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Abstract

The ability to obtain gene expression profiles from human disease specimens provides an 

opportunity to identify relevant gene pathways, but is limited by the absence of data sets spanning 

a broad range of conditions. Here, we analyzed publicly available microarray data from 16 diverse 

skin conditions in order to gain insight into disease pathogenesis. Unsupervised hierarchical 

clustering separated samples by disease and common cellular and molecular pathways. Disease 

specific signatures were leveraged to build a multi-disease classifier which predicted the diagnosis 

of publicly and prospectively collected expression profiles with 93% accuracy. In one sample, the 

molecular classifier differed from the initial clinical diagnosis and correctly predicted the eventual 

diagnosis as the clinical presentation evolved. Finally, integration of interferon (IFN) regulated 

gene programs with the skin database revealed a significant inverse correlation between IFN–β 

and IFN–γ programs across all conditions. Our study provides an integrative approach to the study 

of gene signatures from multiple skin conditions, elucidating mechanisms of disease pathogenesis. 

Additionally, these studies provide a framework for developing tools for personalized medicine 

towards the precise prediction, prevention, and treatment of disease on an individual level.
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Introduction

Gene expression profiling technology, such as microarrays, provides the opportunity to 

identify disease specific genes and pathways. The NCBI Gene Expression Omnibus (GEO) 

is a community resource of publicly available experimental data sets including those 

involving human health and disease and that incorporate less common diseases studied in 

specific laboratories (Edgar et al., 2002). This searchable database contains annotated gene 

expression profile data (both in summarized and raw formats), primarily from published 

work. The ability to mine data from GEO provides a tremendous opportunity to compare 

gene expression profiles across multiple diseases.

Previously, disease profiles have been compared across multiple data sets by normalizing to 

controls within each set; however, this practice limits the use of available data to those 

containing equivalent control profiles (Chaussabel et al., 2008; Wong et al., 2012). To 

overcome this limitation, data integration from multiple sources, particularly those from 

experiments containing a single disease, can be achieved with Frozen Robust Multi-array 

Average (fRMA), which normalizes samples to a standard reference set of microarrays, 

eliminating the need for control samples in each data set (McCall et al., 2010). Here we 

present a study that uses this approach on gene expression profiles derived from skin biopsy 

specimens. We assembled a database of publicly available skin microarray samples 

representing 16 inflammatory, infectious, and neoplastic conditions. This database was used 

to construct a classifier, perform functional analyses to identify representative pathways, and 

establish a spectrum of differentially expressed Type I vs. Type II interferon gene programs 

across these diseases (Figure S1).

Results

Data normalization with Frozen RMA

We searched GEO for microarray experiments performed on human skin samples associated 

with a dermatological disorder (www.ncbi.nlm.nih.gov/geo) (Edgar et al., 2002). Data for 

microarrays 311 skin biopsy samples were downloaded, representing 16 conditions from 15 

experiments and 14 laboratories (Table S1). All samples used the Affymetrix HG U133 Plus 

2.0 platform. To analyze this data as a single set, Frozen RMA (fRMA) was used to 

normalize samples such that they showed comparable probe set intensity distributions 

(Figure S2) (McCall et al., 2010).

After unsupervised gene clustering, samples segregate by disease and into groups with 
related pathogenesis

In order to determine whether the batch effects within a given disease were smaller than the 

differences between diseases, trees of filtered gene expression profiles were constructed for 

both samples and diseases (Figures 1, S3). Remarkably, we found that in diseases in which 

there were multiple batches of microarrays from different sources, including psoriasis, 

atopic dermatitis and leprosy, batches from the same disease nearly always clustered 

together, despite coming from independent data sets (Figure 1). Furthermore, five batches of 

normal skin, each obtained from healthy control subjects from different laboratories, 
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clustered together with little differentiation by batch. However, batch effects were not 

completely eliminated as samples from specific diseases often separated by lab or 

experiment. There were isolated cases of individual samples clustering with the incorrect 

disease. However, squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) samples 

from a single lab were split into two groups. Overall, these results suggest that the use of 

fRMA allows us to minimize the effect of batch and allow true disease signatures to 

predominate.

When the higher-level structure of the tree was examined, we found that branches of the tree 

could be annotated as disease groups with related pathogenesis. These distinct groups were 

categorized according to the following descriptions: i) keratinocyte proliferation and 

neoplastic growth (psoriasis, and approximately half the SCC and BCC samples), ii) wound 

(post-operative wound, burn), iii) normal, iv) allergic (allergic contact dermatitis, atopic 

dermatitis), v) malignant (mycosis fungoides, melanoma); and, vi) infectious (leprosy, 

chancroid). These relationships are consistent with those seen in an unrooted disease tree, 

which was built with one leaf per disease by averaging distances between all pairs of 

samples (Figure S3).

Proportional median metric for identifying disease specific gene signatures

Gene signatures were identified for each disease in order to build a disease classifier and 

perform downstream functional analysis. We developed the “proportional median” (PM) 

metric to identify highly expressed gene probe sets for each disease. The PM of a microarray 

probe set X in disease Y represents how highly expressed X was in Y, compared to all other 

diseases. Probe sets were ranked by PM for each disease. Because lowly ranked genes often 

have low intensity and tend to be noisier than those with higher ranks, subsequent analysis 

utilized genes with high PM values, reflecting over-expression in a particular disease (Mutch 

et al., 2002; Tu et al., 2002). The top 25 genes in the psoriasis PM list were confirmed by 

comparison to RNA-seq data derived from the same samples (Figure S4) (Li et al., 2014).

Random forest classifier accurately predicts disease diagnosis

We built a random forest multi-classifier using our disease expression profiles to predict 

disease status based on the expression of a limited number of genes (Breiman, 2001). 

Briefly, the random forest algorithm selects subsets of samples and genes to iteratively build 

multiple, parallel decision trees. This random subsampling and iteration reduces the effect of 

noise and outliers on classifier training. In addition, cross-validation is built into the 

classifier training process by testing each decision tree with samples not used to build that 

tree.

We used PM to select the most informative probe sets as input to our classifier, which 

yielded an overall error rate of 4.5% (Figure S5). Performance for each disease was assessed 

by sensitivity, specificity, precision, and F1 score, a measure of accuracy equivalent to a 

weighted average of sensitivity and precision that has values between 0 (poor accuracy) and 

1 (perfect accuracy). Sensitivity values ranged from 0.60 and 1.00 (mean 0.92) and 

specificity values ranged from 0.99 to 1.00, which corresponds to an average of 92% of 

disease samples being accurately classified and 99% of negative classifications being 
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correct. The range of F1 scores was from 0.75 to 1.00 (mean 0.94) (Table S3). We also 

performed three-fold cross validation, which yielded aggregate F1 scores from 0.75 to 1.00 

(mean 0.96) (Table S4).

To assess the classifier’s ability to generalize, two-fold cross validation with separation by 

batch was carried out. We separated data into two approximately equal groups: in multi-

batch conditions (leprosy, psoriasis, atopic dermatitis, and normal), data was separated 

according to batch; otherwise, data was randomly partitioned. Two independent classifiers 

were built, each trained on one partitioned set and tested on the other. PM values used in 

feature selection were computed from only one group of data to ensure that test data did not 

bias classification. Diseases separated by batch had F1 scores between 0.90 and 0.95 (mean 

0.92), and diseases randomly separated had F1 scores between 0.71 and 1.00 (mean 0.92), 

indicating little loss of accuracy with batch separated cross validation (Table 1).

The classifier’s performance was next tested on data not used for any of the previous 

analyses, including the feature selection and training steps of this classifier. We generated 26 

de-identified gene expression profiles derived from biopsy specimens of leprosy, psoriasis, 

atopic dermatitis, and normal skin. We also found public data for 168 gene expression 

profiles derived from biopsy specimens of psoriasis, atopic dermatitis, and melanoma (Table 

S5). The classifier was used to assess these 194 validation samples, yielding an overall 

sensitivity of 0.93, specificity of 0.99, and F1 statistics between 0.76 and 1.0 (Table S6).

Upon follow-up of the patients from whom we had collected samples, we discovered that 

one that was clinically diagnosed with atopic dermatitis, which we classified as psoriasis, 

had an unusual presentation. This patient had a history of an atopic diathesis including hay 

fever, increased total IgE levels as well as elevated levels of the eosinophilic cationic 

protein. The patient presented clinically with chronic dermatitis on the palms of the hands, 

as well as on the plantar side of the feet. Furthermore, inflammatory skin lesions on the arms 

and other locations were clinically diagnosed as atopic dermatitis, consistent with the atopic 

diathesis, and a sample was obtained for the present study. However, later the patient 

developed inflammatory plaques on the lower back, which were clinically diagnosed as 

psoriasis. Both atopic dermatitis and psoriasis were considered as a diagnosis for this patient 

at various stages; however, the co-occurrence of atopic dermatitis and psoriasis is rare, 

perhaps due to the opposing immunopathogenic mechanisms for the two diseases (Beer et 

al., 1992; Eyerich et al., 2011; Henseler and Christophers, 1995). Although we cannot be 

certain of the initial diagnosis, our molecular classifier correctly predicted the diagnosis as 

the clinical course evolved.

Functional annotation of related disease signatures using cell-type specific deconvolution 
and k-means clustering shows shared and unique mechanisms of disease

We investigated whether diseases that grouped together on the hierarchical clustering tree 

shared cell types in their associated lesions. Using cell-type specific gene signatures 

developed in previous work by Swindell, et al., the relative enrichment of each cell type 

signature was assessed in each disease, and subjected to hierarchical clustering using 

Euclidian distance (Figure 2) (Swindell et al., 2013; Swindell et al., 2012).
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In some instances, the clustering by cell-type signatures was consistent with the hierarchical 

clustering and unrooted trees generated from the entire filtered gene profiles (Figures 1, S3). 

For example, atopic dermatitis, allergic contact dermatitis and normal skin clustered together 

in both trees, and deconvolution analysis revealed a T regulatory cell gene signature 

consistent with previous studies of atopic dermatitis expression profiles (Figure 2) (Clark 

and Kupper, 2007; Hanafusa et al., 2013). The notable absence of a general T cell specific 

signature in psoriasis and atopic dermatitis likely reflects that expression of T cell specific 

genes is much greater in conditions such as mycosis fungoides and Stevens Johnson 

syndrome, which are characterized by marked T cell activation and proliferation (Chung et 

al., 2008; Nassif et al., 2004; Yamashita et al., 2012). In other instances, the clustering 

differed by cell type versus hierarchical clustering, suggesting that other factors must be 

involved in the observed groupings.

We used pathway analysis of gene signatures to further investigate common pathways 

within each disease group. For each group of diseases indicated by hierarchical clustering, 

combined gene signatures were constructed and evaluated for enriched functional terms. K-

means clustering was performed on the p-values associated with each term (Figure 3). 

Significantly enriched terms support previous findings in the literature: allergic diseases 

were enriched for “cell-cell adherens junction” (p-value=8.93×10−03), and 

hyperproliferative/neoplastic diseases were enriched for “keratinocyte and epithelial cell 

development” (p-value=2.47×10−09) (Cai et al., 2012; O’Regan et al., 2008). Wound, 

malignant, and infectious groups share overlapping enriched GO terms, associated with 

response to wounding.

Functional analysis of PM signatures shows enrichment for genes and pathways 
corresponding to single diseases

In order to assess the relevance of individual disease PM signatures, additional pathway 

analysis was performed on the 250 probe sets with the highest PM values for each disease. 

DAVID and Ingenuity Pathways functional analyses of individual disease signatures often 

showed a correspondence to the disease of origin (Tables S7, S8). For example, Ingenuity 

analysis of the melanoma PM signature revealed an enrichment of “biologic functions” 

relevant to melanocyte development and disorders (“differentiation of melanocytes,” p-

value=4.4×10−09), as well as a significant enrichment of the “Melanocyte Development and 

Pigmentation Signaling canonical pathway” (p-value=9.2×10−05) (Figure 4C). We 

developed a web-based visualization tool (http://pathways-pellegrini.mcdb.ucla.edu/

goTeles/dot_plot.html) that plots the expression of a gene within our database; shown are 

two melanocyte development genes (Figure 4A,B).

Network analysis of the PM signatures was carried out using Ingenuity Pathways Analysis 

to visualize connected genes and pathways in each disease and further evaluate the 

functional significance of our signatures. Notably, a psoriasis network showed connections 

between TCN1, OASL, and SPRR3 (Figure S6). This network appears to provide a cellular 

nexus connecting key pathogenesis elements, including differentiation-associated pathways, 

IFN-directed responses, and infiltrating inflammatory cells such as neutrophils. 

Furthermore, cell-type specific deconvolution of the psoriasis PM signature demonstrated 
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expression patterns consistent with the presence of neutrophils (Figure S7) (Fujimoto et al., 

1997; Suárez-Fariñas et al., 2012; Suárez-Fariñas et al., 2011; Swindell et al., 2013; Yao et 

al., 2008).

Type I vs. Type II interferon gene programs have a negative inverse correlation across a 
spectrum of skin diseases

Type I and Type II interferons (IFN) have opposing immunoregulatory roles in human 

disease, and previous work has shown different diseases or subtypes of disease to exhibit a 

range of IFN responses. Recent work in leprosy has demonstrated a distinct pattern of Th1 

versus Th2 cytokines, which we have used as a model for interrogating our skin disease 

database in order to identify similar patterns across a range of conditions (Teles et al., 2013; 

Wong et al., 2012; Yamamura et al., 1991). IFN–γ (Type II IFN) is involved in macrophage 

activation to fight bacterial infection, and is opposed by IFN–α/β (Type I IFN), which 

combats viral infection. Because IFNs are weakly detected on microarrays, we used Type I 

and Type II-specific induced transcriptional profiles of human peripheral blood 

mononuclear cells to infer the expression of IFN signatures (Teles et al., 2013; Waddell et 

al., 2010).

Integration of the IFN gene expression profiles with our data set containing 16 different skin 

conditions demonstrated a significant, inverse correlation between IFN–β and IFN–γ 

regulated genes across all skin diseases studied (r=−0.66, p-value=0.006), underscoring the 

opposing roles of IFN–β and IFN–γ in skin disease (Figure 5). The Stevens Johnson 

syndrome samples, which were obtained from blister fluid rather than full thickness 

biopsies, had the most extreme IFN–β IFN–γ profiles. Nevertheless, even if these samples 

were omitted, the anti-correlation between IFN–β vs. IFN–γ profiles was still significant (r=

−0.53, p-value=0.04).

Discussion

Insights into disease pathogenesis obtained by comparison of gene expression profiles are 

often limited because these comparisons are performed between either two different diseases 

or one disease versus healthy controls, and therefore cannot identify distinct and common 

mechanisms of pathogenesis. Here, we performed a cross-disease analysis of molecular 

profiles from multiple skin diseases. Using fRMA, it was possible to assemble a database of 

gene expression profiles from 311 samples spanning 16 conditions and visualize disease 

relationships on a hierarchical clustering tree. Remarkably we found that samples of a 

particular disease that were taken from different batches colocalized to the same branch. 

This was particularly striking in the case of normal skin, where five batches of samples 

taken from healthy control subjects not only clustered on the same branch, but were 

arranged with little differentiation by batch.

Our approach demonstrates that a multi-disease classifier can be built from disparate public 

data sources comprising over a dozen different conditions in a single tissue. We built this 

classifier from disease specific gene signatures, and found that it was accurate and robust to 

batch effect. The potential utility of molecular classification over the classic clinical criteria 

was demonstrated by the correct classification of an ambiguous case of psoriasis. A multi-
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disease classifier using epithelial cells from patients with psoriasis, atopic dermatitis, 

allergic contact dermatitis, and irritant contact dermatitis was previously constructed, 

although this was limited to diseases which had epidermal involvement (Kamsteeg et al., 

2010). Our work expands this principle to a wide range of both inflammatory and neoplastic 

diseases, and demonstrates the potential value of this approach in comparing diverse 

conditions. This approach can be expanded to include a more diverse spectrum of diseases, 

as more data is publicly available, allowing for the comparative study of diseases for which 

skin biopsy specimens may not be widely available.

We also analyzed this data by three supervised approaches: analysis of cell-type signatures, 

Gene Ontology pathways enrichment, and interferon response signatures. Together, these 

bioinformatic analyses provided insight into the distinct and related pathogenesis of the 

diseases. For example, hierarchical clustering of gene expression profiles revealed that 

leprosy and chancroid were located on the same branch which we termed “infectious” based 

upon their known etiologies. In the deconvolution analysis of cell type signatures, both 

diseases were characterized by the enrichment of similar lymphoid (CD3+, CD4+, CD8+, 

regulatory T cells, B cells) and myeloid (monocytes, macrophages, dendritic cells, 

neutrophils) expression profiles. Furthermore, Gene Ontology enrichment analysis identified 

the terms “lysosome”, “T cell differentiation” and “leukocyte adhesion”. Additionally, we 

found an anti-correlation of Type I and Type II IFN responses across a wide range of skin 

diseases of different etiologies, consistent with our previous studies using leprosy as a model 

(Teles et al., 2013). An earlier multi-disease comparison found that the magnitude of an IFN 

gene signature distinguished different inflammatory skin diseases, but could not distinguish 

between the Type I vs. Type II IFN patterns (Wong et al., 2012).

The present findings provide a rationale for further investigations to determine how these 

different IFN programs contribute to the pathogenesis of these diseases and identify 

treatment targets. The spectrum of IFN–β vs. IFN–γ gene program expression in the skin 

diseases studied here is consistent with current practices in treatment of skin disease. 

Typically, Type I IFN exhibits anti-proliferative effects, and is used to treat neoplasms, such 

as melanoma and BCC, which have a negative Type I IFN score. It should be noted that 

IFN–γ has been used to treat acute atopic dermatitis, even though chronic atopic dermatitis 

lesions, as studied here, express IFN–γ consistent with our findings (Alazemi and Campos, 

2006; Grassegger and Höpfl, 2004; Grewe et al., 1994; Grewe et al., 1995; Hamid et al., 

1994). Anti-IFN–γ has also been shown in preliminary studies to have a positive effect on 

Th1-mediated autoimmune skin diseases, including psoriasis, which we found had a high 

Type II IFN score (Skurkovich and Skurkovich, 2006).

High throughput analysis of gene expression profiles are a step towards the development of 

tools for personalized medicine. These studies have led to the discovery of individual genes 

and pathways that underlie disease pathology, which can be leveraged as biomarkers to 

diagnose and predict the course of disease, as well as identify targets for therapeutic 

intervention. For example, human leukocyte antigen (HLA) allele type has been linked to 

adverse responses to commonly used drugs such as the antiretroviral abacavir and the 

antiepileptic carbamazepine (Illing et al., 2013). Subsequent diagnostic tests would be based 

on such individual genes or sets of genes, making them more economical for clinical use. 
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The integrative molecular classification and functional analysis of multiple skin conditions 

reported here demonstrates the value of such a comparison to gain insight into the 

pathogenesis of human disease.

Materials and Methods

Microarray acquisition, processing, and clustering

Data was obtained from the NCBI Gene Expression Omnibus (GEO) as described in 

supplemental methods and Table S1 (http://www.ncbi.nlm.nih.gov/geo/) (Edgar et al., 

2002). Additional validation samples were obtained with written informed consent from de-

identified biopsy specimens as described in the supplement and Table S5. Data was 

normalized using the Frozen Robust Multiarray Average method and filtered by mean 

intensity of at least 15 in any disease. Unsupervised hierarchical clustering was used to 

group the normalized, filtered expression profiles using Pearson correlation.

Proportional median

Probe sets were ranked using the Proportional Median (PM), which we define as the median 

intensity of a probe set within one disease divided by the median intensity of the same probe 

set across all samples. For each disease, probe sets were ranked in descending order by PM.

Random forest classifier

A random forest classifier was built using the Matlab TreeBagger class (see supplemental 

methods for full description). The classifier feature space was reduced by selecting the 25 

probe sets with the highest PM values across the training set for each disease. Classifier 

validation was performed in three ways: three-fold cross validation, two-fold cross 

validation with separation by experimental batch where applicable, and external validation 

using independent samples.

Pathway analysis

The 250 probe sets with the highest PM value for each disease were selected for pathway 

analysis using Ingenuity Pathways Analysis (http://www.ingenuity.com) and DAVID 

Functional Annotation Analysis (http://david.abcc.ncifcrf.gov/), using the top 250 probe sets 

by PM from each disease signature (Huang et al., 2009a, b; www.ingenuity.com).

Cell-type specific signature enrichment

Cell-type specific expression profiles for 24 cell types were calculated as previously 

described and is described in more detail in the supplemental methods (Swindell et al., 

2013).

Group signatures

PM values were calculated for five disease group signatures, based on hierarchical 

clustering, and Gene Ontology enrichment was performed for each group (see supplement 

for details).
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IFN profile integration

IFN–β and IFN–γ specific scores were calculated by adapting a previously described method 

(see supplement for details) (Teles et al., 2013).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Unsupervised hierarchical clustering tree of 311 skin samples
Normalized, filtered gene expression profiles were clustered using gene expression distance 

(Pearson correlation) and displayed in a tree. Each terminal leaf in the tree represents a 

biopsy sample and is colored according to disease, with colored bars to the right 

representing the majority disease diagnosis. Samples that clustered apart from other samples 

of the same diagnosis can be seen a leaf that differs in color from its neighbors. Numbers 

following disease name labels denote batches of the same disease, and lists of numbers 

following a disease name denote multiple batches clustering to the same tree branch with 

little or no differentiation by batch. Brackets to the far right delineate biological groups of 

neighboring diseases.
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Figure 2. Cell-type specific signature enrichment
For each of 24 cell-type specific signatures, log fold changes were calculated using average 

gene expression for each condition. Each fold change represents the enrichment for a 

particular cell-type in that condition relative to the other 15 conditions. Enrichment profiles 

for each condition were clustered using Euclidean distance and displayed in a heatmap, 

where rows correspond to conditions and columns correspond to cell types. Black triangles 

denote FDR < 0.05 and directionality of fold change.
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Figure 3. Functional annotation and k-means clustering of group signatures
PM signatures for each biological group from unsupervised hierarchical clustering (Figure 

1) were calculated and annotated with enriched Gene Ontology (GO) terms. Corresponding 

false discovery rates (FDR) for each GO term were clustered using k-means clustering (k=8) 

and visualized in a heatmap, where rows correspond to GO terms and columns correspond to 

disease groups. Each gray bar represents the log10 FDR for a particular GO term in a 

particular disease group. Colored bars to the right demarcate clusters of GO terms, and a 

summary of terms and p-values are provided for each cluster.
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Figure 4. Visualization of melanoma proportional median (PM) signature
A,B. Visualization of normalized intensities for representative probe sets of MITF and TYR, 

two genes in the melanocyte development pathway. Each black circle represents an intensity 

value on a microarray for the specific probe set indicated. Red lines show median intensity 

values for each disease. Disease abbreviations are as follows: lepromatous leprosy (LLP), 

tuberculoid leprosy (TLP), reversal reaction leprosy (RR), erythema nodosum leprosum 

(ENL), chancroid (CH), mycosis fungoides (MF), sarcoid (SAR), Stevens Johnson 

Syndrome (SJS), psoriasis (PS), allergic contact dermatitis (ACD), irritant contact dermatitis 

(ICD), atopic dermatitis (ATD), burn (BU), acute wound (WA), post-operative wound 

(WPO), melanoma (MEL), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), 

normal skin (NS). C. Visualization of melanocyte development pathway in Ingenuity 

Pathways Analysis. The 250 probe sets with highest PM for melanoma were annotated for 

enriched functional pathways using Ingenuity Pathways Analaysis and one representative 

pathway is shown. Red genes indicate presence in a 250 probe set PM melanoma signature, 

with darker coloring denoting higher PM values. The melanocyte pathway was significantly 

enriched in the top 250 probe sets for melanoma (p-value=9.19×10−05).
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Figure 5. Type I and II interferon program cross-regulation
IFN–β and IFN–γ scores were calculated by ranking genes specifically regulated by IFN-β 

or IFN-γ relative to total gene expression and centering relative to the mean rank of each 

gene across all conditions. Individual up-or-down-regulated scores for each type of IFN 

were obtained by summing centered ranks, and an overall IFN score was obtained by 

subtracting the up-regulated sum of ranks by the down-regulated sum of ranks. Intuitively, 

high scores for each type of IFN represent high expression of IFN-stimulated genes, low 

expression of IFN-repressed genes, or both, such that placement on each axis shows the 

magnitude of expression of IFN–β or IFN–γ gene programs. The plot shows a significant 

negative inverse correlation (r=−0.66, p-value=0.006). Removing the outlier Stevens 

Johnson syndrome, the correlation remains significant (r=−0.53, p-value=0.04).
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Table 1

Two-fold cross validation, with separation by batch where applicable.

Condition Sensitivity Specificity Precision F1

Leprosy* 0.86 1.00 0.97 0.91

Psoriasis* 0.96 0.97 0.94 0.95

Chancroid 1.00 1.00 1.00 1.00

Allergic contact dermatitis 0.78 1.00 1.00 0.88

Irritant contact dermatitis 1.00 1.00 1.00 1.00

Atopic dermatitis* 0.95 0.99 0.88 0.91

Burn 1.00 1.00 1.00 1.00

Acute wound 0.83 1.00 1.00 0.91

Post-operative wound 1.00 1.00 1.00 1.00

Mycosis fungoides 1.00 1.00 1.00 1.00

BCC 0.87 1.00 0.93 0.90

Melanoma 0.86 0.98 0.67 0.75

SCC 0.60 1.00 0.86 0.71

Sarcoidosis 1.00 1.00 1.00 1.00

Stevens Johnson syndrome 0.80 1.00 1.00 0.89

Normal skin* 0.96 0.98 0.84 0.90

*
Denotes diseases separated by batch
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