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ABSTRACT

MicroRNAs (miRNAs) constitute an important class of
gene regulators. While models have been proposed
to explain their appearance and expansion, the valid-
ation of these models has been difficult due to the
lack of comparative studies. Here, we analyze
miRNA evolutionary patterns in two mammals,
human and mouse, in relation to the age of miRNA
families. In this comparative framework, we confirm
some predictions of previously advanced models of
miRNA evolution, e.g. that miRNAs arise more fre-
quently de novo than by duplication, or that the
number of protein-coding gene targeted by miRNAs
decreases with evolutionary time. We also corrobor-
ate that miRNAs display an increase in expression
level with evolutionary time, however we show that
this relation is largely tissue-dependent, and espe-
cially low in embryonic or nervous tissues. We
identify a bias of tag-sequencing techniques regard-
ing the assessment of breadth of expression, leading
us, contrary to predictions, to find more tissue-
specific expression of older miRNAs. Together, our
results refine the models used so far to depict the
evolution of miRNA genes. They underline the role
of tissue-specific selective forces on the evolution
of miRNAs, as well as the potential co-evolution
patterns between miRNAs and the protein-coding
genes they target.

INTRODUCTION

MicroRNAs (miRNAs) constitute one of the largest
classes of gene regulators in animal genomes. They are
associated with the control of a broad range of biological

processes, including development, differentiation, metab-
olism, cell cycle and aging (1–4). From an evolutionary
point of view, changes in miRNA regulation underlie
several species-specific adaptations (5–7). The evolution-
ary success of miRNAs might also result from the benefits
of a supplementary layer of regulation on gene networks,
leading to an increased combinatorial control power,
more flexibility, robustness or buffering (8–12). It is
thought that these properties could have been targeted
by natural selection during evolution, making miRNAs
good candidates to explain major evolutionary transitions
(7,13,14). Consistent with this scenario, an increase in
morphological complexity was shown to correlate with
dramatic expansions of the miRNA repertoire in
bilaterians (15,16) and in vertebrates (17–20).

Yet the appearance and expansion of miRNAs in
animal genomes is not well understood. Because of their
short sequence, it is likely that a substantial number of
miRNAs regularly appear in the genome by chance—
e.g. from intergenic or intronic sequences (20–22) or
from Transposable Elements and repeats (23). Like
other types of genes, miRNAs can also expand by gene
duplication, increasing the size of miRNA gene families. It
is unclear whether duplication or de novo generation is the
main mechanism of miRNA expansion (14,20,21,23–25).

Regarding their long-term fate, the ‘transcriptional
control model’ (21,23) proposes that miRNAs which are
first expressed at low levels, and in a tissue or stage-
specific manner, have mild phenotypic consequences,
and can be retained in evolution. Selection could then
drive higher and broader expression of the miRNAs that
assume a functional role. This model is consistent with
several lines of evidence, such as the observation that in
human, miRNAs with no detectable expression—account-
ing for �30% of the total miRNA pool—appear to be
recent and under relaxed selective pressure (26,27). In
flies too, novel miRNA genes are under weaker purifying
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selection (28), and harbor few conserved targets and low
expression (8). As for conserved miRNAs, they are typic-
ally more broadly and robustly expressed than non-
conserved ones (29,30). However, tests of this model
have been limited by the paucity of comparative studies
performed.

In this paper, we tested the ‘transcriptional control
model’ of miRNA emergence in a comparative frame-
work. In light of the date of emergence of miRNA
families, we analyzed in two mammalian species, human
and mouse, the size of miRNA families, their expression in
different anatomical structures, and the predicted protein-
coding genes they target.

MATERIALS AND METHODS

Family size

The clustering of miRNA genes in families was retrieved
from miRBase (ftp://mirbase.org/pub/mirbase/
CURRENT/miFam.dat.gz, release 15, September 2010)
(31). MiRBase works jointly with RFAM (32) to create
the miRNA families, and a description of the pipeline used
can be found at http://rfam.sanger.ac.uk/help. Deep-
sequencing can generate numerous false miRNA gene
predictions (33), which have the potential to bias our
analyses. Recent releases of miRBase have focused on
cleaning up the miRNA gene predictions (33). First, we
verified that all the miRNA genes in our dataset were still
present in the release 17 of miRBase (April 2011), which
likely indicates a low rate of false positives in our dataset.
Second, false positives are not expected to show inter-
species conservation. We did not use species-specific
miRNAs in our analyses: the most recent families in the
analysis of human miRNAs are primate-specific (shared
between human and macaque); they are rodent-specific in
the analysis of mouse miRNAs (shared between mouse
and rat) (18).

Another dataset was retrieved from Ensembl (release
60, November 2010) (34). In Ensembl the ncRNA phylo-
genetic trees are built with ncRNA predictions classified
by RFAM ids; the alignment is made using Infernal 1.0;
trees are merged by TreeBeST using a combination of NJ
and ML on genomic context alignment and secondary
structure models (RAxML); orthologs are then inferred
using the approach used for protein-coding genes
(personal communication on Ensembl-dev mailing-list,
21 September 2010).

Dating of miRNA families appearance

The emergence of miRNA families was dated using the
dataset of Peterson et al. (18), in which the appearance
of a total of 537 families was attributed by parsimony
to a taxonomic group. Molecular estimates of the age
of taxonomic groups was obtained from the database
TimeTree (www.timetree.org, December 2010) (35).
When available the ‘TimeTree expert’ result was used.
Otherwise the weighted average (nuclear+mitochondrial)
was used. The density of appearance of new miRNA
families in human and mouse is illustrated in
Supplementary Figure S1.

An independent estimation of the age of miRNA
families was also obtained from the ncRNA Gene trees
provided by Ensembl Compara (see above). The age of a
miRNA family was dated by its first appearance in the
phylogeny; this consists in retrieving the TimeTree age
of the oldest node of its Gene Tree family in Ensembl
release 60.
The dating of appearance of protein coding genes

families was estimated with the same methodology using
the protein-coding Gene Trees in Ensembl release 60.

Expression data

Gene expression patterns of miRNAs were retrieved from
Bgee, a database for the study of gene-expression evolu-
tion (release 8, January 2011; http://bgee.unil.ch/) (36).
Bgee includes miRNA gene information from Ensembl
and miRNA families from miRBase (31). RNA library
sequencing data for miRNAs of different species are
retrieved from smiRNAdb (http://www.mirz.unibas.ch/
cloningprofiles/) (37) and Unigene (38). The data used
here come mostly from a study based on small RNA
library sequencing (39). A miRNA gene was considered
as expressed in a given tissue if at least one count for this
gene was detected in a library performed on this tissue.
miRNA genes that showed no expression data in any of
the analyzed tissues were not considered for the analysis.
For the analysis of the relation between age of miRNAs
and level of expression in individual tissues, only tissues
displaying more than 10 genes with expression were
considered. In situ expression data for mouse miRNAs
in Bgee are retrieved from the mouse Gene expression
Database at MGI (40). For Supplementary Figure S2,
PAR-CLIP data were retrieved from GEO (GSE28859)
(41). We used the mean of the processed data from
two replicates of MNase-treated PAR-CLIP on the
Ago2 protein in HEK293 cells. This methodology was
shown to be precise and quantitative (41). Microarray
data were retrieved from GEO (GSE29356) (4).
Hybridizations were made on the Agilent-021827
Human miRNA Microarray V3 platform. We used the
mean of the processed data from two replicates of
2-day-old human cerebellar cortex samples. Similar
results were obtained when samples of different age or
prefrontal cortex samples were used.

Multi-species comparison

In Bgee, expression data are mapped to ontologies
formalizing the description of the anatomy of different
species. The ontologies describing the anatomy of differ-
ent species are aligned to generate a common ontology
describing the homologous tissues among vertebrate
species (HOGs, Homologous Organ Groups) (42,43).
This ontology can be downloaded from http://bgee.unil.
ch/bgee/bgee?page=download.
Bgee maps tissues and organs from each species (here

human and mouse) to the HOG ontology. Thus expres-
sion patterns from homologous genes are mapped to
homologous organs. We considered only HOGs for
which expression of more than 10 genes was detected in
both human and mouse. Of note, when expression data is
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available for less than 10 genes, or in one species but not
the other, or in tissues not directly mapped to a HOG, the
ontology structure allows us to recover this information
by mapping data to the parent structures.

Expression divergence

The significance of expression divergence was assessed
using a statistical framework developed by Audic and
Claverie (44). The probability for relative frequencies of
counts to be identical between two conditions (i.e. two
libraries) is given by:

pðyjxÞ ¼
N2

N1

� �y
x+yð Þ!

x!y! 1+N2=N1ð Þ
x+y+1ð Þ

where x is the number of counts observed for a gene in a
library of size N1 and y is the number of counts mapped to
the same gene in a second library of size N2. We used this
test to assess the probability (P-value) that counts of a
miRNA family observed in human and mouse homolo-
gous tissues correspond to the same relative frequency in
both libraries. Small P-values thus characterize cases of
expression divergence between human and mouse hom-
ologous tissues. Genes with no expression in any of the
seven HOGs considered in both species were not con-
sidered in this analysis.

Protein-coding genes target analysis

The mRNA targets of human and mouse miRNAs
were predicted by the ElMMo algorithm (45). We
retrieved the ElMMo miRNA target prediction flat
files v5 (January 2011) at http://www.mirz.unibas.ch/
miRNAtargetPredictionBulk.php.
The mapping of RefSeq IDs to Ensembl IDs (release 60)

was downloaded using Biomart. We only considered
target genes where the miRNA binding site was found
to be under evolutionary selective pressure with high
enough confidence (posterior probability > 0.8 as recom-
mended by the authors).
Another independent dataset was retrieved from a

recent study in mouse (46). The authors integrated experi-
mental evidences to detect downstream mRNA transcripts
likely to respond causally to changes in miRNA levels.
The dataset was found in Supplementary Table 1c of the
study (46). The mapping of the microarray was found on
GEO (47) under the accession GPL3677.

RESULTS

miRNA families and their rate of acquisition through time

We find a positive correlation between the age of appear-
ance of miRNA families and their size, both in human and
mouse (Spearman correlation, r=0.47, P= 1.1e� 16;
and r=0.41, P= 8.7e� 10; respectively). But this trend
could be potentially due to a bias in miRNA gene anno-
tation: ancient miRNA genes have been reported to be
more expressed (26,27), and might be easier to detect.
We controlled for this potential factor by performing the
same analysis, restricted to human miRNA genes that
have no mapped sequence tags in the database Bgee

(36). These genes are likely to be expressed at low levels.
Still, a significant correlation between family size and age
is found for this subset (r=0.37, P= 5.8e� 5), confirm-
ing that annotation bias is not likely to have a major
effect. This is consistent with expectations of good anno-
tation of the human and mouse genomes (48). We also
verified these results with an independent method of
dating families. We used miRNA trees provided by
Ensembl to extract family size, and date of appearance
(see ‘Materials and Methods’ section). Although the
number of phylogenetic trees for miRNA families
available in the release 60 of Ensembl is relatively low
(272 trees), this subset also displays a very similar
trend (r=0.44, P= 1.4e� 12 for human; and r=0.42,
P= 3.9e� 9 for mouse).

These results suggest that the ‘duplication-mutation
model’ of miRNA evolution plays a significant role in
miRNA diversification, an idea that is debated—see
Shabalina and Koonin (23) for pros and Chen and
Rajewsky (21) for cons. To compare this to a model
where most new miRNAs arise de novo, we divided the
number of miRNA genes in each family by its age, a rough
estimate of the rate of acquisition of miRNAs by duplica-
tion through evolutionary time (17). Both in human and
mouse the same median rate of 0.011 new miRNA per My
is observed. By contrast, the rate of de novo acquisition of
families, while irregular over time (Supplementary Figure
S1) is an order of magnitude higher (0.26 new family per
My in human, and 0.20 in mouse). This suggest that the
‘duplication-mutation’ process, although significant,
accounts for only a small fraction of newly emerged
miRNAs, and that de novo acquisition explains the
origin of the majority of new miRNA genes (21). This is
further supported by the observation that the median size
of a miRNA gene family is of only one member in both
species (mean 2.06 in human, 1.93 in mouse) in our
dataset.

Expression levels of miRNA families of different ages

Conserved miRNA genes have been shown to be
expressed more robustly and at higher levels than
non-conserved ones (26,27,29,30), suggesting that older
miRNAs are more expressed than novel miRNAs.
However the relation between the age of miRNA genes
and their expression has never been directly tested to our
knowledge. We estimated expression levels in human and
mouse, based on the counts observed in the pool of all
libraries available in the database Bgee. We find it to be
positively correlated with the age of miRNA genes both in
human and mouse (r=0.36, P= 1e� 6; and r=0.21,
P= 0.0047 respectively; Figure 1). The trend is best
modeled by an exponential rather than a linear relation
(R2=0.13 and P= 6.2e� 7 versus R2=0.042 and
P= 0.007 respectively for human; R2=0.051 and
P= 0.0027 versus R2=0.036 and P= 0.013 respectively
for mouse). We verified that this trend was supported by
other types of quantitative data used to measure expres-
sion levels of miRNAs (PAR-CLIP and microarray,
Supplementary Figure S2). This implies that the
dynamics of gene changes might be different for old and
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recent miRNAs: with evolutionary time, expression level
increase appears stronger. Yet, in the ‘transcriptional
control model’ no further expression increase is expected
once a miRNA gene has acquired a functional role in the
genome (21).

Evolution of expression levels of miRNA families in
different tissues

We investigated whether the correlation between level of
expression and age of miRNAs is led by some specific
anatomical structures, or is a general property independ-
ent of anatomy. A similar analysis using expression data
separately for each tissue in human and mouse yields a
large amount of variation in the strength of the relation
(Figure 2), from r=0.09 to r=0.40 in human, and from
r=�0.056 to r=0.33 in mouse. In human and mouse
the weakest correlations are seen in tissues from the
nervous system. In mouse, low correlations are observed
in embryonic tissues, but this cannot be compared to
human since no embryonic tissue was sampled. Across
the range of correlation coefficients, a number of other
tissues show consistent patterns in both species (placenta
in the low range of correlation coefficients, heart in the
middle range and kidney and its subparts in the high
range), although spleen stands as an exception with high
correlation in human (r=0.38) while it is rather low in
mouse (r=0.13); this might be due to a low number of
genes being detected in the mouse spleen library.

Of note, these estimates do not appear to be biased by
the number of genes with detectable expression in each
tissue (r=�0.039, P= 0.88 for human, r=�0.15,
P= 0.57 for mouse). The use of rank correlations also
controls for the disproportionate weight that some

miRNAs would have in some tissues. For example,
miR-122 is known to be highly expressed in liver where
it regulates tightly the gene-expression network (49).
Removing miR-122 from the analysis in liver yields a
very similar correlation coefficient between the level of
expression in liver and the age of miRNAs (r=0.175
instead of r=0.179).
Thus it seems that the global trend seen in Figure 1 is

led by a subset of anatomical structures. Such strong vari-
ation has not been predicted by any model of evolution of
miRNAs, to our knowledge.

Breadth of expression of miRNA families of different ages

We examined the correlation between the number of
tissues in which a miRNA gene was detected (i.e. its
breadth of expression) and its age. A positive correlation
is found for both human and mouse (r=0.31,
P= 4.2e� 5; and r=0.22, P= 0.0036, respectively;
Supplementary Figure S3), in agreement with the ‘tran-
scriptional control model’ which postulates that miRNA
genes acquire broader expression as they get older (21).
However expression level is likely to be a confounding

factor in this analysis: highly expressed genes—which are
also older—are easier to detect, and might thus be found
more broadly expressed. A Kruskal-Wallis test
(non-parametric ANOVA) indeed identifies expression
level as a significant factor to explain breadth of expres-
sion both in human and mouse (P= 7.8e� 7 and
P= 3.3e� 9 respectively). To remove this confounding
effect, we split our dataset into four different bins, con-
taining genes of similar expression levels (based on quar-
tiles of expression levels in the whole dataset). In each bin
the picture is widely changed (Supplementary Table S1).
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Figure 1. Relation between the age of miRNA genes and their level of expression. Relation between the age of miRNA genes (date of appearance of
their family in the genome, in Mya) and their expression level, in human (A) and in mouse (B). Expression level was calculated as the sum of counts
observed in all tissues with expression in Bgee. miRNA genes that showed no expression data in any tissue were not considered for the analysis. The
y-axis is in logarithmic scale: an exponential regression had a better fit than a linear one. Exponential regression lines are plotted. Darker dots in the
plot result from the superposition of several data points.
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Most bins display a negative association, which is margin-
ally significant in human for genes with 4–13 counts. In
human, in only one case is the correlation still positive, but
strongly weakened and no longer significant. In mouse the
correlation is still positive in two bins, but not significant.
To test further the relation between breadth of expres-

sion and age of miRNA genes, we turned to in situ hybrid-
ization data from mouse. This technique is more
qualitative and can reveal detailed patterns of expression
even for lowly expressed genes (50), thus contributing to
reduce the bias due to expression level. The precision of
in situ hybridization data also makes them a good alter-
native to gross tissue-level miRNA expression profiling to
assess tissue specificity (51). Most of the data we used were
generated in the framework of a single study, performing
high-resolution and genome-wide in situ hybridization in
mouse at embryonic day 14.5 (444 miRNAs studied) (50).
This makes for a conservative test, since the association
between expression level and age seems weaker in embry-
onic tissues (Figure 2B). In these data, there is a significant
negative correlation between the age of a miRNA and the
number of tissues in which it is expressed (r=�0.24,
P= 0.0021; Figure 3), implying that novel miRNA
genes are more likely to be broadly expressed than older
genes.
This is consistent with a study that identified several

tissue-specific mouse miRNAs that were conserved
among vertebrates (52), but stands in contrast with the
‘transcriptional control model’ and other previously pub-
lished results (29,39). It is still possible that the specificity
of expression of young miRNA genes does not lie at the
anatomical level, but at the developmental level. But it is

quite likely that several studies suffered from the difficulty
of assessing tissue-specificity using tag-sequencing tech-
niques. Indeed, among miRNAs for which expression
data was available both in the in situ dataset and in the
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Figure 2. Relation between the age of miRNA genes and their level of expression in different tissues. (A) In human and (B) in mouse. The barplot
displays for each tissue the value of the coefficient r of the Spearman’s rank correlation. Tissues are ranked according to their r coefficient. Gray
bars represent tissues where a significant correlation was observed after Bonferroni correction (17 tissues; P< 0.0029); white bars represent tissues
where the correlation was not significant. Numbers in the bars represent the number of genes with detectable expression (at least one sequence count
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Figure 3. Relation between the age of miRNA genes and their breadth
of expression. Relation between the age of miRNA genes and the
number of anatomical structures in which they are expressed in
mouse. The number of structures showing expression of miRNA
genes was assessed using in situ hybridization data. The linear regres-
sion line is plotted. Darker dots in the plot result from the superpos-
ition of several data points.

5894 Nucleic Acids Research, 2012, Vol. 40, No. 13



small RNA library sequencing dataset, we do not detect a
significant correlation between the breadth of expression
assessed using in situ data and small RNA library
sequencing data (r=�0.15, P= 0.26). A specific
example, mir-451, illustrates well how small RNA
library sequencing can give a misleading idea of breadth
of expression. Mir-451 is expressed very specifically during
the development of red blood cells (53,54) and accord-
ingly, in situ data report expression in embryonic liver,
the main site of red blood cell production during fetal
development, and in aorta. Small RNA library sequencing
data, however, report expression of mir-451 in tissues as
diverse as heart, cerebral cortex, colon, kidney or
placenta. We suggest caution in the assessment of
breadth of expression using such datasets until the avail-
ability of ultra high-throughput sequencing—e.g. Illumina
platforms—of small RNA libraries in multiple tissues
helps to clarify our observations.

Comparison of miRNAs expressed in homologous tissues
between human and mouse

For a direct comparison between human and mouse
miRNA spatial expression patterns, a common frame-
work is required. We used the manually curated dataset
of homology relationships among anatomical structures of
vertebrate species provided by the database Bgee (36).
Homologous tissues are gathered in HOGs. All HOGs
that included at least one human and one mouse tissue
were considered for the analysis. The expression in sub-
structures of each HOG was considered (see ‘Materials
and Methods’ section). Seven HOGs displayed enough
expression in both species to allow a comparison:
placenta, stomach, heart, ovary, testis, brain and
metanephros (kidney). We looked at the number of
miRNA genes of different ages expressed in these HOGs
in each species. To allow proper comparisons between
species and between HOGs, the number of miRNA
genes expressed was normalized by the total number of
miRNA genes expressed in each HOG in each species sep-
arately (Figure 4). A good correlation is observed between
the patterns in both species (r=0.78, P= 2.6e� 15; only
miRNAs that originated before the divergence of the two
species were considered here). This might reflect purifying
selection on the expression patterns of miRNAs during
�91 Mya of independent evolution in human and mouse.

For each species separately however, the amount of
variation is quite important between miRNAs of different
ages, and between HOGs. miRNAs that appeared 91 Mya
(mammals), 645 Mya (vertebrates), or 910 Mya
(bilaterians) stand out because they represent a large pro-
portion of the miRNAs expressed in human and mouse.
This is consistent with the emergence of a large number of
miRNA families during corresponding evolutionary tran-
sitions (Supplementary Figure S1) (14–18). At the ana-
tomical level, some HOGs express relatively young
miRNAs (brain, testis, placenta) while others express
older miRNAs (heart, stomach). This is in agreement
with the observation that the relation between expression
level and age of miRNAs varies in strength among tissues
(Figure 2). As might be expected, placenta, a recent tissue,

tends to express young sets of miRNAs, as does testis,
known to express fast evolving genes (55). Possibly
linked to recently emerged anatomical structures (e.g.
the mammal-specific neocortex) (56), the brain also
expresses young miRNAs.

Comparison of expression levels of miRNA families
between human and mouse

To analyze more precisely the patterns of divergence
between human and mouse, we then compared directly
the expression of miRNA families in each HOG. To
gain statistical power, we assumed that duplicates
present in a family had similar functions and we pooled
their expression data by adding their respective counts.
This is motivated by the observations that paralogous
miRNAs usually share very similar mature sequences,
and that they often show some level of functional com-
pensation if one member of the family is experimentally
deleted (57,58). To test the significance of the difference in
counts observed between species, we used the test of Audic
and Claverie (44) (see ‘Materials and Methods’ section).
The test yields a probability (P-value) for each family in
each HOG that observed counts reflect a similar level of
expression in mouse and human. We adjusted the P-values
for multiple testing (74 families in seven HOGS=518
tests performed) using the FDR correction method (59),
and we used �log10 of the adjusted P-values as a score of
expression divergence for all families in the seven HOGs
(Supplementary Figure S4).
Large differences can be observed among HOGs

(Kruskal–Wallis test; P= 4.0e� 43): while only

age (Mya)

0 91 300 455 642 790 910 1036

metanephros

brain

ovary
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heart

stomach
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Mouse Human

Figure 4. Comparison of miRNAs expression in human and mouse.
Comparison of the number of miRNA genes of different ages expressed
in human (black circles) and mouse (red circles) in different homolo-
gous tissues (HOGs). The surface of the circles is proportional to the
number of miRNA found expressed, normalized by the total number of
miRNA genes expressed in the different tissues considered for each
species.
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a handful of families significantly differ between human
and mouse for some tissues (testis, heart, stomach), many
do for others (up to 49% for metanephros/kidney). These
results suggest that different tissues did not experience the
same amount of changes in gene regulatory networks
across evolution. The pattern does not parallel the diver-
gence of protein-coding genes expression in several human
and chimpanzee tissues (60), nor among amniote tissues
(61). Among the four tissues in common with our analysis
(heart, kidney, testis and brain), the lowest expression di-
vergence was found for brain, while in our analysis it is in
second position. Testis, heart and kidney displayed inter-
mediate levels of divergence (after liver which is not
analyzed here) in Khaitovich et al. (60), while in
Brawand et al. testis displayed larger amounts of expres-
sion divergence (61). In our results they show diverse
patterns and testis seem to be the least divergent tissue.
It is possible that part of the differences results from our

methodology, i.e. the low amount of data available for
some tissues limits the power of the statistical test.
Lowly significant results can either reflect a low divergence
of expression, or a lack of statistical power to detect di-
vergence. This lack of power is particularly marked for
families which display no expression in a given HOG,
for at least one of the two species. To take this into
account, we tested only the subset of families in HOGs
for which both species had at least one count (Figure 5A).
As expected, due to the increased statistical power, the
proportion of significant families increases in most
HOGs (up to 70% for metanephros/kidney). Their
ranking is also affected: testis now displays an

intermediate pattern, similar to ovary and placenta,
more consistent with the observations of Khaitovich
et al. (60), although still at odds with Brawand et al.
(61). Brain still displays an elevated rate of divergence,
reflecting that there might be less purifying selection, or
more positive selection, acting on expression patterns of
miRNAs than on those of protein-coding genes in the
brain (62). Of note, our test cannot differentiate between
divergence due to relaxed purifying selection or due to
positive selection.

Regarding the relation between the divergence of ex-
pression patterns and the age of appearance of miRNA
families, no significant pattern is observed (Figure 5B).
This might result from the interplay between two effects:
young genes are under less strong purifying selection and
thus more free to diverge; old genes on the contrary are
under stronger purifying selection but had more time to
diverge.

Analysis of protein-coding targets of miRNAs of
different ages

We examined the relation between the age of miRNA
genes and the number of protein-coding genes they
target. It is still difficult to predict with accuracy the
targets of miRNA genes (63), and currently available
methods yield high rates of false positives. We used first
the ElMMo algorithm, a Bayesian method for the infer-
ence of miRNA target sites (45). ElMMo incorporates
information on the phylogenetic conservation of miRNA
binding sites in vertebrate species. This method was shown
to perform among the best in a benchmarking study (64).

A B

Figure 5. Expression divergence of miRNAs between human and mouse. (A) Boxplot of expression divergence of miRNA families in different tissues
between human and mouse. The significance of expression divergence was assessed using a test developed by Audic and Claverie (see ‘Materials and
Methods’ section). The P-values are corrected for multiple testing, and �log10 of the adjusted P-values is displayed on the x-axis. This allows to
spread on a broad range the small adjusted P-values, which correspond to significant cases of expression divergence. Only families where expression
counts were non null in both species were used in this analysis; see Supplementary Figure S3 for the analysis using the complete dataset. A vertical
dashed line indicates the 20% FDR threshold. (B) Relation between the expression divergence score, �log10 (adjusted P-values), of miRNA families
between human and mouse and their date of appearance in the genome. Darker dots in the plot result from the superposition of several data points.
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We considered only predictions of miRNA–targets rela-
tionships when the miRNA binding site on the target gene
was evolutionary conserved. Both in human and mouse
we found no significant association between the age of
miRNAs and the number of protein-coding genes they
target (respectively r=0.044, P= 0.78 and r=�0.042,
P= 0.85). However this analysis might suffer from the
low quality of in-silico prediction methods, and from the
transfer of predictions from RefSeq mRNA sequences to
Ensembl gene models—30-UTR definitions sometimes
differ between databases (65).

Secondly, we used a recently published study where pre-
dicted targets of miRNAs in mouse were inferred from
experimental data, using sophisticated statistical proced-
ures to infer causal relationships (46,66). This dataset
includes a low number of predicted relationships, and
contrary to in silico prediction methods is likely to
include false negatives rather than false positives. Here
we find a marginally significant negative correlation
between the age of miRNAs and the number of gene
they target (r=�0.39, P= 0.063). This is consistent
with the predicted decrease in number of targets between
the two phases of the life of miRNAs (21).

We then investigated the relationship between the age of
miRNAs and the age of their targets. Using ElMMo pre-
dictions, no significant relationship is observed in human
(r=0.0013, P= 0.86), while a weak significant correl-
ation is observed in mouse (r=0.03, P= 0.001). This
correlation is stronger if we use predictions from the ex-
perimental dataset (mouse only; r=0.18, P= 0.0038),
although only 248 miRNA–target relationships are used
in this case.

DISCUSSION

The ‘transcriptional control model’ formulated by Chen
and Rajewski (21) describes two phases in the life of
miRNA genes. Because the binding sites on mRNAs are
short, recently evolved miRNAs are likely to target many
mRNAs in the genome. These interactions may have
uncontrolled phenotypic consequences, and thus only
miRNAs that are initially expressed at low levels and
in specific tissues, leading to mildly deleterious fitness
effects, are expected to be kept on the long term in the
genome. In a second phase, purifying selection would
purge from the genome the deleterious target sites of
miRNAs, enabling miRNAs with a beneficial regulatory
function to strengthen their expression and relax their
tissue-specificity.

Several studies have relied on indirect evidence to
analyze the evolution of miRNA genes. For example,
differential rates of molecular evolution of miRNAs
inside a genome were used to determine groups of presum-
ably old or young miRNAs (26,27). Here, we used the age
of appearance of miRNA families, as determined by
phylogenetic analysis (18), and we crossed it with data in
two mammalian species, human and mouse. This method-
ology allows us to perform a more detailed comparative
analysis of the evolutionary patterns of miRNA genes in
mammals.

On the one hand, our analysis supports the main pre-
diction of the model, namely that miRNAs experience an
increase in expression levels with evolutionary time. It is
indeed likely that highly expressed newly arisen miRNAs
cause severe fitness defects and are not retained in the
genome. We confirm that age of appearance is a major
determinant of the expression patterns of miRNAs. We
also confirm the predicted decrease in number of targets
between the two phases of the life of miRNAs. Of note, it
is still difficult to predict with accuracy the targets of
miRNA genes (63), and currently available methods
yield high rates of false positives (computational) or of
false negatives (experimental). Thus this result should be
confirmed when higher quality data will be available.
However it is consistent with the observation that genes
involved in basic cellular processes avoid miRNA regula-
tion by a depletion of miRNA binding sites in their
30-UTRs (12).
On the other hand, several predictions are not sup-

ported. First, it is implicit in the model that two distinct
phases should be observed in the relation between miRNA
age and expression, corresponding to the two phases of
life of miRNAs. Notably, a saturation of expression levels
may be expected once miRNAs become functional and
integrated in a gene regulatory network. However we
observe a regular and exponential increase in expression
levels with age of miRNAs. We can speculate that
miRNAs might have to follow the observed increase in
expression of protein-coding genes with age (67), since
we find a positive correlation between the age miRNAs
and the age of the protein-coding genes they target.
Although the latter increase was found to be linear, the
regulatory dynamics are complex and might not translate
into a linear increase of miRNAs (68).
Second, we observe that the relation between age and

level of expression is largely variable between different
tissues, with embryonic and nervous structures displaying
a more limited increase of miRNA expression with age.
Such tissue-specific properties regarding miRNA regula-
tion are not predicted by any model, but are reminiscent
of selective pressures acting on protein-coding genes,
which show the smallest expression divergence in
neuronal and embryonic tissues (60,61,69,70). The
optimal expression level of a gene corresponds to a
trade-off between the benefits and costs of its expression
(71) and this trade-off probably differs between tissues.
Notably, errors in the process of protein production, po-
tentially toxic to the cell, are more detrimental in cells that
do not regenerate, such as neuronal cells, or in progenitor
embryonic cells. A recent study confirms that miRNA
genes also experience selective pressure associated to the
toxicity cost of errors in their production process (72) and
it is likely that this pattern may lead to tissue-specific
patterns similar to those of protein-coding genes. On top
of this, another layer of selective pressure acting on
miRNA expression evolution is related to the control of
gene regulatory networks in different tissues: the differen-
tial patterns observed in neuronal and embryonic tissues
might reflect a need for tighter regulation of genes ex-
pressed in these tissues, a hypothesis consistent with the
observation of an enrichment of genes involved in
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developmental processes, among genes targeted by
miRNAs (12,73). Similarly, genes expressed in neuronal
tissues have longer 30-UTRs (74), while genes expressed
in proliferating cells have shorter 30-UTRs and less
miRNA target sites (75). In summary, the analysis of the
evolution of tissue-specific expression patterns of miRNAs
is complicated by the interplay between the tissue-specific
selective pressures acting directly on the miRNAs, and
those acting on their target genes, leading to further evo-
lutionary changes of miRNAs in return. This could
provide one reason for an unexpected result: it is also in
the brain that we observe high rates of divergence in
miRNA expression between human and mouse,
although a recent study suggests that this pattern could
be due to human-specific adaptations (62). Careful experi-
mental designs or computer simulations are needed to dis-
entangle both effects.
Finally, the breadth of expression of miRNAs was

predicted to increase with evolutionary time (21),
whereas we observe a significant decrease. The original
model was formulated based on studies using tag-based
techniques to measure expression (29,39). We show that
these techniques are likely to suffer from a bias regarding
the assessment of specificity of expression, because ancient
miRNAs are more highly expressed and more easily
detected. Biologically, the decrease in breadth seems
quite reasonable, since the establishment of a specific ex-
pression pattern is more complex than a broad expression
pattern (76).

CONCLUSION

Using comparative genomics and transcriptomics, we
performed here what is to our knowledge the first direct
test of the ‘transcriptional control model’ of miRNAs
(21,23). We studied evolutionary patterns of miRNA
genes over a billion years time scale, and detected signifi-
cant signal at this time scale for all aspects analyzed. Still,
it is possible that on short evolutionary time scales—the
first million years of miRNA life—some patterns may
differ. Our study underlines the need to consider
miRNA tissue specific patterns, and coevolution patterns
of miRNAs with their targets, in future studies.
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