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Abstract 

BIGH3 is a secreted protein, part of the extracellular matrix where it interacts with collagen 

and integrins on the cell surface. BIGH3 can play opposing roles in cancer, acting as either 

tumor suppressor or promoter, and its mutations lead to different forms of corneal 

dystrophy. Although many studies have been carried out, little is known about the 

physiological role of BIGH3. Using the cre-loxP system, we generated a mouse model with 

disruption of the Bigh3 genomic locus. Bigh3 silencing did not result in any apparent 

phenotype modifications, the mice remained viable and fertile.  

We were able to determine the presence of BIGH3 in the retinal pigment epithelium (RPE). 

In the absence of BIGH3, a transient decrease in the apoptotic process involved in retina 

maturation was observed, leading to a transient increase in the INL thickness at P15. This 

phenomenon was accompanied by an increased activity of the pro-survival ERK pathway. 
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Introduction 

BIGH3, also known as TGFBI (Transforming growth factor-ß-induced), encodes a 68-kDa 

protein expressed in most human tissues, but not in the brain (Skonier et al., 1992; LeBaron 

et al., 1995; Bae et al., 2002; Ferguson et al., 2003). BIGH3 is secreted and accumulates in 

the extracellular matrix (ECM). Through four fasciclin-1 (FAS1) domains and a carboxy-

terminal Arg-Gly-Asp (RGD) motif, BIGH3 binds molecules of the ECM, including fibronectin, 

laminin and different collagens (Hashimoto et al., 1997; Hanssen et al., 2003) and serves as a 

ligand for several integrins, including aVβ3 and aVβ5 (Billings et al., 2002; Hanssen et al., 

2003; Reinboth et al., 2006; Ferguson et al., 2003; Kim et al., 2002; Kim et al., 2000; Nam et 

al., 2006). It is therefore assumed that BIGH3 modulates cell-cell adhesion, as well as cell-

ECM interaction. Studies in cell culture have also displayed the potential role of BIGH3 in 

apoptosis induction (Morand et al., 2000; Kim et al., 2003; Zamilpa et al., 2009). The C-

terminal 69 amino acids of BIGH3 containing the RGD peptide motif seems essential for 

triggering apoptosis, which implicates an integrin-mediated process (Kim et al., 2003; 

Zamilpa et al., 2009). 

BIGH3, when mutated or expressed at an abnormal level, is associated with various 

pathologies. Numerous studies have shown that BIGH3 plays a role in cancer progression, 

with a function of tumor promoter or suppressor depending on the tissue (Sasaki et al., 

2002; Hourihan et al., 2003; Hu et al., 2001; Zajchowski et al., 2001; Notterman et al., 2001; 

Zhao et al., 2003). In the human cornea, where BIGH3 is abundantly expressed, its mutated 

forms are associated with corneal dystrophies, a group of inherited diseases characterized 

by amyloid or non-amyloid deposits in various layers of the cornea. (Munier et al., 1997; 

Korvatska et al., 2000). Although BIGH3 is ubiquitously expressed, BIGH3 deposits occur only 

in corneas, leaving the other tissues intact (Elkochairi et al.,2006). 
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In order to further clarify the role of BIGH3 in development and in the eye, we generated a 

Bigh3 deficient mouse model using the Cre-loxP method, a site-specific recombinase 

technology widely used to carry out deletions, insertions, translocations and inversions at 

specific sites in the DNA (Sauer et al., 1998). 

 

Material and Methods 

Chemicals.  

Primary antibodies used for western blotting and immunohistochemistry experiments were 

as followed : rabbit anti-BIGH3 (Proteintech Group, Chicago, IL, USA; #10188-1-AP) designed 

from the amino acids 199-406 encompassing exon 5 to 9, rabbit anti-KE2 (Korvatska et al., 

2000) designed from the amino acids 426-682 encompassing exon 10 to 17, mouse anti-ERK 

(Cell Signaling Technology Inc., Danvers, MA, USA; #9101S), mouse anti-P-ERK (Cell Signaling; 

#4377S), mouse anti-AKT (Santa Cruz Biotechnologies Inc., Dallas, TE, USA; sc-5298), rabbit 

anti-P-AKT (Cell Signaling; #4060), rabbit anti-CCND1 (Santa Cruz; sc-718), rabbit anti-Ki67 

(Abcam, Cambridge, UK; ab66155), rabbit anti-BCL-2 (Cell Signaling; #2876), rabbit anti-BCL-

XL (Cell Signaling; #2764), rabbit anti-BAX (Santa Cruz; sc-493), rabbit anti-BIM (Cell Signaling; 

#2819), rabbit anti-PUMA (Cell Signaling; #4976), mouse anti-EZR (Santa Cruz; sc-58758), 

mouse anti-RPE65 (Abcam; ab13826), rabbit anti-GAPDH (Santa Cruz; sc-25778), and mouse 

anti-ß-actin (Sigma, St. Louis, USA; A5441). 

Anti-BIGH3 from Proteintech was used for both immunostaining and western blot, while 

anti-KE2 was used only for western blotting, as it does not function for immunostaining. 

The secondary antibodies used for western blotting and immunohistochemistry experiments 

were as followed, goat anti-rabbit HRP or goat anti-mouse HRP (Amersham Biosciences, 
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Otelfingen, Switzerland) and Alexa Fluor 594 goat anti-rabbit or Alexa-Fluor 488 goat anti-

mouse (Molecular Probes, Invitrogen Inc., Eugene, OR, USA). 

Generation of Bigh3 knockout mouse. 

The targeting vector was produced as shown in figure 1.A. A 6.2 kb mouse genomic DNA 

fragment containing the 5’ regulatory region, exon 1 and part of intron 1 of the Bigh3 gene 

was amplified from 129Sv/Ev genomic DNA by PCR and cloned. The fragments were then 

subcloned to introduce two loxP and two frt sites. A loxP sequence was inserted in the 5’ 

regulatory region and a frt-PGKNeo-frt-loxP cassette was inserted in intron 1. Thus a 

fragment of 1640 bp genomic DNA encompassing exon 1 was floxed. An ATG depleted 

region resulted from the action of Cre recombinase (Fig 1.A).  

The targeting vector was linearized and transfected into embryonic stem (ES) cells of the 

129Sv/Ev background as described previously (Hummler et al., 1996). G418 and ganciclovir-

resistant colonies were expanded and screened by PCR. The primer set Big1-F 5′-

GGATCCAGCCCGCACTTGAC-3′ and Neo-R 5′-AAGAACTCGTCAAGAAGGCGATAGAAGGCG-3′ 

generated a PCR product of 5175 bp for the 5’ region of the construct and the primer set 

Neo-F 5′-TTCTCCGGCCGCTTGGGT-3′ and Big1-R 5′-CTCCAATAAGTCCGGAAAAGCA-3′ 

generated a PCR product of 3200 bp for the 3’ region of the construct (Fig 1.B-C). Three 

independent correctly targeted clones were obtained and injected into blastocysts of 

C57BL/6N mice. Chimeric mice were obtained that transmitted the floxed allele to their 

offspring (Bigh3lox/+). To generate Bigh3−/− mice, Bigh3lox/+ mice were crossed with Nestin-Cre 

transgenic mice, which express the Cre recombinase under the control of the nestin 

promoter active in the germ line (Buchholz et al., 1999). Bigh3−/+ mice were obtained and 

backcrossed with C57BL/6N mice (>9 generations) to generate Bigh3−/− mice. Genotyping 

was carried out by PCR and confirmed by Southern blot analysis (Fig 1.D-F). Bigh3 deficient 



 6 

and wild type mice were tested for the Rd8 mutation, accordingly to previously described 

protocol (Chang et al., 2013) (Supplementary Fig S1). 

Mice were maintained and euthanized in accordance with the ARVO Statement for the Use 

of Animals in Ophthalmic and Vision Research and were approved by the local Committee 

Office on Use and Care of Animals in Research of the State of Valais, Sion, Switzerland. 

Genomic DNA extraction 

Cut tail samples were incubated overnight in lysis buffer (100 mM TrisHCl, pH 8.5; 5 mM 

EDTA; 0.2 % SDS; 200 mM NaCl and 100 µg proteinase K per ml) at 56° C. After complete 

lysis, samples were centrifuged for 2 min and supernatant was transferred into isopropanol. 

After centrifugation, supernatant was removed and the pellet was resuspended in 150 µl 10 

mM TrisHCl and 0.1 mM EDTA, pH 7.5, and incubated at 60° C for 10 min. The genomic DNA 

obtained was directly used to perform PCRs.  

Genotyping by PCR 

Genotyping through PCR was performed with obtained gDNA using the following primers: 

Big2-F 5′-GGATTCCTGAATGCCAAGGTG-3′ and Big2-R 5′-CCCGGACCTTAGCTGAGCC-3′. 

Touchdown PCR was performed with LA Taq (Takara Bio Inc., Shiga, Japan) with the following 

amplification conditions: a first amplification step of 20 cycles consisting of 95° C 30 sec, 68° 

C 30 sec and 72° C 5min with diminishing annealing temperature of 0.5° C per cycle; then a 

second amplification step of 30 cycles as follows: 95° C 30 sec, 57° C 30 sec and 72° C 5 min; 

and a final elongation step of 10 min at 72° C. Bigh3 WT and KO alleles were diagnosed on a 

1 % agarose gel as 2290-bp and 690-bp amplified products, respectively. 

Southern blot analysis 

Genomic DNA obtained as described above was digested with BamHI overnight at 37° C. 

Southern blot (Sambrook et al., 1989) using a DIG-labelled probe was performed on digested 



 7 

DNA following manufacturer’s instructions (Roche Applied Science, Rotkreus, Switzerland). 

Briefly, digested DNA was separated on an agarose gel at 80 V for 4 h and then transferred 

into a positively charged nylon membrane (Roche) overnight. The membrane was then 

hybridized overnight with a specific DIG-labelled probe at 50° C. DIG was then detected with 

an anti-DIG antibody (1/10,000) and detected with the chemiluminescent substrate CSPD 

(Roche). Images were taken using LAS-4000mini Luminescent Image Analyzer (FujiFilm, 

Tokyo, Japan) camera and Image Reader LAS-4000 v2.0 software (FujiFilm). 

The probe was designed against part of intron 1, which revealed a 6.1 kb WT allele and a 4.5 

kb KO allele. The probe was amplified by PCR using the following primers: Big3-F 5’-

CCTTGTGCAGATGGATAACC-3’ and Big3-R 5’-CTGAGCGAGCAGGAAGTAAT-3’) and integrating 

DIG following manufacturer’s instructions (Roche).  

RNA isolation. 

The retinas and corneas were dissected under a binocular microscope, then rapidly isolated 

in RNAlater (Ambion; Applied Biosystems, Rotkreuz, Switzerland) before being transferred to 

TRIzol reagent (Invitrogen AG, Basel, Switzerland) and stored at −80 °C until RNA extraction. 

Total RNA was extracted according to manufacturer’s instructions. Both quantity and quality 

of RNA were determined on a ND-1000 spectrophotometer (NanoDrop technologies, Inc., 

Wilmington, DE). 

Reverse transcription-PCR and quantitative PCR 

cDNA synthesis was performed using 2 μg of total RNA in 20 μl reaction volume. This was 

performed using an oligo dT primer according to the manufacturer’s manual (Affinity Script; 

Stratagene; Agilent technologies SA, Morges, Switzerland). The equivalent of 50 ng total RNA 

was used for PCR amplification using the Master Mix (Agilent) with either 250 nM forward 

and reverse primer pairs, designed to span an intron of the target gene. PCR was performed 
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with the following cycling conditions: 30 cycles of denaturation at 95°C for 30 sec, annealing 

at 55°C for 30 sec, and extension at 72°C for 30 sec. Primers sequence was listed in Table 1. 

For quantitative PCR, cDNA obtained from 50 ng original total RNA was used for PCR 

amplification using the 2× brilliant SYBR Green QPCR Master Mix (Agilent) with either 250 

nM forward and reverse primer pairs, designed to span an intron of the target gene. Real-

time PCR was performed in triplicate in a Mx3000PTM system (Agilent) with the following 

cycling conditions: 40 cycles of denaturation at 95°C for 30 sec, annealing at 59°C for 30 sec, 

and extension at 72°C for 30 sec. Quantitative values were obtained by the cycle number (Ct 

value) reflecting the point at which fluorescence starts to increase above background at a 

fixed threshold level. Values obtained for the target genes were normalized with the 

housekeeping gene Gapdh.  

Whole cell lysates. 

For the preparation of protein extracts -from retina, cornea as well as from cultured cells-, 

cell pellets were dislodged into cold lysis buffer (20mM Tris-acetate pH 7.0, 0.27M sucrose, 

1mM EDTA, 1mM EGTA, 50mM sodium fluoride, 1%Triton X-100, 10mM β-glycero-

phosphate, 1mM DTT, 10mM p-nitrophenyl-phosphate, and antiproteases), and centrifuged 

at 15,000 rpm for 20 minutes. Supernatants were recovered and stored at –70°C until use. 

Total protein in cell lysates was quantified using the BCA Protein Assay according to the 

manufacturer (Life Technologies, Carlsbad, CA, USA). 

Western blotting experiments. 

Equal quantities of total protein lysates (40 ug per well) were resolved by 8-15% SDS-

polyacrylamide gel electrophoresis and electrotransferred onto polyvinylidene difluoride 

membranes. Nonspecific protein binding was blocked by incubating the membrane with a 

blocking solution (1x TBS, 0.1% Tween 20, 5% nonfat dried milk powder) for 1 h at room 
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temperature. The blots were then probed with primary antibodies overnight. The immune 

complex was detected using a peroxidase-conjugated secondary antibody and the 

chemioluminescent detection kit according to manufacturer's specifications (EMD Millipore 

EMD Millipore, Merck KGaA, Darmstadt, Germany). FUJIFILM Multi Gauge software was 

used for densitometric analysis. 

Microscopy 

Fluorescence microscopy was performed on a Leica DM6000B Microscope, equipped with a 

Leica DFC365 FX digital camera. Images were captured using the Leica Application Suite (LAS-

AF) microscope software. Representative pictures were taken from central areas of the 

retina using a 40x/0,85 Leica HC PL-APOCHROMAT objective.  

For quantifications of INL/ONL thickness, nuclei counting and TUNEL assays, pictures were 

captured in the posterior pole of the retina, once ventrally and once dorsally to the optic 

nerve head. Three sagittal sections from three different animals for each genotype and age 

were analyzed. 

Immunohistochemistry. 

At necroscopy, the entire eye was removed and fixed in 4 % paraformaldehyde/PBS for 1h 

followed by cryoprotection in 30 % sucrose/PBS overnight. Eyes were then embedded in 

30% albumin egg, 3 % gelatin (Yazzula buffer) and then frozen. 

Ten µm-embedded frozen sections were further processed for immunohistochemistry. 

Briefly, frozen retina sections were blocked in PBS with 2% normal goat serum (Sigma, 

Buchs, Switzerland) and 0.2% Triton X-100 (Sigma) for 1 h at room temperature (RT) and 

incubated with primary antibodies in the blocking buffer overnight at 4°C. Sections were 

blocked again in blocking buffer for 30 min at RT prior to incubation with Alexa-Fluor 488 

goat anti-mouse or Alexa-Fluor 594 goat anti-rabbit antibodies for 1 h at RT. In colocalization 
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experiments, we exposed the retina to RPE65 and EZR antibodies for only 1 h. Incubation 

with secondary antibody alone was used as a negative control. Retinas were further 

counterstained with DAPI (Invitrogen), followed by three washes in PBS, before being 

mounted in Citifluor AF1 (Citifluor, London, UK).  

Retinal morphology analysis and INL nuclei counting. 

Retinal sections were stained with DAPI and images were captured and INL/ONL thickness 

was measured using the Leica Application Suite (LAS-AF) microscope software. For nuclei 

counting, an area of 100 µm wide was defined in the pictures used for INL thickness 

measurement and DAPI-stained nuclei were counted manually. 

Terminal dUTP Nick End-Labeling (TUNEL) of fragmented DNA. 

DNA strand breaks in cell nuclei were detected by TUNEL assay, according to manufacturer's 

instructions (Roche) and previously detailed (Hamann et al., 2009). Briefly, frozen retina 

sections were permeabilized in 0.1% Triton X-100/0.1% sodium citrate for 2 min on ice and 

incubated with terminal deoxynucleotidyl transferase (TdT) and fluorescein-12-dUTP or 

TMR-dUTP for 1 h at 37°C. Retinas were further counterstained with DAPI (Invitrogen), 

followed by three washes in PBS, before being mounted in Citifluor AF1 (Citifluor).  

Statistical analysis 

All results were expressed as means ±SEM of the indicated number of experiments. For 

statistical analysis, Student’s t-test was performed and P values of less than 0.05 were 

considered to be statistically significant. 

 

Results 

Generation of Bigh3 knockout mouse 
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Floxed Bigh3 transgenic mice were produced using recombinase techniques. A targeting 

vector was constructed, which contained two loxP sites flanking exon 1 of the Bigh3 gene 

and a neomycin cassette flanked by frt sites. The final recombined floxed allele is presented 

in Fig 1.A. The generation of Bigh3 KO mouse is described in material and methods. To 

assess Cre-mediated deletion and inactivation of the targeted gene, Bigh3 expression was 

analyzed at RNA and protein level in the cornea, known to abundantly express this gene. RT-

PCR amplification from the first to the third exon showed no amplification in cornea (Fig 

2.A). However, when primers spanning exons 4-17 were used, amplicons were detected (Fig 

2.A). These data suggest that we succeeded in deleting the first exon of Bigh3, but an 

alternative transcript was nevertheless produced downstream of exon 3. In silico studies 

revealed a potential in frame start codon in the fourth exon. We therefore assessed whether 

a truncated protein was expressed resulting from this alternative mRNA by western blotting 

and immunohistochemistry. Using antibodies raised against amino acids 426-682 of the 

protein (KE2), the native 68 kDa BIGH3 protein was detected in the cornea of WT mouse, 

while no protein, even of smaller size, was found in Bigh3 KO mouse (Fig 2.B). 

Immunohistochemistry performed on corneas of 1-month-old mice showed that BIGH3 was 

abundant in the stroma of WT cornea, while expression was completely abolished in Bigh3-/- 

mouse. (Fig 2.C). Although BIGH3 is highly expressed in the cornea and mutations in human 

are associated with various forms of corneal dystrophy, deletion of Bigh3 did not perturb 

corneal development (data not shown). General anatomical studies of Bigh3-/- mouse 

showed no difference when compared to wild type C57/BL6N mouse. They undergo similar 

development, and no variation was noticed in size or weight of age-comparable animals 

(data not shown).  
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BIGH3 expression in mouse retina 

Although BIGH3 expression has been well characterized in the cornea of many different 

animals and human, its precise expression in the retina has never been explored. We 

therefore performed immunohistochemistry on WT and Bigh3-/- eyes at different ages. We 

observed that BIGH3 was expressed in the retina at the level of RPE and in the optic nerve 

sheath (Fig 3.A and 3.D). Co-staining of BIGH3 with two RPE markers, the RPE65 and Ezrin 

(EZR) proteins which are restricted to the cytoplasmic and the apical part of RPE 

respectively, allowed us to localize BIGH3 to the RPE basal membrane (Fig 3.B-C). BIGH3 was 

also detected in cultured ARPE-19 cell line (Fig 3.E), a spontaneously arising retinal pigment 

epithelial (RPE) cell line derived from the normal eyes of a 19-year-old male, while it was 

absent from WERI-Rb cells (Fig 3.E)  

 

Effect of Bigh3 deficiency on mouse retina 

BIGH3 is a secreted protein involved in ECM. Even though it is produced at the RPE level, the 

possibility that its secreted form could have an impact on the surrounding cells of the retina 

has to be considered. We therefore compared the retina morphology of wild type and Bigh3-

/- mouse at different ages. We observed that Bigh3 deletion had no impact on the retina 

organization at P0 and P10. However, we measured a transient increase in the inner nuclear 

layer (INL) thickness of Bigh3-/- retina at P15 compared to P30 (Fig 4.A). As shown in Figure 

4.B, the thickness of INL decreased by 40% in WT retina versus 9% in Bigh3 KO retina 

between P10 and P15. There was no difference at the level of the outer nuclear layer (ONL). 

To ensure that the INL thickness difference in Bigh3-/- versus WT retina was supported by the 

difference in cell number, cell nuclei were counted in the INL of WT and Bigh3 KO mouse at 
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P15. A 25% increase was observed in the nuclei number in the INL of Bigh3-/- retina 

(Supplementary Fig S2). 

A recent study implicated BIGH3 in the recruitment of endothelial progenitor cells (EPCs) 

necessary for angiogenesis (Maeng et al., 2015). In the retina, angiogenesis takes place 

between P2 and P18, and ECM plays a central role in this process. We were not, however, 

able to detect any impairment in the retina angiogenesis process in Bigh3 KO mouse (data 

not shown). 

 

Bigh3 deficiency promoted ERK survival pathway in the retina 

BIGH3 has been implicated in cancer. In two different tumor cell lines, Bigh3 deficiency has 

been associated with an elevated proliferation rate and activation of the AKT pathway (Nam 

et al., 2005; Tumbarello et al., 2012; Wen et al., 2011). Similarly, increased expression of 

BIGH3 inhibits neuroblastoma cell proliferation and invasion (Becker et al., 2006). We 

therefore determined whether the loss of Bigh3 in the retina and the transient increase of 

cell number in the INL were associated with an increase in AKT activity. We were unable, 

however, to detect any modulation of the phosphorylation state of AKT in Bigh3 KO retina 

compared to WT (Fig 5.A). 

The binding of the FAS1 domains of BIGH3 to av3 integrin was previously shown to inhibit 

ERK signaling (Nam et al., 2005). We determined whether the deletion of Bigh3 in the retina 

modulates ERK activity. In WT retina, the phosphorylation state of ERK was low at P15 as 

well as at P30, while it was increased in Bigh3 KO retina (Fig 5.A-B). JNK and p38, two other 

members of the MAP kinases were also evaluated and were not modulated in Bigh3 KO 

mouse (data not shown). Immunostaining indicated that ERK activity was increased in the 
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INL of Bigh3 KO mouse (Fig 5.C). These data would suggest that Bigh3 deletion transiently 

affected the apoptotic event in the INL through modulation of the ERK survival pathway. 

 

Apoptotosis in Bigh3-/- mouse 

During retina development, most cell types are produced in excess. Apoptosis is therefore an 

essential physiological process for determining the final number of neuronal cells in the 

mature retina (Penfold et al., 1986; Young et al., 1984, Mosinger et al., 1998). As BIGH3 has 

been shown to be implicated in the apoptosis process via its RGD C-terminal domain, we 

analyzed the apoptotic event in WT and Bigh3 KO mouse at P10 and P15. As shown in figure 

6.A-B, the number of apoptotic cells was reduced in the INL of Bigh3 KO retina compared to 

WT at P10. At P15, apoptosis was almost completely turned off in the INL of both WT and 

Bigh3 KO mouse. These results suggest that BIGH3 is involved in the apoptotic process 

necessary to retina maturation. In the absence of BIGH3, this apoptosis was reduced, leading 

to transient excessive cell number in the INL at P15. 

 

Bigh3 deficiency had no impact on the expression of the BCL-2 proteins in the retina 

The apoptotic process involved in the retina development needs functional pro-apoptotic 

factors, essentially BAX, BIM and PUMA. Indeed, Bim KO mouse exhibit an increase in retinal 

thickness, and loss of Bax or Puma leads to an increase in ganglion cells (RGCs), bipolar and 

amacrine cells in adult retina (Mosinger et al., 1998; Hahn et al., 2003; Doonan et al., 2007; 

Donovan et al., 2006; Harder et al., 2011). We verified whether BIGH3 had an impact on the 

expression of these BCL-2 proteins. No effect was measured, either at mRNA (data not 

shown) or at protein level (Fig  7).  
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Cell cycle exit and Cyclin D1 (CCND1) regulation in Bigh3-/- mouse 

During the first 15 days of life, mouse retina completes its maturation. A single layer, the 

neuroblastic layer (NBL), consisting of undifferentiated cells is subjected to important 

reorganization to give rise to a multilayered structure of terminally differentiated cells. 

During this complex process involving cell fate commitment and differentiation of seven cell 

types, regulation of cell cycle exit is a crucial event. The difference in INL thickness at P15 led 

us to investigate potential dysregulation in cell division and cell cycle exit. At this stage, 

healthy retinal cells should have left the cell cycle and stopped dividing. We therefore looked 

at the expression of Ki67, a marker for proliferating cells. At birth, Ki67 positive cells were 

detected in WT and Bigh3 KO mitotic stratum in the outer margin of NBL (Fig 8.A). This 

staining was completely lost in the retina of P10 and P15 mice, indicating that mitosis exit 

was normally occurring in Bigh3 KO mouse. 

It has been observed that Bigh3 deletion was accompanied with CCND1 upregulation (Wen 

et al., 2011; Zhang et al., 2009). CCND1 promotes G1 to S phase progression and is known to 

be the predominant D-cyclin in the developing retina. CCND1 expression is elevated in 

retinal precursor cells (RPCs) but lost in exited precursors and differentiated cells (Barton et 

al., 2008; Trimarchi et al., 2008). Inappropriate CCND1 expression may therefore directly 

alter cell progression through the cell cycle. We were unable, however, to detect any 

upregulation of Ccnd1 at both RNA and protein level in Bigh3-/- compared to WT retina (Fig 

8B-C).  

To determine whether BIGH3 impacted cell cycle progression by acting on other factors 

involved in cell cycle control such as cyclin-dependent kinases (CDKs) as well as their 

regulators, the cyclins (CCN), quantitative RT–PCR analysis was performed. As a control, we 

quantified the Cdkn1b (p27Kip1) transcript. In the retina, CDKN1B participates in the 
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determination of multipotent progenitors to withdraw from the cell cycle, and its expression 

is preserved in postmitotic Muller glia after P15 to maintain their differentiated state. We 

were unable to detect any modulation of these factors at RNA level in Bigh3-/- compared to 

WT retina (Fig 8.B).  

 

Discussion 

BIGH3, also known as TGFßi, is a secreted protein enhancing ECM and cell interactions and 

has an impact on various biological processes such as apoptosis, cell growth, cancer, wound 

healing, migration, and osteogenesis. There have been many previous studies on BIGH3, but 

its physiologic role in the eye and in other tissues is yet to be entirely understood. To further 

elucidate its function, we generated a knockout mouse line. Bigh3 KO animals did not 

present any apparent macroscopic abnormalities compared to control mice, suggesting that 

Bigh3 deletion does not severely impair mouse development. Even in the cornea, where 

BIGH3 is especially abundant, its silencing did not result in any developmental perturbation 

or abnormal phenotype. 

The evaluation of retina from WT and KO animals allowed us to identify for the first time the 

presence of BIGH3 in the WT mouse retina, at the RPE level as well as in the optic nerve 

sheath. BIGH3 localization studies showed expression towards the basal side of the RPE, at 

the level of the plasma membrane. Here again, Bigh3 deletion had very few phenotypic 

impacts. We observed a transient increase in the INL thickness at P15, which was no longer 

present at P30. The enhanced INL thickness was preceded at P10 by the reduction of the 

physiological apoptotic process that normally takes place in the INL. Downregulated 

apoptosis was accompanied by upregulation of the ERK survival pathway. The expression of 
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the proteins of the BCL-2 family, which play a critical role in the apoptotic process leading to 

retina maturation, were not impacted by Bigh3 silencing. 

Assuming these results, we suggest that the RPE cells could secrete BIGH3 that under normal 

physiological conditions would play a role on INL cells by binding onto integrin receptors. Cell 

signaling triggered by secreted BIGH3 implicates its FAS1 domains and RGD motif, which 

interact with heterodimeric integrin receptors. BIGH3 has been shown to interact with α3β1, 

αvβ3, αvβ5, α1β1, α6β4 and α7β1 integrin heterodimers (Kim et al., 2000; Kim et al., 2002; 

Kim et al., 2003; Nam et al., 2006; Oh et al., 2005; Park et al., 2004; Thapa et al., 2005). 

While the αvβ3 heterodimer was shown to be absent from mouse retina (Pearce et al., 

2007), the expression level of other integrins is not well documented in the retina. Based on 

Gene expression OMNIBUS (GEO) profile Dataset, Itgαv and Itgβ5 are both present at RNA 

level in mouse retina and could therefore mediate BIGH3 interaction. However, additional 

experiments are necessary to verify whether αvβ5 heterodimer colocalizes with BIGH3. 

Our Bigh3 KO animals did not develop any macroscopic phenotype and were not 

predisposed to carcinogenesis compared to a previous mouse model lacking Bigh3, which 

was shown to develop spontaneous tumors (Zhang et al., 2009). In this model, CCND1 up-

regulation was shown to be critical (Wen et al., 2011). It is difficult to say why such up-

regulation is absent in the model we developed. The two models are in fact different. In the 

Zhang model, exons 4 to 6 were deleted and BIGH3 protein was not observed in MEF 

conditioned medium. However, as with our model, Bigh3 mRNA was identifiable in MEF, 

although at a reduced rate. An aberrant intracellular BIGH3 protein could have been present 

but not observed. Another difference could be in the amount of 129Sv/Ev genetic 

background left in the Zhang model. This could explain why one model is more prone to 

develop cancer than the other. 
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Figures 

Figure 1. Transgenic construct and gene targeting 

A. Targeting construct used to generate Bigh3lox/+ mouse. Black arrows, loxP sites; grey 

arrows, frt sites, Neo, neomycin selection marker. 

B. PCR approach used to screen ES cells that have integrated the construct. First PCR 

amplified a 5’ region going from downstream of the first loxP site to the neomycin resistance 

gene, and a second PCR amplified a 3’ region going from the neomycin resistance gene to 3’ 

upstream of the second loxP site.  

C. PCR amplification of the 5’ and 3’ regions from 6 different ES colonies. +, positive control 

using plasmid DNA as template; -, water. M indicated the 1kb ladder. 

D. PCR and Southern blot approach used to screen the Bigh3 allele, to distinguish between 

Bigh3 WT, Bigh3lox/+ and Bigh3+/- allele. The figure shows the WT allele, the allele with the 

incorporated construct, and the deleted allele following Cre recombinase action. Primers 

position and amplicons were indicated, as well as the BamHI (B) restriction sites and the 

probe used for Southern blotting (grey box). 

E. PCR product for Bigh3 WT (2), Bigh3lox/+ (1), and Bigh3+/- (3) alleles. 

F. Southern blot showing WT, Bigh3+/- and Bigh3-/- mouse.  

Figure 2. Bigh3 expression in cornea 

A. RT-PCR analysis of mRNA present in the cornea of WT and Bigh3-/- mice. Primers 

amplifying exons 1-3 and encompassing exon 8-9 were used. Gapdh was used as control.  

B. Western blot experiment was conducted on cornea of WT and Bigh3-/- mice of 30 and 60 

days of age using an anti-BIGH3 antibody (KE2) raised against amino acids 426-682. 

C. Verification of Bigh3 silencing at the protein level in the cornea by IH in WT and Bigh3-/- 

mouse of 30 days of age using anti-BIGH3 antibody. 
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Experiments were conducted with samples obtained from four different mice. 

Figure 3. BIGH3 expression in mice retina and optic nerve 

A. BIGH3 was detected by immunofluorescence analysis in the retina of mice at different 

ages (post-natal day 0 to day 30, P0-P30) at the level of RPE, while it was absent from Bigh3-

/- mice. IH were performed on retina obtained from three different mice at each time point. 

A negative control was performed in which the first antibody (anti-BIGH3) was omitted. 

B. Immunostaining of BIGH3 (red) and RPE65 proteins (green, a cytoplasmic marker of RPE) 

in a WT retinal section at the age of postnatal day 30 (P30). 

C. Immunostaining of BIGH3 (red) and EZR proteins (green, a marker for the apical side of 

RPE) in a WT retinal section at the age of postnatal day 30 (P30). 

D. BIGH3 was detected by IH in the optic nerve sheath of mice at day 10 and 15 (P10, P15), 

while it was absent from Bigh3-/- mice. IH were performed on retina obtained from three 

different mice at each time point. 

E. BIGH3 was detected in ARPE-19 cell line by western blotting using anti-BIGH3 antibody, 

while it was absent from healthy retina isolated without RPE (HR) and from the WERI-Rb 

human photoreceptor cell line. The stable HeLa cell line expressing GFP-BIGH3 was used as a 

positive control. 

Figure 4. Bigh3 KO transiently impacted INL thickness 

A. Histologic analysis of the retinas of WT and Bigh3 KO mouse at day 15 following birth 

(P15) revealed an increase in INL thickness, while no difference was observed at the ONL 

level.  

B. INL and ONL thickness was measured in WT and Bigh3 KO retina at day 10 and 15 after 

birth (P10, P15). Data are the mean ±SEM of three measurements performed on three 

different retinas. **, P < 0.001 WT vs Bigh3 KO at P10. 
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Figure 5. AKT and ERK activity in the retina of WT and Bigh3 KO mouse. 

AKT and ERK activity was determined by western Blotting (A) using anti-P-AKT and anti-P-ERK 

antibodies and normalized against AKT, ERK and Actin (A and B). Data are the mean ±SEM of 

experiments performed on proteins extracts from five different retinas for each condition, 

*P<0.02 WT vs Bigh3 KO at P15 and P30. 

C. Immunostaining of P-ERK in the retina of WT and Bigh3 KO mice at the age of postnatal 

day 30 (P30). 

Figure 6. Apoptosis was reduced in the INL of Bigh3 KO mice 

TUNEL assay (A) and counting (B) of TUNEL-positive apoptotic cells in the INL showed that 

apoptotic events were increased in Bigh3 KO retina. Results are expressed as mean ± SEM of 

3 different retinas for each group, *p<0.014 WT vs Bigh3 KO at P10. ONL, outer nuclear 

layer; INL, inner nuclear layer; GCL, ganglion cell layer.  

Figure 7. Expression of BCL-2 proteins in the retina of WT and Bigh3 KO mouse. 

Protein level of BAX, BIM and PUMA was investigated by western blotting in P0 and P15 WT 

and Bigh3 KO mouse retina. Protein amounts were normalized with Actin and results are 

expressed as mean ± SEM of 4 different retinas for each condition  

Figure 8. Expression of Ki67 and Ccnd1 during retinal development. 

A. Cryosections of WT and Bigh3 KO retina were labeled with anti-Ki67 antibody. The white 

arrows indicate the cells positive for the staining. 

B. Transcriptional expression of Ccnd1, Cdk1, Cdk2, Cdk4, Cdk6, Ccna2, Ccnb1, Ccnb2 and 

Cdkn1b was investigated by qPCR in P0, P15 and P30 WT and Bigh3 KO mice retina. Results 

are expressed as mean ± SEM of 3 experiments performed in triplicate. 

C. Cryosections of WT and Bigh3 KO retina were labeled with anti-CCND1 antibody. 

Experiments were conducted on three retinas. 
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