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S U M M A R Y
We critically examine the performance of sequential geostatistical resampling (SGR) as a
model proposal mechanism for Bayesian Markov-chain-Monte-Carlo (MCMC) solutions to
near-surface geophysical inverse problems. Focusing on a series of simple yet realistic synthetic
crosshole georadar tomographic examples characterized by different numbers of data, levels
of data error and degrees of model parameter spatial correlation, we investigate the efficiency
of three different resampling strategies with regard to their ability to generate statistically
independent realizations from the Bayesian posterior distribution. Quite importantly, our results
show that, no matter what resampling strategy is employed, many of the examined test cases
require an unreasonably high number of forward model runs to produce independent posterior
samples, meaning that the SGR approach as currently implemented will not be computationally
feasible for a wide range of problems. Although use of a novel gradual-deformation-based
proposal method can help to alleviate these issues, it does not offer a full solution. Further, we
find that the nature of the SGR is found to strongly influence MCMC performance; however
no clear rule exists as to what set of inversion parameters and/or overall proposal acceptance
rate will allow for the most efficient implementation. We conclude that although the SGR
methodology is highly attractive as it allows for the consideration of complex geostatistical
priors as well as conditioning to hard and soft data, further developments are necessary in the
context of novel or hybrid MCMC approaches for it to be considered generally suitable for
near-surface geophysical inversions.

Key words: Inverse theory; Tomography; Probability distributions; Ground penetrating
radar.

1 I N T RO D U C T I O N

Applied near-surface geophysical methods have gained significant
and increasing interest in the field of hydrology because of their abil-
ity to provide valuable information on the distribution of subsurface
physical properties at spatial and temporal scales that are rarely at-
tainable with traditional hydrological measurements. However, to
make meaningful hydrological predictions and sound environmen-
tal decisions based on geophysical data, knowledge regarding the
uncertainty in the estimated parameters is essential. While in many
cases such uncertainty is ignored, this is a dangerous practice that
can easily lead to misconceptions regarding the utility and reliability
of geophysical methods.

A variety of possibilities exist for assessing the uncertainty of an
estimated set of spatially distributed subsurface parameters given
the corresponding set of geophysical measurements. Arguably the
most common of these involves the use of a single solution to the in-
verse problem, generally obtained through gradient-based optimiza-
tion approaches, around which a Taylor-series expansion is made

in order to approximate the model parameter covariance and/or res-
olution matrices (e.g. Menke 1989; Alumbaugh & Newman 2000;
Tarantola 2005). Although such linearized estimates provide highly
useful local information and can be calculated in a computationally
efficient manner, it is well understood that they may significantly un-
derrepresent model parameter uncertainty in cases where there ex-
ists substantial nonlinearity in the geophysical forward problem (e.g.
Sambridge & Mosegaard 2002; Tarantola 2005; Trainor-Guitton &
Hoversten 2011). This in turn leads to overly narrow ranges of
predictions based on the geophysical data, a situation which in
all practical applications should be avoided (Kaipio & Somersalo
2005).

To address the above limitation, much recent interest has been
expressed in the use of stochastic inverse methods for near-surface
geophysical parameter estimation and uncertainty analysis. In par-
ticular, continuing advances in computational power have led to an
increased use of Bayes’ Theorem combined with Markov-chain-
Monte-Carlo (MCMC) sampling to generate stochastic realizations
from the posterior distribution of model parameters (e.g. Bosch
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1999; Mosegaard & Tarantola 1995; Ramirez et al. 2005; Taran-
tola 2005). The resulting ensemble can then be used to calculate a
variety of posterior model parameter statistics as well as to bound
predictions. Bayesian-MCMC methods have the advantage of being
able to provide more comprehensive estimates of model parameter
uncertainty than linearized approaches. They are also extremely
flexible in that they can incorporate any information that can be
expressed in terms of probabilities into the inverse problem. These
methods do, however, have the notable disadvantage of being limited
by their high computational cost, which results from the typically
large numbers of model parameters and data in geophysical prob-
lems combined with the need for small model perturbations along
the Markov chain in order to ensure reasonable rates of proposal
acceptance.

One way to reduce the computational cost of MCMC-based in-
versions is to decrease the number of estimated model parameters
through an appropriate reparameterization of the subsurface domain
of interest. In particular, model reduction through the use of a small
number of well-chosen basis functions can exploit the spatial corre-
lation naturally found in subsurface properties, thus allowing them
to be effectively represented using only a few weighting coefficients
as opposed to high-dimensional pixel-based parameterizations. To
date, the most widely used model reduction approaches for geophys-
ical and hydrological inverse problems involve either the discrete
cosine transform (e.g. Jafarpour et al. 2009, 2010; Linde & Vrugt
2013), the wavelet transform (e.g. Davis & Li 2011; Jafarpour 2011)
or the singular value decomposition (e.g. Oware et al. 2013). While
use of such methods has proven quite effective, it is particularly
difficult in a Bayesian context to know the bias on posterior uncer-
tainty estimates imposed by seemingly benign prior assumptions
on the reduced set of model parameters. For example, the assump-
tion of simple uniform or uncorrelated Gaussian priors for the basis
weighting coefficients may have strong implications for the prior
distribution in the original pixel-based discretized space. In addi-
tion, conditioning inversions to local hard or soft measurements is
not trivial with these approaches.

Another means of lowering the cost of MCMC-based geophysi-
cal inversions, and the focus of our work in this paper, retains the
full pixel-based parameterization of the model space and instead
concentrates on incorporating as much prior information as pos-
sible into the MCMC proposal distribution. In this way, the size
(but not the dimension) of the parameter space to be explored is
reduced because the number of subsurface configurations that may
be tested is limited to a small subset of the total number of possi-
bilities. Geostatistical simulation methods are highly attractive in
this regard because of the inherent flexibility and ease with which
they can represent complex geological information as well as the
fact that they can be conditioned to a wide variety of measured and
previously simulated data. Indeed, subsets of the model parameters
can be geostatistically resampled at each MCMC iteration using se-
quential simulation, thereby allowing the proposition of new models
along the Markov chain that are consistent with a set of prior sta-
tistical constraints yet represent small perturbations with respect
to previously accepted parameter configurations. Recent results in-
volving the application of the latter methodology, which we refer
to in this paper as sequential geostatistical resampling (SGR), have
appeared promising for both geophysical and hydrological inverse
problems (Fu & Gómez-Hernández 2009; Irving & Singha 2010;
Mariethoz et al. 2010; Cordua et al. 2012; Hansen et al. 2012).
However, what is critically missing from the existing literature is
a systematic examination of the methodology under a variety of
realistic data and model scenarios in order to determine (i) what

algorithmic choices lead to the most efficient MCMC implementa-
tions and (ii) more importantly, whether the approach as currently
formulated can be considered to be computationally feasible and
thus generally suitable for a wide range practical applications.

Here, through a set of relatively simple synthetic crosshole geo-
radar tomographic examples characterized by different prescribed
numbers of data, levels of data error and degrees of model param-
eter spatial correlation, we explore the performance of SGR within
MCMC with regard to its ability to generate independent realiza-
tions from the Bayesian posterior distribution. The latter serves as
our metric for algorithmic efficiency, as clearly the most efficient
MCMC implementations will be capable of generating indepen-
dent posterior realizations in the fewest number of iterations. We
begin with a review of the Bayesian approach to geophysical in-
version, MCMC methods for posterior sampling and a description
of the overall SGR approach. We then examine the performance
of three different SGR implementations (random cells resampling,
block resampling and a new gradual-deformation-based resampling
method) for the set of tomographic example cases. Based on our
findings, we draw some general conclusions regarding the over-
all computational feasibility of the approach, and we outline some
critical needs for future work.

2 M E T H O D O L O G I C A L B A C KG RO U N D

2.1 Bayesian geophysical inversion

Consider to begin the general geophysical forward problem linking
a set of spatially distributed subsurface model parameters m to a set
of measured data d:

d = g(m), (1)

where g(·) is the forward operator containing the underlying physics
and geometry of each measurement. The corresponding inverse
problem, involving the estimation of m given d, generally requires
knowledge of g(·) along with some degree of prior information about
the model parameters. Amongst a wide variety of methods for solv-
ing geophysical inverse problems, the probabilistic approach origi-
nally proposed by Tarantola & Valette (1982) has gained widespread
popularity because it provides a flexible and intuitive framework that
naturally allows for uncertainty quantification as well as the integra-
tion of different sources of data. Within this framework, the solution
to the problem can be formulated using Bayes’ theorem, whereby
an initial prior state of information for the model parameters ρ(m)
is updated into a more refined posterior state of knowledge σ (m)
based on the available data. That is,

σ (m) = k L(m) ρ(m), (2)

where k is a normalization constant that ensures that the poste-
rior pdf integrates to unity, and L(m) is the likelihood function
which measures the degree of fit between the observed geophys-
ical measurements and the data predicted for a particular model
configuration using g(m). Assuming independent, identically nor-
mally distributed data errors as well as perfect knowledge of the
forward operator, we obtain the following expression for L(m) (e.g.
Mosegaard & Tarantola 1995):

L(m) = 1

(2πσ 2
d )N/2

exp

[
− [g(m) − d]T [g(m) − d]

2σ 2
d

]
, (3)

where σ d is the estimated error standard deviation and N is the
number of data.
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Eqs (2) and (3) together provide a means of calculating the poste-
rior probability of a particular configuration of model parameters. In
an approach conceptually similar to deterministic inversion, σ (m)
can be optimized to find the model having the maximum a posteriori
(MAP) probability, which represents a single ‘most probable’ solu-
tion to the inverse problem (e.g. Tarantola 2005). However, properly
quantifying the posterior resolution or uncertainty of the model pa-
rameters is a much greater challenge. In all but the simplest of cases,
linearized uncertainty estimates made about a single solution to the
inverse problem will tend to underrepresent our lack of knowledge
(e.g. Sambridge & Mosegaard 2002; Tarantola 2005). On the other
hand, performing the multidimensional integrations necessary to
obtain the true statistical moments of σ (m) is generally not feasi-
ble because of the high dimension of the model space and the often
complex nonlinear nature of the forward operator. Nevertheless, nu-
merical algorithms such as MCMC can be used to generate random
samples from the posterior pdf in eq. (2), which in turn can be used
to calculate uncertainties and bound predictions.

2.2 MCMC and the extended Metropolis algorithm

MCMC defines a class of statistical methods in which a Markov
chain is constructed over the state space of model parameters in
order to generate samples from a target distribution of interest.
Transition probability rules are defined for the chain such that,
with enough iterations, it is guaranteed to equilibrate to the target
distribution no matter what the starting state. Although an infinite
number of possibilities exist with regard to how such transition
probabilities can be prescribed, the Metropolis–Hastings algorithm
(Metropolis et al. 1953; Hastings 1970) has become one of the more
popular MCMC approaches because of its generality and simplicity.
With this method, model perturbations along the chain are generated
through a proposal distribution Q(m′|mi ), where mi is the current
state of the chain at iteration i and m′ is the proposed transition. To
assure convergence to the target distribution σ (m), the proposals
are stochastically accepted at each iteration with probability

Pacc = min

[
1,

σ (m′) Q(mi |m′)
σ (mi ) Q(m′|mi )

]
. (4)

If the proposed transition is accepted, then mi+1 = m′. Conversely,
if the proposal is rejected, then the chain remains in its current
state and mi+1 = mi . In the case where the proposal distribution is
symmetric, that is where Q(m′|mi ) = Q(mi |m′), the Metropolis–
Hastings algorithm reduces to the original algorithm of Metropolis
et al. (1953) having acceptance probability

Pacc = min

[
1,

σ (m′)
σ (mi )

]
. (5)

Although both the Metropolis–Hastings and Metropolis samplers
have been used in a variety of geophysical and hydrological inverse
problems to date (e.g. Bosch et al. 2006; Buland & Kolbjørnsen
2012; Scholer et al. 2012), one drawback of these MCMC formula-
tions for Bayesian problems is that they require a means of evaluat-
ing the prior probability of a particular model configuration ρ(m) at
each iteration in order to obtain σ (m). This may be impractical when
the prior distribution for the model parameters is complex and/or
defined by a series of simulation steps rather than an analytical pdf.
Further, the algorithms may prove computationally inefficient for
complex priors as they typically rely upon relatively simple uniform
proposal distributions (Hansen et al. 2012). To address these issues,
Mosegaard & Tarantola (1995) noted that the proposal distribution

in the MCMC procedure can be chosen so as to simulate directly
from the prior distribution. That is, they proposed that Q can be
defined such that a Markov chain with Q as its transition probability
equilibrates to ρ(m). In this case, the following detailed balance
equation must hold

Q(mi |m′)
Q(m′|mi )

= ρ(mi )

ρ(m′)
, (6)

which in turn implies that the acceptance probability in eq. (4)
involves a simple comparison of the likelihoods of the proposed
and current states of the Markov chain as follows:

Pacc = min

[
1,

L(m′)
L(mi )

]
. (7)

For Bayesian problems, MCMC algorithms that are based on the
above procedure, which has been named the extended Metropolis
algorithm by Hansen et al. (2012) (Fig. 1), can be significantly
more efficient than algorithms based on the standard Metropolis
or Metropolis–Hastings samplers (Mosegaard & Tarantola 1995).
More importantly, the procedure offers great flexibility with regard
to how the prior is defined, in the sense that all that is needed is a
means of generating prior samples rather than a formal prior proba-
bility distribution. Critical to the algorithm’s effectiveness, however,
is how each new set of model parameters is generated from the prior
distribution conditional to the current point in the Markov chain.
Clearly, if the change between the proposed and previously accepted
models is too large from one iteration to the next, then the prob-
ability of rejecting the proposal will be high because of the large
difference in likelihood (eq. 7). Conversely, if the change is too
small then the MCMC algorithm will be slow to equilibrate and
produce independent posterior samples because models along the
Markov chain will exhibit a high degree of correlation. We thus re-
quire a proposal mechanism that is able to effectively generate prior
samples, yet at the same time ensure that such samples represent
reasonable perturbations from one model to the next.

2.3 Sequential geostatistical resampling (SGR)

Sequential simulation aims to generate stochastic realizations of
some subsurface parameter of interest conditional to (i) known val-
ues of the parameter at certain locations throughout the model space,
and (ii) knowledge regarding the overall spatial statistical structure
of the parameter under the assumption of stationarity. Originally
developed for the simulation of Gaussian random fields based on
two-point geostatistics (e.g. Goovaerts 1997; Deutsch 2002), the
method is now commonly used for the generation of complex mul-
tipoint statistical structures (e.g. Strebelle 2002) and has gained
much corresponding popularity in reservoir characterization and
groundwater studies (e.g. Caers & Zhang 2004; Huysmans & Das-
sargues 2009). The technique is iterative and essentially involves
the generation of parameter values along a randomly chosen path
through the model space. At each iteration, the conditional pdf for
the model cell of interest is calculated based on known data and pre-
viously simulated points, which is then used to simulate a random
value at that location. Multiple realizations are easily generated by
repeating the procedure using different random paths.

One of the most promising recent applications of the extended
Metropolis approach outlined in Section 2.2 involves incorporating
detailed geostatistical prior information into the inverse problem
through the use of sequential simulation. Specifically, recent efforts
have explored the idea of using sequential simulation to iteratively
perturb models along the Markov chain by resampling randomly
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reject 

Generate starting model m1 from 
Bayesian prior distribution. 

Observed 
data, dobs 

i = 1 

Calculate predicted data, d' and di, 
corresponding to m' and mi, respectively.       

Accept m' with probability 
Pacc = min[1, ]. 

accept 

Draw test set of parameters, m’, from  
Bayesian prior distribution (conditional to mi). 

 
Evaluate likelihood ratio  = L(m’)/L(mi).  

 

i = i + 1 

mi = mi-1 

mi = m' 

Figure 1. Extended Metropolis algorithm of Mosegaard & Tarantola (1995) for sampling from the Bayesian posterior distribution of model parameters.

selected ‘subdomains’ of the model grid while treating all of the
other values in the grid as known. As demonstrated by Hansen et al.
(2012), whether sequential simulation occurs in a single iterative
process involving all model parameters, or whether it occurs through
multiple resimulation steps involving random subsets of the model
parameters, stochastic realizations from the prior will be generated
as both approaches equilibrate to ρ(m). The advantage of the latter
SGR approach in the context of MCMC is that it offers a means of
controlling the magnitude of the model perturbations through the
size of the subdomain to be resampled. That is, SGR provides a way
of making small perturbations along the Markov chain while hon-
ouring existing measurements and prior geostatistical information.
Any algorithm for performing sequential simulation can be used for
SGR within the extended Metropolis algorithm, and various types
of hard and soft data can be readily taken into account. Please refer
to the paper of Hansen et al. (2012) for further details.

In recent studies, two different SGR implementations have been
considered for the stochastic solution of near-surface geophysical
and hydrological inverse problems. The first involves the resimula-
tion of a contiguous block of model parameters at each MCMC iter-
ation, where the position of the block within the model grid is chosen
from a uniform random distribution (Fu & Gómez-Hernández 2009;
Cordua et al. 2012). In the second implementation, a fixed number
of model parameters are also resimulated at each MCMC iteration,
but in this case the locations of the parameters are chosen indepen-

dently and at random (Hansen et al. 2008; Irving & Singha 2010;
Mariethoz et al. 2010; Hansen et al. 2012). Many other possibilities
for resimulation clearly exist. With respect to the two considered
approaches, results of testing on a rather limited number of exam-
ples have suggested that the SGR methodology could provide an
effective means of generating samples from the Bayesian posterior
distribution for a range of near-surface inverse problems. What is
critically missing from the existing literature, however, is a detailed
and systematic analysis of the method with regard to its performance
under different types of subsurface models, numbers of data, and
levels of data error, with a view towards eventual practical applica-
tions. The latter is essential for understanding under what conditions
and algorithmic choices the SGR method will perform best, as well
as when the overall approach can be expected to be computation-
ally feasible. Below we explore these questions through a series of
numerical examples by evaluating the efficiency of different resam-
pling strategies with regard to their ability to generate statistically
independent posterior realizations.

2.4 Output analysis

To determine the number of extended Metropolis iterations required
to produce one independent realization from the Bayesian posterior
distribution, which serves as our metric for algorithmic efficiency in
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Figure 2. Schematic outline of the autocovariance analysis procedure used
in this study to assess the number of MCMC iterations required to generate
independent samples from the Bayesian posterior distribution.

this paper, we analyse the statistics of the autocovariance behaviour
of each model parameter calculated across the different MCMC
samples. Before such an approach can be utilized, we must first
discard the pre-burn-in samples from each Markov chain, which are
still influenced by the starting configuration of model parameters
and thus do not properly represent the posterior (e.g. Gilks et al.
1996). To this end, we follow the approach outlined in Cordua
et al. (2012) which involves examination of the behaviour of the
likelihood as a function of iteration. Burn-in is considered to occur
when the likelihood begins to fluctuate around an equilibrium level
and the residuals appear to describe the expected distribution of the
data errors.

Fig. 2 summarizes the overall analysis procedure that we apply
to the post-burn-in MCMC samples. For each model parameter i in
the simulation grid, the autocovariance Ci(L) is computed across the
different realizations for different iteration lag values L. This is then

transformed into a normalized variogram function γ i(L) according
to the following equation:

γi (L) = (Ci (0) − Ci (L))

(σ 2
i )post

, (8)

where (σ 2
i )post is the ‘true’ value of the posterior variance, which we

assume known and obtainable analytically in this study in order to
validate our simulation results. Further details on this assumption,
which is valid only for the case of a linear inverse problem, are
provided in Section 3.

The values for (σ 2
i )post are used in eq. (8) to ensure that each vari-

ogram normalizes to a sill value of σ 2 = 1 at a certain iteration lag L.
The number of iterations required for a particular model parameter
to represent an independent sample can then be computed as the
lag at which its normalized variogram intercepts a given threshold
value, which is chosen to be close to one. In order to find the num-
ber of iterations required to generate one independent realization
from the joint posterior distribution of all model parameters, we
use the fact that the vast majority of individual model parameters
must have been updated enough to represent independent samples.
For this study, we consider the 90th percentile of the iteration lag
values computed across all model cells, which corresponds to the
number of iterations that are needed with the extended Metropolis
algorithm before 90 per cent of model parameters can be considered
to be independent.

3 S Y N T H E T I C S T U DY

In the context of a series of numerical examples, we now systemati-
cally investigate the performance of SGR as a proposal mechanism
within the extended Metropolis algorithm. In particular, we exam-
ine with respect to their effect on the number of iterations required
to generate statistically independent realizations from the Bayesian
posterior distribution: (i) the nature of the MCMC model proposals,
as described by their shape (i.e. blocks of cells or randomly selected
individual cells) and their size (i.e. number of cells updated in each
iteration); (ii) the nature of the data, specifically the number of mea-
surements considered and their associated level of error; and (iii) the
degree of spatial correlation between the model parameters. This
is done for a number of simple but pertinent straight-ray crosshole
georadar tomographic examples exhibiting different model and data
characteristics. Although we fully acknowledge that the straight-ray
assumption will be violated in cases where significant heterogene-
ity exists in the distribution of subsurface electromagnetic wave
velocity, we use it here because it provides a linear inverse problem
with a correspondingly fast forward model for which an analytical
solution exists for the Bayesian posterior assuming Gaussian priors
(Tarantola 2005). This solution allows us to validate our simulation
results and determine the number of MCMC iterations required to
produce one independent posterior realization, which again serves
as our metric for algorithmic efficiency. In this regard, working with
the linear straight-ray problem provides us with a ‘best-case’ in-
dicator of the efficiency of SGR within the extended Metropolis
algorithm, as scenarios involving substantial non-linearity and/or
more complex priors could be expected to decrease this efficiency
as the posterior distribution deviates from multi-Gaussian.

3.1 Tomographic inverse problem

Crosshole georadar traveltime tomography is a popular geophysical
method for imaging the spatial distribution of subsurface electro-
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magnetic wave velocity between two boreholes. With this technique,
a short electromagnetic pulse is radiated from a transmitter antenna,
located in one of the boreholes. The pulse then propagates through
the subsurface and is recorded at a receiver antenna, which is lo-
cated in the adjacent borehole. Assuming that the trajectory of the
first-arriving energy travelling between the antennas can be approx-
imated by a straight line or ray, a linear relation can be formulated
between the measured traveltime of the first-arriving energy and
the distribution of wave ‘slowness’ (1/velocity) in the subsurface as
follows:

t = Ds + ε, (9)

where t is a vector of traveltime measurements corresponding to dif-
ferent transmitter and receiver configurations, D is a matrix whose
row and column entries contain the distance travelled by ray i in
model cell j, respectively, s is a vector containing the slowness val-
ues for each model cell, and ε represents the observation or picking
errors on the measured traveltimes.

The crosshole georadar tomographic inverse problem consists of
using t to infer s. Under the prior assumptions that (i) the slowness
values between the boreholes are distributed according to a multi-
Gaussian distribution having mean s0 and covariance matrix Cs , and
(ii) the traveltime errors are also multi-Gaussian with mean zero and
covariance matrix Ct , the following analytical expressions can be
derived (e.g. Tarantola 2005):

s̃ = s0 + CsDT
(
DCsDT + Ct

)−1(
tobs − Ds0

)
(10)

C̃s = Cs − CsDT
(
DCsDT + Ct

)−1
DCs, (11)

where s̃ and C̃s are the mean and covariance matrix of the poste-
rior distribution, which in this case is also multi-Gaussian. Note
that, based on eqs (10) and (11), Hansen & Mosegaard (2008) de-
veloped a means of directly generating independent posterior real-
izations using sequential simulation. Indeed, for linear geophysical
inverse problems with Gaussian model priors and data uncertain-
ties, MCMC methods are not necessary as the latter approach is
extremely computationally efficient. Again, however, the analysis
presented in this paper for the linear inverse problem allows us to in-
vestigate the performance of SGR within MCMC under a best-case
scenario where model validation is possible, which in turn allows us
to have a sense for its best possible performance under less trivial
conditions.

3.2 Considered examples and data

Two heterogeneous radar slowness distributions having different
spatial correlation lengths are considered as the ‘true’ subsurface
models to be estimated in this study. The models are specified on
a 8.1-m-wide by 14.1-m-deep grid discretized into 0.3-m-square
cells, which yields a 47 × 27 domain of 1269 model parameters
(Fig. 3). To generate these slowness distributions, we used sequential
Gaussian simulation (Deutsch & Journel 1992) assuming a global
mean and variance of 10 ns m−1 and 0.5 ns2 m−2, respectively, and
an exponential geostatistical model for the spatial covariance. For
the first example, shown in Fig. 3(a), the horizontal and vertical
correlation lengths were set to 4.8 and 2.7 m, respectively. For the
second model, shown in Fig. 3(b), they were set to 2.1 and 0.9 m,
respectively.

Having the slowness distributions, we next simulated the acqui-
sition of straight-ray crosshole georadar traveltime data for the two
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Figure 3. ‘True’ slowness fields considered for our analysis of the perfor-
mance of sequential geostatistical resampling within the extended Metropo-
lis algorithm. The fields were generated using sequential Gaussian simula-
tion. (a) Longer-correlation-length example. (b) Shorter-correlation-length
example.

Table 1. Six different data scenarios that were con-
sidered for each slowness model in Fig. 3.

Number of traveltime Noise standard
Scenario measurements deviation (ns)

1 2209 0.5
2 2209 0.8
3 2209 1.1
4 576 0.5
5 576 0.8
6 576 1.1

models in Fig. 3. Table 1 summarizes the six different scenarios that
were considered in each case. Traveltimes were generated for two
different measurement configurations, the first involving a borehole
transmitter and receiver increment of 0.3 m from 0.15 to 13.95 m
depth, yielding 2209 data, and the second involving a 0.6-m incre-
ment, yielding 576 data. Uncorrelated zero-mean Gaussian random
noise was then added to each traveltime. In this regard, standard
deviation values of 0.5, 0.8 and 1.1 ns were considered for the trav-
eltime errors. Together, these six scenarios allow us to investigate
the performance of MCMC under varying degrees of ‘data com-
plexity’ for the longer- and shorter-correlation-length models. It is
important to note that the number of data considered, their levels of
error and the size of the model space are all quite typical of relatively
simple near-surface geophysical inverse problems. Also note that
additional constraints such as borehole logs were not considered in
this study to avoid overconditioning of our inversions in an already
small-scale model domain.

Assuming a Gaussian prior distribution for the slowness between
the boreholes, the Bayesian posterior distribution for the linear trav-
eltime inverse problem is completely described by the mean and co-
variance given by eqs (10) and (11). Fig. 4 shows the corresponding
mean and variance fields for the longer-correlation-length model
in Fig. 3(a) for Scenarios 1 and 6. As expected, the mean field for
Scenario 6, which considers fewer measurements and higher mea-
surement errors, displays smoother variation than the mean field for
Scenario 1, which considers more measurements and smaller mea-
surement errors. The posterior uncertainty of the slowness field for
Scenario 6 is also larger than that for Scenario 1. In both cases, the
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Figure 4. Posterior mean and variance fields computed using eqs (10) and
(11) for the slowness distribution in Fig. 3(a) and for inversion Scenarios 1
(a and c) and 6 (b and d), respectively.

estimated uncertainties are highest in the parts of the model space
that are characterized by particularly low ray coverage (i.e. at the
top and the bottom of the model domain) and lowest in those regions
characterized by high ray coverage (i.e. in the central portion of the
model domain).

3.3 Results

3.3.1 Effect of the nature of the resampling

We first investigate the effect of the nature of the sequential re-
sampling on the efficiency of the extended Metropolis algorithm to
generate independent posterior samples. To this end, we consider
both block and randomly selected cells resampling and we vary the
total number of cells resampled in each MCMC iteration. For the
block resampling, randomly chosen square regions of the model
space were perturbed, with the size of the blocks being equal to ei-
ther 1, 4, 9 or 25 cells. For the randomly selected cells resampling,
the same numbers of perturbed cells were considered but their lo-
cations were chosen independently. For all of the tests performed,
the number of traveltime data and the standard deviation of the data
noise were held constant at 2209 and 1.1 ns, respectively, which cor-
responds to Scenario 3 (Table 1). The number of iterations required
for burn-in was in general between 1000 and 3000 and the MCMC
algorithm was run for 5 million iterations. To verify the consistency
of the results obtained, 10 independent Markov chains were run for
each example.

Table 2 and Fig. 5 show the results obtained for the longer- and
shorter-correlation-length examples from Fig. 3 in terms of the over-
all MCMC acceptance rate and the number of iterations required for
90 per cent of the model parameters to represent independent sam-
ples from the Bayesian posterior distribution (Fig. 2). To calculate
the acceptance rate, we divided the total number of accepted pro-
posals by the total number of iterations. As expected, this quantity
is strongly dependent upon the number of cells resampled because
the latter determines the overall magnitude of the proposed pertur-
bation. That is, the larger the number of cells resampled, the bigger
the proposed model change and the greater the risk that it will be
rejected because of a larger corresponding change in the likelihood
(eq. 7).

Notice in Fig. 5 that, for each example and type of resampling
considered, there exists an ‘optimal’ region for the number of points
resampled where the number of iterations required for independent
posterior samples is minimized (i.e. maximum efficiency). Increas-
ing the number of cells from this value, the model perturbation in
each MCMC iteration increases, thus leading to a decrease in the
acceptance rate and a reduction in efficiency. Conversely, decreas-
ing the number of cells from this value means that the acceptance
rate will increase but that the posterior samples will show greater
correlation, which also leads to a reduction in efficiency. Previous
work with MCMC in the current context has suggested that the ob-
served acceptance rate can be used as an approximate indicator of
algorithmic performance, in the sense that having an acceptance rate
of approximately 25–40 per cent should represent a good balance
between exploration and exploitation of the model parameter space
(Irving & Singha 2010; Cordua et al. 2012; Hansen et al. 2012). We
see from Fig. 5, however, that this can only be loosely interpreted
because the acceptance rate at which the extended Metropolis al-
gorithm will exhibit maximum efficiency is dependent upon the
type of resampling considered as well as nature of the subsurface
model. For example, for the longer-correlation-length model, block
resampling has optimal efficiency at around 45 per cent, whereas
randomly selected cells resampling has optimal efficiency at around
20 per cent. For the shorter-correlation-length model, on the other
hand, both block and randomly selected cells resampling exhibit
optimal efficiency at around 28 per cent. The latter findings are
consistent with the work of Gelman et al. (2003), who found that
the average acceptance rate under optimal efficiency for an uncorre-
lated multivariate normal distribution is approximately 25 per cent.

Somewhat concerning about the results in Table 2, in the context
of practical application of SGR within the extended Metropolis al-
gorithm, is the number of iterations necessary to generate a single
independent posterior realization under optimally efficient condi-
tions. In the best case, which for this series of tests involved the
shorter-correlation-length example and randomly selected cells re-
sampling of 4 model parameters at each iteration, 54 200 iterations
were needed before 90 per cent of the model parameters had been
updated enough to be considered independent. Conversely, in the
worst case, which involved the longer-correlation-length example
and block resampling of nine model parameters, this value increased
to 527 550 iterations. Clearly these kinds of numbers combined with
a forward model of reasonable complexity could quickly limit the
computational tractability of the approach. Previous work on SGR
for this problem largely considered examples with relatively small
numbers of data (e.g. less than 1000 traveltimes) and relatively large
data errors (e.g. traveltime errors with a standard deviation greater
than 1 ns). As a result, the efficiency of the algorithm in those cases
could be expected to be greater than that seen here. Nonetheless,
estimating as we did a grid of 47 × 27 model parameters using 2209
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Table 2. Overall MCMC acceptance rate and the number of iterations required for 90 per
cent of the model parameters to represent independent samples from the Bayesian posterior
distribution for different types of sequential geostatistical resampling. Results are shown
for both the longer- and shorter-correlation-length examples from Fig. 3, assuming the
data from Scenario 3 (Table 1).

Random cells resampling Block resampling
Number of cells Acceptance Number of Acceptance Number of

perturbed rate (per cent) iterations rate (per cent) iterations

Longer-correlation-length example

1 75 848 580 75 848 580
4 46 575 870 44 326 690
9 25 255 580 22 547 550

16 12 259 000 14 1 473 820
25 5 973 640 9 2 000 200

Shorter-correlation-length example

1 64 128 940 64 128 940
4 28 54 200 28 112 110
9 9 74 700 13 359 760

16 2 183 700 8 2 406 160
25 1 858 380 5 3 002 030
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Figure 5. Number of MCMC iterations required for 90 per cent of the model parameters to represent independent samples from the Bayesian posterior
distribution as a function of the overall acceptance rate. Results are shown for random cells resampling (green) and block resampling (red) and for the (a)
longer- and (b) shorter-correlation-length examples in Fig. 3 assuming the data from Scenario 3 (Table 1). The number of cells perturbed is indicated above
each data point.

traveltime measurements is a realistic near-surface geophysical in-
verse problem, and in fact at the low end of complexity in terms
of dimension and number of data. We explore this aspect in further
detail in the next section when we examine the inversion results for
different data characteristics.

Finally, Fig. 5 indicates that, in almost all cases, block resampling
is a considerably less efficient means of generating independent pos-
terior realizations than randomly selected cells resampling for the
same number of perturbed model parameters. Indeed, with the ex-
ception of four-cell resampling in the longer-correlation-length ex-
ample, the number of iterations required for random cell resampling
is significantly less. Moreover, at the point of optimal efficiency,
block resampling requires more iterations than randomly selected
cells resampling, meaning that it appears to be a less efficient pro-
posal method in general. To better understand this behaviour, we
computed the cell-by-cell overall acceptance or update rate, calcu-

lated by dividing the total number of accepted proposals by the total
number of proposed changes for each model cell, for block and
randomly selected cell resampling for the longer-correlation-length
example with 9 cells perturbed (Fig. 6). Note that both resampling
methods show a very similar global acceptance rate for this exam-
ple, which may be misleading (Table 2) given their very different
performance characteristics. When randomly selected cells resam-
pling is used, we see that all of the model cells show a very similar
update rate of approximately 25 per cent (Fig. 6a), which is a posi-
tive characteristic because it means that the MCMC algorithm is not
generating independent posterior samples quickly for some model
cells, but slowly for others. Indeed, the cells having the slowest up-
date rate control the speed at which independent posterior samples
are generated. When block resampling is considered, on the other
hand, the cell-by-cell acceptance rate reveals that a high number
of model parameter perturbations (∼50 per cent) are accepted in
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Figure 6. Cell-by-cell acceptance rate (AR) computed for (a) randomly se-
lected cells resampling and (b) block resampling for the longer-correlation-
length example shown in Fig. 3(a). Nine model cells were resampled in
each MCMC iteration. Also shown are the values of the model parameters
located at locations (c) [x = 4 m; z = 0.3 m] and (d) [x = 4 m; z = 7 m] as
a function of iteration for the block resampling case.

regions characterized by low ray density (e.g. at the top and bottom
of the model domain), whereas few accepted transitions (∼5 per
cent) occur in regions with high ray density (e.g. in the centre of
the model domain) (Fig. 6b). This is illustrated more clearly in the
update history plots in Figs 6(c) and (d), where we observe a sub-
stantial difference in the update rate between two model parameters
located in the upper and central regions of the model, respectively.

The above behaviour is a consequence of the combined effects
of the spatially varying sensitivity of the traveltime data along with
our inherent inability to effectively control the magnitude of the
perturbed parameter values with the standard SGR approach. That
is, with block resampling, the model perturbations are localized
to a specific region of the parameter grid to which the traveltime
data may be more or less sensitive. As a result, the MCMC algo-
rithm is able to accept proposals quickly in regions exhibiting lesser
sensitivity, but comparatively slowly in regions exhibiting higher
sensitivity. Unfortunately, there is no easy way to change this be-
haviour (e.g. to tailor the magnitude of the perturbed values in each
region of the model in accordance with the sensitivity of the data)
because the resampling is done based on the mean and covariance
of the prior distribution. Conversely, with randomly selected cells
resampling, model parameter perturbations are not localized to one
region and thus we avoid having some parts of the model experi-

Table 3. Number of MCMC iterations required for
90 per cent of the model parameters to represent
independent samples from the Bayesian prior and
posterior distributions for the longer-correlation-
length example shown in Fig. 3(a), assuming the
data from Scenario 3 (Table 1). Nine model cells
were resampled in each iteration.

Random cells
Distribution resampling Block resampling

Prior 108 620 27 980
Posterior 215 520 547 550

encing significantly greater acceptance rates than others, which in
turn leads to greater algorithmic efficiency. Note that although one
might consider biasing the block resampling to visit highly sensitive
regions of the model space more frequently, thereby updating these
regions more often, we found that this does not offer a practical
solution to the above problem because surrounding regions, which
condition the block resampling, become updated less often. This
has the effect of reducing the variability of the resampling in the
biased regions, even though they are resampled more frequently.

To gain some final clarity into the above aspects, Table 3 shows
the number of MCMC iterations found necessary to generate inde-
pendent samples from the prior distribution (i.e. where no data were
considered) versus the posterior distribution (i.e. prior × likelihood)
for nine-parameter block and randomly selected cells resampling for
the longer-correlation-length example. Here we see that block re-
sampling allows for significantly more efficient sampling of the prior
because the overall magnitude of change in a 3 × 3 resampled block
will be greater than that for nine isolated resampled cells whose val-
ues are more strongly conditioned by the surrounding data. In other
words, the block resampling strategy provides a chain of prior real-
izations with an overall lower level of correlation between adjacent
samples when compared with randomly selected cells resampling.
However, as soon as the likelihood function is included into the
MCMC algorithm, most of the perturbations performed with block
resampling, especially those proposed in locations characterized by
a relatively high sensitivity of the traveltime data, are rejected. As a
result, efficiency greatly decreases and the number of iterations re-
quired to generate independent posterior samples is approximately
double that of randomly selected cells resampling. It is important
to note that, without a cell-by-cell analysis of the acceptance rate as
performed above, it would extremely difficult to identify such prob-
lems related to the unequal updating of model parameters within
the extended Metropolis algorithm. Indeed, in some cases, we might
generate a series of seemingly independent posterior samples with
a reasonable overall acceptance rate in which some of the model
parameters were never updated.

3.3.2 Effect of data and model characteristics

We next examine the impact of the number of data, level of data
error, and degree of model parameter spatial correlation on the ef-
ficiency of the SGR approach to generate independent posterior
samples. This was again done with a view towards applications to
realistic near-surface inverse problems; that is, although it is well
understood that increasing the number of data and/or decreasing the
level of data error will result in less efficient posterior sampling be-
cause of a narrower likelihood function, we wish to understand the
magnitude of these effects in the context of what range of behaviour
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Table 4. Overall MCMC acceptance rate and the number of iterations required for 90 per cent of the model parameters
to represent independent samples from the Bayesian posterior distribution for different data and model characteristics as
described in Table 1 and Fig. 3, respectively. All values in the table correspond to resampling performed using the number
of cells that approximately maximized algorithmic efficiency. Both randomly selected points and block resampling are
shown.

Random cells resampling Block resampling
Number of cells Acceptance Number of Number of cells Acceptance Number of

Scenario perturbed rate (per cent) iterations perturbed rate (per cent) iterations

Longer-correlation-length example

1 3 24 1 119 700 1 35 1 412 500
2 6 23 650 780 4 36 790 530
3 9 25 215 520 4 44 326 690
4 8 23 439 730 4 40 407 810
5 18 24 85 650 9 36 107 230
6 29 25 41 580 16 32 64 510

Shorter-correlation-length example

1 2 23 681 150 1 30 1 000 285
2 3 25 123 940 1 34 301 995
3 4 28 54 200 4 29 112 110
4 4 24 76 100 4 27 192 480
5 8 24 19 650 4 41 31 600
6 14 25 8600 9 32 14 300

might be expected in practical situations. Table 4 summarizes the
results obtained for the longer- and shorter-correlation-length exam-
ples in Fig. 3 when considering each of the different data scenarios
described in Table 1 and using both randomly selected cells and
block resampling. In each case, we present only the results for the
number of resampled cells that was found to give approximately
the maximum algorithmic efficiency. In other words, the results in
Table 4 are a condensed summary of a wide range of tests per-
formed such that we could determine the number of cells requiring
the least number of iterations to generate independent posterior
samples. Unfortunately, no metric is available that can provide the
latter information before running an MCMC simulation.

We see in Table 4 that, for most of the cases considered, it is
not possible to update more than a few model parameters in each
MCMC iteration using SGR if our goal is to have the maximum
possible algorithmic efficiency. Indeed, in some instances, only one
parameter can be perturbed at a time. An unavoidable consequence
in these cases is that the extended Metropolis algorithm will require
an extremely long time to move through the posterior parameter
space, which is reflected in a correspondingly large number of iter-
ations required to generate independent samples. We also see that, as
expected, increasing the number of data and/or decreasing the level
of data error reduces MCMC efficiency. What is surprising, how-
ever, is the enormity of the range in the number of iterations required
for 90 per cent of the model parameters to represent independent
posterior samples for the different test cases, which again all repre-
sent situations that may be encountered in practical applications. In
the best case, corresponding to the shorter-correlation-length exam-
ple with 576 traveltimes, a data error standard deviation of 1.1 ns,
and using randomly selected cells resampling, 8600 MCMC itera-
tions were found necessary. In the worse case, which corresponds
to the shorter-correlation-length example with 2209 traveltimes, a
standard deviation of 0.5 ns, and using block resampling, 1 412 500
iterations were required. Within a single example and using the
same type of resampling, the difference between the ‘easiest’ data
case (Scenario 1) and the ‘hardest’ data case (Scenario 6) was
between one and two orders-of-magnitude. Clearly, these results
suggest that the number of data and their expected level of error

should be carefully taken into account when considering the use of
the SGR approach, as in many cases the generation of only a few
independent posterior samples could easily overwhelm computa-
tional resources. To put this into perspective, consider a relatively
fast geophysical forward code that takes one second to compute the
data corresponding to a set of subsurface model parameters. When
dealing with our worst case where 1 412 500 MCMC iterations were
necessary for a single posterior sample, generating 50 such samples
would take over two years. On the other hand, in our best performing
test case where only 8600 iterations were required, generating the
50 samples would take approximately five days. Again, previous
studies involving SGR have generally involved situations closer to
the latter case in terms of the number of data and level of data error,
and have not included a cell-by-cell analysis of the behaviour of
the different model parameters as a function of iteration number.
Also note in Table 4 that, as observed earlier, for the same test case
under optimally efficient conditions, randomly selected cells resam-
pling consistently requires less iterations to generate independent
posterior samples than block resampling.

Let us now consider the effects of model parameter correlation.
Table 4 shows that, for longer correlation lengths, it is generally pos-
sible to perturb more cells at once because the magnitudes of the
proposed perturbations are smaller compared to when shorter corre-
lation lengths are considered. However, we see that relative to each
scenario, the MCMC algorithm is considerably more efficient for
shorter correlation lengths in that a difference of almost one order-
of-magnitude is observed when comparing the number of iterations
required to independent posterior samples. To gain further clarity
into the latter aspect, Table 5 shows the number of iterations found
necessary to generate independent samples from the prior distribu-
tion for randomly selected cells and block resampling for the longer-
and shorter-correlation-length examples. The number of resampled
cells in each case was chosen to be consistent with that used to
generate posterior samples corresponding to Scenario 3 (Table 4).
We clearly see that, for both types of resampling, obtaining inde-
pendent samples from the prior is computationally more expensive
in the longer-correlation-length case. That is, the higher correlation
between model parameters makes it easier to become stuck around
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Table 5. Number of MCMC iterations required for 90 per cent of the
model parameters to represent independent samples from the Bayesian
prior distribution for the longer- and shorter-correlation-length examples
in Fig. 3, assuming the data from Scenario 3 (Table 1). In each case, the
number of cells resampled was chosen to be the same as that used for
posterior sampling (Table 4).

Random cells resampling Block resampling
Correlation Number of Number Number of Number

length cells perturbed of iterations cells perturbed of iterations

Short 4 21 500 4 13 600
Long 9 108 620 4 80 000

a particular configuration, making changes consistent with the prior
but often reverting back to the same configuration. These effects are
less pronounced when using block resampling, mainly because the
overall magnitude of change in a block is greater than in isolated
resampled cells whose values are more strongly conditioned to the
surrounding data.

4 G R A D UA L - D E F O R M AT I O N
R E S A M P L I N G

The results presented in the previous section illustrated a number
of important challenges associated with the use of SGR as a pro-
posal mechanism within the extended Metropolis algorithm. First,
localized model perturbations combined with spatially varying data
sensitivities can lead to highly inefficient posterior sampling, in the
sense that the update rate of model parameters through the sim-
ulation grid can vary significantly. This is especially an issue for
block resampling, which was found in almost all cases to be less
efficient than randomly selected cells resampling. Secondly, the de-
gree of spatial correlation between the model parameters can have
a strong effect on MCMC efficiency, as increasing the correlation
tends to reduce the speed at which sequential resampling is able
move through the prior space. We also noted that the overall SGR
approach, at least as presented in previous work, does not allow
for direct control over the magnitude of the resimulated values, thus
limiting its flexibility as a proposal mechanism. Here, we investigate
the performance of an alternative proposal strategy, based on the
principle of gradual deformation (Caers 2007), that aims to address
these limitations while at the same time retaining the key advantages
of SGR, namely the ability to consider complex geostatistical priors
as well as condition proposals to hard and soft data. We focus on up-
dating the entire parameter field simultaneously, as this guarantees
an equal acceptance rate for all model cells and has been found in
other applications to improve MCMC performance when the model
parameters are strongly correlated (e.g. Hassan et al. 2009).

Gradual deformation is a procedure by which different stochastic
realizations of a parameter field, all having the same overall statisti-
cal properties, are iteratively linearly combined in order to obtain a
satisfactory match to a set of observed data that depends upon that
parameter field. It is in essence an optimization process that allows
us to ‘warp’ one realization towards another until a new realization is
obtained that allows for adequate predictions of the data. The key to
the method lies in the way that the realizations are combined, which
is done so as to preserve the statistical properties of the input fields.
Many variations of the approach have been presented (e.g. Roggero
& Hu 1998; Hu 2000; Hu et al. 2001; Hu 2002; Ravelec-Dupin et al.
2002). Of particular interest in the context of our work is the study of
Hu et al. (2001), who proposed a gradual-deformation methodology
based on perturbing the uniform random number vector used to draw

from local conditional distributions in sequential geostatistical sim-
ulation. With their methodology, this vector (v1) is first transformed
into a standard Gaussian random noise vector (y1) using the inverse
of the cumulative Gaussian distribution G, that is, y1 = G−1(v1).
Next, y1 is ‘deformed’ into a perturbed standard Gaussian random
noise vector y using the following ‘gradual-deformation rule’:

y = y1 cos(π t) + y2 sin(π t), (12)

where parameter t ε [0, 0.5] controls the overall magnitude of the
perturbation and y2 is another independent standard Gaussian ran-
dom noise vector. The vector y is then back-transformed into a
vector of perturbed uniform random numbers v using v = G(y).
Vector v is a perturbation of v1, hence when v is used instead of v1

to draw from local conditional distributions in sequential simula-
tion, we obtain a perturbation of the original stochastic realization
that was generated using v1. Combining the Gaussian random noise
vectors using eq. (12) ensures that the mean and variance are pre-
served, with the choice of t determining how different vector y is
from vector y1. For example, when t = 0, y = y1 (hence v = v1) and
no perturbation is produced. As t increases, y (hence v) becomes
gradually different from y1 (hence v1). In the limit case of t = 0.5,
y = y2 and a completely independent stochastic realization is gen-
erated. Because this methodology works on perturbing the uniform
random vector used to draw from local conditional distributions in
sequential simulation, it can be used anywhere sequential simula-
tion is applicable, for example even in the context of complex priors
defined by multiple-point geostatistics (Caers 2007).

Although gradual deformation has been utilized extensively in
the context of iterative optimization to fit a set of subsurface model
parameters to measured data, its potential applicability to MCMC
methods as a prior proposal generator remains largely unexplored.
Table 6 and Fig. 7 show the results we obtained from running the ex-
tended Metropolis algorithm with gradual-deformation resampling
for different t values on the longer- and shorter-correlation-length
examples in Fig. 3. The number of measurements and data error
standard deviation correspond to Scenario 3 in Table 1. As ex-
pected, larger t values lead to bigger global perturbations and thus
more rejections of the proposed models. For both examples, an ac-
ceptance rate of approximately 25 per cent is seen to provide the
fewest number of iterations required for 90 per cent of the model
parameters to represent independent posterior samples. This is sim-
ilar to the acceptance rate at maximum efficiency seen for randomly
selected cells resampling (Table 4). Comparing the performance of
gradual deformation with the other resampling methods, however,
we see that it offers in many cases a significant improvement in
efficiency. For the longer-correlation-length case, for example, 111
610 iterations are required as opposed to 215 520 and 326 690 for
randomly selected cells and block resampling, respectively. Indeed,
the curves showing the number of iterations versus acceptance rate
in Fig. 7 are consistently lower than those for the other sampling
methods shown in Fig. 5. Also note that, as observed previously,
the resampling is more efficient when shorter correlation lengths
are involved. However, this difference is less pronounced than was
observed for the randomly selected points and block resampling
(Table 4).

We next investigated the best possible performance with gradual-
deformation resampling for the different scenarios described in Ta-
ble 1. Table 7 shows the results obtained. In Fig. 8, we compare these
results with those obtained for randomly selected cells and block
resampling. Note that, for both the longer- and shorter-correlation-
length examples, the gradual-deformation-based proposal strategy
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Table 6. Overall MCMC acceptance rate and the number of iterations required for 90
per cent of the model parameters to represent independent samples from the Bayesian
posterior distribution as a function of the tuning parameter t value used in gradual-
deformation resampling. Results are shown for both the longer- and shorter-correlation-
length examples from Fig. 3, assuming the data from Scenario 3 (Table 1).

Longer-correlation-length example Shorter-correlation-length example
Acceptance Number of Acceptance Number of

t rate (per cent) iterations t rate (per cent) iterations

0.0022 64 452 900 0.0040 57 88 800
0.0032 50 217 340 0.0060 40 52 180
0.0042 38 189 140 0.0070 32 44 490
0.0052 28 153 840 0.0075 29 45 200
0.0057 25 111 610 0.0080 25 43 580
0.0062 21 113 880 0.0085 23 42 000
0.0082 10 135 540 0.0090 20 42 300
0.0100 5 214 500 0.0100 16 44 360
0.0110 3 267 620 0.0110 12 52 010
0.0130 2 512 620 0.0200 1 534 220
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Figure 7. Number of MCMC iterations required for 90 per cent of the model parameters to represent independent samples from the Bayesian posterior
distribution as a function of the overall acceptance rate for gradual deformation using different values of the tuning parameter t. Results are shown for the (a)
longer- and (b) shorter-correlation-length examples in Fig. 3 assuming the data from Scenario 3 (Table 1).

is generally more efficient at drawing independent posterior sam-
ples. This is particularly evident for the longer-correlation-length
case, but also holds for the shorter correlation length with the excep-
tion of Scenarios 5 and 6 where randomly selected points resampling
is seen to be slightly more efficient. Although these improvements
are promising, perhaps the most important observation from Table 1
is that in most cases the gradual-deformation proposal strategy still
leads to a computationally intractable number of iterations required
for a single posterior sample. That is, the method, at least when
implemented within the extended Metropolis algorithm, does not
overcome the computational limitations seen earlier with SGR using
randomly selected points and block resampling.

5 D I S C U S S I O N A N D C O N C LU S I O N S

The use of SGR within the extended Metropolis algorithm has
received significant recent interest for the Bayesian stochastic in-
version of near-surface geophysical data because it naturally allows
for the incorporation of complex prior information into the inverse
problem, as well as conditioning to a variety of other data such

as measurements of physical properties along boreholes. Although
previous work has suggested that the approach may be directly ap-
plicable to a wide range of problems, the results of our systematic
testing indicate that there will exist many practical cases where the
methodology, at least as currently formulated, is not computation-
ally feasible. Indeed, we observed that for numbers of data, numbers
of model parameters, and levels of data error that are quite typical
of small-scale near-surface geophysical inverse problems, SGR re-
quired at the very least many thousands of iterations to provide
a single independent sample from the Bayesian posterior distribu-
tion, with this number being over one million iterations for some
examples. This was found to be the case for all three SGR strate-
gies examined, with gradual-deformation resampling providing the
most efficient implementation, followed by randomly selected cells
resampling and then block resampling. Note that these large num-
bers of iterations did not pose significant issues for the straight-
ray tomographic problem considered in our testing; however they
clearly represent a strong limitation in the context of other more
realistic forward models requiring more time to compute a set of
predicted data, as well as for problems involving greater numbers
of parameters (e.g. larger domains, 3-D instead of 2-D).
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Table 7. Overall MCMC acceptance rate and the num-
ber of iterations required for 90 per cent of the
model parameters to represent independent samples
from the Bayesian posterior distribution using gradual-
deformation resampling. Results are shown for different
data and model characteristics as described in Table 1
and Fig. 3, respectively. All values in the table corre-
spond to resampling performed using tuning parame-
ter t values that approximately maximized algorithmic
efficiency.

Acceptance Number of
Scenario t rate (per cent) iterations

Longer-correlation-length example
1 0.0026 24 916 060
2 0.0041 25 219 330
3 0.0057 25 111 610
4 0.0050 25 145 790
5 0.0080 24 51 700
6 0.0109 25 22 830

Shorter-correlation-length example

1 0.0037 25 335 170
2 0.0059 24 96 530
3 0.0085 23 42 000
4 0.0069 25 61 710
5 0.0114 24 20 950
6 0.0157 25 10 050

Our results also indicate that simple metrics, for example the
overall proposal acceptance rate, are generally not good indicators
of MCMC performance in that they can easily mislead the user
into thinking that the algorithm is running effectively when it is
not. Indeed, examination of the cell-by-cell update rate in our test
inversions showed that poor MCMC performance resulting from
an unequal updating of the model cells due to spatial variations in
data sensitivity may be masked by a reasonable overall proposal
acceptance rate. In addition, algorithmic efficiency, as judged here
by the number of iterations necessary for 90 per cent of the model
cells to represent independent samples, was found to be highly

dependent upon the nature of the resampling, the degree of spatial
correlation between model parameters, the level of data error, and
the number of data considered. Unfortunately, no clear rules appear
to exist in order to determine the parameters that will result in an
optimal MCMC implementation for a given type of sampling and
data/model characteristics, without actually running the algorithm
under a variety of different configurations.

In light of the findings in this paper, our general recommendations
are the following. With regard to the use of SGR as a proposal mech-
anism, it appears clear that a ‘global’ model perturbation approach
involving all parameters at once, such as the gradual-deformation
resampling method developed in Section 4, will offer improved
MCMC performance over localized perturbation approaches such
as randomly selected points and block resampling. This will be
especially the case in the presence of significant spatial correla-
tion between model parameters, and when strong differences in
data sensitivity throughout the model domain require the user to
have some degree of control over the magnitude of the perturbed
parameter values. In this regard, it is important to note that only
a basic gradual-deformation proposal methodology was explored
in this paper; the approach indeed offers the flexibility to locally
control the strength of the model perturbations through the use of
spatially variable t values. Whatever resampling method is con-
sidered, however, further research is clearly necessary to improve
MCMC performance if the SGR method is to be considered a gen-
erally suitable tool for a wide range of near-surface geophysical
problems. Although notable computational improvements are ob-
tained with this approach by incorporating as much information
as possible into the prior distribution, one still must deal with the
‘curse of dimensionality’ inherent to pixel-based model parame-
ter representations. To this end, many alternative strategies may
be considered over the admittedly simple extended Metropolis ap-
proach considered here and in previous efforts. For example, re-
cent advancements in MCMC (e.g. ter Braak & Vrugt 2008; Vrugt
et al. 2009; Laloy & Vrugt 2012) allow for consideration of much
greater numbers of parameters and the use of parallel computing.
Another possibility is to consider hybrid-MCMC approaches, such
as the one proposed by Sambridge (2013), which involve the use
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Figure 8. Number of MCMC iterations required for 90 per cent of the model parameters to represent independent samples from the Bayesian posterior
distribution for the different data scenarios described in Table 1. All resampling was performed using the number of cells that approximately maximized
algorithmic efficiency. Shown are randomly selected points resampling (green), block resampling (red) and gradual-deformation resampling (blue) for the (a)
longer- and (b) shorter-correlation-length examples.
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of the parallel tempering algorithm together with MCMC sampling
techniques. Finally, we recommend that further work be done on
how to better incorporate prior information and condition to hard
and soft measurements within a reduced model parameterization
approach. As noted earlier, such methods have the strong advantage
of greatly reducing the dimensionality (and thus complexity) of the
inverse problem, and it may be possible to develop approaches for
effectively reducing prior bias related to the use of correlated basis
functions.
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