
Phylogenetics

State aggregation for fast likelihood

computations in molecular evolution

Iakov I. Davydov1,2, Marc Robinson-Rechavi1,2 and Nicolas Salamin1,2,*

1Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland and 2Swiss

Institute of Bioinformatics, Genopode, Quartier Sorge, 1015 Lausanne, Switzerland

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on May 13, 2016; revised on September 7, 2016; accepted on September 23, 2016

Abstract

Motivation: Codon models are widely used to identify the signature of selection at the molecular

level and to test for changes in selective pressure during the evolution of genes encoding proteins.

The large size of the state space of the Markov processes used to model codon evolution makes it

difficult to use these models with large biological datasets. We propose here to use state aggrega-

tion to reduce the state space of codon models and, thus, improve the computational performance

of likelihood estimation on these models.

Results: We show that this heuristic speeds up the computations of the M0 and branch-site models

up to 6.8 times. We also show through simulations that state aggregation does not introduce a de-

tectable bias. We analyzed a real dataset and show that aggregation provides highly correlated pre-

dictions compared to the full likelihood computations. Finally, state aggregation is a very general

approach and can be applied to any continuous-time Markov process-based model with large state

space, such as amino acid and coevolution models. We therefore discuss different ways to apply

state aggregation to Markov models used in phylogenetics.

Availability and Implementation: The heuristic is implemented in the godon package (https://bit

bucket.org/Davydov/godon) and in a version of FastCodeML (https://gitlab.isb-sib.ch/phylo/

fastcodeml).

Contact: nicolas.salamin@unil.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Evolutionary models are necessary to study the processes governing

the evolution of genes, genomes and organisms. While relatively

simple models are often sufficient to provide a good estimation of

species or gene trees, inferring the specific processes that govern the

evolution of molecular data (e.g. selection or co-evolution) requires

more complex models. The ability to apply these complex models to

large datasets involving many genes and/or species offers the prom-

ise to better understand evolution in a more general context. This

approach has, however, an important computational cost because of

the large numbers of parameters and/or the large size of the state

space involved in these complex models.

The computational performance of phylogenetic methods has al-

ways been an important issue in molecular evolution. Likelihood-

based methods in phylogenetics would not be possible without the

use of Felsenstein’s tree pruning algorithm (Felsenstein, 1981)

coupled with the growth of computer performance. However, these

methods only became commonly used with the heuristics imple-

mented in software such as PhyML and RaXML (Guindon et al.,

2010; Stamatakis, 2014). Recent years have thus seen tremendous

decreases in computing times, to the extent that datasets with thou-

sands of sequences can now be analyzed. However, most progress

has been made on simple models of DNA or amino-acid evolution.

More complex models, such as codon models used to detect
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selection, are still computationally too costly to be applied on large

genomic datasets (e.g. all Ensembl Compara; Vilella et al., 2009).

The complexity of codon models comes from the large state-space

that is necessary to represent the 61 codons (excluding the three stop

codons). The simplest codon model, which is called M0 (Goldman and

Yang, 1994), assumes a single parameter x to model a constant select-

ive pressure occurring on all sites and branches of a phylogenetic tree.

The M0 model is probably not realistic enough and more complex

models that involve multiple transition matrices have been developed

to detect episodic positive selection on a subset of sites and of phylo-

genetic branches (Murrell et al., 2012; Smith et al., 2015; Zhang et al.,

2005). One of the most commonly used complex models is the branch-

site model (Zhang et al., 2005), which assumes three classes of selec-

tion (parameters x0, x1, x2 with x2 allowing positive selection) on

sites along specific branches of the tree (called foreground branches)

and two classes (parameters x0 and x1) on the other branches.

Since an accurate phylogenetic tree is critical to evolutionary and

comparative studies, most developments to speedup the parameter

estimation of evolutionary models have focused first on the opti-

mization of search strategies to find the tree topology and branch

lengths. Examples include the choice of the starting tree topology

(Guindon and Gascuel, 2003; Huelsenbeck et al., 2001; Nguyen

et al., 2014; Stamatakis et al., 2004; Stamatakis, 2014), improved

tree rearrangements strategies (Guindon and Gascuel, 2003;

Hordijk and Gascuel, 2005; Nguyen et al., 2014; Stamatakis et al.,

2005; Swofford and Olsen, 1990), computation economy

(Gladstein, 1997; Goloboff, 1993; Ronquist, 1998) and independent

branch-length estimation (Guindon and Gascuel, 2003).

However, an important part of the computational cost is spent cal-

culating the likelihood function itself. Although this part is not the

most limiting step for tree searching methods using simple models, it

becomes a major bottleneck for the evaluation of more complex evolu-

tionary scenarios such as codon models. In this case, the reuse of the

eigenvectors and eigenvalues for a set of branches can improve compu-

tational performance (Schabauer et al., 2012; Valle et al., 2014).

Other optimization techniques that involve, for example, transforming

the problem of exponentiating an asymmetric matrix into a symmetric

problem, or performing matrix-matrix multiplication rather than

matrix-vectors for the estimation of conditional vectors, have also

been shown to speedup the calculations of the likelihood (Schabauer

et al., 2012). There has also been some progress on Bayesian computa-

tion, e.g. using data augmentation (de Koning et al., 2012; Lartillot,

2006; Rodrigue et al., 2008). Despite these improvements, likelihood

calculations still remain computationally intensive.

The size of the state-space of the continuous-time Markov chain

directly impacts the most computationally intensive steps of this

likelihood computation, since it affects the size of the rate and prob-

ability matrices (Q and P, see below), as well as of the conditional

probability vector. A method allowing a reduction of the number of

states while affecting minimally the precision of the likelihood esti-

mation is therefore a potentially interesting avenue to further reduce

the computational burden of these methods.

We propose here a heuristic method to speedup matrix exponen-

tiation and partial likelihood calculations by reducing the number of

states in a continuous-time Markov chain without losing the com-

plexity of the model. We use state aggregation techniques to select-

ively combine states of the instantaneous rate matrix. We illustrate

this technique with a simple and a complex codon model, since their

state-space is relatively large (61 states). We show using simulations

and the analysis of an empirical dataset that aggregation can provide

significant speedup for codon models, with a very low cost in terms

of accuracy. We further discuss the potential biological applications

that could benefit from this approach to illustrate the wide applic-

ability of state aggregation.

1.1 Key steps of likelihood computation in

phylogenetics
The performance of the likelihood calculations are governed by two

computationally intensive steps: matrix exponentiation and matrix-

vector multiplication.

Matrix exponentiation is at the heart of models based on

continuous-time Markov chains. The rate of change from one state

to any other in an infinitesimally small time interval is given by the

instantaneous rate matrix Q. The probability of changing between

the states of the process in a time interval t is then given by the prob-

ability matrix P: PðtÞ ¼ eQt. For computational purposes, the rate

matrix is first diagonalized such that Q ¼ UKU�1, where U is the

matrix of eigenvectors and K is a matrix whose diagonal elements

correspond to the eigenvalues of the instantaneous matrix Q. This

matrix decomposition allows the probability matrix P to be quickly

computed for any time interval t as PðtÞ ¼ eQt ¼ UeKtU�1.

Branches of a phylogenetic tree represent the evolutionary path be-

tween an ancestral sequence and its descendants. We therefore need

to compute the matrix P for every branch of a tree. The instantaneous

rate matrix Q needs thus to be exponentiated for every branch length.

The probabilities of observing the states in the ancestral sequence are

then calculated by multiplying the conditional probability vectors for

each descendant branch. These probability vectors are obtained by

multiplying the P matrix for branch i with the conditional vector of

the corresponding descendant. This procedure, known as Felsenstein’s

tree pruning algorithm, is repeated for every node of the phylogenetic

tree until we reach the root of the tree (Felsenstein, 1973).

2 Algorithm

2.1 State aggregation
The computational cost of the two steps described above highly de-

pends on the state-space of the continuous-time Markov chain used.

Any reduction in the state-space can therefore increase the efficiency

of the likelihood calculations. We investigate here the use of state

aggregation to combine states of a Markov chain into several groups

and therefore reduce the complexity of matrix exponentiation and

matrix-vector multiplication.

Let us consider a Markov chain taking values in a finite set S

¼ fA1;A2; . . . ;Ang with transition matrix P and stationary frequen-

cies p1; p2; . . . ; pn. Let Sc ¼ fA1;A2; . . . ;Amg be a set of states to be

aggregated, where m<n.

The aggregated chain will have a space of

~S ¼ fAC;Amþ1;Amþ2; . . . ;Ang;

where AC is the aggregated state. The new aggregated state AC

changes the entries of the probability matrix P in the following way:

~pAi ;Aj
¼ pAi ;Aj

;

~pAi ;AC ¼
X

Ak2SC

pAi ;Ak
;

~pAC ;Aj
¼ 1

~pAC

�
X

k2SC

pkpk;j;

~pAC ;AC ¼
1

~pAC

X

k2SC

X

l2SC

pkpk;l;

where Ai;Aj 62 SC.
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The stationary frequencies are estimated as ~pi ¼ pi for Ai 62 SC.

These stationary frequencies are consistent with frequencies of the

original Markov chain. The frequencies of the aggregated state is

estimated as ~pAC ¼
X

k2SC

pk.

The same method can be applied at the level of the instantaneous

rate matrix Q. The diagonal elements of the matrix must however

be set to �
X

j 6¼i

qi;j to ensure that the sum of every row is equal to

zero (Supplementary Fig. S1B, C) (Aldous and Fill, 2002, chapter2).

2.2 Aggregation for codon models
An obvious question in performing aggregation is the definition of

‘similar states’ to aggregate. We define all non-observed states for a

position of the alignment to be ‘similar’ in the context of that pos-

ition. The rationale is that the codons that are not observed at this

site in any of the sequences at the tips of the tree have low probabil-

ity to occur as ancestral states. The lack of some possible codons

could be due to chance, but in many cases we expect a subset of

codons to occur at a site because of natural selection or mutational

bias. For example, a protein site which is constrained to be nega-

tively charged will only use codons encoding such amino acids. It is

thus justified to call all other codons ‘similar’ relative to this site.

We therefore aggregated all states unobserved at a position (i.e. trip-

let of columns of the DNA alignment) into a single state (Fig. 1).

The approach that we use here to aggregate states in codon models

resembles the models of amino acid and nucleotide substitutions

proposed in Yang et al. (1998); Susko and Roger (2007); Phillips

et al. (2004); Vera-Ruiz et al. (2014). However, we propose to select

the new aggregated state-space independently for each position of

the alignment, which was not done in the amino acid and nucleotide

contexts. Note that we performed in this study only the aggregation

on the probability matrix P. We discuss the advantages of aggrega-

tion on the P or Q matrices in the Discussion section.

For the aggregated process to have a Markovian property, it has

to satisfy the lumpability condition, i.e. pAi ;Ak
¼ pAj ;Ak

should be

true for any i; j 2 AC and k 62 AC (Kemeny and Snell, 1983), or

equivalently for the instantaneous rate matrix (Hillston, 1995). This

condition is generally not satisfied with respect to an arbitrary ag-

gregation scheme, as this would require all the transition rates or

substitution probabilities to have the same value. Moreover, in the

widely used codon substitution models, double substitutions are not

allowed and their respective transition rates are set to zero, which

makes lumpability condition unsatisfiable. Thus the proposed tech-

nique should be viewed as a heuristic.

The intensity of state aggregation can be modified and we tested

three different approaches by implementing them for the codon

model M0 (Goldman and Yang, 1994). The first and least aggressive

approach aggregates only the positions that were absolutely con-

served in any sites of the alignment. The state-space for these sites is

thus reduced to two states: the observed (conserved) codon, and the

‘meta-state’ of the 60 other non-stop codons. In the second ap-

proach, all positions were aggregated and the ‘meta-state’ included

all codons not present in the position subjected to aggregation. In

the third approach, all the positions were aggregated, but the ‘meta-

state’ included only codons corresponding to the amino-acids not

present at the current position. This can be viewed as a less-

aggressive version of the second approach utilizing properties of the

genetic code. The first two approaches represent extreme cases of

the application of aggregation, while the third one is more

moderate.

Given the small speedup of the first and third approaches on M0

(see Results), only the second approach was employed for the more

complex branch-site model.

Additionally, two random aggregation strategies were evaluated.

These strategies were used as a control to determine if our choice of

state partitioning is better than random. In the first strategy, ‘meta-

states’ of full aggregation were shuffled between the alignment pos-

itions. This should give a speedup similar to the full aggregation,

while not relying on codons present at each position. In the second

random strategy, the state-space was randomly split into ‘meta-

states’, while keeping the total number of states per position. The

number of states stays the same in this case, but the computations

are expected to take more time since multiple ‘meta-states’ are

present.

3 Materials and methods

3.1 Software
State aggregation for the M0 model was implemented in the godon

package (https://bitbucket.org/Davydov/godon). We selected an op-

timization algorithm with a large but fixed number of iterations

(10 000 iterations in this case) to reduce the influence of random

factors associated with the optimization trajectory on the total com-

putation time.

State aggregation for the branch-site model was implemented in

a version of FastCodeML (https://gitlab.isb-sib.ch/phylo/fastcodeml,

branch agg), which is a software that has been optimized for compu-

tational efficiency of the calculation of the matrix exponentiation

and the matrix-vector multiplication (Valle et al., 2014).

All sequence simulations were performed using the evolver pro-

gram from the PAML package (Yang, 2007).

3.2 Dataset

Six datasets were simulated for the M0 model (see Supplementary

Table S1). We varied one parameter at a time, based on the follow-

ing settings: 300 codons, 18 sequences, x0 ¼ 0:3, j¼2, equal codon

frequencies (pi ¼ 1=61), default tree length (4). We used the the

ENSGT00680000099620 gene tree from the Ensembl database

(Cunningham et al., 2015) for topology and relative branch lengths.

For the branch-site model, 2000 alignments were simulated with

stochastic birth-death trees and j, x0, x2, p0, p1, alignment length

and number of tips sequences chosen randomly (Supplementary

Table S2A, Fig. S2). One thousand of the alignments were simulated

under the branch-site model null hypothesis with x2 ¼ 1, while the

other 1000 alignments represented the alternative hypothesis with

x2 > 1. In these simulations every parameter was drawn randomly

from a specific distributions (Supplementary Table S2) to obtain

more biologically realistic datasets. We chose at random a single

foreground branch to perform the simulations and the same
Fig. 1. Example of state aggregation for one position (highlighted in purple) in

a codon alignment
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foreground branch was used foreground the inference. We used

evolver from PAML 4.8 for simulation (Yang, 2007).

We also simulated datasets using an extended branch-site model.

In this model, x0 and x2 (when x2 > 1) were replaced by a set of

discrete categories created from Beta and Gamma distributions re-

spectively (five discrete categories were used). We also incorporated

Gamma distributed site-rate variations (Rubinstein et al., 2011).

The parameters for these distributions are described in

Supplementary Table S2B and Figure S3. We used the cosim package

for the simulations (https://bitbucket.org/Davydov/cosim).

The likelihood ratio test (LRT) was used for model selection,

with a significance level of a ¼ 0:05.

We performed multiple hypothesis testing correction using the

qvalue R package, p0 was estimated using the bootstrap method

(Storey et al., 2004).

Finally, a Primates dataset from the Selectome database (Moretti

et al., 2014; Proux et al., 2009) release 6 was used to study the be-

haviour of the method on a real dataset. The dataset consists of 15

669 gene trees and alignments (http://selectome.unil.ch/cgi-bin/

download.cgi). We tested the inference of selection on every non-

terminal branch of the Primates trees.

4 Results

4.1 M0 model
For the simple M0 model, we first compare the performance of like-

lihood maximization in three different modes: full likelihood (no ag-

gregation), aggregation for conserved positions and full aggregation.

Here we kept the branch lengths fixed and optimized x and j.

The parameter values obtained for all datasets using both aggre-

gation modes are highly correlated with values estimated by the full

likelihood (Supplementary Figs. S4, S5, S6, S7, S8, S9). The error in

estimation of the parameters is small and is not dependent on the

simulation parameters (Figs. 2, S10, S11), with the exception of tree

length (Fig. 3). The bias in parameter estimation associated with the

long trees is smaller for less aggressive aggregation strategies

(Supplementary Fig. S12). Comparisons with the two random aggre-

gation strategies show noticeably better accuracies in parameter esti-

mation with the observation-based aggregation (Supplementary Fig.

S13).

The mean computational speedup is approximately 1.7 for ag-

gregation on all positions (Fig. 4), but only 1.2 and 1.02

(Supplementary Fig. S14) for genetic code based aggregation and ag-

gregation limited to fixed positions respectively. We thus only ana-

lyzed in details the behavior of the full aggregation mode.
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First, we see a strong effect of the alignment length on the speed-

ups obtained (Fig. 5). Matrix eigendecomposition is performed only

once per likelihood evaluation and the decrease in the state-space

between the full likelihood and the aggregation does not have any

impact on the eigendecomposition performance. However, a longer

alignment will increase the number of times the tree pruning step is

performed (i.e. once per site), which becomes more important in the

overall computational cost. For instance, the speedup obtained with

an alignment of 500 codons is 1.8 with full aggregation. The max-

imum speedup of 6.8 fold was achieved on extremely long align-

ments (above 10 000 codons) and short trees (total length < 0:05).

While there is a larger error on the estimation of model param-

eters (j and x) with shorter alignments, this effect is identical with

or without aggregation (Fig. 2). The heuristic that we propose does

therefore not increase error on a simple model even with short align-

ments. Interplay between eigendecomposition and pruning times ex-

plains the direct effect of the relationship between the number of

sequences and the speedup (Fig. 6). A large number of sequences de-

creases the proportion of time spent in the eigendecomposition

phase and subsequently increases the speedup.

Changes in the other parameters impact the speedup of the ag-

gregation mode insofar as they change the number of codon states

per alignment site. The latter has then a direct effect on the number

of non-aggregated states. Indeed, we aggregate into one state all

codons which are not observed in a given position. Thus any proc-

esses that reduces the number of different codons per position also

increases the efficiency of aggregation. Hence, the speedup is slightly

higher for smaller x values because, as x approaches 0, more and

more codons at a particular site are only part of a synonymous

codon set. The number of possible codons is thus greatly reduced

and there is a higher chance that the aggregation will lead to very

few states. In contrast, increasing x values will lead to an increasing

number of states observed. Similarly, extremely short branches limit

state variety at each site, which in turn increase the level of aggrega-

tion possible and thus increase speedup (Fig. 7). Biased codon fre-

quencies can also reduce diversity of states and thus increase

aggregation speedup. In our simulations, codon frequencies were

drawn from a Dirichlet distribution and we varied the concentration

parameter a to estimate the effect of codon frequencies on codon ag-

gregation. We see a better speedup associated with smaller values of

the a parameter, which leads to a higher variance between codon

frequencies (Supplementary Fig. S15).

Total tree length is the only parameter in our simulations that

also affects the accuracy of the estimation of model parameters

(Figs. 3, S16). Longer trees tend to improve the accuracy of the esti-

mation of the parameters x and j. However, extremely long trees

lead to an increase in error both in aggregated and in full likelihood

mode, probably because of saturation. It appears that under reason-

able conditions of applicability of the M0 model (i.e. total tree

length <20 substitutions per codon), aggregation does not lead to

any detectable bias, while for extremely long trees aggregation can

introduce a slight bias.

We also estimated the branch lengths during the optimization of

the M0 model. There was no systematic bias in branch lengths esti-

mation for short trees (Supplementary Fig. S17), while we observed

an increased error in branch lengths estimation on extremely long

trees (Supplementary Fig. S18). The error on branch lengths was

accompanied by increased errors on x and j.

Thus, overall speedup on the simple M0 model can be explained

by average observed codons count and by alignment length (Fig. 8).

The relationship between speedup and x, j, tree length and codon

frequencies is effectively explained by a reduced size of the state

space of the continuous-time Markov chain. Aggregation is thus all

the more effective when sequence data are biased or when analyses

contain closely related species, which is probably the case for many

real multiple sequence alignments.

4.2 Branch-site model
Given the small speedup that we obtained for the aggregation on

fixed positions, we implemented only the full aggregation mode for

the branch-site model in FastCodeML. We then compared this new

implementation with the standard FastCodeML. We see a slight in-

crease in both false positives and true positives with aggregation

(Tables 1, 2). Overall, ROC curves show that the performance of
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Fig. 8. Speedup versus average codon count for M0 model. Each point repre-

sents one simulated alignment, dataset indicated by color. For the dataset

with changing alignment length (alen), variation in speedup does not depend

on the observed codon count (which does not vary significantly), but longer

alignments lead to higher speedup, see Figure 5

Table 1. Statistical performance of FastCodeML in normal and

aggregated modes on simulated data

Mode True positives True negatives False positives False negatives

normal 551 973 27 449

aggregated 562 970 30 438

Numbers in the cells correspond to the number of performed tests. A single

branch was tested per tree.
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FastCodeML in aggregation mode is similar to the full likelihood

mode (Fig. 9). Thus any errors in estimation under aggregation seem

to have very little impact on the Likelihood ratio test (LRT) used to

test for the presence of positive selection with the branch-site model.

For x0, j and p1, Pearson’s correlation coefficients between

aggregated and full likelihood estimates are 0.9986, 0.9969 and

0.9735, respectively (Fig. 10). A lower correlation is observed for p0

and x2 (0.9578 and 0.9109, respectively). Yet, these correlations are

much higher than those obtained between the full likelihood esti-

mate and simulated values: 0.35 for p0 and 0.20 for x2.

As with the M0 model, speedup is mostly affected by sequence

length and tree length (Fig. 11) through their effects on observed

codon counts (Supplementary Fig. S19). We reached a maximum

speedup of 4.4 fold per likelihood computation for the branch-site

model.

The extended branch-site model violates several assumptions of

the branch-site model (homogeneous synonymous rate, fixed x0 and

x2 values). In those cases, where data is more complex than the

model, the performance of the aggregated mode becomes slightly

worse compared to the full likelihood mode S23, although it remains

very close (AUC 0.812 versus 0.818).

Finally, we used FastCodeML in normal and aggregated modes

on a real dataset from Primates (Tables 3, S3). After correction for

multiple testing (false discovery rate cutoff 0.05), 20 branches were

identified to be under positive selection using full likelihood compu-

tations and 18 using aggregation, with 13 branches in common. We

did not encounter multiple branches detected for an individual tree.

The predictions are consistent between the two methods in 99.97%

of the cases, which is higher than the consistency of 97.45% for the

simulated data (Table 2). Aggregation gives a median speedup of 2.7

on this real dataset, confirming that real data can be sufficiently

biased to make aggregation quite efficient.

Table 2. Statistical performance of FastCodeML on the simulated

dataset

A Selection

detected

(aggregated)

B Selection

detected

(aggregated)

– þ – þ

Selection – 963 12 Selection – 429 23

detected þ 7 18 detected þ 9 539

(normal) (normal)

Numbers in the cells correspond to the number of performed tests. A single

branch was tested per tree. A) Without positive selection; B) With positive

selection.
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mates for the branch-site model
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Table 3. Statistical performance of FastCodeML on the Primates

dataset

Selection detected

(aggregated)

– þ

Selection detected – 77576 280

(normal) þ 190 1114

Detected selection in normal and aggregated modes of FastCodeML.

Numbers in the cells correspond to the number of performed tests. Every non-

terminal branch was tested.
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5 Discussion

We propose state aggregation as a technique for speeding up the

computation of likelihood in a phylogenetic context. By reducing

the size of the state space of the Markov process, aggregation accel-

erates the phase of tree pruning during the likelihood computation

and, in some cases, the eigendecomposition of the transition rate

matrix. We show that aggregation can be applied to the likelihood

calculation of two of the most commonly used codon models. It can

also be used for other types of models (see below), in both maximum

likelihood and Bayesian frameworks.

The speedup for codon models depends on the alignment length

and the observed codon counts, the latter being mostly affected by

the tree length (Figs. 8, S19).

These effects are especially strong with the M0 model, because

the likelihood optimizer uses a fixed number of iterations. A similar

trend is observed with a variable number of iterations, but with

increased stochasticity (Supplementary Fig. S20). In general, state

aggregation does not appear to have a systematic influence on the

total number of iterations (Supplementary Fig. S21). The total run-

time is therefore proportional to the likelihood computation time.

Alignment length and observed codon counts have a similar ef-

fect on a speedup for the branch-site model. We see more explicitly

the dependency if we normalize for the number of likelihood func-

tion computations (Supplementary Fig. S22).

The most time consuming stages of the likelihood computation

are matrix exponentiation and tree pruning. FastCodeML uses

highly optimized algorithms to do matrix exponentiation

(Schabauer et al., 2012) and state aggregation improves the time to

perform the tree pruning steps of the likelihood calculations

(Supplementary Fig. S1A, B).

While the dependency of the speedup on the alignment length

and the codon counts make intuitive sense, we can understand it in

more details by considering the steps of the likelihood computation.

Let us consider the computation time of the total likelihood

(Supplementary Fig. S1A):

Tfull ¼ teigen þ Kt exp þNK61tprun;

where teigen is the time to decompose the instantaneous rate matrix,

texp is the time to exponentiate the rate matrix for each internal

node, tprun is the time to compute the partial likelihood vector per

internal node per position, K is the number of internal nodes and N

is the number of positions in the alignment. The number of states is

61 for Markov chains modeling codon sequences.

Similarly for the state aggregation (Supplementary Fig. S1B):

Taggr ¼ teigen þ Kt exp þNKtagg þNKMtprun;

where tagg is the matrix aggregation time per internal node per position,

and 61 is replaced by M, the number of states after aggregation. For a

given branch and site combination, the aggregation time is comparable

to the time spent computing a single element of the partial likelihood

vector. In the full mode, 61 elements of the vector should be computed.

The gain of computing time observed with the aggregation methods

comes from the need to do a single aggregation step, which is fast, fol-

lowed by the computation of M (M<61) vector elements.

Aggregation speedup is thus:

Speedup ¼ Tfull

Tagg
¼ teigen þ Kt exp þNK61tprun

teigen þ Kt exp þNKtagg þNKMtprun
:

Generally performance is limited by eigendecomposition and

pruning, so we can approximate speedup as:

Speedup � teigen þNK61tprun

teigen þNKtagg þNKMtprun
:

This representation gives a clear explanation for the dependency

of the speedup on the alignment length and the observed codon

counts. Increasing the alignment length causes a weaker effect on

the non-accelerated eigendecomposition phase, which results in a

more efficient acceleration. In contrast, a higher codon diversity in

each alignment position increases the number of states in the aggre-

gated Markov process (M), thus reducing the advantage of the

aggregated process relative to the full one.

Not only does aggregation provide diminishing speedup with

longer trees (more observed states, larger M), it also introduces a

bias in the parameter estimation for extremely long trees.

Consequently, for trees longer than 100 expected substitutions per

position it is not practical to use state aggregation: biased results

would be obtained without any significant speedup. In practice,

however, extremely long trees are rare, for example in the Selectome

database 99% of the trees has total length below 18 expected substi-

tutions per position.

State aggregation can be applied either to the probability matrix

P or to the instantaneous matrix Q (Supplementary Fig. S1B, C). In

this work we were focused on applying aggregation to the probabil-

ity matrix P. In this case (Supplementary Fig. S1B), aggregation is

applied after exponentiation and must be performed for every pos-

ition independently. The performance improvement is therefore

achieved during the tree pruning phase. In the case of the matrix Q

(Supplementary Fig. S1C), aggregation is applied prior to the expo-

nentiation. This leads to smaller dimensions of P matrices, but

eigendecomposition and exponentiation have to be performed for

every position independently, since those positions will differ in the

states aggregated. Moreover, aggregation of the matrix Q is ex-

pected to introduce more bias that will accumulate along the

branches. Aggregation performed on the Q matrix will discard dif-

ferences in substitution trajectories passing through unobserved

states. There will thus be an accumulation of the error during both

exponentiation and pruning phases. Aggregation done after the ex-

ponentiation phase only introduces error during the tree pruning

phase. Preliminary results do not show an advantage of aggregating

the matrix Q for codon models (not shown). A solution might be to

perform a ‘softer’ aggregation on clusters of sites with similar pat-

terns of codons. This would be done by first clustering alignment

positions and then producing aggregated instantaneous rate matrices

for each cluster. This should diminish the bias and allow to expo-

nentiate a smaller number of Q matrices than for the aggregation

per site, while still computing on smaller Q matrices than in non-

aggregated mode. It is also possible that aggregation of the Q matrix

could be more useful for other types of models, especially those with

large instantaneous rate matrices, such as coevolution models (Dib

et al., 2014). Finally, a second round of aggregation might be per-

formed after the exponentiation in order to speedup the tree pruning

stage (Supplementary Fig. S1D). The computational and statistical

performance of such approaches has yet to be investigated.

It is also possible to implement aggregation on a subset of the

data only. In our case, we chose an extreme situation and aggregated

only the most conserved positions. The result was a large loss in

speedup relative to aggregation on all positions without any gain in

accuracy. But there might be other cases where aggregation on a

subset of data only makes most sense in terms of the cost (accur-

acy)—benefit (speedup) trade-off. Moreover, there are multiple

ways to perform the aggregation itself. Here, we collapsed all of the

codons or amino-acids which are not observed at the position of the
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alignment. It is also possible to use other approaches to aggregation,

e.g. aggregate all the codons reachable by more than a single muta-

tion (or follow the amino-acids similarity properties). Models of

amino acid substitutions have been derived from codon-based

Markov models by aggregating codons separated by only synonym-

ous substitutions. These models were, however, not built nor eval-

uated for computational efficiency (Kosiol and Goldman, 2011; Ren

et al., 2005; Susko and Roger, 2007; Yang et al., 1998). Less aggres-

sive aggregation shows increase in the accuracy at the price of

reduced speedup, although, in our tests, accuracy was already good

with the aggressive aggregation.

The combined use of both aggregated and non-aggregated modes

in the same analysis could be efficient in several scenarios. First, ag-

gregation could be used during likelihood maximization, but the

final likelihood value computed without aggregation, providing a

more accurate value. Second, aggregation could be used to obtain a

starting point for non-aggregated likelihood maximization. Third,

aggregation could be used in a preprocessing step to detect datasets

of interest (e.g. gene families with a signal of positive selection).

These datasets could then be analyze with full likelihood to get an

accurate estimation of the parameters and model comparison.

Finally, aggregation could be used during the burn-in period in a

Bayesian approach (e.g. MCMC). There are probably other scen-

arios where aggregation can provide a faster estimation of likelihood

within a more complex analysis.

For the specific case of the branch-site model, we have tested the

second scenario of using aggregation as a starting point and we do

not obtain a significant speedup (Supplementary Fig. S24).

Aggregation can also have an impact on memory usage.

Aggregation on the probability matrix P will reduce the size of the

partial likelihood vectors (by a factor of r ¼ 61=Nstates).

Additionally the Q matrix aggregation reduces the size of the P-

matrices (by a factor of r2). On the other hand, the actual improve-

ment strongly depends on the details of the implementation, as par-

tial likelihood vectors and probability matrices can be reused in a

number of ways. Our implementation did not focus on the reduction

of memory footprint and we thus do not discuss this aspect further.

Obviously, state aggregation in phylogeny and evolution is not

limited to the branch-site and M0 codon models. First, it is univer-

sally applicable to Markov process-based codon models, such as the

commonly used M1a/M2a, M8a/M8 (Wong et al., 2004), aBSREL

(Smith et al., 2015), RELAX (Wertheim et al., 2014), or any other

GY94 (Goldman and Yang, 1994) or MG94-based (Muse and Gaut,

1994) model. Second, it is not limited to codon models. Given a

trade-off between per-position matrix aggregation slowdown and

tree pruning speedup, aggregation is unlikely to give a significant

performance improvement for models with a small number of states

(e.g. nucleotide models). But even for amino acids models we can ex-

pect some degree of speedup. In contrast, we expect state aggrega-

tion to provide a significant performance improvement for the

models with a large number of states, such as amino acid coevolu-

tion models that can include up to 400 states (Dib et al., 2014;

Yeang and Haussler, 2007).

The aggregation of states in a Markov process is a powerful tech-

nique used in a variety of fields including computational biology,

such as protein network interaction analysis (Petrov et al., 2012), re-

action modeling (Ullah et al., 2012), single molecule photobleaching

(Messina et al., 2006), or disease-progression models (Regnier and

Shechter, 2013). Its application to phylogenetic models has not been

systematically studied, although it has been implemented in some

software (Lartillot and Philippe, 2004, e.g. PhyloBayes;). This is, to

our knowledge, the first systematic study of state aggregation biases

and computational efficiency for molecular evolution.

In conclusion, we demonstrate that state aggregation is a power-

ful method which improves computational performance of codon-

based models, with little cost in accuracy. State aggregation is not

limited to codon models, and we expect it to be useful for a large

variety of phylogenetic models and methods.
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