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Abstract

Many biological systems exhibit collective behaviors that

strengthen their adaptability to their environment, com-

pared to more solitary species. Describing these behaviors

is challenging yet necessary in order to understand these

biological systems. We propose a probabilistic model that

enables us to uncover the collective behaviors observed in a

colony of ants. This model is based on the assumption that

the behavior of an individual ant is a time-dependent mix-

ture of latent behaviors that are specific to the whole colony.

We apply this model to a large-scale dataset obtained by ob-

serving the mobility of nearly 1000 Camponotus fellah ants

from six different colonies. Our results indicate that a colony

typically exhibits three classes of behaviors, each character-

ized by a specific spatial distribution and a level of activity.

Moreover, these spatial distributions, which are uncovered

automatically by our model, match well with the ground

truth as manually annotated by domain experts. We fur-

ther explore the evolution of the behavior of individual ants

and show that it is well captured by a second order Markov

chain that encodes the fact that the future behavior of an

ant depends not only on its current behavior but also on its

preceding one.

1 Introduction

Many biological systems exhibit collective behaviors
that endow them with immense adaptive advantages
compared to more solitary species [4]. Together with
humans, ant societies are probably the most widespread
social organisms. They have colonized nearly all major
landmasses, and their cumulated biomass tantamounts
that of all vertebrates [13]. Moreover many behaviors
and strategies previously thought unique to humans,
like slave-making [2] and subsequent rebellion [1], as well
as agriculture [11], use of antibiotics [13] and medical
care [5] have also been developed by ants. However,
in contrast to humans, ants succeed in all these deeds
without need for hierarchical structure and top-down
organization. Instead ant societies rely on local stimuli
coupled to simple rules [4], but the exact nature of these
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stimuli and rules is still a mystery.
So far, behavioral analysis relied largely on small-

scale hand-annotated datasets that describe the behav-
ior of individual ants. Based on such data, researchers
classify the behaviors and tasks associated with individ-
ual ants. Such manual annotations of individual behav-
ior repertoires are highly subjective because they require
that a human interprets a definition of a behavior and
then quantifies it. Because analysis methods and inter-
pretations vary extensively between researchers, studies
differ in their results even if they analysed the same
data [9, 14, 15].

The recent progress of tracking systems [10] now
provides opportunities to collect and analyse large
dataset that describe the behaviour of individual ants.
With such a rich data comes the promise of a better un-
derstanding of the collective behaviors of an ant colony.
However, this requires a shift in the approach taken
when analysing behavioral data: we need to move from
the traditional behavioral analysis to an objective ap-
proach that enables us to avoid the pitfalls of subjectiv-
ity.

In this paper, we take a data-driven approach to de-
scribe the behaviors observed in ant colonies. We pro-
pose a probabilistic model that enables us to uncover the
collective behaviors in ant colonies, and to express the
behavior of each ant as random combination of these col-
lective behaviors. We apply this model to a large-scale
dataset obtained by observing the mobility of nearly
1000 Camponotus fellah ants. Our results indicate that
a colony typically exhibits three collective behaviors,
each characterized by a specific spatial distribution and
a level of activity. Moreover, the spatial distributions
associated with the behaviors uncovered automatically
by our model match well with the ground truth as man-
ually annotated by domain experts. We further explore
the evolution of the behavior of individual ants and show
that it is well captured by a second order Markov chain
that encodes the fact that the future behavior of an ant
depends not only on its current behavior but also on its
preceding one.

The remainder of the paper is structured as follows.
In Section 2, we present the dataset that describes the
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mobility of individual ants in different colonies. We then
present our probabilistic model in Section 3, and explain
how it captures the collective behaviors exhibited by a
group of individuals. In Section 4, we apply this model
to describe the behaviors exhibited in ant colonies and
their evolution over time. We finally conclude the paper
in Section 5.

2 Dataset

The dataset we use in this paper was collected by
Mersch et al. [10]. They recorded, using an automated
video tracking system, the activity of six colonies that
are composed of a total of 956 Camponotus fellah ants.
The set-up is divided in a nest area (Figure 1a) and a
foraging area (Figure 1b) made of Plexiglas. Each area
is rectangular and has on its short side an exit hole of 10
mm diameter that is connected to a tunnel that enables
ants to move from one area to the other. Both areas
are filmed from above with a high resolution camera
(4560 × 3048 pixels) equipped with an enlarging lens
and infrared light flash, to which ants are not sensitive.

In Figure 1, we show annotated images of the nest
and foraging areas of colonies 4 and 18. The important
areas of the nest, as delimited manually by Mersch et
al. [10], are the brood pile (brown area), the rubbish
pile (violet area), and the nest entrance (green area).
The brood piles in the two colonies are very different
as larvae are carried around by the ants of the colony.
The foraging area, that we show in Figures 1b and 1d,
contains a water source and food (liquid honey).

The queens and all workers are marked with a
unique barcode that enables their identification in each
image taken by the camera: their locations are esti-
mated with a mean precision of 2.37 pixels (i.e., 0.14
mm, 0.8%− 2% of a Camponotus fellah ant). The con-
tinuous recording (2 images per second) results in a rich
dataset that describes, with great accuracy and resolu-
tion, the mobility of each ant. Table 1 presents different
statistics of the dataset.

No. of colonies 6
No. of ants 956
No. of days 11
Observations frequency 2 per second
No. of time steps 1,900,800
No. of observations 1,817,164,800

Table 1: Statistics of the dataset that describes the
activity of 6 Camponotus fellah colonies.

3 Model

To an observer, detecting the collective behaviors that
govern the colony of ants is challenging yet necessary in
order to understand and describe the colony behavior.
Hence, our model should enable us to uncover latent
collective behaviors and describe the behavior of each
individual ant as a function of these collective behaviors.
In this work, we describe the behavior of an ant as a
function of the following variables.

Location represents a location within the nest or for-
aging area, and is indexed by an integer x ∈ X . We
further distinguish the locations that are within the
nest x ∈ Xn from those that are within the foraging
area x ∈ Xf .

Activity is a binary variable a ∈ {0, 1} that indicates
whether an ant is moving or not. Similarly to
Mersch et al. [10], we declare an ant as inactive if
it is still for more that 120 time frames (1 minute).

We describe the state of ant i at time t using two
time-dependent stochastic processes {(Xi(t), Ai(t)), t ∈
T }. The process Xi(t) ∈ X indicates the location
of ant i at time t, and the process Ai(t) ∈ {0, 1}
indicates whether this ant is active at that time. As
we are interested in describing macroscopically the
geographical distribution of ants and their activity, we
assume that

p(Xi,Ai) = p(Xi(t1), Ai(t1), . . . Xi(tn), Ai(tn))

=
∏
t∈T

p(Xi(t), Ai(t)),

where the joint distribution p(Xi(t), Ai(t)) describes
probabilistically the state of the ant i at time t. As
stated above, we assume that the individual behavior of
an ant can be expressed as a random combination of K
collective behaviors that are learnt from the behaviors
of all individuals. This translates to the fact that we
can express the joint distribution p(Xi(t), Ai(t)) with
respect to a latent variable z ∈ {1, . . .K} that indicates
for each state (x, a) the behavior it was sampled from.
More formally, we can write

p(Xi(t) = x,Ai(t) = a) =

K∑
z=1

p(x, a|z)p(z|i, t),

=
K∑

z=1

θz(x, a) p(z|i, t).(3.1)

The K collective behaviors represent the collective
dimensions of our model and are described by the shared
multinomial distributions θk(x, a). The individual di-
mension is captured by the mixture coefficients p(z|i, t)
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(a) Nest, colony 4. (b) Foraging, colony 4. (c) Nest, colony 18. (d) Foraging, colony 18.

Figure 1: We show the nest and foraging areas of colony 4 and colony 18. The important areas of the nest,
as delimited by domain experts, are colored manually: The brood (brown), the rubbish pile (violet) and nest
entrance (green).

that quantify to which extent the behavior of ant i at
time t samples from the collective behavior k.

Given that we are interested in analyzing the indi-
vidual ontogeny (mid-long term development) of ants
while removing the variations that are due to the cir-
cadian rhythm (short term) of ants [7], we choose 24
hours as a temporal unit. Therefore, we assume that
the behavior of an ant is stationary over a day i.e.,

p(z|i, t) = πi(d(t), z).

Rewriting (3.1), we obtain

p(Xi(t) = x,Ai(t) = a) =
K∑

z=1

θz(x, a)πi(d(t), z),

where d(t) ∈ D = {1, . . . , 11} is the day that corre-
sponds to time t. Hence, the generative process, for ant
i at time t, is as follows: (a) randomly adopt the behav-
ior z according to the mixture coefficient πi(d(t), z), and
then (b) randomly select a state (x, a) from the the joint
distribution distribution p(x, a|z). We also introduce a
notion that will be useful for analyzing the evolution of
the behavior of an ant: the dominating behavior βi(t)
of ant i at time t is the behavior that maximizes the
coefficient πi(t, z)

(3.2) βi(t) = argmax
z

πi(t, z).

In other words, the behavior βi(t) is the most likely
behavior given the data about ant i at time t.

In Table 2, we recapitulate the variables correspond-
ing to an ant, as well as those relative to its state at time
t.

θ1:K

Z

A X

α

Πi

Figure 2: Graphical model representing the behavior of
ant i at a given day. We assume that the distribution
θk are drawn from a symmetric Dirichlet distribution
parametrized by α = 0.1.

3.1 Training The parameters of our model are
the multinomial distributions θk associated with
each canonical behavior and the mixture coefficients
πi(d(t), z). In order to learn the model parameters that
maximize the likelihood of data, we use the expectation-
maximization (EM) algorithm [3]. This iterative algo-
rithm increases the likelihood of the data by updating
the model parameters in two phases: the E-phase and
M-phase. The structure of our model enables us to de-
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Definition Domain Explanation

t T = {t1, . . . tn} Time step
c C = {4, 18, 21, 29, 58, 78} Colony id
i {Ic, c ∈ C} Ant id
X X ⊂ N Set of locations
Xf Xf ⊂ X Set of locations in the foraging area
Xn Xn ⊂ X Set of locations in the nest area
d(t) D = {1, . . . , 11} Day associated with time t
k {1, . . .K} Canonical behavior id
K N Number of canonical behaviors

Xi(t) X Location of ant i at time t
Ai(t) {0, 1} Indicates whether ant i is active at time t
πi(t, z) K − 1 simplex Mixture coefficients of behavior z at time t for ant i
πi(t) − Vector of mixture coefficients [πi(t, 1), . . . , πi(t,K)] for ant i
βi(t) {1, . . .K} Dominant behavior of ant i at time t

θk(x, a) X × {0, 1} Multinomial distribution representing canonical behavior k

Table 2: List of the definition and domain of the variables relative to a an ant, as well as those describing its
state at time t.

rive closed-form expressions for these updates. Due to
lack of space, we omit to show our computations and
refer the interested reader to Bishop [3] for the gen-
eral EM algorithm and the approach to derive the up-
dates for a particular mixture of distributions. In or-
der to assign a non-zero probability to every state, we
smooth the multinomial parameters: we assume that
the distribution θk are drawn from a Dirichlet distribu-
tion parametrized by α. The Dirichlet distribution is a
distribution of K-dimensional discrete distributions pa-
rameterized by a vector α of positive reals. Its support
is the closed standard simplex, and it has the advantage
of being the conjugate prior of the multinomial distri-
bution. In other words, if the prior of a multinomial
distribution is the Dirichlet distribution, the inferred
distribution is a random variable distributed also as a
Dirichlet conditioned on the observed states. In order to
avoid favoring one state over the others, we choose the
symmetric Dirichlet distribution (α = 0.1) as a prior.

4 Results

4.1 Collective behaviors
Finding the number of canonical behaviors

In order to find the number of collective behaviors that
explains the data the best, we repeat the following
process 100 times for each colony c: We divide randomly
the dataset of colony c in a training (95%) and a test
set (5%), and train our model for different values of
the number of collective behaviors K ∈ {1 . . . 7}.We
then compute the log-likelihood of the test set, given
the parameters learnt from the training set. We obtain

0 1 2 3 4 5 6 7
K

−3.40

−3.35

−3.30

−3.25

−3.20

−3.15

Av
er

ag
e 

lo
g-

lik
el

ih
oo

d

Figure 3: Average log-likelihood as a function of the
number of collective behaviors K. These values are
obtained by averaging the log-likelihoods of the 600 test
sets obtained by randomly splitting the dataset of each
colony.

the results shown in Figure 3 by averaging the log-
likelihoods of the 600 (6 colony and 100 random splits)
test sets obtained by randomly splitting the dataset of
each colony. We observe that the number of behaviors
that maximizes the average likelihood of the test sets is
K = 3. We assume for the rest of the paper that we
have three collective behaviors in each colony because
this configuration best explains the observed data.
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Describing the collective behaviors In order
to be able to map the behaviors uncovered in different
colonies between each other, we assign labels to these
behaviors according to the probability of being in the
nest.

• Nest (N) the behavior z that maximizes the
probability of being in the nest p(x ∈ Xn|z).

• Foraging (F) the behavior z that maximizes the
probability p(x ∈ Xf |z) of being in the foraging
area.

• Intermediate (I) the remaining behavior.

Mobility In order to visualize the location distri-
butions associated with the behaviors detected by our
model, we plot in Figure 4, for colonies 4 and 18 and
each behavior z, the top 1000 locations ranked accord-
ing to the probability p(x|z). These locations represent,
for each behavior, the area where an ant that adopts
this behavior would spend most of its time. Moreover,
we show in Figure 6 the locations of each colony col-
ored according to the mixture coefficients p(z|x). We
focus on Figure 4 and note that the top locations as-
sociated with the behavior N capture well the shape of
the brood pile, as shown in Figure 1a. Moreover, the
most likely locations associated with behavior F cor-
respond to the entrance of the foraging area and food
source (Figure 1b) where foragers spend most of their
time.

In order to confirm these observations, we compare
the mixture coefficients πi(d, z = N) for behavior N
to the proportion of time an ant would spend in the
brood pile as delimited by domain experts. In order
to represent the structure of the ant colony, Mersch et
al. [10] annotated manually the most important region
in the nest, namely the brood pile (brown region in
Figure 1a), and then measured the time each ant spends
inside and outside this region. The purpose of these
measurements is to associate ants with tasks in the
colony, for example, nurses are the individuals that visit
most often the brood pile. We denote by νi(d) the
proportion of time ant i spends in the brood pile at
day d, as measured by Mersch et al. [10]. This quantity
provides us with a biological ground truth against which
we can compare our results. In Figure 5, we plot
this quantity as a function of the mixture coefficients
πi(d, z = N) associated with behaviors N : νi(d), the
proportion of time an ant spends in the brood pile
increases with the mixture coefficient πi(d, z = N)
associated with behavior N . More importantly, the
fact that νi(d) is very close to πi(d, z = N) confirms
that the spatial distribution associated with behavior
N matches accurately the area of the brood pile, as

N I F

Colony 4 0.26 0.36 0.51
Colony 18 0.27 0.28 0.4
Colony 21 0.28 0.33 0.42
Colony 29 0.29 0.4 0.4
Colony 58 0.22 0.39 0.52
Colony 78 0.26 0.28 0.46

Average 0.26 0.34 0.45

Table 3: The probability of being active p(a = 1|z) for
each colony and each behavior.

delimited manually by domain experts. In order to
confirm this observation, we measure the mean squared
error between the mixture coefficients πi(d, z = N) and
the actual proportion of time spent in the brood pile
νi(d)

1

|D|
∑

c∈C |Ic|
∑
c∈C

∑
i∈Ic

∑
d∈D

(πi(d, z = N)− νi(d))2.

The mean squared error is equal to 0.03 which clearly
confirms that the spatial distribution associated with
the behavior N uncovered by our model accurately
matches the spatial distribution of the nurses as defined
by domain experts. Our approach would therefore
enable biologists to automatically detect the spatial
fidelity zones [8, 16, 10] in a colony without going
through the tedious process of manual annotation.

Activity In Table 3, we show the probability of
being active p(a = 1|z) for each behavior and each
colony. We notice that (a) inactivity prevails in the
colony, and (b) the probability of being active increases
as we move away from the brood pile. In fact, inde-
pendently of the behavior adopted, an ant spends most
of its time inactive: the probability of being active is
p(a = 1|z) = 0.35 on average. However, this probability
increases as the ants move away from the brood pile.
For all colonies, the ants that adopt behavior N are less
likely to be active than ants that adopt the intermedi-
ate behavior. The foragers are clearly the most active
individuals, as their probability of being active is, on
average, p(a = 1|z) = 0.45.

These results confirm the observations of Franks
et al. [6] who monitored visually the behaviors of
Leptothorax acervorum ants for nearly 12 hours in
order to measure the proportion of time allocated to
each activity. They found that nest workers spend
71.5% of their time resting, whereas foragers spend
only 14.8% of their time resting. Even if findings are
relative to a species of ants that is different from the
one we are studying, they still support the validity of
our observations about the relationship between the
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−2.7

(a) Behavior N, col 4
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−4.2

−3.9

−3.6

−3.3

−3.0

−2.7

(b) Behavior I, col 4

−4.00

−3.75

−3.50

−3.25

−3.00

−2.75

−2.50

−2.25

(c) Behavior F, col 4

−5.6

−5.2

−4.8

−4.4

−4.0

−3.6

−3.2

−2.8

(d) Behavior N, col 18

−5.1

−4.8

−4.5

−4.2

−3.9

−3.6

−3.3

−3.0

−2.7

(e) Behavior I, col 18

−3.8

−3.6

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

(f) Behavior F, col 18

Figure 4: We plot, for colony 4 and 18, the top 1000 locations of each behavior z ranked according to the
probability p(x|z). If we compare the spatial density associated with colony 4 to its configuration shown in
Figures. 1a and 1b, we observe clearly that Behavior N is concentrated around the brood pile, whereas behavior
F is concentrated around the water source and food.

behavior adopted and the activity level.

4.2 Individual Behaviors In our model, we repre-
sent the behavior of ant i at day d by the vector of mix-
ture coefficients πi(d), which is a point in the 2-simplex.
We show in Figure 7 a scatter plot of the mixture coeffi-
cients πi(d) of the ants associated with colony 4: Most
of these points are concentrated on the edges of the tri-
angle that represents the 2-simplex, which suggests that
the majority of ants adopt a mixture of two behaviors.
For example, a point that is close to the edge from N to
I corresponds to an ant whose behavior is a combina-
tion of behaviors dominated by the collective behaviors
N and I, but exhibits weak signs of behavior F . In such
a representation, the evolution of an ant’s behavior over
time is represented as a behavioral trajectory (sequence
of points) on the 2-simplex, similar to those shown in
Figure 8. In order to gain a better understanding about
the evolution of ant behavior, we study the evolution
of the dominating behavior over the 11 days of observa-
tion. Hence, we assume that the sequence of dominating
behaviors βi(1), . . . , βi(11) reflect the evolution of ant i.

Trajectory Empirical frequency

F 17%
N 16%
I 11%
N → I → N 5%
I → N 4%
I → F → I 4%
I → F 3%
I → N → I → N 3%
F → I → F 3%
I → N → I → N → I 3%
I → N → I 2%
Others 29%

Table 4: Top trajectories ranked according to their
empirical frequency.

Typical trajectories We show in Table 4 the
most frequent behavioral trajectories from which we
have removed self-transitions, i.e., we keep only tran-
sitions between different dominating behaviors. A large
proportion of the ants has the same dominating behav-
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Figure 5: A scatter plot that represents the proportion
of time in the brood pile νi(d) vs. the mixture coefficient
πi(d, z = N) for behavior N . We show the linear
approximation (intercept = 0.03, slope = 1.1) of the
relation between these two variables and remark that it
is very close to the line x = y, which represents a perfect
match between the results of our model and the ground
truth as measured by domain experts.

ior for the whole observation period. In fact, the prob-
ability p(βi(11) = . . . = βi(1)) that an ant keeps the
same dominating behavior throughout the observation
period is equal to 0.43. However, this probability de-
pends greatly on the initial dominating behavior, as the
probability of keeping the initial behavior is 0.49, 0.26
and 0.62 for behaviors N , I and F , respectively. By
observing the most frequent trajectories, we notice that
ants that witness more than one change of dominating
behavior then to revert to their preceding dominating
behavior. For example, the most frequent trajectory
that includes a change in the dominating behavior cor-
responds to an ant that starts with the dominating be-
havior N , evolves to behavior I before reverting back to
behavior N .

Modeling behavior evolution We assume that
the sequence of dominating behaviors experienced by an
ant is a realization of a Markov chain [12] whose order
is unknown. To find the order of the Markov chain
that best explains the data, we repeat the following
procedure 1000 times: We randomly divide the dataset
in a training set (90% of the ants) and a test set
(10% of the ants). Then, we learn, using a maximum-
likelihood estimator on the data from the training
set, Markov chains with different orders. Finally, we
compute, for each Markov chain, the log-likelihood
of the test set; the higher the likelihood, the higher
the predictive power of the model. We obtain the
average log-likelihood associated with each order of the

Markov chain by computing the log-likelihood average
over the 1000 random splits of the data. We show the
results in Table 5: The second order Markov chain
maximizes the average log-likelihood of unseen data.
This suggests that, in order to predict the behavior of
ant i at day d + 1, we have to take into account not
only its current dominating behavior βi(d), but also its
preceding dominating behavior βi(d− 1).

Average log-likelihood

Random -0.48
MC O(0) -0.47
MC O(1) -0.26
MC O(2) -0.25
MC O(3) -0.27
MC O(4) -0.30
MC O(5) -0.32

Table 5: The average log-likelihood of the test set is
computed, for each method, over 1000 random splits of
the dataset. We also indicate this average log-likelihood
if we predict behaviors uniformly at random.

State (probability) N I F

N → N (0.3) 0.9 0.09 0.01
I → I (0.27) 0.08 0.84 0.08
F → F (0.26) 0.01 0.07 0.92
N → I (0.04) 0.45 0.52 0.03
I → N (0.04) 0.66 0.31 0.03
I → F (0.04) 0.03 0.37 0.58
F → I (0.04) 0.03 0.56 0.41
F → N (0.007) 0.58 0.22 0.2
N → F (0.006) 0.51 0.14 0.35

Table 6: The second order Markov chain that models
the evolution of the dominating behavior. We rank the
states of the Markov chain according to their probability
and show, for each state, the distribution over the next
behaviors.

In Table 6, we show the second order MC learnt
from our dataset. We rank the states according to their
probability and show, for each state, the distribution
over the next dominating behavior. The results confirm
that preceding behaviors have an influence on future
behaviors. For example, imagine that we observe an ant
whose current behavior is I and we are interested in the
probability that its next behavior is F . The preceding
behavior of this ant influences this probability, which it
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(a) Colony 4 (b) Colony 18

Figure 6: The color of each location x is a mixture of colors that is a function of the posterior probability
p(z|x)p(z). The colors red, green, and blue are mapped to the behaviors N, I and F, respectively.

N I

F

Figure 7: Each dot plotted in the simplex represents
a mixture of behaviors (coefficient πi(d, z)). These
coefficients are concentrated on the edges of the simplex,
which implies that an ant’s behavior is dominated
by two collective behaviors. A few ants expresses a
balanced combination of the three collective behaviors.

is low if we know that this ant’s preceding behavior is N
or I (0.03 and 0.08 for N and I, respectively), whereas
it increases significantly (0.41) if we know that this ant’s
preceding behavior is F .

5 Conclusion

In this work, we have modeled the behaviors of Cam-
ponotus fellah ants by analyzing large-scale digital
traces that describe their mobility. We have proposed
a probabilistic model that takes advantage of the cor-
relation between the behavior of individual ants in or-

der to uncover collective behaviors in a colony and to
express the behavior of each ant as a time-dependent
combination of these behaviors. The collective behav-
iors found by our model correspond to actual functional
behaviors in ant colonies: The spatial distribution as-
sociated with them match well the spatial distribution
as defined by domain experts. Moreover, our method
quantifies to which extent each individual ant expresses
a given collective behavior. We have further explored
the evolution of the behavior of an individual ant and
have shown that an ant exhibits an evolution pattern
that is well captured by a second-order Markov chain:
the future behavior of an ant depends not only on its
current behavior but also on the preceding one.

Our work illustrates well how probabilistic models
enable us to understand some of the mechanisms in
biological systems: we take advantage of the correlation
between individual behaviors in order to uncover latent
collective behaviors and describe their properties.
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N I

F

N I

F

N I

F

Figure 8: The evolution of the behavior of 3 ants, chosen from colony 4 and 18, are represented as a trajectory
over the simplex.
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