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ABSTRACT  25 

Questions: The choice of environmental predictor variables in correlative models of plant species 26 

distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as 27 

highlighted in multiple earlier studies. Because variable selection is directly related to a model’s 28 

capacity to capture important species’ environmental requirements, one would expect an explicit 29 

prior consideration of all ecophysiologically meaningful variables. For plants, these include 30 

temperature, water, soil nutrients, light, and in some cases, disturbances and biotic interactions. 31 

However, the set of predictors used in published correlative plant SDM studies varies considerably. 32 

No comprehensive review exists of what environmental predictors are meaningful, available (or 33 

missing), and used in practice to predict plant distributions. Contributing to answer these questions 34 

is the aim of this review. 35 

Methods: We carried out an extensive, systematic review of recently published plant SDM studies 36 

(years 2010-2015; n = 200) to determine the predictors used (and not used) in the models. We 37 

additionally conducted an in-depth review of SDM studies in selected journals to identify temporal 38 

trends in the use of predictors (years 2000-2015; n = 40). 39 

Results: A large majority of plant SDM studies neglected several ecophysiologically meaningful 40 

environmental variables, and the number of relevant predictors used in models has stagnated or 41 

even declined over the last 15 years.  42 

Conclusions: Neglecting ecophysiologically meaningful predictors can result in incomplete niche 43 

quantification and can thus limit the predictive power of plant SDMs. Some of these missing 44 

predictors are already available spatially or may soon become available (e.g., soil moisture). 45 

However, others are not yet easily obtainable across whole study extents (e.g., soil pH and 46 

nutrients), and their development should receive increased attention. We conclude that more effort 47 

should be made to build ecologically more sound plant SDMs. This requires a more thorough 48 

rationale for the choice of environmental predictors needed to meet the study goal, and the 49 
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development of missing ones. The latter calls for increased collaborative effort between ecological 50 

and geo-environmental sciences. 51 

 52 

Keywords: covariate; environment; habitat suitability; independent variable; model; niche; plant; 53 

predictor; species distribution;  54 

 55 

Abbreviations: DEM = digital elevation model, GIS = geographic information system, SDM = 56 

correlative species distribution modelling, WoS = ISI Web of Science 57 

 58 

Running title: Variable selection and species distribution models 59 

 60 

 61 

INTRODUCTION 62 

 63 

Correlative species distribution modelling (SDM; also called ecological niche, habitat suitability, 64 

and (bio)climatic envelope modelling as well as various other names, hereafter all included under 65 

the acronym ‘SDM’; see Guisan et al. 2013) is a topical approach in ecology and biogeography 66 

(Franklin 2009, Peterson et al. 2011, Moquet et al. 2015). Over the last decades (Booth et al. 2014), 67 

the number of correlative SDM studies has steadily increased, and SDM is currently one of the most 68 

popular methods used to study the impact of various threats to biodiversity and to support related 69 

conservation decisions (Guisan et al. 2013). In addition to a large number of case studies on species 70 

distributions for conservation and risk assessment (Broennimann & Guisan 2008; Araújo et al. 71 

2011; Jiménez-Valverde et al. 2011; Alagador et al. 2014), there is on-going discussion on 72 

theoretical and technical issues, including modelling techniques, selection and evaluation of models, 73 

handling of spatial autocorrelation and, most importantly, variable selection (Franklin 1995; Austin 74 
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2002, 2007; Guisan & Thuiller 2005; Araujo & Guisan 2006; Guisan et al. 2006, Dormann 2007; 75 

Elith & Leathwick 2009; Zimmermann et al. 2010; Austin & Van Niel 2011a; Thibaud et al. 2014). 76 

As SDMs statistically relate environmental variables to the presence/absence (or presence-only) of a 77 

species to predict species distributions (Guisan & Zimmermann 2000), the selection of the most 78 

appropriate set of environmental variables as predictors is essential (Dormann 2007).  79 

 80 

Many of the SDM (sensu lato) reviews published within the last 20 years have called for the use of 81 

more ecologically meaningful predictors (Franklin 1995, 2009; Guisan & Zimmermann 2000; 82 

Guisan & Thuiller 2005; Guisan et al. 2006, Elith & Leathwick 2009; Austin & Van Niel 2011a, 83 

Peterson et al. 2011). For plants, seven environmental factors are generally considered essential for 84 

growth and survival: temperature, water, nutrients, light, disturbances, biotic interactions and CO2 85 

(Körner 2014, see also Guisan & Zimmermann 2000; Austin & van Niel 2011a and Appendix S1). 86 

However, although CO2 is crucial for plant survival and productivity, it is not a limiting resource 87 

under natural growth conditions at current and future atmospheric concentrations (e.g., Körner 88 

2006; Norby & Zak 2011; Inauen et al. 2012; Bader et al. 2013). Under such conditions, the nutrient 89 

cycle and climatic constraints control carbon capture, and therefore CO2 is usually omitted in 90 

correlative analyses of species distributions, such as SDMs, and will not be considered further in 91 

this review. All of the other factors can be resources (i.e., can be consumed by the species; e.g. 92 

nutrients, water, light) or regulators (i.e., can affect metabolic processes; e.g. temperature; see 93 

Huston 2002) and can have direct (proximal) and indirect (distal) effects on plants (Austin 2002). 94 

Thus, in standard SDMs, where species occurrence (and absence) is modelled principally as a 95 

function of environmental conditions, the most realistic and accurate predictions should only be 96 

achieved when all factors defining a species’ niche and thus driving its distribution are accounted 97 

for at the geographic scale considered (Pearson & Dawson 2003; McGill 2010). When considering 98 

the environmental factors shaping species distribution from a niche modelling perspective, it is also 99 
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important to distinguish between bionomic (dynamically altered by the species through being 100 

consumed or modified) and scenopoetic (constant, not affected by the species) variables (see 101 

Hutchinson 1978; Peterson et al. 2011). In this review, by considering the environmental niche 102 

(Grinnell 1917; Hutchinson 1957) of plants (Austin 1980; Austin & Smith 1989) in a wide sense, 103 

we include both regulator and resource predictors, but because precise data on the dynamics of 104 

environmental variables are scarce, we consider resources to remain constant (i.e. we do not 105 

consider what could be consumed by the species itself) over the location and time period of the 106 

study.  107 

 108 

In addition to the importance of ecological justification for the use of ecophysiologically relevant 109 

variables in SDMs, Austin (2002) and later Araujo & Guisan (2006) highlighted the importance of 110 

acknowledging the biological significance of the selected variables, despite the diverse automated 111 

and mathematically optimized variable selection methods developed for SDMs. Additionally, 112 

Petitpierre et al. (in review) showed that selecting variables based on expert knowledge rather than 113 

an automated selection from huge numbers of predictors can lead to better predictive performances 114 

and be more reflective of biological and ecological understanding, especially for fine-scale studies 115 

(see also Pearson & Dawson 2003 for the hypothesized higher importance of non-climatic variables 116 

at finer scales; but see Harwood et al. 2014).   117 

 118 

Although ecophysiological theory (Lambers et al. 2008; Körner 2014), community assembly 119 

experiments (Fukami et al. 2005; Scherber et al. 2010) and biogeographical models (e.g. Franklin 120 

1995; Bertrand et al. 2012; Dubuis et al. 2013; Wisz et al. 2013) stress the importance of various 121 

groups of ecophysiologically essential predictors (Fig. 1), it seems that a large majority of SDMs 122 

are built without consideration of the ecophysiological relevance and comprehensiveness of the set 123 

of predictors (Pearson & Dawson 2003; Guisan & Thuiller 2005; Austin & Van Niel 2011a). The 124 
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most prominent explanation for this incomplete choice of predictors is the unavailability of some 125 

data. It seems that largely available variables are frequently used in models (e.g., WorldClim; 126 

Hijmans et al. 2005), while the use of less easily available or lacking environmental data is 127 

understandably less frequent or absent in SDMs, respectively. This is however a working 128 

hypothesis. Making further progress in SDM science therefore requires understanding the primary 129 

causes of incomplete use of environmental information. Species distribution models are potentially 130 

powerful tools to analyse and predict plant species and community distributions, but their strength, 131 

validity and accuracy depend largely on the input data used. Yet, despite a long-standing knowledge 132 

of which predictors should theoretically be used, no study has comprehensively reviewed which 133 

ecophysiologically meaningful variables are currently used and not used or missing, so that 134 

recommendations can be made on where further development  is required to obtain all important 135 

predictors in a spatially explicit form.  136 

   137 

Here, we evaluate whether the predictors used in correlative plant SDM studies correspond to the 138 

known ecophysiological needs of plant species and whether additional constraints, such as biotic 139 

factors and disturbances, are included. Simultaneously, we aim to identify which of the 140 

ecophysiologically relevant variables are missing and whether their omission is due to the 141 

unavailability of data in a mapped format or to other causes. We do not either intend to review 142 

exhaustively the literature to exemplify good from bad modelling practices, nor to provide examples 143 

from our own analyses. We concentrate on niche-based species distribution models of plants 144 

(vascular plants and bryophytes) and mainly consider direct abiotic variables – both regulator and 145 

resource (sensu Austin 1980) – as well as biotic and disturbance variables. Plants form the basis of 146 

primary production and the food chain and, as such, are important for other species, biodiversity 147 

and environmental conservation in general. Focusing solely on plants also allows for a more in-148 

depth review. We acknowledge the importance of other, non-niche processes influencing plant 149 
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distributions, such as dispersal and (evolutionary) history (Soberón & Peterson 2005), but we do not 150 

examine these processes explicitly here, as we consider them to be outside the scope of this review, 151 

which centres on environmental niche predictors. Further, although efforts towards incorporating 152 

the environmental predictors discussed here are also in progress in the field of mechanistic 153 

modelling (see, e.g., D’Amen et al. in press), this review only considers correlative SDMs.   154 
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MATERIALS AND METHODS 155 

 156 

We performed two web searches to extract original articles (excluding reviews, opinions and 157 

perspectives) dealing with SDMs of vascular plants and bryophytes. The target of the first search 158 

was to record recently published (2010-2015) articles in high-quality ecological journals (see 159 

Appendix S2 for the journals used), while the target of the second search was to examine the 160 

temporal changes in the variables used in the SDMs. The first search was performed using the query 161 

("species distribution model*" OR "habitat model*" OR “ecological niche model” OR "niche 162 

model*" OR "habitat distribution model*" OR "habitat suitability model*" OR "niche-based 163 

model*" OR "bioclimatic envelope model*") AND (vegetation OR plant* OR vascular OR 164 

bryophyte*) following Guisan et al. (2013) in the ISI Web of Science (WoS), restricting the time 165 

range and journals to meet the filters specified above. This search resulted in 745 papers (hereafter 166 

called the ‘recent search’). The second WoS search used the same search words, but the results were 167 

limited to two journals, Journal of Vegetation Science and Journal of Biogeography, after 168 

preliminary queries showed the high number of plant SDM studies published in these journals, 169 

accounting for the years 2000-2015. The second search was also repeated in other search engines to 170 

increase the number of articles and to complement missing years, resulting in a total of 171 articles 171 

(hereafter called the ‘temporal search’). 172 

 173 

For all of the selected articles, we recorded the environmental predictors that were used in the 174 

SDMs. To standardize the results, we divided the predictors into eight variable categories, partially 175 

following Austin and Van Niel (2011a, see also Appendix S1): temperature, water, substrate 176 

(including nutrients but not moisture), radiation, biotic interactions, disturbance (including 177 

anthropogenic factors), topography and land use (Table 1, see detailed list of different variables in 178 

Appendix S3). The temperature and water categories were further divided into mean, extreme and 179 
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seasonality variables, and the water category had two additional sub-classes: water balance and soil 180 

moisture. The substrate-related category was divided into two classes: bedrock/pH and nutrients. 181 

The category of biotic variables accounted for all variables expressing the influence of other 182 

biological agents (e.g., cover of vegetation or certain plant species, species richness, and presence 183 

or abundance of animal species). The disturbance category accounted for processes that primarily 184 

destroy vegetation, such as fire, geomorphological disturbance and human activities, although these 185 

processes can also have a positive impact on certain species (e.g., ruderals; Grime 1977). 186 

Topographic and land-use related variables do not represent direct or resource variables for plants, 187 

but because these are regularly included in SDMs (Franklin 1995) and have an indirect impact on 188 

plant distribution through altering the distribution of temperature, moisture, nutrients and light, they 189 

were also recorded here (Moeslund et al. 2013). All generally ecophysiologically meaningful 190 

predictor variables could be assigned to 16 classes (Table 1). Predictors that were meaningful for 191 

the target of the original study but not for our review (such as fragmentation and distance to 192 

waterbodies) were not recorded but are included in the total number of predictors.  193 

 194 

From each selected SDM study, we further recorded the taxonomic group of species of interest and 195 

the resolution of the input/environmental data. Only studies that used species distribution data 196 

(presence-absence or presence-only) were included in further analyses, i.e. studies on species 197 

richness or abundance were not considered. To avoid bias in our analyses due to the tendency to 198 

highlight the use of climate variables only, we restricted our searches to studies conducted up to a 199 

resolution of 1 km2 (~30 arc seconds). Studies at coarser resolution (and often larger scale) 200 

effectively tend to include only climatic variables due to data availability and the scale-dependence 201 

of different predictors (Pearson & Dawson 2003, Thuiller et al. 2004; but see Harwood et al. 2014). 202 

From the 745 ‘recent’ articles found in the WoS, 182 met our requirements (that is, they involved 203 

actual SDMs concerning plants and had a maximum 1 km2 resolution). Hereafter, however, our 204 
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analyses include 200 studies due to some articles using distinct sets of predictors for different 205 

species or different spatial resolutions. Each of these studies were divided into separate studies. Of 206 

the ‘temporal’ articles, forty pertained to plants and were conducted at a maximum resolution of 1 207 

km2. The resulted dataset was used to examine the number and type of predictors included in the 208 

models. Especially, this was done in order to distinguish which predictors are frequently used in the 209 

SDMs, and on the other hand, which predictors are not used and might require further developing. 210 

 211 

To account for environmental and spatial coverage, we recorded the continent and biome of origin 212 

of the data. The articles included study areas from all continents. Most studies were from Europe (n 213 

= 84) and North America (n = 53), with fewer studies from Australia (n = 25), Africa (n = 20), Latin 214 

America (n = 15) and Asia (n = 12). All biomes were covered with an expected bias towards 215 

European and North American biomes (temperate, boreal, Mediterranean, alpine, arctic) where 216 

more studies have been conducted overall.  217 

 218 

RESULTS 219 

 220 

In the ‘recent’ articles, the average number of predictors included in the models was eleven (Fig. 2). 221 

The number of predictors considered in the models varied from one to 75. The different classes of 222 

variables covered in the models varied from one to thirteen (out of the 16 defined in this study), 223 

with only two studies covering all eight of our categories (Fig. 2). Several variables under one class 224 

and/or category were often simultaneously included as predictors. Variables from the five most 225 

essential categories (temperature, water, substrate, radiation, biotic interactions) were included in 226 

seven studies, with all of these also including disturbance, topography and/or land-use related 227 

variables. Overall, the reviewed studies represent considerable variability in the different variables 228 



11 
 
 

used. In particular, the ‘water balance’ and ‘biotic’ classes included various sets of different types 229 

of factors (see Appendix S3). 230 

 231 

Most of the ‘recent’ studies included temperature- and water-related variables (both were included 232 

in 88.5 % of studies). Each of the temperature sub-classes appeared in more than half of the SDMs. 233 

The most frequently included water-related variables were monthly or annual mean precipitation 234 

(68.5 %), with extreme and seasonal precipitation and water balance appearing in approximately 235 

one third of the studies (Fig. 3). Approximately one third of the studies included only climatic 236 

variables (derived from temperature and/or precipitation). Measurements or approximations of 237 

actual or potential soil water or soil moisture were incorporated in 15 studies.  238 

  239 

Substrate-related variables were used in ~ 40 % of the studies, and variables directly representing 240 

bedrock/pH or nutrients were included in approximately one quarter of the studies. Only 60 studies 241 

involved variables representing light. One fifth of the studies included some biotic component as a 242 

predictor variable. Variables representing natural disturbances were included in 17 studies. 243 

Variables related to human activity were included in 19 studies.  244 

 245 

After climatic variables, topographic factors were most commonly included in the SDMs screened 246 

in this study (44.5 %). Land use was included in 32 studies, with one study using land use as a mask 247 

to exclude certain areas.  248 

 249 

There were no significant differences in the number of variable classes used among the continents 250 

(Fig. 4). Only Latin America (LAm) had a significantly lower number of variable categories 251 

compared with the other continents. 252 

 253 
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The ‘temporal search’ showed no increase in the number of categories accounted for in the SDMs 254 

through time (2000-2015). On the contrary, the number of variables from different categories 255 

showed a decreasing trend (Spearman’s rank correlation -0.40*; Fig. 5). Exceptions were the SDM 256 

studies from 2011 (by Austin and Van Niel (2011b), Meier et al., Mellert et al. and Ohmann et al.), 257 

which increased the number of categories included; all studies discussed the importance of selecting 258 

variables on an ecological basis or the impacts of omitting meaningful predictors in the models and 259 

thus included variables from multiple categories. 260 

 261 

 262 

DISCUSSION 263 

 264 

Ecological theory, supported by experimental and correlative studies, stresses that multiple 265 

environmental factors drive the distribution of species (e.g., Larcher 1975, Fitter & Hay 2002, 266 

Schulze et al. 2005, see also e.g., Guisan & Zimmermann 2000; Elith & Leathwick 2009; Franklin 267 

2009; Austin & Van Niel 2011a; Bertrand et al. 2012; Dubuis et al. 2013; le Roux et al. 2013a, b), 268 

particularly temperature, water, nutrients, light, biotic interactions and disturbances (see Appendix 269 

S1). In recently published SDM studies, many of these factors were omitted or replaced with rough 270 

surrogates (e.g., precipitation for plant available water). Indeed, more than half (53 %) of the plant 271 

SDM studies reviewed here based their predictions solely on the categories of temperature and 272 

water or on those two categories plus one additional variable, thus potentially neglecting several 273 

other ecophysiologically relevant aspects (e.g., substrate, radiation and/or biotic interactions. 274 

Although it is important to highlight that not all of these categories might be meaningful for all 275 

SDMs; see the next paragraph). While data availability is likely a potential reason for the omission 276 

of ecophysiologically meaningful predictors, the wide range of variables used in some exemplar 277 

studies (see next sections and Appendix S3) indicates that some influential and available predictors 278 
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may tend to be neglected. Furthermore, there was no difference in the number of predictor classes 279 

used in studies from the “data rich” continents (Europe, North America) and the “data poor” 280 

continents (Fig. 4), suggesting that data availability may not be a sufficient explanation for the 281 

absence of important predictors in the models.  282 

 283 

The intentional use of an ecophysiologically incomplete set of predictors in correlative modelling is 284 

acceptable, for instance, if the study deliberately focuses on the climatic niche or climatic range 285 

only, provided that this is clearly acknowledged. Therefore, it is important to distinguish here 286 

between two classes of studies according to their ultimate goal: studies which aim would require 287 

including all potentially important variables (e.g. fine-scale predictions for conservation, or 288 

addressing aspects of species’ ecology in general), and studies which aim does not necessarily 289 

require more than one type of predictors (e.g. climate-change studies only interested in fitting 290 

species’ climatic niches and climatic ranges). Also, in some other cases, a comprehensive set of 291 

meaningful predictors may not be essential in SDMs (e.g., when illustrating the development of 292 

new methodologies, or if models representing a specific aspect of the niche are explicitly desired; 293 

Thuiller et al. 2005).  Nevertheless, in all type of SDMs, it is important to justify the choice of 294 

predictors, and interpret the results in accordance with used predictors. Indeed, only few of the 295 

studies reviewed here acknowledged the ecophysiologically incomplete set of environmental drivers 296 

used as predictors (e.g., Bertrand et al. 2012; Aguirre-Gutiérrez et al. 2013; Ikeda et al. 2014; 297 

Riordan & Rundel 2014, Petitpierre et al. in review), and many studies provided no ecological 298 

rationale for the choice of predictors. In the next sections, focusing our discussion on SDMs aiming 299 

to comprehensively capture species ecological niche, we aim to provide such rationale, discuss 300 

ways to account for the needed predictors in SDMs, and identify missing predictors for which 301 

development and mapping are still needed at a fine scale. However, we do not provide any 302 

estimates of an adequate number of predictors, which depends on the number and distribution of 303 
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species occurrences and the algorithm or approach used (see e.g., Wisz et al. (2008) and Franklin 304 

(2009)). 305 

 306 

Temperature 307 

 308 

Temperature and water-related variables were the most commonly used predictors among the 309 

reviewed studies (Fig. 3). While temperature is frequently accounted for in the models and plays an 310 

indisputable role in regulating plant species growth and thus, distribution (see Appendix S1), two 311 

noteworthy issues concerning temperature were identified from our literature analyses. First, there 312 

is a large variety of temperature data products available, with the class of temperature variable used 313 

having an impact on model performance (Barbet-Massin & Jetz 2014; Slavich et al. 2014). For 314 

example, the impact of mean temperature on plants differs from that of extremes or seasonality in 315 

both ecological meaning and modelling performance (Zimmermann et al. 2009). In seasonally 316 

variable environments especially, annual mean temperature does not represent the growing season 317 

or over-wintering conditions, which potentially play a more central role in governing the 318 

distribution of plants (Aerts et al. 2006; Paulsen & Körner 2014). One solution to choose between 319 

different temperature-related variables might be to include multiple variables in a model, as 320 

exemplified by many studies using climatic data provided by WorldClim (Hijmans et al. 2005). 321 

However, this raises problems of multicollinearity (Graham 2003; Dormann et al. 2013) and 322 

conflicts with the objective of parsimony (Mac Nally 2000). Ultimately, the environmental 323 

conditions of the study area and the requirements of the species should determine the most suitable 324 

temperature-related variable(s) – a viewpoint only rarely considered or tested in the modelling 325 

studies. 326 

 327 
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Second, while there is a multitude of temperature data readily available for modelling, their 328 

resolution and accuracy can be coarse compared with the species data (Dingman et al. 2013; 329 

Franklin et al. 2013; Potter et al. 2013; Pradervand et al. 2014). Temperature measurements are 330 

typically obtained by interpolating sparse measurements and neglecting the impact of local 331 

topography, land cover or water bodies on local temperatures experienced by plants (Scherrer & 332 

Körner 2011; Franklin et al. 2013; Aalto et al. 2014; Slavich et al. 2014). Alternatively, improved 333 

temperature maps could be obtained by a combination of increased field measurements (e.g., 334 

thermal loggers), predictive methods, high-resolution digital elevation models (DEMs) and thermal 335 

remote sensing rather than spatial interpolations (Scherrer and Körner 2010, Dingman et al. 2013; 336 

Pradervand et al. 2014). Thus, while the availability of temperature data is not a primary problem, 337 

their usability and ecological significance in SDMs could be improved by increasing their 338 

resolution and accuracy. 339 

   340 

Water 341 

 342 

Predictors representing water availability for plants are often derived from precipitation, a class of 343 

climatic predictors inheriting similar challenges to those discussed for temperature. In addition, 344 

precipitation is a poor surrogate for plant available water, especially in high-resolution studies that 345 

cover small areas, due to the effects of local topography and soil substrate on the amount and 346 

distribution of soil moisture (le Roux et al. 2013c; Piedallu et al. 2013). Therefore, while water as a 347 

category of predictors is almost always acknowledged in the models, the ecophysiological 348 

significance of the water predictors being used might be poor in many cases. Some studies have 349 

used water balance (precipitation minus evapotranspiration), which represents a more accurate 350 

measure of plant available water compared with precipitation. Some soil moisture indices derived 351 

from climate data and geographic information systems (GIS) modelling are available (e.g., 352 
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Trabucco & Zomer 2010), but these proxies also neglect the impact of terrain on plant available 353 

moisture. Using high-resolution topographic information in combination with climate and soil 354 

measurements could provide a more promising basis for modelling high-resolution soil moisture 355 

data (Aalto et al. 2013; Pradervand et al. 2014). 356 

 357 

Ideally, soil moisture measurements taken in the field should most accurately represent the water 358 

available to plants. Studies that incorporate field-quantified soil moisture values in their models 359 

have improved predictive power, especially at high spatial resolutions (le Roux et al., 2013c). 360 

However, collecting these high-resolution and accurate soil moisture data over large areas is rarely 361 

feasible. Remote sensing combined with GIS provides ready-to-use (coarse-scale) indices of 362 

moisture or wetness (e.g., the surface saturation degree of ASCAT soil wetness indices, see Brocca 363 

et al. 2010; Lakshmi 2013; Wagner et al. 2013), and other recent developments such as Synthetic 364 

Aperture Radars (Elbialy et al. 2014), hyperspectral aerial images (Pottier et al. 2014) and spatial 365 

modelling (Aalto et al. 2013) show promise in estimating actual soil moisture at higher resolutions. 366 

To conclude, although often accounted for in SDMs with distal predictors, water-related variables 367 

could be improved through combined approaches mixing refined field measures, GIS modelling and 368 

remote sensing.  369 

 370 

Nutrients 371 

 372 

The role of soil and its nutrients on plant performance is acknowledged by most ecologists (Epstein 373 

& Bloom 2005; see also Appendix S1) as well as their role on model performance by many 374 

modellers (almost half in our study; see also Coudun et al. 2006; Coudun & Gégout 2007; Bertrand 375 

et al. 2012; Dubuis et al. 2013). It seems hardly feasible to obtain high-resolution field 376 

measurements of nutrient content and geo-chemical properties of soils across a whole study area. 377 
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Thus, most studies that included substrate variables used either geological or geomorphological 378 

surrogates such as bedrock, pH or landforms, or factors related to soil structure, such as texture or 379 

soil depth (Bertrand et al. 2012; Dubuis et al. 2013). This highlights the need for more sophisticated 380 

indices of soil nutrient content, analogous to those being developed for soil moisture. The use of 381 

soil ecological indicator values (e.g., Ellenberg) also highlights such a need (Coudun et al. 2006). 382 

Improved spatial predictors of soil characteristics are thus still required, such as those derived from 383 

remote sensing (Parviainen et al. 2013) or potentially from statistical modelling (Lagacherie 1992), 384 

to further improve plant SDMs (Dubuis et al. 2013). 385 

 386 

Light 387 

 388 

The importance of light for plants and its use as a predictor in SDMs were previously discussed by 389 

Austin and Van Niel (2011a). Solar radiation can be calculated using DEM and, if available, canopy 390 

cover in efficient GIS tools (McCune & Keon 2002). However, light-related variables were only 391 

included in less than one third of the studies we reviewed, meaning that more than two thirds of the 392 

reviewed studies neglected an important factor controlling plant distributions, especially at local 393 

scales. In the studies accounting for light, it was mostly represented by the sum of (potential) solar 394 

radiation over various seasons. In these cases, the radiation variable actually expresses heat rather 395 

than photosynthetically active radiation (PAR) and therefore acts similarly to temperature. To 396 

obtain a real measure of PAR, light must be measured specifically, and the effects of cloud cover 397 

and canopy interception must be taken into account (Aguiar et al. 2012; Wang et al. 2014). 398 

Nevertheless, inclusion of a solar radiation variable often improves model prediction by adding 399 

information on fine-scale energy input, especially in topographically heterogeneous areas (Austin & 400 

Van Niel 2011a). At a given elevation, slopes with different aspects can have very different soil and 401 

vegetation temperatures (Scherrer & Körner 2010; Gunton et al. 2015). In contrast to average 402 
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temperatures based mostly on adiabatic lapse rates, solar radiation can include information 403 

regarding aspect, relief shading and daylight period (Kumar et al. 1997; Austin & Van Niel 2011a). 404 

However, as mentioned before, the use of solar radiation as a predictor can lead to misleading 405 

interpretations, as its impact on plants might strongly depend on season, canopy structure and cloud 406 

cover. Thus, the radiation variables should firstly be incorporated into SDMs, seasonal variations 407 

should be accounted for, and the effects of canopy and cloud cover should be included when 408 

studying understory vegetation (Nieto-Lugilde et al. 2015). 409 

 410 

Biotic interactions 411 

 412 

Biotic interactions play a role in altering the potential environmental niche, for example, through 413 

competition, facilitation and herbivory (Brooker & Callaghan 1998; Callaway et al. 2002; Araújo & 414 

Luoto 2007; Pellissier et al. 2010; Mod et al. 2014). As the importance of biotic interactions and 415 

how to measure their importance (Godsoe & Harmon 2012) and account for them in SDMs are still 416 

under discussion (Kissling et al. 2012; Wisz et al. 2013), many SDMs do not include biotic factors. 417 

Implicitly, these SDMs assume that the important biotic interactions (in a given area or habitat) are 418 

already indirectly accounted for at the sampling stage (when gathering observations) because biotic 419 

interactions influence the realized distribution of the species (McGill et al. 2006) and are thus 420 

captured in the realized environmental niche (Araùjo & Guisan 2006). Nonetheless, biotic 421 

components were used in approximately one-fifth of the studies, indicating their increasing 422 

importance in SDMs. However, explicit information on biological interactions remains difficult to 423 

obtain in a spatially explicit form, as the biotic factors governing the assemblage of individual 424 

species into communities are still largely unknown (Kissling et al. 2012, Wisz et al. 2013), and 425 

associated assembly rules remain to be developped (Guisan & Rahbek 2011). However, surrogates 426 

such as dominant species cover have been shown to provide some measure of biotic interactions (le 427 
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Roux et al. 2014), and incorporating these surrogates has improved both the explanatory and 428 

predictive power of SDMs (Meier et al. 2010; Pellissier et al. 2010). Various methods to account for 429 

biotic interactions in SDMs are presented in Kissling et al. (2012), Wisz et al. (2013) and Pollock et 430 

al. (2014). 431 

 432 

Disturbance 433 

 434 

The type and necessity of including disturbance variables in models are highly environment-435 

specific. Frost-related disturbances can strongly impact vegetation in arctic and alpine areas by 436 

destroying some species and subsequently, creating space for other species (le Roux et al. 2013a; le 437 

Roux & Luoto 2014). In dryer areas, fire may play such a role (Tucker et al. 2012, but see 438 

Crimmins et al. 2013). Disturbance has been incorporated in some models, for example, as the 439 

proportion of the area that is disturbed (le Roux et al. 2013a), as an index of geomorphic 440 

disturbances (Randin et al. 2009a), or as time elapsed since the last fire (Moretti et al. 2006). The 441 

use of predictors related to natural disturbances in SDMs may be particularly important when 442 

analysing the potential impacts of changing climate because changes in the intensity of these 443 

processes associated with climatic shifts may represent key mechanisms by which changes in 444 

temperature and rainfall patterns affect vegetation assemblages (le Roux & Luoto 2014, although 445 

see Crimmins et al. 2013). Similar to other disturbances, the use of anthropogenic predictors is 446 

situational, depending on the study environment, species and study target. For semi-natural or urban 447 

landscapes and/or species highly associated with humans, the use of anthropogenic predictors might 448 

be crucial to obtain reasonable predictions (Kouba et al. 2011; Senan et al. 2012).  449 

 450 

Topography and land use 451 

 452 
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Variables representing topography are often included in plant distribution models (see also Franklin 453 

1995). Including these variables has been demonstrated to improve plant SDMs (e.g., Sormunen et 454 

al. 2011), but interpreting the actual drivers of plant distributions related to these variables can be 455 

difficult. Because the effects of topographic variables on plant distributions are distal (i.e., they do 456 

not directly impact plants, but they do alter light, moisture, temperature and nutrient conditions; 457 

Moeslund et al. 2013), it is not possible to interpret the causal relationships between these variables 458 

and the target species (Austin 2007). Correlation between indirect gradients and species distribution 459 

results only from location dependence (Austin 2002). Despite the demonstrated ability of 460 

topographic variables to improve local models, the use of these indirect variables hampers 461 

understanding of proximal species-environment relationships and reduces transferability (Randin et 462 

al. 2006). Field quantification of environmental variables or the use of purely proximal variables 463 

(sensu Austin 2002) would assist in identifying the actual environmental factors that species 464 

respond to and would thus provide more detailed understanding of species distributions and 465 

ultimately, yield more realistic SDMs. Therefore, using in-situ measured direct and resource 466 

variables instead of indirect gradients (such as elevation, aspect and topographic position) would be 467 

advisable (Austin 2002; Pradervand et al. 2014), especially when SDMs are also used to explain 468 

species distributions. Land use was occasionally included in the models we reviewed. Its inclusion 469 

usually improves the explanatory and predictive power of SDMs (Von Holle & Motzkin 2007) but 470 

only for predicting species abundances in some cases (Randin et al. 2009b). However, interpreting 471 

the proximal impact of land-use predictors on plant distributions suffers the same problems 472 

discussed for topographic variables (i.e., being often not proximal). 473 

 474 

Implications for future studies 475 

 476 
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As hypothesized, limited data availability could be one justification for omitting potentially 477 

influential ecophysiologically predictors in SDMs despite their demonstrated advantages for the 478 

explanatory and predictive power (e.g., Austin & Van Niel 2011b, Bertrand et al. 2012, le Roux et 479 

al. 2014). The other hypothesized explanation was the intended omission, e.g., in studies of climatic 480 

niches and ranges (e.g., Thuiller 2005, Petitpierre et al. 2012). However, data unavailability and 481 

intended omission can hardly explain all instances (especially in data-rich areas of Europe, North-482 

America and Australia, Fig. 4) where important non-climatic factors were excluded (see similar 483 

statement made 20 years previously by Franklin 1995). Indeed, many of the studies provided no 484 

justification for the choice of predictors or only provided a reference to another study relying on a 485 

similar set of predictors without considering the influence of the study area or the ecophysiological 486 

requirements of the studied species to determine a meaningful set of predictors. Furthermore, 487 

despite increasing recognition of the importance of a variety of environmental variables for 488 

predicting plant distributions (e.g. Austin & Van Niel 2011a, Dubuis et al. 2013) and the increasing 489 

availability of numeric data (including from remote sensing), the number of ecophysiologically 490 

significant variable categories considered in SDMs seems rather to have decreased during the 21st 491 

century. Therefore, we argue that in the future, an ecologically sound reasoning for the choice of 492 

predictors in the SDMs should become common practice, and the models and predictions should 493 

always be interpreted in perspective of the set of predictors used. 494 

 495 

In addition, our literature review highlighted that some variable classes are poorly represented in 496 

terms of data quantity (e.g. global coverage) and quality (e.g. resolution). More attention should be 497 

paid to ensure that all relevant environmental predictors are made available for modelling at the 498 

scale investigated. Although measuring or deriving proximal predictors over large areas can be 499 

difficult for single researchers, large international efforts are increasingly developed to use remote 500 

sensing products for such purpose (Zimmermann et al. 2007, Estes et al. 2010). More research 501 
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should also be dedicated to produce finer-scale and more proximal data to improve our 502 

understanding of the factors driving species distributions (Gunton et al. 2015) and therefore, the 503 

production of more realistic predictions. Here too, remote sensing and GIS can produce promising 504 

data products (Bradley et al. 2012, Pottier et al. 2014, He et al. 2015), and ecologists and ecological 505 

modellers should give more attention to collaborative research within the geo-environmental 506 

sciences.  507 

 508 

 509 

CONCLUSIONS 510 

 511 

Our study reveals that the rationale, selection and use of environmental predictors in many plant 512 

species distribution models do not systematically match established ecophysiological theory, 513 

perspectives on ecologically meaningful variable selection or demonstrated improvements in 514 

SDMs, and therefore calls for the need to add several meaningful variables in SDMs. Except for the 515 

pure climatic niche studies and methodological experiments, many plant SDMs so far have omitted 516 

important environmental variables, and the number of predictors representing the essential 517 

ecophysiological aspects pertaining to plants has not increased during the 21st century, despite 518 

increased numerical data availability. In particular, nutrients, actual light, disturbance and biotic 519 

interactions should be incorporated more systematically into SDMs, together with the most 520 

commonly used temperature and water variables. Furthermore, the type of temperature and water 521 

variables to be used should also be given more careful attention. The development of new 522 

environmental variables will require improved collaborative research between ecological and geo-523 

environmental sciences as well as access to advanced technology, such as remote sensing and GIS 524 

modelling approaches. Developing new sets of ecophysiologically more meaningful predictors 525 

provides the basis for a paradigm change in SDM research.   526 
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TABLES 891 

 892 

Table 1. Classification of predictors into eight categories and 16 classes (see Appendix 3 for details 893 

of the variables). The five first columns represent the most important categories, which we refer to 894 

as ‘the five most essential categories’ in the text. 895 

Cate-

gories 

Temperature Water Substrate Radiation Biotic 

inter-

actions 

Disturbance Topo-

graphy 

Land 

use 

C
la

ss
es

 

mean (annual, 

seasonal, 

monthly) 

temperature 

mean / 

summed 

(annual, 

seasonal, 

monthly) 

precipitation 

pH, 

bedrock 

radiation, 

clouds 

variables 

related to 

other 

organisms 

geomorpho-

logical 

processes, 

fire 

slope, 

aspect, 

elevation,  

land-use 

classes 

extreme 

temperatures 

extreme 

precipitation 

nutrients   anthropo-

genic 

variables 

  

seasonality seasonality       

 water balance       

 soil moisture        
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 897 

 898 

 899 

 900 

 901 

  902 
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FIGURES 903 

 904 

Fig. 1. Example of a conceptual framework of relationships between resources, direct and indirect 905 

environmental gradients and their influence on the growth, performance, and geographical 906 

distribution of vascular plants and vegetation. ET = Evapotranspiration, P.A.R = Photosynthetically 907 

active radiation. Adapted from Guisan & Zimmermann 2000. 908 

  909 
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 910 

Fig. 3. Proportion of studies in which each predictor class was used: 1a mean temperature; 1b 911 

extreme temperature; 1c seasonality of temperature; 2a mean precipitation; 2b extreme 912 

precipitation; 2c seasonality of precipitation; 2d water balance; 2e soil moisture; 3a pH/bedrock; 3b 913 

nutrients; 4 radiation; 5 biotic interactions; 6a natural disturbances; 6b human disturbances; 7 land 914 

use; 8 topography. 915 

 916 

 917 

  918 
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 919 

Fig. 2. Frequency of the number of variables, classes (16) and categories (see Table 1) accounted 920 

for in the plant species distribution modelling studies. One outlier value (75) was removed from the 921 

histogram representing the number of variables in the SDMs.    922 

  923 
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 924 

Fig. 4. The number of categories and classes accounted for in the plant species distribution models 925 

(SDMs) using data from different continents. The boxes represent the median and the 25/75 926 

percentile, and the whiskers are 2 SD. The mean is indicated by a black square, and significant 927 

differences are marked with an asterisk. 928 

  929 
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 930 

Fig. 5. Number of variable categories (as presented in Table 1) used in the SDM studies published 931 

in two journals from 2000-2015. Spearman’s rank correlation between the years and categories 932 

included is -0.40*. Black squares indicate the mean values of all studies published within a year, 933 

and the grey dots indicate individual studies. 934 

 935 

 936 

 937 

 938 



Supporting information to the paper  

Heidi K. Mod, Daniel Scherrer, Miska Luoto & Antoine Guisan. What we use is not what we know: environmental predictors in plant 

distribution models. Journal of Vegetation Science. 

 

Appendix S1. Ecophysiologically relevant variables for plant distribution  

Seven environmental factors are generally considered as essential for plant growth and survival: light, water, temperature, 

nutrients, biotic interactions, disturbance and CO2 (Guisan &  Zimmermann, 2000, Kadereit et al., 2014). All these factors can have 

direct and indirect effects on plants and in combination with dispersal and historical factors, they define the abundance and 

distribution of plant species (Soberon &  Peterson, 2005).  

Temperature is the most common regulatory factor considered in SDM’s. Temperature directly effects the speed of growth and in 

case of strong seasonality defines the growing season length. Additionally, minimum and maximum temperatures can reflect 

physiological thresholds for plants by frost or heat resistance. 

Water has several essential functions in plants including photosynthesis, cooling by transpiration and maintaining turgor. In SDMs 

“water” is usually reflected by either precipitation alone or in combination with evapotranspiration (e.g. water balance). These 

environmental variables are considered a proxy for plant available water. However, this might not be the case if soils and 

topography are heterogeneous, as plant available water is strongly influence by both soil type and topographic position. The 

seasonality of available water/precipitation might lead to temporal flooding, drought or snow cover and thus requires special 

adaptations by the present plant species. 

Nutrients are taken up with water by roots (often with the help of mycorrhiza). Many micronutrients are essential for plant survival 

including potassium, calcium, magnesium, sulphur, boron, chlorine, manganese, molybdenum and zinc but most significant for 

productivity are usually the contents of nitrogen and phosphorus. Nutrients in a wider sense can also influence the pH of the soils, 

whereas bedrock together with living organism are the primary regulators of available nutrients in soils. Therefore, while deriving 

nutrient content of the soils might not be effective, bedrock, soil pH and soil texture are often used as surrogates in the SDMs. 

Light is often expressed as global radiation and therefore energy (W/m2) driving temperature (air, leaf, and soil) and 

evapotranspiration. However, for plants light reflects also photo active radiation (PAR) and is thereby directly related to 

photosynthesis. While radiation can be easily modelled and is relatively independent of the vegetation, PAR is strongly affected by 

the canopy structure of the vegetation. Therefore, the available light for photosynthesis might be very different in a forest 

compared to open grassland at otherwise similar global radiation (energy). Additionally, light might contain important signals for 

plant development (e.g. germination and photoperiodism). 

Biotic interactions act among and between species, and have both positive and negative impact by prohibiting or ameliorating 

growth. Impact of other species can be direct (e.g. competition, herbivory) or indirect (e.g. ameliorating harsh microclimatic 

conditions, shading, nutrient addition by manure). Biotic interactions have been included to the SDMs as e.g. presence or cover of 

dominant species, remote sensed vegetation index or interaction matrices for multispecies co-occurrence datasets.   

Disturbance’s impact is mainly negative for species as soil, water, air or snow movement, fire or anthropogenic activities destroy 

vegetation. However, some ruderal species benefit from disturbances indirectly as they decrease competition and create space by 

destroying dominant species, and some specialist species require disturbances, as fire and water-logging for germination. 

Disturbances have also secondary impact on vegetation, by indirectly impacting soil properties: e.g. cryoturbation bring nutrients 

closer to soil surface. 



CO2 the carbon source for plants and therefore essential for their survival and productivity. However, the levels of CO2 among sites 

don’t vary enough to be limiting or having a significant influence on species composition and therefore are ignored in correlative 

models such as SDM’s. 

Topography and land use do not have a direct impact on plants, but they affect the distribution of ecophysiolosically meaningful 

factors (e.g. temperature, light). Topography and land use related variables are easily available and incorporating them often 

improve SDMs. 
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Appendix S2. Journals and number of studies included by the 

query (and subsequent analyses). 

 

Recent search: 

Ambio 3 (1) 

American Naturalist 4 (1) 

Annals of Botany 9 (2) 

Applied Vegetation Science 9 (5) 

Biodiversity and Conservation 22 (5) 

Biological Conservation 49 (10) 

Biology Letters 2 (2) 

Climatic Change 7 (3) 

Conservation Biology 9 (1) 

Conservation Letters 1 (0) 

Diversity and Distribution 62 (19) 

Ecography 52 (21) 

Ecological Applications 20 (5) 

Ecological Modelling 50 (20) 

Ecological Monographs 3 (3) 

Ecology 9 (2) 

Ecology Letters 11 (1) 

Ecosystems 1 (0) 

Functional Ecology 3 (0) 

 

 

 

 

 

 

Global Change Biology 58 (16) 

Global Ecology and Biogeography 45 (11) 

Journal of Applied Ecology 13 (1) 

Journal of Biogeography 59 (17) 

Journal of Ecology 14 (2) 

Journal of Vegetation Science 24 (8) 

Landscape Ecology 12 (1) 

Methods in Ecology and Evolution 15 (1) 

Nature Communications 1 (0) 

New Phytologist 5 (2) 

Oecologia 1 (0) 

Oikos 5 (1) 

Perspectives in Plant Ecology 7 (0) 

Plant Ecology 8 (7) 

Plos One 113 (29)  

Proceedings of National Academy of Sciences 10 (1) 

Proceedings of Royal Society B 14 (2) 

Science 2 (0) 

Trends in Ecology and Evolution 1 (0) 

 

Temporal search 

Journal of Vegetation Science 39 (12) 

Journal of Biogeography 122 (28)
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Appendix S3. Variables included in different classes and categories. 

 

TEMPERATURE 

mean temperature 

 (annual / monthly) mean temperature (of coldest / warmest / driest / wettest quarter / summer / winter) 

 soil temperature 

 warmth index (the annual sum of positive differences between monthly mean temperatures and e.g. 5 degrees, i.e. a 

measure of the effective warmth for plants) 

extreme temperature 

 (annual) min / max temperature (of coldest / warmest driest / wettest quarter / month / season ) 

 mean temperature of coldest / warmest / driest / wettest month  

 mean daily max / min temperature (for DJF / MAM / JJA / SON) 

temperature seasonality 

 seasonality, annual / diurnal range 

 growing degree days (all thresholds) / freezing degree days (FDD) (soil / air) / non-FDD / chilling degree days 

 isothermality 

 heat units (annual sum of daily temperatures exceeding X degrees) 

 frost duration 

 winter / summer cold / heat wave duration 

 

WATER 

mean precipitation 

 (annual / monthly) mean / summed precipitation (of coldest / warmest / driest / wettest quarter / season) 

 days with rain > 1 mm 

 rainfall intensity 

extreme precipitation 

 mean / summed / min / max precipitation of coldest / warmest / driest / wettest month 

 highest 5-day precipitation 

precipitation seasonality 

 seasonality, annual range 

 snow (cover duration, annual snowfall) 
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 dry / wet season /day length / intensity / frequency 

 % of annual precipitation falling during the growing season 

 average flood duration 

 the standard deviation of hydrographs 

water-balance 

 (annual / seasonal / monthly) water balance  

 (annual / seasonal) evapo-transipiration, vapour pressure 

 (mean / annual / seasonal / soil) water / moisture deficit / surplus / availability /stress 

 (annual / seasonal / plant available) water/ wetness / moisture / aridity index  

 water content 

 flow accumulation 

 average water level 

 soil moisture (days; days when soil moisture - air temperature ratio is favourable for plant growth) 

 waterlogging index 

soil water capacity 

 soil water capacity, measured soil moisture 

 soil drainage class 

 hydraulic soil presence class 

 

SUBSTRATE 

bedrock / ph 

 bedrock, lithology, rock type 

 pH 

 surface geology, geological substrate 

nutrients 

 nutrients, fertility, Cation-exchange capacity, calcareous 

 soil material / depth / order / quality / texture / type 

 organic matter, loaminess, alluvial, clay / silt / sand content, salt, gypsum 

 soil grain size, bulk density 

 FAO soil group 

 remote sensed Normalized difference soil index, soil production index 
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 water regime (ordered classes from dry to waterlogged) 

 

LIGHT 

 solar radiation (daily, annual, seasonal) 

 most / least radiated quarter 

 mean hours of sunshine 

 clouds 

 

BIOTIC 

 NDVI, Landsat bands, Enhanced Vegetation Indices, remote sensed vegetation (indices / classes) 

 vegetation height / density / volume/  cover 

 canopy / forest / tree cover 

 productivity, Net Primary Production  

 ecological classification, succession time 

 pollinators 

 litter 

 distance to moorland, moorland presence / absence 

 stand basal area 

 % of sparsely / dense vegetated brownfield 

 % of brownfield with low / high vegetation 

 

DISTURBANCE 

natural  

 fire, volcanic ash  

 geomorphological disturbance 

 trampling, grazing 

 % area of disturbed terrain 

anthropogenic 

 population / settlement / building density 

 distance to urban areas / roads / harbour / roads 

 agriculture, afforestation, soil drainage, roads, human perturbation, forest / etc. management  
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 human footprint, anthropization degree 

 brick rubble 

 ownership status (measure of land management) 

 predominance of exotic species 

 

TOPOGRAPHY 

 altitude (range), terrain curvature, topographic position, slope, flatness, meso-topography, % of steep topography, slope 

type 

 aspect, eastness, northness 

 rockiness, ruggedness, topographic wetness index,  

 topographic diversity 

 

LAND-USE 

 Corine, land-use classes (if only "biotic" land-use -> ‘biotic’ class) 

 distance to potential forest, age of forest 


