is a pre-requisite 

for computing the detection limit.1–3 In the following sections of this review, we mainly 

focus on the different rules of the critical level estimation; computing the corresponding 

detection limits for the most basic decision rules is discussed in Fig. 2, further explanations 

can be found in the literature.1–4,6,9 
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A note of caution is warranted. In no case can detection limit be compared to the outcome 

of a single sample measurement to infer if the sample signal is detected: this is a misuse of 

the detection limit concept that is inconsistent with the definition of detection limit. It may 

only be added in the case of non-detection that the precise value of analyte activity in the 

sample is below the detection limit at a given confidence level, if the measured estimate of 

this value is below the critical level (Fig. 2a and b). 

An other note of caution addresses the common practice of reporting measurement results 

below the critical level as ‘below detection’ without providing a measured value of the net 

sample activity (even if it happened to be below zero). In this case, the precise net sample 

activity value is not necessarily zero. It lies between zero and the detection limit at a 

confidence level associated with the latter: obtaining an activity estimate below the critical 

level for a precise sample activity value equal or superior to the detection limit is less than 

β% likely. The corresponding estimate can be reported;1,2,9 especially, it must always be 

reported if averaging several replicate net sample activity values is planned; otherwise, the 

resulting mean is positively biased1,2,9 (Fig. 3). Reporting it can be done, for example, as 

follows: xb.d., where x is an activity (content) estimate that lies below the critical level. 

Alternatively, colour marking can be used, especially for the LA-ICPMS data reduction 

software output. 
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1.3. STATISTICAL DISTRIBUTIONS, STANDARD DEVIATIONS, AND ICPMS 

DATA 

The critical level, as well as the detection limit, is defined at a confidence level. Hence, 

knowing the probability function(s) describing the count number distribution in LA-ICPMS 

is essential for the construction and performance evaluation of decision (detection) rules. 

As many of such rules rely on the link between the net activity standard deviation and the 

associated confidence interval, estimating the standard deviation for the relevant probability 

distributions should also be considered. The genetic and possibly the most general approach 

to ICPMS data from the probabilistic standpoint is to interpret them as a doubly stochastic 

Poisson distribution.20 In applications, the Poisson distribution usually arises as a special 

form of the binomial distribution, provided a large number of ‘candidates’ are exposed to a 

low probability to realise a particular event; the number of ‘realisations’ is then Poisson 

distributed.10,11,20–22 For example, a number of ions are formed in the ICP per observation 

interval, with a low probability for each of them to be detected because of low ion 

extraction and transmission efficiency of the ICP mass spectrometer. The numbers of ions 

actually counted per observation are then Poisson distributed.20 For acquisitions containing 

very few counts, sources of emission other than the ICP, including the skimmer cone, 

extraction lens, and the first dynode(s) of the secondary electron multiplier, can be added. 

In all cases, the Poisson argument appears to apply: e.g., a large number of ions and 

electrons are amenable to thermionic and field emission from the surface of the first 

dynode(s) of a secondary electron multiplier, but the probability for a particular ion 

(electron) to be emitted is low, leading to the appearance of a Poisson distributed detector 

noise. If the supply of ions to the spectrometer and the ion transmission efficiency is stable, 

the resulting distribution can be called ordinary Poisson distribution. If ions are extracted 

from a fluctuating (flickering) source doubly stochastic Poisson distribution applies.20 For 

the doubly stochastic Poisson distribution, at a constant ion transmission, the count number 

standard deviation can be given as follows:20,21 
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(19) 

where denotes the mean count number, p – ion transmission efficiency and M – number 

of ions exposed to the spectrometer interface per time interval. The term p2s2(M) is called 

excess variance. 

The doubly stochastic model is quite useful, as far as the fundamental origin of ICPMS 

uncertainties is discussed.20 However, it is less useful for the practical estimation of the 

standard deviation of a particular measurement, as parameters p and M are rarely known. 

Fortunately, LA-ICPMS background acquisitions can often be treated using the much 

simpler apparatus of the ordinary Poisson distribution. For an ordinary Poisson distribution, 

the term p2s2(M) in eqn (19) is negligible (e.g., when both ion source and ion transmission 

efficiency fluctuate little compared to the Poisson scattering related to the ‘binomial 

selection’ of ions20,21). Omitting this term allows computing the standard deviation as the 

square root of the mean number of counts, the latter often being estimated from a single 

measurement: 

 

(20) 

Such estimates are very precise for all but very small mean count numbers: 

 

(21) 

In ICPMS, the ordinary Poisson distribution appears in weak backgrounds and signals: 

according to experimental data and modelling, the term in eqn (19) decreases linearly 

with signal strength, while the term p2s2(M) decreases in quadrature, vanishing at small 

counts.20,23–27 The latter case is practically important, as weak backgrounds ranging from 

zero to a few counts are typical of many isotopes (e.g., lanthanides, Th, U) analysed during 
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routine multi-elemental LA-ICPMS work. For an ordinary Poisson distribution, it is easy to 

give an analytical expression for the probability function:10,11,21,22 

p(N) = Ne− /N! (22) 

where N is the outcome of a particular acquisition in a series of replicates with a mean of 

counts. 

The ordinary Poisson distribution has two important properties:10,11,21 (i) in a replicate 

series of acquisitions, the individual outcomes are independent (uncorrelated, show no 

covariance); (ii) it is possible to reduce the duration of acquisitions so that each of them 

will contain 0 or 1, but no more than 1 count (simultaneous counts are impossible). Using 

these properties, it can be instructive to derive eqn (20) from the general, distribution-

independent definition of standard deviation. At a level of rigour required for the present 

text, this could be done as follows. We assume that each of the acquisitions above 

represents a sweep in a series of sweeps constituting time resolved ICPMS background 

noise. According to the general definition of standard deviation, we have: 

 

(23) 

where E(Nsw
2) and E(Nsw) are mathematical expectations defined as follows: 

E(Nsw
2) = 12 × p(1) + 22 × p(2) + …; E(Nsw) = 1 × p(1) + 2 × p(2) +… (24) 

In other words, for discrete data, mathematical expectation is defined as a sum of products 

of the value of each outcome, e.g., 1, 2, …, and probability p to obtain such outcome. For a 

particular statistical sample (measurement), the definition of mathematical expectation 

evolves into the definition of arithmetic mean. For a measurement made of k sweeps, we 

have: 
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(25) 

where Nsw i denotes the number of counts in an individual sweep from this measurement, 

sw – the mean count number per sweep, and s(Nsw) – standard deviation for the individual 

sweep count numbers. Once again, eqn (23) and (25) are valid for any statistical 

distribution. 

In the absence of correlation, the total count number variance can be represented as a sum 

of the individual sweep variances, without any specific requirements regarding the sweep 

duration; reducing the latter and simultaneously increasing the number of sweeps does not 

change the total variance: 

 

(26) 

where Nb denotes the total number of counts in a background measurement, and s(Nb) 

denotes its standard deviation. The remaining parameters are defined as in eqn (25). 

Combining eqn (23) and (26), we obtain: 

 

(27) 

Combining eqn (25) and (26) leads to a similar result: 

 

(28) 

Eqn (27) and (28) still show a large degree of distribution independence and are valid for 

any statistics of uncorrelated count numbers (confidence intervals assigned to the ±s(Nb) 
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range may, however, depend on the distribution, see the next sections). Based on property 

(ii) of the ordinary Poisson distribution, eqn (27) and (28) can be very much simplified. Let 

us cut the whole acquisition in very short segments (‘sweeps’). With increasing k, it is 

possible to make the segment duration sufficiently short for each of these segments to 

contain either 0 or 1, but no more than 1 count: 

 

(29) 

where n(1) is the number of unity outcomes. 

For a statistical sample (such as an individual measurement), we obtain the following 

estimate: 

 

(30) 

The above derivations are unidirectional: they follow from eqn (23) and (25) as a special 

case, at the condition that the actually observed count numbers follow an ordinary Poisson 

distribution. Either of eqn (20) and (28)–(30) can be used to estimate the standard 

deviation, provided this condition is filled. 

The above equations can be readily presented in the intensity-based notation: 

 

(31) 
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(32) 

where Ib denotes mean intensity pooled from all sweeps constituting a background 

acquisition, Isw i – intensity of an individual sweep number i, and tb – total duration of the 

background measurement. 

In strong signals and backgrounds with a large contribution of the flicker noise, the term 

p2s2(M) in eqn (19) cannot be neglected. The s(N) = √N dependence, applicable for 

ordinary Poisson data, does not hold anymore [short, closely spaced in time, consecutively 

acquired sweep count numbers begin to correlate:20,28–32 if the previous sweep count 

number is high, then the actual sweep count number is also likely to be high, reflecting the 

fluctuation pattern of the ion source and resulting in a violation of eqn (26)]. Strong LA-

ICPMS backgrounds rarely occur in practice, 39K and 28–30Si isotopes being the most 

common examples. To estimate the standard deviation for the individual sweep count 

number for such isotopes, eqn (25) is used. To estimate the standard deviation of the total 

number of counts per measurement, eqn (28) is a good proxy, provided a multi-elemental 

acquisition protocol is employed. In such protocols, in the single-collector regime, the 

sweep-to-sweep acquisitions of the same isotope are well spaced in time; their outcomes 

show little correlation that is usually neglected.13,33–35 Respectively, to estimate the standard 

deviation in the intensity-based notation, eqn (31) can be employed. 

It follows that using eqn (28) and (31) is the most general solution for the computation of 

the standard deviation of LA-ICPMS data. Moreover, for years eqn (31) has been the only 

mathematical solution for the estimation of standard deviations in LA-ICPMS detection 

calculations.13 At the same time, many decision rules are easier to formulate based on the 

ordinary Poisson distribution (eqn (20), (29), (30) and (32)). 

1.4. WEAK AND STRONG BACKGROUNDS 

http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2016/JA/c5ja00378d/c5ja00378d-t26_hi-res.gif


[25] 
 

The terms ‘weak/strong’ and ‘small/large’ are subjective. The simplest, albeit qualitative, 

way to verify if a background is weak enough to be described by the ordinary Poisson 

distribution is to check if the standard deviation values computed using eqn (20) and (28) 

(or eqn (31) and (32)) are approximately equal to each other. If eqn (20) clearly 

underestimates the standard deviation compared with eqn (28), then the ordinary Poisson 

model is not applicable; the doubly stochastic Poisson/Gauss model applies. To 

quantitatively study any particular time-resolved LA-ICPMS measurement for a suitable 

model distribution, a goodness-of-fit test can be used (for examples, see ESI Appendix 1†). 

Such tests confirm that LA-ICPMS backgrounds <500–1000 cps are well described by the 

ordinary Poisson distribution. The same often applies to higher backgrounds (and signals) 

containing thousands and even tens of thousands cps (ref. 33) (ESI Appendix 1†); as the 

flickering strength can be instrument dependent, such data are still better to subject to a 

goodness-of-fit test before eqn (20) is employed for the estimation of standard deviations; 

alternatively, eqn (28) and (31) can be employed as a more universal, distribution-

independent solution (in the absence of correlation between the different sweeps). 

1.5. ABOUT THE POISSON–GAUSS APPROXIMATION OF CONFIDENCE 

INTERVALS 

A standard deviation is not a self-contained value; it is rather a pre-requisite for the 

estimation of confidence intervals, on which decision and detection rules are built. In 

practice, well-known Gaussian confidence intervals are used (e.g., eqn (9) and (18)). 

However, the count number distribution observed in ICPMS is not the continuous 

symmetrical Gauss distribution but the discrete Poisson distribution, doubly stochastic at 

large and ∼ordinary – at small count numbers (Fig. 4a). In the latter case, it is not only 

discrete but also skewed. A standard deviation value can be obtained following equations 

from the previous section. Is a Gauss confidence interval assigned to this value a good 

proxy for the Poisson statistics? Fortunately, at large counts, both doubly stochastic and 

ordinary Poisson distributions are well approximated by the Gauss distribution and its 

confidence intervals. This can be considered as a consequence of the central limit theorem; 
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for the ordinary Poisson distribution, a direct proof (by deriving the Gauss probability 

density function from the binomial probability function) is available.10,11,36 

The Gaussian description of confidence intervals is simple to use (e.g., eqn (9) and (18)). 

Thus, at small count numbers, it is still common to see Poisson distributed data 

approximated by the Gauss distribution with a mean equal to the mean count number in the 

Poisson probability function (eqn (22)) and standard deviation defined as its square root 

(eqn (20), (29) and (30)) or obtained from the statistics of the individual sweeps (eqn (28)). 

It is assumed that the Gauss confidence intervals for the standard deviation are applicable to 

the actually observed Poison count number distribution. At small count numbers, this 

assumption is questionable: the corresponding Poisson statistics may contain 3–4 non-

negligible probability classes, while the Gauss distribution remains to be continuous (Fig. 

4a). Besides, at mean count numbers ≤ 1, when the probability to obtain zero counts from a 

particular measurement is high, symmetry disappears from the Poisson distribution pattern 

(Fig. 4a; admittedly, the skewness mostly disturbs the left-hand part of the distribution that 

is less essential for the computation of critical levels). The approximation quality can be 

slightly improved if the confidence interval is corrected for discontinuity (Fig. 5). For 

example, the critical level in eqn (9) (well-known background) is corrected as follows:10,11 

 

(33) 

 

At a declared rate of false positives α = 5% (z5% = 1.645), this equation can be used at b as 

small as ∼2–5 counts (Table 1 and Fig. 4a; further illustrations can be found in ref. 36). 

Still, neither discreteness nor skewedness of the original distribution are not removed, and 

the actual rate of false positive errors in the range of small counts will somewhat differ 

from the declared rate – a problem that will be extensively studied in Part 2 of this text. To 

quantify this difference and to simultaneously estimate the critical level without using the 

Gaussian approximation, an exact analytical solution based on using the probability 

function of the ordinary Poisson distribution can be employed (Table 1): 
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Lc = N − b| p(N + 1) + p(N + 2) + … ≤ α and p(N) + p(N + 1) + p(N + 2) + … > α (34) 

where the probabilities p(N), p(N + 1), p(N + 2), etc. are obtained from formula (22). This 

solution can be extended to large count numbers, provided the computation is computer-

aided. 

The Poisson–Gauss approximation is also applicable to paired measurements. Moreover, 

estimating the critical level in all LA-ICPMS data obtained since the introduction of this 

technique and until now has been based solely on this approach.13,14 The net count number 

distribution obtained by subtracting two random Poisson values (estimates) represents a 

derivative of the Poisson distribution that is sometimes called Skellam distribution (Fig. 

4b). It is symmetrical around zero, provided the count number estimates are derived from 

the replicate measurement of the same Poisson process and correspond to the same mean, 

as it is the case under the null hypothesis. The problem of skewness, inherent to the Poisson 

distribution of individual small counts, disappears. However, the problem of discreteness 

does not disappear. Besides, in the case of true paired measurements, the net distribution 

under the null hypothesis is not constrained precisely, leaving some liberty regarding how 

to estimate its standard deviation (see Part 1, Section 1.1 ‘Paired measurements’, and Part 

2). Construction and performance evaluation of the Poisson–Gauss (Skellam–Gauss) 

approximations and related decision rules for true paired measurements is a well-developed 

of statistical analysis, as discussed in Part 2 of this text. Some of the exact analytical 

solutions not involving the Poisson–Gauss approximation are also presented there. 

PART 2. CRITICAL LEVELS FOR PAIRED MEASUREMENTS – THE 

DIFFERENT DECISION RULES, THEIR PERFORMANCE 

2.1. THE √2NB RULE AND ITS SIZE 



[28] 
 

Principles of size evaluation; the √2Nb rule as an example. The most basic of all decision 

rules for paired measurements is the √2Nb rule (eqn (18)) and a generalisation of it suitable 

for unequal sample/background counting times: 

 

(35) 

In practice (Section 1.1 ‘Paired measurements’), the count number standard deviation under 

the null hypothesis is often estimated from one single background measurement 

constituting the first part of a paired LA-ICPMS analysis: 

 

(36) 

Let us test the actual size of rules (35), (36). Such tests are based on either of two 

independent approaches: Monte-Carlo simulation or exact combinatorial calculation.5–8,19 

The first approach requires generating a large set of Poisson distributed estimates for a 

given mean background count number value (for a given mean value characterising the 

common distribution constructed under the null hypothesis, see Section 1.1). These 

estimates model the background count number distribution that could be obtained if we 

would replicate the background measurement many times. From this set, two estimates are 

randomly selected. The first of them is stored as a background estimate to compute Lc using 

the decision rule tested. The second is stored as a sample signal, though it is also a 

background estimate. The net value of the two estimates is computed and compared to Lc. 

Detecting such a ‘sample signal’ means committing a false positive error (false detection). 

The process is replicated many times; in the end, it returns two numbers – number of false 

detections and number of non-detections. The fraction of false detections, as obtained 

during the simulation, is compared to the rate of false positives declared for the decision 

rule tested (e.g., α in eqn (35) and (36)). The simulation result represents an unbiased 

estimate of the real rate of false positive detections for this decision rule. It is somewhat 

noisy, however, depending on the number of the net values simulated: the larger it is, the 
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weaker is the noise. Practical measurements are not required, nor a knowledge of 

probability theory. A modification of this approach exists (but has little practical use): 

instead of a random number generator, a spectrometer is employed to collect a large set of 

background estimates; the remaining part of the procedure suffers no alteration. 

The second, combinatorial approach requires computing the probability of obtaining each 

particular background estimate for a given mean background activity. For each of such 

estimates, the critical level (Lc) is computed. For each of the Lc values, the probability is 

calculated to obtain a paired background estimate that is sufficiently large for detection 

according to the decision rule and for the mean background activity value that are tested. 

Upon summation of such probabilities for all Lc values, the total actual rate of false 

positives is obtained. The outcome is consistent with Monte-Carlo simulation results, but 

devoid of noise.5,6 It is compared to the rate (α) declared based on the Poisson–Gauss 

approximation. Henceforth, we will use the combinatorial approach only, reserving the 

Monte-Carlo simulation to the area of its excellence – problems where no analytical 

solution can easily be found. 

An application example of the combinatorial approach is given in Table 2. Let us first 

discuss the case when the mean background count number and thus the count number 

standard deviation under the null hypothesis are estimated with a good precision [e.g., using 

replicate paired measurements, as shown in Fig. 1b; eqn (35) applies]. Only the quality of 

the Gauss approximation of discrete Poisson data remains to be tested. We will set the 

mean background count value to 1.5 counts – a rather common level in LA-ICPMS 

background measurements. For a mean of 1.5 counts, the probabilities to obtain Nb = 0, 1, 

2, etc. counts in a particular background measurement are calculated using the probability 

function of the Poisson distribution (eqn (22)). For example, for Nb = 1, p(1) = 0.335 (Table 

2). At a commonly used confidence level of 95% corresponding to a rate of false positive 

errors of 5%, zα = 1.645 (assuming the Poisson–Gauss approximation). Lc amounts to 1.645 

× √2 × 1.5 = 2.849 counts, irrespective of the outcome of a particular background 

measurement (Table 2). At Nb = 1 and Lc = 2.849, the probability of detection equals the 
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cumulative probability to obtain 4 and more counts for a mean of 1.5 (to obtain a net value 

> 2.849). Hence, the fraction of false detections for Nb = 1 is as follows: p(1) × [p(4) + p(5) 

+ p(6) + …] = 0.022. For a mean of 1.5, the probability to obtain an Nb value > 8 is very 

low; for simplicity, the corresponding probabilities are omitted in our summation. The 

exercise is repeated for all Nb values with non-negligible probabilities, yielding a total 

actual false detection rate of 6.98% (Table 2). This differs from 5% declared based on the 

Poisson–Gauss approximation. 

In practice, the background count number is almost never known precisely, but estimated 

from one single paired measurement (background and sample signal). An intelligent 

estimation of the standard deviation under the null hypothesis is required. In the √2Nb 

decision rule, it is estimated using the background count number only [eqn (36) applies]. 

The combined effect of the quality of the Poisson–Gauss approximation and of the choice 

of the standard deviation estimate is now to be tested. The mean background activity value 

will be set at 1.5 counts, as before. For this mean, the probabilities to obtain Nb = 0, 1, 2, 

etc. counts in a particular background measurement are calculated (Table 2); this part of the 

exercise is identical to the case of replicate paired measurements discussed in the previous 

paragraph. However, the corresponding Lc values need to be computed for each of the Nb 

values specifically. For example, for Nb = 2, Lc equals 1.645 × √2 × 2 = 3.290. At Nb = 2 

and Lc = 3.290, the probability of detection equals the cumulative probability to obtain 6 

and more counts for a mean of 1.5 (to obtain a net value > 3.290). Hence, the fraction of 

false detections for Nb = 2 is as follows: p(2) × [p(6) + p(7) + p(8) + …] = 0.0011. 

Repeating the exercise for other Nb values yields a total actual false detection rate of 

19.64% (Table 2). This is much higher compared to the declared level of 5%. 

It can be argued that most false detections according to the √2Nb decision rule happen when 

the first background acquisition yields zero counts.5,39,40 Then, any positive count number 

contained in the second acquisition results in detection. ICPMS analysts often attempt to fix 

this issue by adding one count to an ‘empty’ background, an arbitrary practice that seems to 

lack theoretical grounds (cf.ref. 5, decision rule (9) and its explanation). Such practice also 
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allows for a combinatorial test; it results in a decrease of the rate of false detections, but 

still fails to bring it down to the declared level (Table 2). 

Calculations presented in Table 2 can be repeated to tabulate the actual rate of false 

detections for a range of mean background count numbers and confidence levels (Fig. 6); 

such tabulations for several decision rules can be found in the literature5–8 and in the 

subsequent sections of this text (representative examples of the source code are available in 

ESI Appendix 2† in the form of excel vba macros). At a 5% declared level of false 

detections, their actual rate for eqn (36) reaches a maximum of 25.2% at a mean of 0.72 

counts per background acquisition (Fig. 6)! This decision rule returns elevated rates of false 

detections, approaching the declared level only asymptotically, at large count numbers (Fig. 

6). The actual size of this rule is thus larger than declared (except for extremely small mean 

count numbers limiting to zero, where the actual size limits to 1%; for a proof, see ref. 5). 

Decision rules, of which the actual size is larger than declared, are called liberal.7 Those 

with an actual size smaller than declared are called conservative (they yield less false 

detection than declared). Rules, of which the actual size falls in the range of ±20% of the 

declared value (in the studied range of mean count numbers), are called robust.7 For the 

practical estimation of critical levels, conservative or (if possible) robust rules are 

preferred.5–8,37,38 If a liberal decision rule is still used for whatever reason, it is quite 

essential to know the extent of its liberality (i.e., its actual size). 

Randomisation of the √2Nb rule to eliminate skewness and to adjust its actual size. Testing 

a Poisson–Gauss decision rule, such as the √2Nb rule, for size is equivalent to considering 

how well the corresponding statistics, e.g., 

 

(37) 

approximate standard normal variates, i.e. how close they are to a Gauss distribution 

centered around zero with a standard deviation of one.4–8,10,15–19,40 Under the null 

hypothesis, it is easy to show that statistics (37) indeed have a standard deviation of one 

(see ESI Appendix 3†). At the same time, ratios of two approximately Gauss distributed 
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variables, such as the numerator and the denominator in the above statistics, are not 

necessarily Gauss distributed. Statistics (37) are asymmetrically distributed (skewed) 

relative to zero, resulting in a deviation from the Gauss distribution that is more marked at 

smaller Nb values.40 The skewness is due to a negative correlation between the numerator 

Ns − Nb and denominator √2Nb; the corresponding distribution pattern is schematically 

shown in Fig. 7. The positive ‘tail’ of this pattern corresponds to the area where false 

positive errors occur, partly explaining an increase in their rate compared to the prediction 

from the Gauss model. Other statistics can be suggested that are devoid of this 

shortcoming; they are described in the next section of this text.  

The recognition of the inadequate performance of the √2Nb rule for the treatment of true 

paired measurements during the last fifteen years5,6,40 motivated attempts to ‘randomise’ 

statistic (37) in order to break the correlation pattern in it:40 

 

(38) 

It was suggested to compute the numerator and the denominator using two independent 

background count number estimates (N′b and N′′b, respectively).40 This improves the match 

between the declared and actually observed rates of false positives, although the liberality 

of the resulting ‘randomised’ decision rule at small count numbers is still significant (Fig. 

6). At the same time, an inconsistency was created. Instead of carrying out a paired 

measurement, a triple measurement needs to be performed to acquire N′b, N′′b and Ns; two 

different, equally eligible net sample signal count numbers and critical values can then be 

obtained: 

 

(39) 

In both cases, the standard deviation of the background activity under the null hypothesis is 

estimated with a bias; the maximum likelihood value is (N′b + N′′b + Ns)/3 (see Sections 1.1 

and 2.2). We conclude that randomising the √2Nb decision rule does not improve its 
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performance sufficiently, but creates undesirable side effects. The skewness of statistics 

(37) represents a reason to avoid using the √2Nb rule5,6 instead of attempting to repair this 

rule.40 

2.2. UNBIASED RULES FOR TRUE PAITRED MEASUREMENTS BASED ON THE 

POISSON–GAUSS APPROXIMATION 

The √Ns + Nb rule. Decision rules based on the Poisson–Gauss approximation require (i) a 

good convergence of the net count number distribution to the Gauss distribution in the 

observed range of counts and (ii) an unbiased estimation of the standard deviation of net 

count numbers. At small count numbers, the √2Nb rule does not meet these requirements. 

Even if the background activity is estimated with a good precision (e.g., by replicate paired 

measurements), the approximation quality is fair only for backgrounds containing ∼20 

counts and more (Fig. 6). Mathematical transforms exist to improve the approximation 

quality; they will be discussed below. The √2Nb rule does not invoke such transforms. The 

performance of the √2Nb rule deteriorates further, if the background activity is estimated 

from one single paired analysis (Fig. 6): using the background count number only, as in the 

√2Nb rule, returns a biased estimate of the net count number standard deviation. This 

question was already considered in Section 1.1; here, we provide a recapitulation. As a null 

hypothesis, we state that both background and sample signal count numbers come from the 

same Poisson distribution (with the same mean                                         ). The alternative 

hypothesis is               . We first assume that the null hypothesis is true. The distribution of 

the net values Ns − Nb is then centred around zero, with a standard deviation 

 

(40) 

Under the null hypothesis, the most probable (best estimated,4 maximum likelihood7,8) 

value for the variances (mean count numbers) under the radicals of this equation is (Ns + 

Nb)/2; it is pooled using both parts of a paired measurement, as neither the background nor 

the signal part has a ‘priority’, and both of them are used to estimate the standard deviation 
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of their common distribution (see also Section 1.1). In other words, under the null 

hypothesis, each of the values s2(Ns) and s2(Nb) is best estimated as (Ns + Nb)/2. We have: 

 

(41) 

Using the Poisson–Gauss approximation, we compare the measured difference Ns − Nb to 

the estimated standard deviation of the net distribution (eqn (40) and (41)). If the net 

difference is too large (Fig. 8), i.e. 

 

(42) 

then there is little chance for this difference to come from an Ns − Nb distribution centred 

around zero. This means that                                      . The null hypothesis is rejected; the 

sample signal is detected at a nominal rate of false positives equal to α. Otherwise, the null 

hypothesis is accepted: the sample signal is not detected. The divide between these 

alternatives corresponds to the critical level: 

 

(43) 

Eqn (41) underlying the above derivations can also be readily obtained from the general 

formulations of both ‘well-known background’ and ‘replicate paired measurements’ 

detection concepts [see Section 1.1, eqn (5), (6), (13) and (14)], which highlights the close 

relationships existing between the different approaches to detection that are based on the 

equivalent formulations of the null hypothesis. 

The difference compared to the √2Nb decision rule lies in the estimation of the standard 

deviation of the net count number: in the case of true paired measurements, without 

background replication, its unbiased value is √Ns + Nb and not √2Nb. Noteworthy, Ns − Nb 

and Ns + Nb values do not correlate under the null hypothesis, ensuring the symmetry of the 

normalised net statistics. The √2Nb decision rule is not the only biased rule possible. 

Indeed, the unbiased estimator of the mean activity of the common distribution of the 
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background and signal count numbers under the null hypothesis is unique under the 

condition of equal background and signal counting times and amounts to (Ns + Nb)/2. In 

contrast, the number of biased estimators is large – from Nb to Ns. From this standpoint, 

rule Ns − Nb > zα√2Nb is equally eligible as rule Ns − Nb > zα√2Ns. The latter rule has to be 

conservative. A curious reader can model its size – an exercise beyond the scope of this 

text. 

By solving a quadratic equation, it is possible to exclude Ns from the right-hand part of eqn 

(43) and to obtain a maximum Ns − Nb value at which the signal is not yet detected as a 

function of Nb and zα only. This value corresponds to Lc: 

 

(44) 

Decision rule (42)–(44) and similarly constructed decision rules with an improved 

convergence to normality are often discussed in texts of mathematical 

statistics,7,8,10,11,15,19,36 while the √2Nb rule does not appear in such texts because of the 

biased estimation of the mean background count number. The √2Nb rule, by its derivation 

from replicate paired measurements and by its application field, is restricted to those very 

rare situations when the background is replicated and its mean value and uncertainty are 

well known, but the detection decision is taken based on the concept of paired 

measurements [Fig. 1b; an other, more positive way of thinking about this rule is to 

consider it as a starting point to obtain eqn (44); the relevant derivation is not devoid of 

mathematical elegance, see ESI Appendix 4†]. 

Decision rule (42)–(44) has been known for at least 75 years now.10,11,15 To the analytical 

community, it was introduced by B. Altshuler and B. Pasternack4 and W. L. Nicholson,16,17 

their texts representing classical works on the mathematical principles of detection. Beyond 

the field of radioactivity monitoring,4–6,16,17 in chemical metrology, decision rule (42)–(44) 
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still has a rather limited use. Size calculations show that using this rule at small count 

numbers quite significantly improves the match between the actual and the declared rate of 

false detections, especially in the framework of equal counting times (Fig. 9a). 

Decision rule (42)–(44) can be corrected for discontinuity:10,11,15 

 

(45) 

Compared to the case of well-known background (eqn (33)), the correction term increases 

from 1/2 to 1;10,11 this is because the net count number for a given value of Lc has the same 

parity as the Ns + Nb value (both odd or both even); thus, the discreteness in probability has 

a step of 2 (not 1, as in Fig. 5). Eqn (45) can be further modified by excluding the signal 

count number (cf.eqn (44)): 

 

(46) 

The discontinuity-corrected formulation above is conservative (Fig. 9b). It is mostly 

discussed in classical texts of statistics10,11 and has little practical use in metrology at this 

time. It can be used as a simpler substitute to the canonical version of the binomial decision 

rule (cf.Fig. 9b and f, see Section 2.3). 

Decision rules using square root variance stabilising count number transformations. 

Decision rule (42)–(44) uses the count numbers values Ns and Nb as they were acquired 

during a paired measurement; accordingly, the null hypothesis is                                      . A 

faster convergence to normality can be obtained, if the same approach as in eqn (42)–(44) is 

applied to transformed count numbers. For a series of Poisson distributed counts, let us 
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consider a complementary series of their square roots, of which the mean value is . The 

null hypothesis to be tested will be as follows: 

 

(47) 

This hypothesis is equivalent to the hypothesis discussed in the previous section: 

 

(48) 

assuming the standard deviation of the ‘Poisson roots’ to be equal to 1/2 (see eqn (21)). 

Consequently, the decision rule under which the null hypothesis is rejected becomes as 

follows:41 

 

(49) 

Solving the latter inequality relative to Ns allows presenting rule (49) in a more convenient 

form: 

 

(50) 

At large background count numbers, rule (50) converges to rule (44) that is based on the 

original, non-transformed data. However, at very small mean count numbers, rule (50) is – 

strictly – not applicable. Rule (50) is quite easy to obtain, owing to the simple variance 

stabilising transform [s(√N) = 1/2] used in derivation (49). This transform is not applicable 

at near-zero mean count numbers, as the square root function cannot be satisfactorily 

linearised in this range, for which calculating the standard deviation of the square root 

statistics can be done analytically [using the Poisson probability function (eqn (22)); see 
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ESI Appendix 5†]. Such calculations show that, at very small mean count numbers, the 

‘Poissonian’ square roots are over-dispersed compared to the 1/2 prediction from eqn (21). 

The size modelling confirms the inadequate performance of rule (50) for very small count 

numbers (Fig. 9c). 

Fortunately, to extend the applicability of the square root transformation to very small 

counts, a simple fix is available. It was noted long ago that adding a small constant value to 

a Poisson distributed variable improves the convergence of the standard deviation of the 

resulting roots to 1/2: . Initially, a value of d = 0.5 was suggested,42 and 

already ensured a good convergence quality. Modern studies often use a value of d = 3/8 

(ref. 18 and 19) shown to be optimal in a paper of F. J. Anscombe;43 the 

transform is usually called Anscombe transform. The corresponding decision rule is as 

follows: 

 

(51) 

In radioactivity monitoring, this rule is also known as Stapleton formula;5,6 the 

recommended d value is fairly close to 3/8 and amounts to 0.4. For example, at 5% of false 

positives (z5% = 1.645), we obtain: 

 

(52) 

This rule has been suggested for practical use in the field of radioactivity monitoring for 15 

years now.5,6 Size calculations show a robust behaviour of this rule in a range of count 

numbers (Fig. 9d and e). 
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2.3. BEYOND THE POISSON–GAUSS APPROXIMATION: UNBIASED RULES 

BASED ON EXACT METHODS 

The binomial decision rule. In the previous sections, we demonstrated that the Gauss 

distribution with its quantiles (zα) is a good proxy for Poisson distributed count numbers 

and their differences in a wide range of mean count number values, provided principles 

used for the construction of the corresponding approximations are not abused. However, as 

a discrete distribution, and at small count numbers especially, the Poisson distribution and 

its derivatives are inherently prone to exact modelling using combinatorial methods. The 

problem of detection is no exception. In 1940, two agricultural scientists, Józef 

Przyborowski and Henry Wilenski, presented a combinatorial decision rule that is often 

called binomial test, or C-test.15 The rate of false positives for this test is exactly known 

from the test derivation and guaranteed to be no larger than declared; a liberal behaviour is 

thus excluded without a need for size modelling; a conservative behaviour is possible, 

however. This test does not invoke a Poisson–Gauss approximation of any kind, but 

coincides with such approximations at larger count numbers (moreover, it coincides with 

the discontinuity corrected √Ns + Nb rule at almost any count number). Nowadays, this test 

has reached a canonical status; it often serves as a reference decision rule, to which other 

rules are compared.5–8,44  

The binomial decision rule can be introduced as follows. Let us consider an example when, 

during a paired measurement, we collect a sum Nb + Ns = 5 counts. We will assume, as 

always before, that the background and the signal counting times are equal to each other. 

The null hypothesis will be stated as usual: on average, Nb = Ns. In other words, under the 

null hypothesis, the probability for a specific count from the sum Nb + Ns to belong to the 

background is equal to the probability for this count to belong to the signal, both of these 

probabilities being equal to 1/2. These probabilities can be estimated by counting Nb and Ns 

values over a large series of paired replicate measurements. Of course, this does not mean 

that, in each particular paired measurement, Nb = Ns; moreover, for an (odd) sum of Nb + Ns 

= 5, such an outcome is excluded. The possible (Nb, Ns) outcomes are as follows: (0, 5), (1, 
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4), (2, 3), (3, 2), (4, 1), and (5, 0). Each of these outcomes is characterised by some rate, or 

probability, of appearance. This rate is defined according to the probability function of the 

binomial distribution: 

 

(53) 

where denotes the binomial coefficient:  

 

(54) 

In our example,  

 

Under the null hypothesis, the probability to obtain combination (0, 5) is below 5%, which 

is our usual detection threshold (declared rate of false positives). More exactly, this 

probability equals 3.13%. It is too unlikely to obtain combination (0, 5) under the null 

hypothesis. We conclude that, at the confidence level selected, the null hypothesis is 

rejected, and the signal-detected. The probability to obtain a combination of (1, 4) is 

15.625%. It is not too unlikely to obtain such an outcome under the null hypothesis: the 

signal is not detected. In a one-sided test, as ours, the same applies to all other outcomes. 

Interestingly, for a declared rate of false positives of 5%, detecting the signal in the 

presence of an ‘empty’ background acquisition of the same duration requires at least 5 
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counts to be registered during the signal acquisition – a rather conservative result, also from 

an intuitive standpoint. 

An example of size calculation for the binomial decision rule is presented in Table 3. 

Similar calculations, extended over a range of mean count numbers, are summarised in Fig. 

9f (an example of the source code can be found in ESI Appendix 2†). These calculations 

indeed confirm that the canonical version of the binomial rule described above is quite 

conservative in the range of small to intermediate counts (for the mid-p adjusted version of 

this rule, see the next section). 

Apart from its use in biometrical applications, the binomial decision rule has been known in 

the field of radioactivity monitoring for decades, where it was usually called Nicholson 

test.5,6,17 B. Altshuler and B. Pasternack also mention this rule as a solution for near-zero 

backgrounds in their classical paper on detection4 (referring to ‘Statistical theory’ by K. A. 

Brownlee10). In 2008, L. A. Currie40 reintroduced it to the metrology community based on 

the original text of J. Przyborowski and H. Wilenski. 

Rules using the numerical approximation of p-values; bootstraps. For any statistic, 

adjusting the size of the corresponding decision rule to a desired value can be done 

numerically. This approach is conceptually similar to using inequalities (34) in the case of 

well-known background, but requires a computationally intensive double summation to 

account for the bivariate structure of paired measurements. It is based on the following 

formula: 

 

(55) 

where T is the statistic to be tested, t(Nb, Ns) is a particular value of this statistic that was 

obtained from a paired measurement, and I[A] is the indicator function: 
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The mean count number in eqn (55) is not known precisely, but can be estimated from a 

paired measurement: = (Ns + Nb)/2. The simplest statistic that can be tested represents the 

net count number: T(x, y) = y − x. The tested condition is y − x > Ns − Nb. By the 

summation of probabilities of all outcomes (x, y) that satisfy this condition, the actual size 

p of the critical region represented by the net values larger than Ns − Nb is evaluated. We 

reject the null hypothesis and report ‘detection’, if the p-value in eqn (55) is smaller than 

the required level of false positives (declared size, α). This rule is equivalent to a rule that 

would be based on the summation of probabilities of the individual net count number 

values in the right-hand parts of Skellam distributions shown in Fig. 4b. Moreover, it can 

be shown to be equivalent to the canonical formulation of the binomial decision rule15 

discussed in the previous section. 

Statistics used in Poisson–Gauss approximations can also be tested. Especially, the statistic 

 

(56) 

from decision rule (42)–(44) has recently been studied in detail8,19,44 and shown to be 

promising, along with some logarithmic statistics8,19 not described in this text.  

At this time, the method of numerical approximation of p-values is mostly used in 

biometrics.8,19,44 We are unaware of its use in chemical metrology and closely related 

sciences. We believe that, at the level of rigour presently required in chemical metrology, 

using the numerical approximation of p-values for paired measurements is not compulsory 

because of (i) computational complexity of this method and (ii) availability of well 

performing Poisson–Gauss approximations (e.g., using the Anscombe transform, eqn (51)); 

another good alternative is the mid-p adjusted version of the binomial rule described in the 

next section. For details, the reader is addressed to the literature8,19,44 where examples of 

size simulation for rules based on the numerical approximation, as well as generalised 

formulae applicable under the condition of unequal counting times can be found. It seems 
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likely that the method of numerical approximation will be more widely used in the future, 

given that the calculations are computer-aided. 

The probability of T > t(Nb, Ns) can also be estimated from a Monte-Carlo simulation using 

x and y values randomly selected from an ‘artificial’ Poisson distribution with a mean set to 

(Ns + Nb)/2. The resulting decision rule is usually called bootstrap test. The method of 

numerical approximation of p-values can be considered as an exact realisation of such 

test.44 

2.4. UNEQUAL COUNTING TIMES 

The √Ns + Nb rule and its discontinuity corrected version. Though using equal time 

intervals to collect the background and the signal in a paired measurement is ‘often the 

situation’,13 extending the background duration compared to the signal is also fairly 

common in the practice of LA-ICPMS. The decision rules derived in the previous sections 

need to be adapted accordingly, and their sizes – evaluated for a range of the 

background/signal time settings. Most decision rules are easy to adapt for an arbitrary 

setting of background and signal acquisition times (tb and ts, respectively) by substituting 

count numbers by their respective intensities: 

 

(57) 

For example, the classical decision rule (42)–(44) can be re-formulated as follows: 

 

(58) 

Under the null hypothesis, . Hence, the most probable estimate for the mean 

intensity (constrained maximum likelihood estimate7,8) is pooled as follows: 

http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2016/JA/c5ja00378d/c5ja00378d-t61_hi-res.gif
http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2016/JA/c5ja00378d/c5ja00378d-t62_hi-res.gif
http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2016/JA/c5ja00378d/c5ja00378d-t63_hi-res.gif


[44] 
 

 

(59) 

From formulae (58), (59), we obtain: 

 

(60) 

The same result can be presented in the count number/time notation: 

 

(61) 

A curious reader will easily show that eqn (60), (61) are equivalent to eqn (4), (5) and (9) 

from Part 1. 

Excluding the signal intensity (signal count number) from the right-hand part of the above 

expressions yields the following equations for the critical level: 

 

(62) 

In the practice of radioactivity monitoring6,16,17 and biometrics,7 this decision rule has been 

recommended for a while, though criticised for a relatively liberal behaviour at tb > ts (ref. 5 

and 6) (Fig. 9a). More exactly, its actual size ‘explodes’ at tb/ts > zα
2; the idea of the 

corresponding proof can be found in ref. 5. 

Eqn (58)–(62) can be corrected for discontinuity [with a correction term equal to (ts + 

tb)/2tstb]:
10,11 
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(63) 

The discontinuity corrected version above is conservative; its robustness improves at tb/ts ≥ 

2 (Fig. 9b). 

The √2Nb rule. Based on eqn (58) and (59), it is, perhaps, worth to re-consider the √2Nb 

decision rule (eqn (36)) and extend it to any combination of counting times. The √2Nb rule 

is biased regarding the estimation of the mean count number: under the null hypothesis, 

only the background value is used. This is equivalent to assigning a weight of 0 to the 

signal intensity and a weight of 1 – to the background intensity in eqn (59): 

 

(64) 

The robustness of rule (64) naturally improves, if the background is measured longer than 

the signal: the biased weighing is less important in this case. Still, for practically important 

tb/ts ratios, at small count numbers, the robustness of rule (64) is insufficient (Fig. 10a and 

b). Except for large tb/ts ratios and (or) high background intensities, this rule cannot be 

approved for practical use (though, from a purely empirical standpoint, its use can perhaps 

be tolerated, provided a conservative zα value is employed and the rule is empirically 

corrected for an ‘empty’ background, see Section 2.10 and Fig. 10a and b). 

Rules based on the square root variance stabilising transformations. Detection rules based 

on variance-stabilising transformations, such as the Anscombe transform, are also easily 

adaptable for arbitrary background/signal time settings: 
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(65) 

This decision rule is very recommended for its robustness, especially at tb > ts (ref. 5, 6 and 

19) (Fig. 9d and e). 

The binomial rule and its mid-p adjusted version. Modifying the binomial decision rule is 

equally simple. Under the null hypothesis, instead of using probabilities of 1/2 for both 

signal and background, the following definitions naturally arise:5,6,15 

 

(66) 

For example, for a paired measurement, of which the background acquisition is three times 

longer than the signal acquisition, pb = 3/4 and ps = 1/4. Accordingly, we obtain: 

 

(67) 

Developing this example further, for a sum Nb + Ns = 7 counts, under the null hypothesis, 

the test returns the following probabilities: 
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At a rate of false positives set to be no higher than 5%, for a paired measurement with an Nb 

+ Ns value of 7 counts, combinations (0, 7), (1, 6) and (2, 5) imply that that signal is 

detected: their cumulative probability amounts to 1.29%, which is below the 5% threshold. 

The remaining combinations are too likely to obtain under the null hypothesis: the signal is 

not detected. Such calculations can be generalised: for all non-negative integers x from 0 to 

n, combinations (Nb = x, Ns = Nb + Ns − x) result in detection, provided 

 

(68) 

The size calculation shows a conservative behaviour of the binomial rule (Fig. 9f) that is 

quite similar to the behaviour of eqn (63) from the previous section. Again, the robustness 

improves at tb/ts ≥ 2, although the rule still remains rather conservative (Fig. 9f). The 

conservatism of the binomial rule motivated attempts to adjust its formulation in order to 

improve the robustness.17,45,46 The underlying idea of such adjustments is to provide a 

recipe allowing in some cases to consider as detected the (Nb, Ns) combination next to the 

critical region [as estimated using the canonical version of the rule, e.g., combination (3, 4) 

in the example above]. Here, we introduce the mid-p adjusted version of this rule after 

H. O. Lancaster.45,46 We modify formula (68) for the cumulative probability as follows: 
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(69) 

For all non-negative integers x from 0 to n + 1, for which the above inequality holds true, 

combinations (Nb = x, Ns = Nb + Ns − x) result in detection. In the example above, 

pmid-adjusted
cumulative = 1.29 + 0.5 × 5.77 = 4.17% ≤ 5%. 

Thus, combination (3, 4) is also detected when using the mid-p adjusted version of the 

binomial rule, contrary to the outcome of its canonical version. The actual size becomes 

less conservative and more closely approaches the declared value, provided the mid-p 

adjustment is employed (Fig. 9g). 

It is also worth briefly mentioning an alternative way to adjust the size of the binomial rule. 

It is based on the method of the auxiliary random experiment, and combines the possibility 

to reproduce the declared size exactly with more complexity and ambiguous results for the 

(Nb, Ns) combination next to the critical region (the same measurement returns either 

detection or non-detection, depending on the outcome of the auxiliary experiment, not of 

the measurement itself).38,46 For decades, this method has been suggested for use in the 

field of radioactivity monitoring, although its practical application seems to be restricted, 

for the above reasons. We refer the interested reader to the literature.5,6,17 

2.5. CONSERVATISM OF DECISION RULES FOR MEAN BACKGROUND COUNT 

NUMBERS LIMITING TO ZERO 

In the range of mean background count numbers limiting to zero ( bts/tb < 0.5–1 count), it 

does not seem possible with most decision rules, including those characterised by robust 

and even liberal behaviour at somewhat larger count numbers, to reach the declared rate of 

false detections: the actual size is smaller than declared (i.e., the rule is conservative, see 

Fig. 9a–g). This issue is somewhat alleviated by the difficulty to decrease the background 

strength of practical measurements indefinitely: the low level of dark noise observed using 
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some ICPMS (e.g., 0.2 cps for mass 220 for Element 2 and XR mass spectrometers) is not 

easily reproducible during the analysis of naturally available isotopes, partly because of the 

inevitable, though weak, contamination of the instrument during the routine work. Still, at 

small ts values, practical background measurements may approach the above range. 

At this time, no real solution exists to overcome the conservatism of detection at mean 

count numbers limiting to zero. The only ‘universally’ robust decision rule available is the 

binomial rule used in combination with the method of the auxiliary random experiment (see 

Section 2.4). However, it is the auxiliary experiment and not the measurement outcome that 

decides if the sample activity is detected, provided the mean background count number 

limits to zero!46 In this case, it just needs to be accepted that the actual rate of false positive 

errors can be smaller than declared: if the analyte is detected, it is done with more 

confidence than declared. There is no big fault with this circumstance.37,38,46 

2.6. EXTENDING THE APPLICABILITY OF DECISION RULES BEYOND THE 

ORDINARY POISSON APPROXIMATION 

For strong backgrounds (usually – at least several thousands cps, see Table S4 in ESI 

Appendix 1† for an example), the presence of non-negligible excess variance is possible. 

Such backgrounds cannot be completely described by the ordinary Poisson process; the 

square root dependence s(N) = √N yields only a minimum estimate of the standard 

deviation (see Section 1.3). Then, decision rules based on the ordinary Poisson distribution 

cannot be employed in their original form. Returning to the basic definition of a decision 

rule based on the Poisson–Gauss approximation is necessary, e.g.: 

 

(70) 

where standard deviations s(Nb) and s(Ns) have to be estimated under the null hypothesis 

(consult texts on two-sample z- and t-tests regarding how to pool the standard deviation 

under the null hypothesis, provided the signal and the background are considered as time-

resolved measurements containing ks and kb sweeps, respectively, resulting in a common 
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distribution with a degree of freedom ks + kb − 2 (ref. 10 and 11)). Eqn (70) and the 

associated calculus can be substantially simplified, if a biased estimate of the net activity 

standard deviation is accepted. Assuming that both estimates, Nb and Ns, come from the 

same distribution with a standard deviation equal to s(Nb) [instead of pooling the standard 

deviation as a sort of weighted average of s(Nb) and s(Ns) values10,11], eqn (70) returns the 

familiar formula . Combining this formula with eqn (28), we obtain: 

 

(71) 

where k is the number of background sweeps, Nsw i – count number in an individual sweep, 

sw – mean count number per sweep. For an ordinary Poisson distributed background as a 

special case, we obtain the equation analysed in the previous 

sections of this text. 

Using the intensity-based notation combined with a biased estimation of the net count 

number standard deviation, eqn (71) can be extended to any combination of the 

background/signal counting times: 

 

(72) 

Accordingly, the critical level can be given as follows:13 

 

(73) 

where s(Isw b), s(Isw b) and s(Ib), s(Is) denote standard deviations for the individual sweep 

intensities and mean intensities of background and sample signal, respectively, Isw i – 
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intensity of an individual sweep, Īsw – mean intensity per sweep, kb, ks and tb, ts – number of 

sweeps and acquisition times, respectively. 

For ordinary Poisson distributed data, eqn (73) coincides with eqn (64), of which the size is 

shown in Fig. 10a and b. The liberal behaviour of eqn (64) becomes less marked with 

increasing the count number (value of the square root function changes little upon changing 

its argument, if the latter is large: replacing 2Nb by Ns + Nb returns similar result at large 

count numbers). For the sake of its simplicity, we can recommend eqn (73) as a solution 

applicable (only) for large counts. For a rigorous user, more complex unbiased solutions 

can be proposed. One of them is outlined below, using the method of square root transform 

(eqn (49) and (51)) as an example. At bts/tb > 5, the term d improving the quality of 

variance stabilisation at small counts can be set to zero (see Fig. 9c). By error propagation, 

we obtain: 

 

(74) 

Under the null hypothesis, b = s; the most probable estimate of this value is the mean 

(Nb + Ns)/2 of the measured count numbers. Using eqn (19) and the property s(M)/M = 

const20,23–27 of the excess variance, the standard deviation for a distribution centered around 

this mean is estimated as follows: 

 

(75) 

Inequality (74) is reorganised accordingly: 
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(76) 

The signal uncertainty is excluded from the right-hand part of inequality (76) and does not 

need to be estimated, which simplifies calculations. By solving a quadratic equation, it is 

further possible to derive an analytical expression for the critical level that is a function of 

Nb, s(Nb) and zα only: 

 

(77) 

This equation can be given in the intensity-based notation and extended to any combination 

of the background and signal counting times (for derivation, see ESI Appendix 6†): 

 

(78) 

For ordinary Poisson data, eqn (77) and (78) return decision rule (50) that is the simplest 

among the rules using the square root transform. At the same time, eqn (78) is also 

applicable to strong backgrounds showing an excess variance. Compared to the much 

simpler eqn (73), for large count numbers, eqn (78) returns slightly higher critical values 
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(with a maximal difference of a few percentage points). We recommend using eqn (78), 

especially as an extension of decision rules based on the square root transform. Strictly, it is 

applicable in the range of robustness of rule (50), i.e., at btb/ts > 5 counts. Its genuine 

application area represents strong backgrounds beyond the ordinary Poisson approximation. 

2.7. POWER OF DETECTION 

Actual size of a decision rule characterises the probability of detection using this rule, 

provided the null hypothesis is true (mean net sample activity equals zero; no analyte in the 

sample). Power of a decision rule characterises the probability of detection using the above 

rule, provided the null hypothesis is false (positive mean net sample activity; presence of 

analyte in the sample). The positive net sample activity can be set to any value, including 

values infinitely close to zero. Hence, the concept of power can be considered as a 

generalisation of the concept of size. Liberal decision rules tend to be more powerful in the 

range of small counts, as they have larger size in this range. Conservative decision rules 

tend to be less powerful (smaller size). For example, the canonical formulation of the 

binomial decision rule is, unfortunately, well known for its relatively small power.15,19,44 

With increasing the mean net sample activity (i.e., with increasing the difference between 

the mean background value and the mean sample value), the power of detection limits to 

unity. With decreasing the mean net sample activity, it limits to the actual size of the 

decision rule used. As already discussed, detection limit represents a sample activity value 

ensuring a specified power of detection (usually, a 95% probability of detection; see 

Sections 1.1–2, Fig. 2a and b and 11a and b). Power studies often complement the study of 

size of decision rules.7,8,15,19,41,44 An ‘ideal’ decision rule is robust (its declared and actual 

sizes are closely matched) and has a large power. For two equally robust decision rules 

(∼same size), the rule having more power is preferred for the purposes of practical data 

treatment. 

Studying the power of detection of a decision rule has much in common with studying its 

actual size. Two basic approaches coexist: Monte-Carlo simulation and exact combinatorial 
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calculation. The Monte-Carlo approach implies creating two large sets of random Poisson 

distributed values for pre-defined mean background and mean sample signal count number 

values, respectively. From each of these sets, a value is randomly selected. The first value 

is stored as a background estimate (Nb). The second is stored as a sample signal estimate 

(Ns). The net value of these estimates is then tested using the studied decision rule: is it 

large enough for detection? The process is replicated many times; in the end, it returns two 

numbers – number of detections and number of non-detections. The so-estimated 

probability of detection characterises the power of the studied rule. The combinatorial 

approach implies computing the probability of appearance of all (Nb, Ns) pairs that return 

‘detection’, using the probability functions of the Poisson distribution parameterised at pre-

defined mean background and mean sample signal count number values, respectively. Here, 

we employ the combinatorial approach only (the interested reader can refer to the source 

code in ESI Appendix 7†). Based on the size calculations presented in this text and on the 

published size studies,5–8,19 two decision rules appear to be of particular interest because of 

their robustness – the Poisson–Gauss approximation using the square root transform and 

the mid-p adjusted version of the binomial rule. Their power values are shown in Fig. 11a 

and b. The square root transform has somewhat more power in the range of small counts; 

representative literature data show that, in general, this decision rule represents one of the 

most powerful and robust rules for testing the equality of two Poisson means.19 It can 

definitely be recommended for practical use. 

2.8. DETECTION AS A FUNCTION OF ACQUISITION PARAMETERS 

Based on the analysis of a decision rule selected for the data treatment, it is possible to 

optimise the measurement process in order to facilitate detection. Let us consider decision 

rule (65) based on the square root transform. This rule can be reformulated as follows: 

 

(79) 
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Detection is ensured, if Ns is larger than the right-hand term of formula (79). Three special 

cases arise: 

(i) Ns is adjustable, other parameters are constant. Under this condition, increasing Ns 

facilitates detection, because the right-hand term of formula (79) remains constant. 

Increasing Ns can be achieved, for example, by increasing the ablation pit size, or by using 

raster ablation; 

(ii) tb is adjustable, Nb/tb (in average), as well as other parameters are constant. Under this 

condition, increasing tb facilitates detection, since the right-hand term of formula (79) 

decreases, while Ns remains constant. Obviously, increasing tb means increasing the 

background acquisition time; 

(iii) ts is adjustable, other parameters are constant. It is, perhaps, the most interesting case. 

Let us consider an ablation pit of some diameter and depth; its volume is constant. Some 

amount of analyte is extracted from the pit during the analysis. In a first approximation, Ns 

can thus be considered constant. The same pit size can be obtained at different ablation 

speeds (e.g., by varying the laser repetition rate). Accordingly, ts changes. Reducing ts by 

increasing the ablation speed (for the same amount of material ablated) results in a decrease 

of the right-hand term of formula (79), facilitating detection. 

To summarise, using larger pit sizes and ablation speeds and increasing the background 

duration are factors facilitating detection, which agrees with the routine practice of many 

trace element LA-ICPMS laboratories and the literature data.47 Extending the background 

duration, especially in the range of tb/ts ratios from 1 to 3, also helps improving the 

robustness and power of detection (Fig. 9–11). 

2.9. PRESENTING CRITICAL LEVELS IN MASS CONTENT UNITS 

Although decisions ‘detected’ and ‘not detected’ in particle counting techniques are usually 

taken at a level of counts (per second),1–6 it is also possible to consider a distribution of 
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analyte contents resulting purely from the net activity fluctuations under the null 

hypothesis, when the sample signal and the background are statistically indistinguishable, 

and to describe the critical level in mass content units. In LA-ICPMS, the analyte content is 

quantified in two steps, combining external and internal standardisation.13,14,25 For isotopes 

x and y representing analyte and internal standard, respectively, we have: 

 

(80) 

where Is net
x and Is net

y are net intensities of the above isotopes: 

Is net
x = Is

x − Ib
x, Is net

y = Is
y − Ib

y (81) 

and cx and cy – their mass contents. 

In the first step, eqn (80) is applied to a standard reference material with reasonably well 

known cx, cy values. The mean net intensity ratio Is net
x/Is net

y for isotopes x and y is measured 

by ICPMS. Coefficient β, representing a relative sensitivity factor in the notation of eqn 

(80), is the only unknown in this equation and can easily be calculated. In the second step, 

eqn (80) is applied to a sample. The sample intensity ratio is measured by ICPMS. The 

relative sensitivity factor specific to the sample is generally not known, but assumed to be 

the same as for the standard. The only remaining unknown is the isotope content ratio in the 

sample. From this ratio, the analyte content is easily derivable, provided the internal 

standard content is known a priori. The whole procedure is reduced to the following 

equation: 

 

(82) 

the term β(Is net
y/csample

y) of this equation being often called sensitivity: S = β(Is net
y/csample

y): 
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(83) 

The factor β in eqn (80) can also be determined using more than one standard reference 

material. In this case, a regression of the concentration vs. intensity ratio data can be carried 

out to determine β as the slope of the regression line. Since element contents in standards 

currently available for trace element LA-ICPMS work often show non-negligible 

uncertainties, such regressions represent measurement error models, i.e. regressions with 

uncertainties in both variables, concentration ratio and intensity ratio. The LA-ICPMS 

practice of using several standards to determine β is still very limited; the interested reader 

is referred to the literature on measurement error models.48 

Using eqn (83), a net intensity value can be directly converted to mass units. Converting 

(propagating) a confidence interval, as in the case of critical levels, is also rather 

straightforward. Let us first assume that sensitivity is known precisely. Substituting Is net
x in 

eqn (83) by net intensity values Inet H0 from a common distribution constructed under the null 

hypothesis (from a large series of paired background acquisitions) yields a series of 

estimated analyte contents cH0 resulting from background fluctuations and not from the 

presence of analyte (Fig. 12). The probability of committing a false positive error at a 

specified critical level remains the same irrespective of whether the content or the intensity 

notation is used, the corresponding critical levels being connected as follows: 

 

(84) 

 

In practice, sensitivity has an uncertainty, though its scatter never extends to zero. Hence, 

the bivariate function c(Is net, S) = Is net/S is satisfactorily approximated by a plane in the 

vicinity of point (0, ): 
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(85) 

Therefore, eqn (84) still holds. This agrees with the previous experience of critical level 

computation in LA-ICPMS13,14 that is solely based on using eqn (84), not including the 

sensitivity uncertainty. 

2.10. AN ASSESSMENT OF THE EXISTING PRACTICES OF CRITICAL LEVEL 

ESTIMATION IN LA-ICPMS 

Analysing (ultra-) trace element contents always was an important field of application for 

ICPMS. The need to distinguish weak signals from the background noise has resulted in the 

appearance of a few articles providing recommendations for the LA-ICPMS community 

regarding the calculation of critical levels and, more recently, detection limits.13,14,47 In 

particular, the following formula for the critical level (‘detection limit’, using the authors' 

terminology) for paired measurements was suggested:13 

 

(86) 

Eqn (86) is obtained as a special case of eqn (73) by setting zα to 3; it uses the same 

notation. It is used for any distribution of uncorrelated sweep intensities that can be 

approximated by the Gauss distribution (see Section 1.3). For ordinary Poisson distributed 

data, it is equivalent to eqn (64) for zα = 3: 

 

(87) 
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where tsw denotes per-sweep dwell time for the isotope of interest. For kb = ks (tb = ts, 

background and signal of equal duration), eqn (86) and (87) return the √2Nb decision rule. 

The actual size of rule (87) is shown in Fig. 10b. For weak backgrounds, this rule is liberal 

even in the frequently practiced case of adding one count to an ‘empty’ background: the 

actual rate of false positive errors much exceeds the declared rate of 0.135% defined by the 

quantile (zα = 3) of the Gauss distribution. This is not surprising: the liberality of the 

‘biased’ decision rules of the √2Nb family has been much discussed in the previous sections 

of this text. Still, from a purely practical standpoint, using decision rule (86), (87) 

empirically corrected for an ‘empty’ background is, perhaps, not entirely unreasonable, 

because its maximum size does not exceed 2.4% (tb ≥ ts), owing to the very conservative 

selection of the quantile. It slowly decreases to the declared level with increasing the mean 

background count number, varying by a factor of ∼18(!) in the practical range of LA-

ICPMS backgrounds. 

From 1996 till 2008, rule (86) has been the only decision rule used for LA-ICPMS data 

treatment; it still remains in use with some laboratories. Noteworthy, all critical values 

presented in the LA-ICPMS literature before 2008 were called ‘detection limits’, following 

the practice that prevailed among analysts during several decades after the appearance of a 

well-known paper by H. Kaiser in 1947.12 A return of the ICPMS community to the modern 

meaning of the above terms, which is part of the current IUPAC recommendations,1,2 began 

in 2008.47 It does not seem to be achieved in practice: the communication level between 

statistics, metrology, and ICPMS is insufficient at times. 

The above article47 from 2008 considers only the relatively simple concept of well-known 

background , no performance analysis of decision rules for paired 

measurements was given. At the same time, practical LA-ICPMS data often represent true, 

non-replicated paired measurements. 
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In 2012, the problem of detection in LA-ICPMS was approached again.14 The decision rule 

suggested coincides with rule (64) from this text for zα = 1.645 (nominal rate of false 

positive errors set to 5%): 

 

(88) 

Compared to decision rules (86), (87), this rule uses a less conservative zα value; its 

declared size is larger. Its actual size is shown in Fig. 6 (tb = ts) and Fig. 10a (tb ≥ ts); 

increasing the declared size makes this rule too liberal for practical use at small background 

count numbers and at commonly employed tb/ts ratios. 

In both cases, difficulties related to the approximation of Poisson data by the continuous 

Gauss distribution at small counts were mentioned.14,47 Important difficulties concerned 

with the biased estimation of the net count number standard deviation and the liberal 

behaviour of the resulting decision rule(s) were not discussed, nor hidden from a reader 

willing to follow the literature cited in these articles. We fully admit the significant 

motivational value of these articles that, for the first time, introduced some modern texts on 

detection to the ICPMS community. 

Unfortunately, this effort has remained isolated. Eqn (86)–(88) appear to exhaust the list of 

decision rules suggested to the users of LA-ICPMS for thirty years. Sharing the same 

construction and deficiencies, they are a poor choice at small count numbers. 

In this context, one technical aspect is worth mentioning. It follows from the literature 

reviewed in this text that the √2Nb decision rule and its derivatives can be substituted by 

rules that perform much better in the range of small counts, while most background 

measurements acquired in the current practice of LA-ICPMS fall in this range. Indeed, 

‘modern ICPMS instruments with their curved ion channels suppress the photon noise; 

setting a correct discriminator threshold minimises the internal noise of the secondary 
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[61] 
 

electron multiplier [operated in the counting regime]; the gas blank is clean for most mass-

to-charge ratios’.20 However, early ICPMS instruments seem to have been less refined 

regarding the background suppression. For example, according to the specification of Elan 

6000 ICPMS introduced in 1994 by Perkin Elmer, the mean background intensity at mass 

220 must be <30 cps, while the corresponding value for Elan 6100 DRC ICPMS, appeared 

in 1999, is <2 cps. The modern instruments generally match the latter value, some of them 

having exceptionally low dark (detection system related) noise. Thus, at the time of 

introduction of decision rule (86) to the ICPMS community,13 the problem of correct 

handling of weak backgrounds seems to have been somewhat less acute than now. 

Still, the lack of interest from the ICPMS community to the large body of literature beyond 

ICPMS concerned with tests for the equality of two Poisson means represents a somewhat 

regrettable aspect of the history of quantification of LA-ICPMS detection capabilities. In 

fact, an LA-ICPMS user is confronted with an excessive choice of reasonably well 

performing decision rules rather than with a lack of such rules (Fig. 13). In reconciliation, it 

could be said that the IUPAC texts1,2 are also (partly) deficient regarding the choice and 

performance analysis of decision rules for Poisson distributed data. 

2.11. TESTS FOR THE EQUALITY OF POISSON MEANS AND THE DIFFERENT 

TECHNIQUES OF ANALYTICAL CHEMISTRY 

The core part of this text is dedicated to the mathematical theory of tests for comparing two 

Poisson means, especially in the range of small count numbers. Consequently, this text can, 

first of all, be used to serve analytical techniques (i) dealing with very weak Poisson 

distributed backgrounds and signals and (ii) employing the concept of paired 

measurements. The LA-ICPMS is one of the most obvious representatives of such 

techniques. For example, in optical emission ICP and laser induced breakdown 

spectrometry (ICP-OES and LIBS, respectively), there is a continuous background 

emission resulting in an increased background noise level, as well as a long-standing 

practice to replicate background measurements to compute critical values and detection 
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limits (which requires simpler decision rules that are generally available in the literature of 

chemical metrology1–3,40). A continuous background (Bremsstrahlung) is also typical of 

analytical techniques based on X-ray fluorescence. 

Apart from LA-ICPMS, one technique that could benefit from approaches reviewed in this 

text is secondary ion mass spectrometry (SIMS). As a proxy, the ordinary Poisson 

distribution is frequently used to describe count number statistics of SIMS data.49,50 

Besides, SIMS is known as a technique often dealing with weak background noise. If the 

background is analysed using the concept of paired measurements, then unbiased decision 

rules from Part 2 of this text can be recommended as a replacement for the √2Nb rule 

previously proposed to the SIMS community49 (see also the section ‘Conclusions and 

recommendations’). However, in the practice of SIMS, in contrast to LA-ICPMS, replicate 

background measurements appear to be more commonly used. At an arbitrary number (k) 

of background replicates, in the absence of instrument drift, unbiased decision rules from 

Part 2 of this text can still be used, assuming that tb/ts = k and Nb is equal to the total number 

of background counts from all available replicate background measurements. For example, 

for decision rule (65), we obtain: 

 

(89) 

Of course, these formulae can also be used by LA-ICPMS analysts wishing to work with 

replicate paired measurements. 

With increasing k (e.g., >15–20; well-known background), it becomes possible to use less 

complex rules (9) or (33) from Part 1 of this review (see also ref. 1–3 and 40) or rule based 

the numerical approximation of p-values in simple one-dimensional realisation (eqn (34)), 

possibly in combination with Lancaster's mid-p correction to improve the robustness. 
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Analysing the size, power, and overall practical applicability of such solutions, especially at 

small count numbers, could be a topic of future metrological research in the area of SIMS. 

An other technique where weak Poisson-distributed background noise is sometimes 

encountered is noble gas mass spectrometry (NG-MS). In particular, remarkably low 

helium blanks have been reported over the last few years.51,52 Signal quantification in NG-

MS usually invokes extrapolating a time-resolved signal back to inlet to account for 

consumption of the gas by ionisation during measurement.53 However, for weak signals and 

backgrounds, the average of peak intensities or total count number are also employed: the 

individual values in a time-resolved acquisition ‘show so wide a distribution that it is 

impossible to determine a trend’.54 Then, unbiased decision rules from Part 2 of this text 

can be recommended, if a decision regarding detection needs to be made. 

Besides, it could be helpful to use tests for the equality of two Poisson means for the 

treatment of some data obtained by traditional solution nebulisation (SN-) ICPMS. 

Background count numbers can be fairly small again; by far the commonest approach to the 

estimation of critical values in SN-ICPMS is, however, to replicate background 

measurements. Since collecting many background measurements before each sample 

measurement is practically unreasonable/unrealisable, the same ‘pack’ of background 

acquisitions is usually applied to a series of consecutively measured sample solutions. 

Thus, the system can suffer from contamination from the samples already measured (as 

well as from the standards). Performing paired measurements in the solution nebulisation 

regime can thus be appealing, especially if samples with very different analyte contents are 

analysed in the same batch. 

2.12. METROLOGICAL CONCEPTS ASSOCIATED WITH OR COMPLEMENTARY 

TO THE CONCEPT OF DETECTION 

If the signal activity is detected using a well-constructed decision rule, then two further 

questions can be posed: (i) how much the gross signal activity is higher than the 



[64] 
 

background activity and (ii) what is the precision of the resulting net activity? The first of 

these questions is part of the theory of statistical hypotheses testing as it is described in the 

previous sections of this text. The condition to be tested is, however, modified. Instead of 

testing (in the intensity-based notation) if, on the average, Is − Ib > 0, the condition Is − Ib > 

δ is tested. Here, δ denotes a positive value set by the analyst. The corresponding decision 

rules can be found in the literature;8,19,44 they are somewhat more complex compared to the 

rules formulated for δ = 0 and reviewed in this text, but constructed using exactly the same 

principles. The second question is part the theory of error propagation. It is practically 

important: net activity estimates, especially close to the critical level, are imprecise, and 

estimating the corresponding confidence intervals is essential in order to avoid data 

misinterpretation. In the majority of cases, the confidence interval needs to be given not 

only for net counts (per second) but also for the analysed element content. In the simplest 

case of ordinary Poisson distributed data, this usually implies calculating the net intensity 

uncertainties of the analyte and the internal standard using an error propagation scheme 

frequently employed in the previous sections of this text [s(Inet) = √s2(Is) + s2(Ib) = √(Is/ts + 

Ib/tb)]. Then, the net uncertainties are propagated according to eqn (82) along with the 

estimated uncertainty for the internal standard content in the sample and uncertainty of the 

relative sensitivity factor. This algorithm, as well as alternative solutions valid also for 

doubly stochastic Poisson distributed data are analysed in several general texts20,33 and 

articles dedicated to specific questions34,35 of the LA-ICPMS data treatment. 

CONCLUSIONS AND RECOMMENDATIONS 

All decision rules ever used in the LA-ICPMS practice are related to the √2Nb rule, which 

is inadequate for the treatment of true paired measurements by the basic principles of its 

construction (biased estimation of the net activity standard deviation in the absence of 

replication) and by its performance (large liberality). Unfortunately, the √2Nb rule has been 

popularised in the IUPAC texts1,2 and in an earlier review by L. A. Currie,3 on which some 

of these texts are based. Admittedly, the IUPAC provides recommendations that could be 

most readily understood by a practically minded analyst (e.g., based on the concept of 
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replicate paired measurements). On the negative side, the use the √2Nb rule in the absence 

of replication, and at small counts, where it is very liberal, has essentially been left at the 

analyst's discretion. It should also be noted that more performant decision rules, such as the 

√Ns + Nb rule and the mid-p adjusted version of the binomial rule, were already available at 

the beginning of the 1960th, but did not find their way to the IUPAC texts. The different 

scientific disciplines treated this situation differently. In the field of radioactivity 

monitoring/protection, the use of the √2Nb rule for weak backgrounds has been 

disapproved.5,6 In disciplines more distant from analytical chemistry, such as mathematical 

statistics and biometrics, this rule does not seem to have ever been used. We also do not 

recommend using this rule in the range of small count numbers, though we admit that its 

deficiencies become less acute at larger count numbers and when the background is 

measured longer than the signal. Based on the evaluation of decision rules included in this 

review, among decision rules based on the Poisson–Gauss approximation, we especially 

recommend using rules based on the square root transform (eqn (51) and (65)). The 

corresponding formula, in the intensity based notation, for any tb/ts ratio, at a frequently 

used zα value of 1.645 (5% of false positives) is as follows: 

 

(90) 

This recommendation agrees with earlier recommendations made in texts of radioactivity 

monitoring,5,6 where this formula is appreciated for its robust behaviour in a wide range of 

mean background count numbers and tb/ts ratios. It also agrees with recommendations given 

in texts of mathematical statistics and biometrics,18,19 where, in addition to the robust 

behaviour, it is approved for its relatively high power.19 The value of d can be set either to 

3/8 or to 0.4, it does not seem that either of these values is clearly preferable. In our 

practice, we usually set d to 0.4 (Stapleton's version), as the actual size of formula (90) is 

somewhat better controlled in the practically important range of tb/ts ≤ 3, provided this 

value is employed. A simpler version using d = 0 can only be approved at btb/ts > 5. The 
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reader interested in the estimation of the detection limit for decision rules based on the 

square root transform will find the relevant formulae in ref. 6 (p. 58–61). Some special 

cases are described in Fig. 11a. 

A viable alternative to decision rules based on the square root transform is the mid-p 

adjusted version of the binomial decision rule.19,45,46 It is slightly more conservative and 

less powerful, however, and less computation friendly. Several other potent solutions exist 

among decision rules based on the numerical approximation of p-values.19,44 The volume 

and the merely educational orientation of this text forces us to leave these relatively 

complex and computationally intensive solutions beyond its scope. 

For strong backgrounds that cannot be described by the ordinary Poisson process, using eqn 

(73) or its unbiased counterpart (78) can be recommended. The decision to use one of these 

equations instead of eqn (90) can be taken based on the results of a goodness-of-fit test (see 

ESI Appendix 1†), or when the background intensity reaches some (safely set) threshold, 

e.g., 500–1000 cps. In all cases, the Gaussian quantile (zα) needs to be set to the same value 

(the value of 1.645 being largely preferred in the literature1–6 and most extensively studied 

regarding the size and power of detection). 

A note of caution is warranted. A good understanding of the computational aspects of 

chemical analysis is important. Although it does dot fully protect against using, 

interpreting, and publishing analyte abundances that correspond to fluctuations of the 

background noise in the absence of analyte in the sample, it helps to reduce the rate of such 

errors (false positive errors) to a desired level. However, reporting a positive analyte 

activity in a sample, when there is none, is also possible without the aid of a decision rule, 

especially when samples with very small analyte abundances are analysed. 

Then, any contamination mobilised during the analysis influences its result. One example is 

the mineral olivine (Mg2SiO4, orth.) and the analysis of the light rare earth elements (LREE, 

e.g., La, Ce, Pr) in it by LA-ICPMS. The natural abundances of these elements in olivine 
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can vary depending on the geological conditions; in most cases, they are very low, as the 

crystal structure of olivine is incompatible with their presence. At the same time, olivine 

often contains alteration products and small inclusions that can be relatively rich in the 

LREE. Sampling the bulk of olivine, its alteration products and inclusions during the 

ablation can lead to detection of a light rare earth element that is mostly concentrated in the 

alteration products and inclusions. To circumvent this obstacle, two approaches can be 

employed. The first approach requires that the background activity is acquired from a gas 

blank (as it is usually done in LA-ICPMS), but the sample is thoroughly studied before 

analysis to avoid the contaminated material and, of course, the sample surface is cleaned. 

The second approach requires that the background activity is acquired by analysing a ‘no-

analyte’ sample; in the present case, it represents olivine grains, with all their inclusions 

and alterations, but devoid of LREE in the crystal structure of the olivine itself. Neither of 

these approaches can be easily employed in practice (some LA-ICPMS techniques, such as 

the analysis of lithium borate glass beads,55 still allow for an uncomplicated preparation of 

a surrogate ‘no-analyte sample’ made of 100% lithium borate). 

The adequacy of the gas blank for the background characterisation in real LA-ICPMS 

measurements can also be questioned in the context of spectral (and possibly non-spectral) 

interferences related to the composition of the sample matrix: background count numbers 

obtained from the gas blank can thus be underestimated, resulting in an underestimation of 

the corresponding critical values and detection limits. This issue is of general significance 

and applies to the detectability and accuracy of many trace-level analytical results obtained 

by LA- and SN-ICPMS, as well as by ICP-OES, LIBS, and SIMS. 

We refrain from further generalisations. In LA-ICPMS, there are isotopes affected by 

spectral interferences, but there are many isotopes and practically important matrices 

showing no such interferences even in the most common mode of instrument operation 

(low resolution; collision/reaction cells and MS/MS mode not available or not used). For 

example, in geological applications, where LA-ICPMS excels, there are minerals (e.g., 

garnet, zircon, orthopyroxene, olivine) depleted in LREE. The REE menu analysed in these 
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minerals does not show any practically significant spectral overlaps, while the analysis of 

their REE contents is of crucial importance for geology. Obviously, spectral interferences 

are specific to the isotope and matrix studied, and the decision of whether the gas blank is a 

good proxy for a given isotope needs to be made on an individual basis. There are computer 

programmes (e.g., ICPMS interference simulator from Thermo Scientific56) helping to take 

this decision rationally. 

It is worth mentioning that an additional yet complementary part of the ‘gas blank’ issue 

exists: underestimating the blank count number results in a systematic positive error in the 

analyte content. Mathematical corrections of spectral interferences are rarely used in the 

modern practice of multi-elemental LA-ICPMS and are usually unavailable in trace 

element data reduction programmes. So, we would not only need to refrain from estimating 

critical values (detection limits), but also to stop producing trace element data or analysing 

ever-smaller targets by LA-ICPMS because the results could be positively biased. We are 

convinced that this decision must be taken individually for each of the studied isotopes, and 

where there are issues – instrumental solutions need to be found to suppress the 

interference(s) as much as possible. It also seems likely that we will see a wider use of 

mathematical corrections of spectral interferences in the practice of trace element LA-

ICPMS in the future (for a brief discussion of modified versions of decision rules for paired 

measurements that include such corrections, see ref. 6). 

As an ultimate solution, using a matrix-matched material devoid of the analyte (‘no-

analyte’ sample) for the analysis of real samples seems feasible in some cases. It is possible 

that we will see more development in this direction in the future, in which case the 

mathematical methods reviewed in this text will suffer no alteration. The only alteration 

will be to compare count numbers acquired from a no-analyte material, and not from a gas 

blank, to those acquired from a sample. 

Thus, we believe that the existence of interferences and possible sample contamination are 

no excuse not to practice (ultra-) trace element spectrometry. We admit and emphasise that 
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care should be exercised regarding the signal source in samples analysed by LA-ICPMS, 

even if the signal is detected by using a well-constructed decision rule: ‘The fascinating 

impressiveness of rigorous mathematical analysis, with its atmosphere of precision and 

elegance, should not blind us to the defects of the premises that condition the whole 

process’.57 This does not mean that using poorly performing decision rules can be 

encouraged: such rules do not allow deciding if a signal is detected at a well-defined 

confidence level irrespective of the source of this signal. 

It is obvious that the continuous attempt of the LA-ICPMS community to analyse ever-

smaller isotope abundances includes several (partly) independent aspects and requires: (i) 

using well-constructed decision rules, (ii) investigating the material to be analysed for 

contamination and interferences and (iii) increasing the sensitivity of LA-ICPMS 

instruments and, perhaps, further suppressing their background noise. A lack of progress in 

any of these areas hampers the user of LA-ICPMS to fully benefit from the (ultra-) trace 

element capabilities of this technique. The area covering the quantification of LA-ICPMS 

detection capabilities has received relatively little attention for two decades, hence this 

review. 

EXAMPLES 

ESI Appendix 8† contains four examples of LA-ICPMS background measurements 

covering a range of intensities. For each of these examples, critical levels are estimated and 

conclusions provided. 
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TABLE 1 Critical levels and actual probabilities of false positive errors for the case of well-known 

background (a number of replicates is available to characterise the mean and standard deviation of the 

background noise). Both canonical and discontinuity-corrected versions are described. zα is set to 1.645 

(5% nominal rate of false positives)a  

 L c = 1.645√Nb  L c = 1/2 + 1.645√Nb  

 

L c  

N *
s gross p(N) > 

N&
s gross 

L c N *
s gross p(N) > 

N&
s gross 

1 1.645 3 0.0803 2.145 3 0.0190 

2 2.326 5 0.0527 2.826 5 0.0527 

3 2.849 6 0.0839 3.349 6 0.0335 

5 3.678 9 0.0681 4.178 9 0.0318 

7 4.352 12 0.0533 4.852 12 0.0533 

10 5.202 16 0.0487 5.702 16 0.0487 

20 7.357 28 0.0525 7.857 28 0.0525 
a *min. gross signal count number that is considered as detected; &probability to commit a false positive 

error (i.e., to obtain a count number value > min. detected gross signal). 
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TABLE 2 Critical levels and actual probabilities of false positive errors for the √2Nb rule (background 

and signal of equal duration). For the sake of illustration, the mean background count number value is 

set to 1.5 counts. Three cases are considered: replicate paired measurements, true paired measurements, 

and true paired measurements modified by substituting a zero background estimate by one count. zα is 

set to 1.645 (5% nominal rate of false positives)  

N b1  p(Nb1) L c  

p(Nb2) Probability of 

false detection p(0) p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9) etc.  

Replicate paired measurements: computing L c from a well-known value of the standard deviation of 

the net background count number (L c = 1.645√3) 

0 0.2231 2.849 0.2231 0.2231 0.2231 0.2231  0.2231  0.2231  0.2231  0.2231  0.2231  … … p(0) × (p(3) +p(4) 

+ …) = 0.0426 

1 0.3347 2.849 0.2231 0.2231 0.2231 0.2231 0.2231  0.2231  0.2231  0.2231  0.2231  
  

p(1) × (p(4) + p(5) 

+ …) = 0.0220 

2 0.2510 2.849 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231  0.2231  0.2231  0.2231  
  

p(2) × (p(5) + p(6) 
+ …) = 0.0046 

3 0.1255 2.849 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231  0.2231  0.2231  
  

p(3) × (p(6) + p(7) 

+ …) = 0.0006 

4 0.0471 2.849 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231  0.2231  
  

p(4) × (p(7) + p(8) 

+ …) = 0.0000 

5 0.0141 2.849 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231  
  

p(5) × (p(8) + p(9) 
+ …) = 0.0000 

6 0.0035 2.849 … 
       

… … … … 

… 
  

… 
       

… … … 0.0698  

True paired measurements: computing L c from one single background count number estimate (L c = 

1.645√2N b 1 )  

0 0.2231 0.000 0.2231 0.2231  0.2231  0.2231  0.2231  0.2231  0.2231  0.2231  0.2231  … … p(0) × (p(1) + p(2) 
+ …) = 0.1733 

1 0.3347 2.326 0.2231 0.2231 0.2231 0.2231 0.2231  0.2231  0.2231  0.2231  0.2231  
  

p(1) ×x (p(4) + p(5) 

+ …) = 0.0220 

2 0.2510 3.290 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231  0.2231  0.2231  
  

p(2) × (p(6) + p(7) 

+ …) = 0.0011 

3 0.1255 4.029 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231  
  

p(3) × (p(8) + p(9) 
+ …) = 0.0000 

4 0.0471 4.653 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 
  

… 

5 0.0141 5.202 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 
  

… 

6 0.0035 5.698 … 
       

… … … … 

… 
 

… … 
       

… … … 0.1964  

True paired measurements: computing L c from one single background count number estimate (L c = 

1.645√2N b 1 ), with replacing a zero background estimate by unity  

1 → 0 0.2231 2.326 0.2231 0.2231 0.2231 0.2231 0.2231  0.2231  0.2231  0.2231  0.2231  … … p(0) × (p(4) + p(5) 

+ …) = 0.0146 

1 0.3347 2.326 0.2231 0.2231 0.2231 0.2231 0.2231  0.2231  0.2231  0.2231  0.2231  
  

p(1) × (p(4) + p(5) 
+ …) = 0.0220 

2 0.2510 3.290 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231  0.2231  0.2231  
  

p(2) × (p(6) + p(7) 

+ …) = 0.0011 

3 0.1255 4.029 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231  
  

p(3) × (p(8) + p(9) 

+ …) = 0.0000 

4 0.0471 4.653 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 
  

…  

5 0.0141 5.202 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231 
  

… 

6 0.0035 5.698 … 
       

… … … … 

… 
 

… … 
       

… … … 0.0625  
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TABLE 3 Actual probabilities of false positive errors for the canonical version of the binomial rule 

(background and signal of equal duration). For the sake of illustration, the mean background count 

number value is set to 2 counts (4 counts for a sum of two independent background estimates). The 

nominal rate of false positives is set to 5%  

N b1 

+ 

Nb2 

p(Nb1 + 

Nb2) 1/2n 

p(Nb1, Nb2) 

Probability of false 

detection p(0, n) 

p(1, n 

− 1) 

p(2, n 

− 2) … … … … … 

0 0.0183 1.00000 1.0000 

(1) 

        

1 0.0733 0.50000 0.5000 

(1) 

0.5000 

(1) 

       

2 0.1465 0.25000 0.2500 

(1) 

0.5000 

(2) 

0.2500 

(1) 

      

3 0.1954 0.12500 0.1250 

(1) 

0.3750 

(3) 

0.3750 

(3) 

0.1250 

(1) 

     

4 0.1954 0.06250 0.0625 

(1) 

0.2500 

(4) 

0.3750 

(6) 

0.2500 

(4) 

0.0625 

(1) 

    

5 0.1563 0.03125 0.0313 

(1)  

0.1563 

(5) 

0.3125 

(10) 

0.3125 

(10) 

0.1563 

(5) 

0.0313 

(1) 

  
p(5) × p(0, 5) = 

0.0049 

6 0.1042 0.01563 0.0156 

(1)  

0.0938 

(6) 

0.2344 

(15) 

0.3125 

(20) 

0.2344 

(15) 

0.0938 

(6) 

0.0156 

(1) 

 
p(6) × p(0, 6) = 

0.0016 

7 0.0595 0.00781 0.0078 

(1)  

0.0547 

(7) 

0.1641 

(21) 

0.2734 

(35) 

0.2734 

(35) 

0.1641 

(21) 

0.0547 

(7) 

… p(7) × p(0, 7) = 

0.0005 

8 0.0298 0.00391 0.0039 

(1)  

0.0313 

(8)  

0.1094 

(28) 

0.2188 

(56) 

0.2734 

(70) 

0.2188 

(56) 

0.1094 

(28) 

 
p(8) × (p(0, 8) + 

p(1, 7)) = 0.0011 

9 0.0132 0.00195 0.0020 

(1)  

0.0176 

(9)  

0.0703 

(36) 

0.1641 

(84) 

0.2461 

(126) 

0.2461 

(126) 

0.1641 

(84) 

 
p(9) × (p(0, 9) + 

p(1, 8)) = 0.0003 

10 0.0053 0.00098 0.0010 

(1)  

0.0098 

(10)  

0.0439 

(45) 

0.1172 

(120) 

0.2051 

(210) 

0.2461 

(252) 

0.2051 

(210) 

 
p(10) × (p(0, 10) + 

p(1, 9)) = 0.0001 

11 0.0019 0.00049 0.0005 

(1)  

0.0054 

(11)  

0.0269 

(55)  

0.0806 

(165) 

0.1611 

(330) 

0.2256 

(462) 

0.2256 

(462) 

 
p(11) × (p(0, 11) + 

p(1, 10) + p(2, 9)) = 

0.0001 

12 0.0006 0.00024 0.0002 

(1)  

0.0029 

(12)  

0.0161 

(66)  

0.0537 

(220) 

0.1208 

(495) 

0.1934 

(792) 

0.2256 

(924) 

… p(12) × (p(0, 12) + 

p(1, 11) + p(2, 10)) 

= 0.0000 

… … … … 
      

… 0.0086  
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FIGURES 

 

 

Fig. 1 Detection in the framework of the Poisson–Gauss approximation: (a) well-known background; 

(b) replicate paired measurements. For the sake of illustration, the number of replicates is assumed to 

be large; the mean background activity is arbitrarily set at 13 counts; the model distribution is 

Gaussian, set at a mean of zero and at standard deviations of ∼√13 and √26 for the cases of well-

known background and paired measurements, respectively. Confidence intervals corresponding to 

some frequently used quantiles (zα = 1; 1.645; 2; 3) are delimited. Detection is achieved, provided the 

net sample activity value falls in the critical region of the net values larger than Lc. Within the critical 

region, the nominal probability of appearance of a net background value is below some level α set by 
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the analyst (e.g., to 5%); it is constrained by the quantile used. Thus, if a net sample activity value 

falls within the critical region, it is unlikely that it comes from fluctuations of the background activity: 

analyte is detected. If the net sample activity value falls outside the critical region (i.e., it does not 

surpass Lc), then the presence of analyte in the sample is still not excluded, but there is a relatively 

large probability that the above activity comes from fluctuations of the background activity: analyte is 

not detected. 

 

 

 

FIG. 2 Critical level (Lc) and detection limit (Ld) as two different parameters characterising detection: 

(a) well-known background; (b) replicate paired measurements. The number of replicates is assumed 

to be large; the mean background activity is arbitrarily set at 13 counts; the model distributions 

represent a Gauss approximation of the original Poisson statistics that are markedly heteroscedastic at 

small mean count number values (their standard deviation increases with increasing the mean count 

number).1–3 As a simpler model applicable at large count numbers only, the homoscedastic solution is 

also shown. Deciding whether the analyte activity is detected requires comparing the net sample 
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activity value to Lc. However, for a sample, of which the mean (precisely known, ‘true’) activity is 

equal to Lc, only 50% of all measurements, or estimates, of the net activity will result in detection. 

The detection limit (Ld) represents a value of the mean (‘true’, precisely known) sample activity that 

ensures a reasonably high probability of detecting net sample activity values obtained from individual 

sample measurements. This probability is usually set at 95%. Ld is defined relative to a decision rule 

(that allows to decide if the net sample activity above is detected). Estimating Lc is a pre-requisite for 

computing Ld. Using Ld values is necessary, provided the analytical task requires a specific value of 

‘true’ analyte activity to be detected at some level of confidence (e.g., 95%; for details, see Section 

1.2). 

 

 

 

FIG. 3 The mean sample activity value estimated from replicate measurements is positively biased, 

provided the sample activity values below detection are excluded from its computation. An unbiased 

value is obtained by averaging all net sample activity values including those that are below detection 

(including those that are below zero). The unbiased value is approximately equal to the ‘true’ sample 

activity, the quality of this approximation improving with the increase of the number of replicate 

sample measurements. 
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FIG. 4 The Poisson–Gauss approximation. (a) Well-known background. Net values obtained by 

subtracting the mean background activity from the individual Poisson outcomes form a skewed, 

discrete distribution that improves in symmetry and converges to the Gauss distribution with the 

increase of the mean count number value. (b) Replicate paired measurements. Net values obtained by 

subtracting the individual outcomes sampled from the same Poisson distribution are symmetrically 

centered around zero at any mean count number; the resulting distribution is sometimes called 

Skellam distribution. It is still discrete, but also converges to the Gauss distribution with increasing 

the mean count number value. This allows using the Gaussian quantiles and the associated confidence 

intervals for the estimation of critical levels (delimited for the case of a large number of replicates). 
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FIG. 5 Correcting discrete data for discontinuity. In a discrete distribution, the probability is 

concentrated in the individual ‘probability bars’, whereas in a continuous distribution, the probability 

density is continuously distributed. Here, for the sake of illustration, we consider an arbitrarily 

selected case of a well-known background based on a Poisson distribution with a mean of 12 counts 

that is approximated by the Gauss distribution. Accordingly, Lc = 1.645 × √12 ≈ 5.70 counts. This 

would mean that a net sample value of 6 counts is detected. However, the corresponding probability 

bar covers the range from 5.5 to 6.5 counts. Including this probability bar in the critical region causes 

the size of the critical region to exceed 5%, meaning that the decision rule behaves liberally. In the 

present case, the distribution step is equal to unity. Adding one-half of it to Lc allows excluding the 

probability bar of 6 counts from the critical region, though the decision rule employing such a 

correction becomes somewhat conservative. Strictly, for an Lc value obtained using the Gauss 

approximation of Poisson distributed data at a declared level of false positive errors set to α, the range 

of Poisson outcomes with a cumulative probability not exceeding α begins from Lc + 1/2. 
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FIG. 6 Actual rate of false positive errors for the √2Nb decision rule (background and signal of equal 

duration). The performance of four versions of this rule is illustrated: (1) replicate paired 

measurements: the standard deviation of the net background activity is known precisely; (2) true 

paired measurements: the standard deviation of the net background activity is not known, bit assumed 

to be equal to √2Nb, (3) same as (2), modified by adding one count to an ‘empty’ background estimate 

without changing other (positive) background estimates; (4) randomised formulation (for details, see 

Section 2.1). In all cases, zα was set to 1.645 (5% declared level of false positive errors). 

 

 

 

 
FIG. 7 A schematic illustration of correlation-induced skewness in the distribution of the normalised 

statistics associated with the √2Nb decision rule (non-randomised formulation under the null 

hypothesis; see Section 2.1). 

 

 

 

 

FIG. 8 Testing the hypothesis of equality of two Poisson means using the √Nb + Ns decision rule 

(background and signal of equal duration). The net count number estimates obtained from the 

individual paired measurements are distributed around zero, provided their mean is zero. The latter 

condition represents the null hypothesis (H0) to be tested. H0 is first assumed to be true. For a paired 

measurement, the most probable estimate of the net count number standard deviation is √Nb + Ns. We 

compute Lc based on the Poisson–Gauss approximation, and compare the net sample activity obtained 

from a paired analysis to Lc. If the net sample activity falls in the critical region of the net distribution 

that is centered around zero, then there is little chance to obtain it from such distribution (i.e., when 

H0 holds true). We conclude that H0 is false, which implies a positive mean net sample activity: the 

corresponding distribution is shifted relative to zero; obtaining the net sample activity above from 

such shifted distribution is more probable. Hence, the analyte activity in the sample is detected. 
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FIG. 9 Actual rate of false positive errors for several decision rules based on an unbiased estimation 

of the net count number standard deviation, in the range of tb/ts ratios from 1 to 5. In all cases, zα was 

set to 1.645 (5% declared level of false positive errors). The most robust rules are the Poisson–Gauss 

approximation using the square root transform [Huffman's (d = 3/8) and Stapleton's (d = 0.4) 

versions] and the mid-p adjusted version of the binomial decision rule. 
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FIG. 10 Actual rate of false positive errors for the √2Nb decision rule adapted for arbitrary tb/ts ratios: 

(a) zα = 1.645, or 5% declared level of false positive errors; (b) zα = 3, or 0.135% declared level of 

false positive errors. The original formulation, as well as the formulation empirically corrected for the 

‘empty’ background are described. A liberal behaviour is observed in all cases, although the actual 

size becomes closer to the declared value with increasing the tb/ts ratio. 
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FIG. 11 Power of detection for two decision rules in the range of tb/ts ratios from 1 to 5: (a) Poisson–

Gauss approximation using the square root transform [Stapleton's version (d = 0.4)]; (b) mid-p 

adjusted version of the binomial rule. b(ts/tb) is fixed at 1, 5, and 10 counts. At b(ts/tb) = s, the 
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diagrams return the actual rate of false positive errors (actual size) of the corresponding decision rule. 

At a power of 95%, they return the gross signal count numbers corresponding to the detection limit. 

 

 

 FIG. 12 Scaling confidence intervals for the net activity distribution constructed under the null 

hypothesis by the sensitivity factor (see Section 2.9). 
 

 

 

 

FIG. 13 A systematics of decision rules used for testing the equality of two Poisson means. For the 

sake of completeness, several rules (e.g., the likelihood ratio test and the Poisson–Gauss 

approximation using the logarithmic transform) are included, which were omitted in the main text 

because of their complex construction, arbitrary solutions used in their construction, or liberal 

performance. 
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