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Abstract

Defective regulation of type I interferon response is associated with severe inflammatory phenotypes and autoimmunity.
Type I interferonopathies are a clinically heterogenic group of Mendelian diseases with a constitutive activation of this
pathway that might present as atypical, severe, early onset rheumatic diseases. Skin vasculopathy with chilblains and
livedo reticularis, interstitial lung disease, and panniculitis are common. Recent studies have implicated abnormal
responses to nucleic acid stimuli or defective regulation of downstream effector molecules in disease pathogenesis. As
observed for IL1-β and autoinflammatory diseases, knowledge of the defects responsible for type I interferonopathies
will likely promote the development of targeted therapy.
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Nature is nowhere accustomed more openly to display
her secret mysteries than in cases where she shows
traces of her workings apart from the beaten path:
nor is there any better way to advance the proper
practice of medicine than to give our minds to the
discovery of the usual law of Nature by careful
investigation of cases of rarer forms of disease. For
it has been found, in almost all things, that what
they contain of useful or applicable nature is hardly
perceived unless we are deprived of them, or they
become deranged in some way

-William Harvey (1651)

Background
In recent years it has been increasingly recognised that
patients presenting early in infancy with persistent or
recurrent inflammatory phenotypes might suffer from
underlying genetic conditions. Systemic autoinflamma-
tory diseases (SAIDs) such as cryopyrin-associated peri-
odic syndrome (CAPS), tumor necrosis factor (TNF)
receptor-associated periodic syndrome (TRAPS) and
familial Mediterranean fever (FMF) are examples of such
entities. Moreover, it is common for practicing pediatric

rheumatologists to observe patients who only partially
fit classic diagnostic criteria for known, well-defined
clinical conditions or who present atypical characteris-
tics in term of severity, disease onset and treatment
response, and thus represent both diagnostic and thera-
peutic challenges.
Today, the differential diagnosis of such clinical cases

has to include a recent new class of mendelian inherited
disorders linked to defective regulation of type I inter-
ferons (IFN), named type I interferonopathies [1]. These
conditions initially included i) Aicardi-Goutières syn-
drome (AGS), ii) familial chilblain lupus, iii) spondy-
loenchondrodysplasia (SPENCD) and iv) monogenic
forms of systemic lupus erythematosus (SLE). An increas-
ing number of genetic diseases belonging to this family
have later been discovered, including the Proteasome
Associated Autoinflammatory Syndromes (PRAAS), IFN-
stimulated gene 15 (ISG15) deficiency, Singleton-Merten
syndrome and its atypical presentation (SMS), and stimu-
lator of IFN genes (STING)-associated vasculopathy with
onset in infancy (SAVI).
The objective of this review is to summarize the

clinical and molecular features of type I interferonopa-
thies with a special focus on the ones more likely to be
encountered by pediatric rheumatologists.
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Type I IFN pathway activation and signalling
IFNs are secreted molecules that represent one of the cell’s
first lines of defense against pathogens. Their existence,
and the same name interferon, was first proposed by
Isaacs and Lindenmann more than 50 years ago [2], fol-
lowing the observation that the supernatant of cells incu-
bated with heat-inactivated influenza virus was able to
“interfere” with viral infections if added to another cell
culture. In the following years the understanding of IFNs
effector mechanism shed the light on a highly conserved
antiviral response required for the survival of the host.
Viral and bacterial pathogens that induce a type I IFN

response are sensed in the cytoplasm or endosomes of
infected cells by different pattern recognition receptors,
which include Toll-like receptors (TLRs), RIG-I-like re-
ceptors (RLRs), NOD-like receptors (NLRs) and a grow-
ing family of cytoplasmic DNA receptors such as AIM2,
cyclic GMP-AMP synthase (cGAS) and γ-IFN-inducible
protein 16 (IFI16) [3, 4]. The role of cytoplasmic nucleic
acid sensors has become increasingly evident in the
pathogenesis of type I interferonopathies. In particular,
cytoplasmic dsDNA has been shown to interact with

the enzyme cGAS, which catalyzes the production of
the non-canonical cyclic dinucleotide di-GMP-AMP
(cGAMP) [5]. cGAMP binds and activates the STING
protein, which, following activation, translocates from
the endothelial reticulum (ER) to the ER-Golgi inter-
mediate compartments (ERGIC) [6] where the signal
is propagated through the phosphorylation of the
TANK-binding kinase 1 (TBK1) and of a family of
protein called IFN regulatory factors (IRF), in particular
IRF3 [7], that translocate to the nucleus and induce the
transcription of IFN-β [8] and IRF7, which is responsible
for IFN-α induction and autocrine type I IFN signalling
amplification [9] (Fig. 1). Excessive activation of the cellu-
lar nucleotides sensor system, therefore, can results in in-
crease production of IFN and inappropriate inflammation.
Type I IFNs are represented by 13 IFN-α with very

similar and highly conserved sequences of 161–167 aa
[10] and a single IFN-β.
Two different main functions of type I IFN pathway

are described: the antiviral activity and the antiprolifera-
tive activity. While the antiviral activity is accomplished
by all IFNs even at a very low concentration and occurs

Fig. 1 Cytoplasmic nucleic acid recognition and type I IFN pathway activation. Scheme of cytoplasmic nucleotide sensing, type I IFN secretion
and autocrine and paracrine IFNAR activation. Colored in blue are some of the proteins mutated in type I interferonopathies. Pathways currently
not fully understood are identified with a question mark. cGAMP: cyclic di-GMP-AMP, cGAS: cyclic GMP-AMP synthase, ER: endothelial reticulum,
ERGIC: endothelial reticulum-Golgi intermediate compartment, IFIH1: IFN-induced helicase C domain-containing protein 1 (also known as MDA5),
IFNAR: interferon-α receptor, ISG15: interferon-stimulated gene 15, MAVS: mitochondrial antiviral-signaling protein, RIG-I: retinoic acid-inducible
gene 1, SAMHD1: deoxynucleoside triphosphate triphosphohydrolase SAM domain and HD domain 1, STING: stimulator of interferon genes,
TBK1: TANK-binding kinase 1, TREX1: DNA 3ʹ repair exonuclease 1, USP18: ubiquitin-specific protease 18
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in most cells, the antiproliferative activity is highly cell-
type specific and is a function of the levels of expression
of the IFN and its cellular receptors, as well as of the
receptor binding affinity of IFN.
Not surprisingly, given the conservation of type I IFN

pathway across species, germline mutations that impair
such functions are linked to genetic susceptibility to
severe viral diseases, such as herpes virus encephalitis in
patients with mutations of UNC93B, TLR3, TRAF3, TRIF
and TBK1, or life-threatening influenza in patients
with mutations in IRF7 [11–13].
Type I IFNs bind to the same heterodimeric receptor

that is expressed by all nucleated cells and is constituted
by the subunits IFN-α receptor 1 (IFNAR1) and IFNAR2.
Binding of the IFN to one receptor subunit induces
dimerization of IFNAR1 and IFNAR2, phosphorylation
of the Janus Kinases (JAK), TYK2 and JAK1, and acti-
vation of different STAT family members (Fig. 1).
As mentioned above, the different effector functions of

type I IFN depend on i) the different affinities of the
ligand to the receptor subunits [14–16]; ii) receptor ex-
pression by target cells; iii) IFN expression by the tissue.
Thus the biological activity of IFN response is tightly
regulated despite the existence of a single receptor.

Type I IFN dysregulation
In the 1970s Gresser and colleagues [17] were the firsts
to suggested the existence of possible pathogenic effects
of IFN: newborn animals injected with high doses of IFN
presented the same severe growth retardation, liver
lesions, glomerulonephritis and mortality of animals in-
fected by lymphocytic choriomeningitis virus (LCMV)
suggesting that IFN itself was responsible for the induc-
tion of those lesions. Moreover, the Authors showed
how anti-IFN antibody therapy could prevent the de-
velopment of glomerulonephritis in mice infected with
LCMV [18].
Most of the genes that have been shown to be mutated

in type I interferonopathies are involved in the metabol-
ism of nucleic acids or their recognition machinery, i.e.
the receptors that are responsible for sensing pathogen-
derived nucleic acids and the related downstream media-
tors (Table 1). In particular, mutations that inhibit the
function of nucleic acid-related enzymes are responsible
for AGS and the damaged players include: DNA 3ʹ-repair
exonuclease 1 (TREX1) and Ribonuclease H2 (RNASE
H2) complex, both nucleases that degrade DNA and
DNA-RNA hybrid molecules preventing the accumu-
lation of endogenous nucleic acids in the cytoplasm
[19–21], SAMHD1, a protein that restricts the avail-
ability of cytosolic deoxynucleotides (dNTPs) [22, 23]
and adenosine deaminase acting on RNA 1 (ADAR1),
an enzyme that edits endogenous dsRNA preventing its
recognition by the cytosolic receptor IFIH1 [24, 25].

Similarly, activating mutations of nucleic acid receptors
IFIH1 [26–28] and RIG-I [29] cause autosomal dominant
AGS and Singleton-Merten syndrome interferonopa-
thies, while activating mutations of STING cause
SAVI syndrome in the absence of chronic infectious
triggers [30, 31].
These findings strongly support a model where the

activation of type I IFN pathway is caused by either an
increase in the burden of nucleic acids derived from en-
dogenous retroelements or by the constitutive activation
of nucleic acid receptors and mediators [32]. A different
mechanism is involved in the case of ISG15 deficiency:
type I IFN is tightly regulated by suppressive signals in
order to prevent toxicity driven by downstream effector
functions such as the ubiquitin-specific protease 18
(USP18). A defect in USP18-mediated attenuation of
type I IFN response has been shown in patients with
ISG15 deficiency, a disease characterized by intracranial
calcifications, seizures, atypical mycobacteria infection
susceptibility, autoantibodies and increased IFN-α or
increased expression of IFN stimulated genes in periph-
eral blood, a biomarker known as type I IFN signature,
detected by standard real-time PCR or micro-array
technique [33].

Clinical features and molecular defects
Familial systemic lupus erithematosus
Rare cases of monogenic form of SLE (OMIM 152700)
have been reported in patients harboring mutations in
TREX1 (autosomal dominant (AD)), SAMHD1 (AD),
ACP5 (autosomal recessive (AR), discussed later), DNase1
(AD), DNase1L3 (AR), protein kinase C δ (PRKCD) (AR)
and complement deficiency of C1q/r/s, C4 subunits (AR).
A minority of patients with C2 and C3 deficiency (around
10 %) may develop a less severe form of lupus-like disease
[34] (Table 2). With the exception of DNase1, DNase1L3,
PRKCD deficiencies and complement deficiencies (for
which no information on IFN expression is available), an
increase in type I IFN activity was documented in the
most part of affected patients.
SLE is known to be associated with an increase in

plasma type I IFN levels since at least the early eighties
[35–37]. The activation of type I IFN pathway has been
shown to correlate with disease activity [38] and some
increased IFN-α activity has been found also in family
members of SLE patients [39]. Further evidences to-
wards a causal role of type I IFN in at least some of the
clinical presentations of SLE came from the observation
that patients treated with recombinant human IFN-α for
malignancies or viral hepatitis can develop SLE symp-
tomatology that usually resolves with the discontinu-
ation of the drug [40, 41]. Interestingly, TNF has been
shown to have an inhibitory effect on IFN-α induction
in peripheral blood mononuclear cells derived from both
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healthy controls and SLE patients [42]. Furthermore,
treatment with anti-TNF therapies induces the transcrip-
tion of type I IFN-stimulated genes in vivo. Consistent
with these findings is the rare observation of SLE devel-
opment in patients treated with anti-TNF therapies. This
can be explained either by an “unmasking” effect in
predisposed patients, or a drug-induced effect, a clinical
entity referred as anti-TNF induced lupus, ATIL [43].
AD defects in the nuclease TREX1 represent the most

common cause of monogenic lupus with a frequency of
0.2–2 % in the adult SLE population [44–46] and have
been linked to a particular form of SLE presenting with
skin lesions of the extremities induced by cold exposure,
called chilblains (CHBL1, OMIM610448) [47–49].
Familial SLE cases due to AR homozygous mutations of
TREX1 have been also reported [46].

Of note, AD frameshift mutations in the C-terminal
portion of TREX1 have been shown to result also in the
retinal vasculopathy with cerebral leukodystrophy
(RVCL; OMIM 192315), a syndrome characterized by
loss of vision, stroke, dementia and in some cases glo-
merulopathy and Raynaud’s disease [50]. An increased
type I IFN signature has been described in the peripheral
blood of such patients [51].
Mutations in SAMHD1 have also been reported in a

few families affected by chilblain lupus with and without
central nervous system involvement (CHBL2, OMIM
614415) [52, 53]. Arthritis, mental retardation and
microcephaly have also been observed in patients with
mutations in SAMHD1.
AR deletions of one bp in the DNase1L3 gene leading

to loss of RNA transcripts have been described in 17

Table 1 Type I interferonopathies. Mutated gene, protein function, pattern of inheritance and main symptoms of know type I
interferonopathies

Disease Gene Protein function Inheritance Symptoms

Aicardi-Goutières syndrome (AGS)1 TREX-1 3′-5′ DNA exonuclease AR and AD Classical AGS

AGS2 RNASEH2B Components of Rnase H2 complex.
Removes ribonucleotides from
RNA-DNA hybrids

AR Classical AGS

AGS3 RNASEH2C Classical AGS

AGS4 RNASEH2A Classical AGS with dysmorphic features

AGS5 SAMHD1 Restricts the availability of cytosolic
deoxynucleotides

AR Mild AGS, mouth ulcer, deforming arthropathy,
cerebral vasculopathy with early onset stroke

AGS6 ADAR Deaminates adenosine to inosine
in endogenous dsRNA preventing
recognition by MDA5 receptor

AR and AD Classical AGS, bilateral striatal necrosis

AGS7 IFIH1 Cytosolic receptor for dsRNA AD Classical or mild AGS, asymptomatic

Retinal vasculopathy with cerebral
leukodystrophy (RVCL)

TREX-1 3′-5′ DNA exonuclease AD Adult-onset loss of vision, stroke, motor
impairment, cognitive decline, Raynaud and
liver involvement

Spondyloenchondrodysplasia (SPENCD) ACP5 Lysosomal phosphatase activity AR Spondyloenchondrodysplasia, immune
disregulation and in some cases combined
immunodeficiency

STING associated vasculopathy with
onset in infancy (SAVI)

TMEM173 Transduction of cytoplasmic
DNA-induced signal

AD Systemic inflammation, cutanous vasculopathy,
pulmonary inflammation

Proteasome Associated
Autoinflammatory Syndromes (PRAAS)

PSMB8 Part of the proteasome complex AR Autoinflammation, lipodistrophy, dermatosis,
hyper-immunoglobulinemia, joint contractures
(JMP), short stature

ISG15 deficieny ISG15 Stabilizes USP18, a negative regulator
of type I interferon

AR Brain calcifications, seizures, mycobacterial
susceptibility

Singleton-Merten syndrome (SMS) IFIH1 Cytosolic receptor for dsRNA AD Dental dysplasia, aortic calcifications, skeletal
abnormalities, glaucoma, psoriasis

Atypical SMS DDX58 Cytosolic receptor for dsRNA AD Aortic calcifications, skeletal abnormalities,
glaucoma, psoriasis

Trichohepatoenteric syndrome (THES) SKIV2L RNA helicase AR Severe intractable diarrhea, hair abnormalities
(trichorrhexis nodosa), facial dysmorphism,
immunodeficiency in most cases

ADAR1 adenosine deaminase acting on RNA 1, ACP5 Acid Phosphatase 5, Tartrate Resistant, AGS Aicardi-Goutières syndrome, DDX58 DEAD Box Protein 58,
IFIH1 IFN-induced helicase C domain-containing protein 1 (also known as MDA5), ISG15 Interferon-stimulated gene 15, PSMB8 Proteasome subunit beta type-8,
RNASEH2 Ribonuclease H2, RVCL Retinal vasculopathy with cerebral leukodystrophy, SAMHD1 deoxynucleoside triphosphate triphosphohydrolase SAM domain and
HD domain 1, SPENCD spondyloenchondrodysplasia, SAVI STING associated vasculopathy with onset in infancy, PRAAS Proteasome Associated Autoinflammatory
Syndromes, SMS Singleton-Merten syndrome, THES Trichohepatoenteric syndrome, TMEM173 transmembrane Protein 173, TREX1 DNA 3ʹ - repair exonuclease 1
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cases of juvenile onset SLE from 6 different families
from Saudi Arabia (OMIM 614420). About 65 % of
affected patients presented with positive ANAs, high fre-
quency of ANCAs and lupus nephritis [54]. Complete
loss of nuclease activity was documented in mutant
proteins. Homozygous loss-of-function mutations of
DNase1L3 have been described also in five patients from
two families who were diagnosed with severe hypocom-
plementemic urticarial vasculitis syndrome (HUVS) and
presenting clinically with recurrent urticaria, fatigue,
fever, continuous acute phase reactant elevation and kid-
ney involvement (mostly lupus nephritis class II or III)
[55]. In our center we followed one case with early onset
recurrent fever, urticarial vasculitis-like skin lesions,
necrotizing ANCA-associated glomerulonephritis, en-
larged lymphnodes, chronic anemia, articular effusion
and chilblains (manuscript in preparation).
Finally, loss of function heterozygous mutations of the

nuclease DNase1 have been reported in two children

with early onset SLE, and high titer anti-nucleosomal
and anti-dsDNA autoantibodies. Subclinical Sjögren syn-
drome and IgG mesangial deposition at kidney biopsy
were present in one case. The enzymatic activity of the
mutant protein was low compared to controls [56].
Primary complement defects are associated with an

increased risk of developing SLE estimated between
93 % of cases for C1q deficiency (OMIM 613652), 75 %
for C4A deficiency (OMIM 614380) and 66 % for C1r
and C1s (OMIM 216950) [57]. The pattern of inheritance
is AR and kidney (membranous proliferative glomerulo-
nephritis) as well as skin involvement are common [58],
together with an increased susceptibility for pyogenic
infections. The main mechanisms of the disease is thought
to be linked to a defective immune complex processing
and clearance [59], which results in activation of autoreac-
tive B cells [60] leading to a decreased tolerance [61],
together with a failure to control INF-α production by
plasmacytoid dendritic cells [62].

Table 2 Monogenic forms of SLE

Disease Gene Protein function Inheritance Clinical presentation

Monogenic SLE TREX1 3′-5′ DNA exonuclease AD (AR in few cases) SLE

C1q C1qA Central pattern-recognition molecule in the
classical pathway of the complement system

AR SLE, membranous proliferative GN,
arthritis, bacterial infections

C1qB

C1qC

C1r Components of the C1 complex in the classical
pathway of the complement system

AR SLE, RA-like arthritis, sinopulmunary
infections

C1s SLE, Hashimoto’s thyroiditis, autoimmune
hepatitis

C2 Component of the classical pathway of the
complement system

AR SLE in a minority of affected individual.
Arthritis, malar rash, discoid rash.

C3 Major complement component, involved in all
three pathways of activation

AR Upper and lower respiratory tract infection,
SLE in a minority of affected individual.

C4A Component of the classical pathway of the
complement system

AR SLE, type 1 diabetes mellitus,
glomerulonephritis

Dnase1 Endonuclease present in tissues, serum and
body fluids

AD SLE, Sjögren syndrome, antinucleosomal
autoantibodies

DNase1L3 Endonuclease, homologue to Dnase1 AR Pediatric onset SLE, lupus nephritis,
hypocomplementemic urticarial
vasculitis syndrome HUVS.

ACP5 Lysosomal phosphatase activity AR Skeletal dysplasia (SPENCD), SLE,
Sjögren syndrome, Raynaud

PRKCD Serine/threonine kinase implicated in the
control of cell proliferation and apoptosis

AR Pediatric onset SLE, lupus nephritis

IFIH1 Cytosolic receptor for dsRNA AD SLE with IgA deficiency, mild lower limb
spasticity

Chilblain lupus TREX-1 3′-5′ DNA exonuclease AD Chilblain lesions, skin ulcers, loss of ear
cartilage

SAMHD1 Restricts the availability of cytosolic
deoxynucleotides

AR and AD Chilblain lesions, photosensitivity

AD autosomal dominant, AR autosomal recessive, GN glomerulonephritis, ACP5 Acid Phosphatase 5, Tartrate Resistant, HUVS Hypocomplementemic urticarial
vasculitis syndrome, IFIH1 IFN-induced helicase C domain-containing protein 1 (also known as MDA5), PRKCD Protein Kinase C Delta, SAMHD1 deoxynucleoside
triphosphate triphosphohydrolase SAM domain and HD domain 1, TREX1 DNA 3ʹ repair exonuclease 1
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Sting associated vasculopathy with onset in infancy
SAVI (OMIM 615934) is a type I interferonopathy caused
by sporadic or familial autosomal heterozygous mutations
of the Transmembrane Protein 173 (TMEM173) gene.
After its first recent characterization [30], several new
cases have been reported thus suggesting that the disease
incidence may not be extremely uncommon [31, 63–65].
SAVI is clinically characterized by systemic features (e.g.
fever spikes, malaise, chronic anemia, growth failure), in
addition to cutaneous involvement and interstitial lung
disease [30, 31, 63–65].
Skin lesions are characterized by an early onset. They

are usually localized at the face with a papulo-follicular
appearance and at acral zones (fingers, ears, tip of the
nose) where they may consist of erythematous or pur-
puric plaques and nodules, livedo reticularis, painful
ulcerative lesions evolving onto eschars with tissue loss
or digital amputation (Fig. 2, panel a and b). Raynaud
phenomenon has been also reported: at capillaroscopic
examination, nailfold capillary tortuosity may be ob-
served, albeit without a clear scleroderma pattern.
Periungual erythema and onychodystrophy are com-
monly observed and may be a heralding symptom of
the disease [30, 63, 65]. Notably cold exposure may
trigger cutaneous flares.

Histopathologic analysis of skin biopsy specimens is
consistent with diffuse capillary wall inflammation with
neutrophilic infiltrates and microthrombotic changes.
No signs of vasculitis or granulomatosis have been
reported. Mucosal lesions, such as oral ulcers, aphthosis
and nasal septum perforation may be present.
Pulmonary involvement is not overtly symptomatic in

the early phases of the disease; it consists of interstitial
lung disease leading to lung fibrosis [30, 31] (Fig. 2,
panel c). Cough and tachypnea are commonly reported.
Notably, in one case observed at our Center, a concomi-
tant viral pneumonia triggered a life-threatening acute
respiratory failure strongly mimicking lymphocytic inter-
stitial pneumonia (LIP). Chest X-ray usually shows lung
hyperinflation. Computed tomography, the gold-standard
diagnostic tool of the interstitial lung disease [66] will
show a wide spectrum of lesions (septal thickening,
ground-glass opacifications, bronchiectasias, etc.). Hilar
and paratracheal lymphadenopathy is often associated
(Fig. 2). Lung-biopsy specimens show scattered mixed
lymphocytic inflammatory infiltrate.
Low-titer autoantibodies (e.g. antinuclear antibody,

anticardiolipin antibodies and antibodies against β2
glycoprotein I) are found; notably, the presence of anti-
neutrophils cytoplasmic antibodies (cANCA) associated

Fig. 2 Clinical presentation and blood interferon signature of a SAVI patient. Purpuric plaques with ulcerative evolution (panel a), onychodystrophy
(panel b), CT scan revealing focal thickening of the interlobular septa with areas of ground glass opacities (panel c), and peripheral blood type I
interferon signature (panel d) (assessed as described [67]) in a patient with SAVI syndrome
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with SAVI clinical features may lead to misdiagnosis
of childhood granulomatosis with polyangiitis [65].
So far, peripheral blood type I interferon signature

represents the most useful diagnostic tool to suspect
SAVI syndrome, which requires molecular analysis for
confirmation (Fig. 2, panel d) [67]. As already discussed,
SAVI syndrome is due to gain of function mutation of the
STING protein, which is involved in signal transmission
from the cGAS DNA receptor. The mechanism underling
the constitutive activation of STING seems to be a
deregulated trafficking from the ER to the ERGIC inde-
pendently of cGAMP binding, leading to an increased and
chronic hyper secretion of IFN-β (Fig. 1) [6].

Proteasome-associated autoinflammatory syndromes
PRAAS (OMIM 256040) are a group of distinct clinical
entities that have recently been recognised to share a
common molecular cause. They include joint contractures,
muscle atrophy, microcytic anemia and panniculitis-
induced lipodystrophy syndrome (JMP), Nakajo-Nishimura
syndrome (NNS, also referred to as Japanese autoinflamma-
tory syndrome with lipodystrophy, JASL) and chronic
atypical neutrophilic dermatosis with lipodystrophy and
elevated temperature syndrome (CANDLE).
All these syndromes are characterized by the early

onset of nodular, pernio-like, violaceous skin lesions with
atypical neutrophil infiltrates, muscle atrophy, lipody-
strophy, failure to thrive and deformities of the hands
and feet due to joint contractures. Recurrent periodic
fever episodes and elevated-acute phase reactant levels
are usually present. Other common features are hepa-
tosplenomegaly, prominent abdomen, basal ganglia
calcifications, hypochromic anemia, increased IgG, ab-
sence or in few cases intermittent-low titer autoanti-
bodies. Acanthosis nigricans and hypertriglyceridemia
have been also reported [68–71].
The original form of PRAAS was described in the

Japanese population by Nakajo with features of second-
ary hypertrophic osteoperiostosis with pernio [72]. It
was later recognised that lipodystrophy and inflamma-
tion were a prominent feature [73–75]. The first patients
described outside Japan were of Spanish or US origin
(Caucasian or Hispanic) and were reported as having
CANDLE syndrome [76]. The two families diagnosed
with JMP syndrome, lacking the inflammatory symptoms
of CANDLE and NNS/JASL, were of Mexican and
Portuguese origin [77]. In 2010–2011 several groups re-
ported that PRAAS syndromes were all due to homozy-
gous mutations affecting the Proteasome subunit beta
type-8 (PSMB8) gene, that encodes for the β5i subunit
of the proteasome [68–71]; β5i is one of the three
catalytic subunits (together with β1i and β2i) that are
isoforms constitutionally expressed in the hematopoietic
lineages and induced in non-hematopoietic cells by

inflammatory cytokines such as IFN-γ [78]. The prote-
asome variant containing the β1i, β2i, and β5i isoforms
is called immunoproteasome. The PSMB8 gene is
expressed in two main transcripts of 272 aa (transcript
ENST00000374881) or 276 aa (transcript ENST00000
374882). All Japanese patients described carry the same
missense mutation (variant ID rs387906680, referred as
G197V or G201V depending on the transcript used as
reference) [70, 71], while Mexican, Portuguese, Spanish,
and Hispanic patients share the T75M mutation; a
patient of Ashkenazi Jewish origin carried a C135X
homozygous variant [69]. Interestingly, two patients
(one from the US and one from Spain) who carried only
a heterozygous T75M variant where subsequently found
to have a further deleterious mutation in another
subunit of the proteasome, PSMA3 [79]. In the same
publication, novel CANDLE-associated mutations were
described in the previously unreported PSMA3, PSMB4
and PSMB9 proteasomal subunits and the proteasomal
associated protein, POMP, in 5 patients of Jamaica, Irish
and Palestinian origins. Importantly, through peripheral
blood gene expression profiles and in vitro knock-down
experiments in primary cells derived from affected
patients, PRAAS were clearly associated to type I IFN
induction.
Taken together, all these reports clearly link proteasome-

related gene mutations to the type I IFN inflammatory
response seen in PRAAS.

Spondyloenchondrodysplasia
Homozygous mutations of the tartrate-resistant acid
phosphatase gene (ACP5), encoding for the protein
TRAP, cause the immune-osseous disease, SPENCD
[80, 81], which is characterized by platispondily, enchon-
dromatosis, brain calcifications, spasticity and auto-
immunity including SLE with malar rash, lupus nephritis,
antiphospholipid syndrome and anti-dsDNA antibodies.
The first case was originally described in a patient with
juvenile SLE and bone abnormalities [82]. Patients present
increased type I IFN signature in peripheral blood [80],
serum, urine and dendritic cells accumulation of the
TRAP substrate osteopontin (OPN), and Th1 polarizing
cytokine production by dendritic cells (DC) [81]. Although
the mechanism of type I IFN deregulation in SPENCD is
not clear yet, it seems to be linked at least in part to an
increased signalling through the TLRs, as it has been
shown in mice that OPN is essential downstream of
TLR9 for IFN-α production in plasmacytoid-DC [83].

Other monogenic interferonopathies with less
severe inflammatory phenotype
Aicardi-goutieres syndrome and ISG15 deficiency
AGS is a progressive encephalopathy with neonatal (or
possibly fetal) onset associated with an increase in white
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blood cells count and IFN-α concentration in the cere-
brospinal fluid, basal ganglia calcifications in the absence
of congenital infections. The presentation resembles that
caused by transplacental-acquired infections and origin-
ally it was referred to as pseudo-TORCH (Toxoplasma,
Rubella, Cytomegalovirus and Herpes simplex). A part
from the severe neurological phenotype, over time
patients develop glaucoma, chilblains and autoimmune
features similar to typical SLE [84]. As suggested by
Gresser and colleagues [17], type I IFN is thought to play
a critical role in the disease pathogenesis and almost all
patients present a strong IFN signature in peripheral
blood [67]. The genes mutated in AGS are TREX1 (AGS1,
OMIM #225750), SAMHD1 (AGS5, OMIM #612952),
RNaseH2A (AGS4, OMIM #610333) RNASEH2B (AGS2,
OMIM #610181), RNASEH2C (AGS3, OMIM #610329),
ADAR1 (AGS6, OMIM #615010), IFIH1 (AGS7, OMIM
#615846). A less severe phenotype has been described
in patients presenting with idiopathic basal ganglia
calcification (IBGC), seizures and autoantibodies, and
harboring mutations in the ISG15 gene (IMD38,
OMIM #616126) [85].

Singleton-merten syndrome
Singleton-Merten syndrome (OMIM #182250) is an AD
disorder characterized by dental abnormalities (e.g.
delayed primary tooth exfoliation, permanent tooth
eruption and tooth loss, not present in the atypical form,
OMIM #616298) aortal and hearth valve calcifications,
skeletal abnormalities (distal limb osteolysis, widened
medullary cavities), psoriasis, and glaucoma [86]. Af-
fected patients carry a specific missense gain-of-function
mutation in IFIH1 or DDX58 genes, dsRNA-receptors
that activate type I IFN responses. Not surprisingly, both
patients with Singleton-Merten and atypical Singleton-
Merten syndrome present with increased type I IFN
activity in peripheral blood [28, 29].

Diagnostic approach
The diagnosis of type I interferonopathies can be elusive,
especially for patients presenting mainly with flares of
inflammatory symptoms without neurological or ske-
letal involvement. Atypical or incomplete SLE-like
symptoms occurring in infancy or in preprepubertal
age; sings of vasculopathy such as skin ulcers, chilblains
and strokes; panniculitis with or without lipodystrophy,
and interstitial lung disease in the context of systemic
inflammation should always rise the suspect of a type I
interferonopathy.
Early-onset necrotizing vasculitis, thrombotic vasculop-

athies and granulomatous polyangiitis cANCA-related
have to be considered in the differential diagnosis. More-
over chronic bronchiolitis, immune deficiencies associated
with follicular bronchiolitis and LIP, pulmonary

hemorrhages due to collagen vascular diseases, and meta-
bolic diseases such as prolidase deficiency and lysinuric
protein intolerance should be ruled out.
Studies in AGS have demonstrated the strong correl-

ation between mutations in AGS-related genes and type
I interferon signature [67]. Using six ISGs derived by
previous studies in SLE [87, 88], Rice et al. developed a
score (named “interferon score”) with a high sensitivity
for AGS. Detection of ISGs upregulation in peripheral
blood has been used also in patients with other interfer-
onopathies, in particular PRAAS [79], suggesting the po-
tential relevance not only as a research biomarker, but
also as a screening and diagnostic tool. Accordingly, we
are currently assessing the efficiency of combining the
interferon signature and targeted next generation se-
quencing for the diagnosis of type I interferonopathies
in pediatric rheumatic undifferentiated patients (manu-
script in preparation).
Definitive diagnosis for patients with clinical pres-

entation suggestive of type I interferonopathy, posi-
tive interferon score and no mutations detected in
known disease-related genes (Tables 1 and 2) can be
attempted taking advantage of modern next gener-
ation sequencing approaches, such as whole exome
or whole genome sequencing.

Therapeutic options
Development of definitive therapeutic indications for
type I interferonopathies has been extremely challenging
due to the i) variability of clinical presentation even
within the same genotype ii) rarity of the patients and
only recent identification of most of the molecular
causes iii) difficulty in assessing disease response, and iv)
resistance to conventional therapies.
Commonly, patients are treated with high doses of

intravenous methylprednisolone, oral prednisone and
intravenous immunoglobulins during the acute phases
with often only partial control of the flares. Disease-
modifying antirheumatic drugs (DMARDS) such as
methotrexate, mycophenolate-mofetil, antimalarians and
azathioprine as well as biologics such as infliximab,
etanercept, anakinra, tocilizumab, and rituximab have
been anecdotally used and resulted ineffective in most
cases [30, 31, 63–65, 89–91].
As explained above, type I interferon pathway repre-

sents the common pathogenic mechanism of these dif-
ferent diseases. In vitro experiments in patient-derived
primary cells suggest that inhibition of this pathway is
the most promising therapeutic strategy. Different drug
targets have been identified and reviewed recently [92].
Particularly promising is the blockade of IFNAR signal-
ing through JAK inhibitors. A clinical trial for the
compassionate use of the drug Baricitinib, an oral JAK1/
2 inhibitor under FDA approval consideration for
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rheumatoid arthritis and in phase 2 development for
atopic dermatitis and diabetic nephropathy, is currently
ongoing at the national institute of health (NIH) for pa-
tients with CANDLE, SAVI, and juvenile dermatomyo-
sitis (clinical trial identification number: NCT01724580)
and has shown promising results [93]. Sporadic experi-
ence of compassionate use of Ruxolitinib, an oral JAK 1/2
inhibitor FDA approved for polycythemia vera and myelo-
fibrosis and in phase 2 development for rheumatoid arth-
ritis and alopecia areata, have also shown preliminary
positive results ([94] and our center, manuscript in prepar-
ation). However follow-up data about the effectiveness
and safety of these drugs are still lacking.
Monoclonal antibodies targeting IFN-α (Sifalimumab)

and IFNAR (Anifrolumab) are also a very promising thera-
peutic option in all type I interferonopathies. Phase 2 trials
for adult SLE have been concluded for both Sifalimumab
(NCT00979654) and Anifrolumab (NCT01438489) and a
phase 3 trial for Anifrolumab in SLE is recruiting subjects
(NCT02547922). Results seem to be promising, even
if preliminary [95–97].
Given the possible role of endogenous retroviruses in

the activation of nucleic acid receptors in AGS, a phase 2
trial with reverse transcriptase inhibitors (NCT02363452)
has been developed and is currently recruiting patients.

Conclusions and future directions
The study of patients with rare genetic diseases has re-
vealed a central role of abnormal nucleic acid recognition
and type I IFN pathway activation in human diseases char-
acterized by autoinflammation and autoimmunity. Patients
with type I IFN diseases are difficult to diagnose and
usually resistant to common therapies. Thanks to the rapid
advancement of sequencing techniques and the awareness
of the existence of these new type of diseases, we anticipate
that a growing number of patients seen by pediatric
rheumatologist will be diagnosed as suffering from known
or new type I interferonopathies. On the other hand, as
already observed in other inherited autoinflammatory
diseases (i.e. cryopyrinopathies), the pathogenic insights
deriving from the study of these ultra-rare disorders, might
represent a crucial turning point also for a number of
frequent multi-factorial inflammatory diseases, such as
SLE. For both families and clinicians this will represent a
long-sought medical answer and a renewed hope for the
identification of efficacious therapeutic approaches.

Clinical data
Clinical data and blood samples for the analysis of the
interferon signature where collected with written parental
consent approved by Istituto Gaslini review board. Patient’s
parents agreed to the publication of the images in Fig. 2.
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