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Key points summary: 
 

• High dietary potassium (K+) intake dephosphorylates and inactivates the NaCl 

cotransporter (NCC) in the renal distal convoluted tubule (DCT).  

• Using several ex-vivo models, we show that physiological changes in 

extracellular K+, like those occurring after a K+ rich diet, are sufficient to 

promote a very rapid dephosphorylation of NCC in native DCT cells. 

• Whilst the increase of NCC phosphorylation upon decreased extracellular K+ 

appears to depend on cellular Cl- fluxes, the rapid NCC dephosphorylation in 

response to increased extracellular K+ is not Cl- dependent.  

• The Cl- dependent pathway involves the SPAK/OSR1 kinases, whereas the 

Cl- independent pathway may include additional signaling cascades. 
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Abstract 

A high dietary potassium (K+) intake causes a rapid dephosphorylation, and hence 

inactivation, of the thiazide-sensitive NaCl cotransporter (NCC) in the renal distal 

convoluted tubule (DCT). Based on experiments in heterologous expression 

systems, it was proposed that changes in extracellular K+ concentration ([K+]ex) 

modulate NCC phosphorylation via a Cl- dependent modulation of the WNK-

SPAK/OSR1 kinase pathway. We used the isolated perfused mouse kidney 

technique and ex vivo preparations of mouse kidney slices to test the physiological 

relevance of this model on native DCT. We demonstrate that NCC phosphorylation 

inversely correlates with [K+]ex with the most prominent effects occurring around 

physiological plasma [K+]. Cellular Cl- conductances and the kinases SPAK/OSR1 

are involved in the phosphorylation of NCC under low [K+]ex. However, NCC 

dephosphorylation triggered by high [K+]ex is neither blocked by removing 

extracellular Cl-, nor by the Cl- channel blocker DIDS. The response to [K+]ex on low 

[Cl-]ex is also independent from significant changes in SPAK/OSR1 phosphorylation. 

Thus, in the native DCT, [K+]ex directly and rapidly controls NCC phosphorylation by 

Cl- dependent and independent pathways that involve the kinases SPAK/OSR1 and 

yet unidentified additional signaling mechanism. 
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Abbreviations: 

NCC, NaCl cotransporter; DCT, distal convoluted tubule; WNK, With no Lysine (K) 

kinases; SPAK, STE20/SPS-1- 44 related proline-alanine-rich protein kinase; OSR1, 

oxidative stress-related kinase, [K+]ex, extracellular potassium concentration; [Cl-]ex, 

extracellular chloride concentration; [Cl-]i, intracellular chloride concentration, PP, 

protein phosphatase; TAL, thick ascending limb of the Loop of Henle; IPK, isolated 

perfused mouse kidney; tNCC, total amount of NCC protein; pNCC, phosphorylated 

NCC in the position and amino acid indicated (ex pT53NCC: NCC phosphorylated in 

threonine 53); DIDS, 4,4'-Diisothiocyano-2,2'-stilbenedisulfonic acid; PP1 / PP2A, 

protein phosphatase 1 / 2A; PP3, protein phosphatase 3 or calcineurin. 
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Introduction 

A high dietary potassium (K+) intake has antihypertensive effects and improves 

cardiovascular outcomes (Mente et al., 2014; O’Donnell et al., 2014). These 

beneficial effects of a K+ rich diet are likely related to a negative Na+ balance due to 

an enhanced renal Na+ excretion (Sorensen et al., 2013; Mente et al., 2014; Buendia 

et al., 2015; Penton et al., 2015). Indeed, oral K+ loading promotes a rapid natriuresis 

that coincides with a dephosphorylation, and thus inactivation, of the thiazide-

sensitive NaCl cotransporter (NCC) in the renal distal convoluted tubule (DCT) 

(Sorensen et al., 2013). Conversely, dietary K+ restriction increases NCC 

phosphorylation (Vallon et al., 2009) and cell surface abundance of NCC (Frindt & 

Palmer, 2010), and also promotes a salt-sensitive rise in blood pressure (Vitzthum et 

al., 2014) that depends on the presence of NCC (Terker et al., 2015). Although an 

increase in NCC abundance was not always observed with dietary K+ restriction 

(Nguyen et al., 2012), the critical role of NCC for the maintenance of Na+ 

homeostasis and the control of blood pressure is evidenced by the fact that thiazide 

diuretics are a mainstay of antihypertensive therapy. Furthermore, genetic diseases 

in which loss-of–function mutations in NCC and mutations in NCC-regulating kinases 

(With no Lysine (K) (WNK) WNK1 and WNK4) and ubiquitin-protein ligase 

complexes (KLHL3, cullin) cause hypotension and hypertension, respectively (Simon 

et al., 1996; Wilson et al., 2001).  

The WNK kinases mediate their effects via phosphorylation of the STE20/SPS-1- 44 

related proline-alanine-rich protein kinase (SPAK) and the related oxidative stress-

related kinase (OSR1) which directly activate NCC by N-terminal phosphorylation 

(Hoorn et al., 2011a). Based on studies in heterologous expression systems, it was 

proposed that the WNK and SPAK/OSR1 kinase pathway is critically involved in the 
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effect of dietary K+ intake on NCC activity. In this model, altered dietary K+ intake 

impacts on [K+]ex, which leads to changes in basolateral plasma membrane voltage 

and thus intracellular [Cl-] ([Cl-]i). Changes in [Cl-]i have been shown to modulate the 

activities of both WNK1 (Piala et al., 2014) and WNK4 (Bazúa-Valenti et al., 2015) 

that ultimately regulate SPAK/OSR1 phosphorylation and activity, and thus NCC 

(Terker et al., 2015). However, given the lack of an appropriate cell model that 

resembles the physiological complexity of native DCT cells, the relevance of this 

pathway for the DCT in the kidney in vivo is unclear. In fact, results from SPAK 

knock-out (Wade et al., 2015), SPAK knock-in (Castañeda-Bueno et al., 2014) and 

SPAK/OSR1 knock-out mouse models (Terker et al., 2015) indicated that additional 

mechanisms must contribute as well. Moreover, the rapidity of NCC phosphorylation 

in response to an increased dietary K+ load suggests that not only an inactivation of 

the phosphorylating kinase pathway, but also an activation of yet undefined 

dephosphorylating protein phosphatases, likely contributes towards the control of 

NCC phosphorylation by plasma [K+]. Several protein phosphatases (PP) have been 

implicated in the modulation of NCC phosphorylation, including PP1 (Picard et al., 

2014), PP3 (calcineurin) (Lazelle et al., 2016), and PP4 (Glover et al., 2010). 

Nevertheless, to date no specific physiological function has been assigned to any of 

these phosphatases in the DCT.  

Here we studied the response of native DCT cells to changes in [K+]ex by combining 

in vivo and ex vivo methods. Our data support the hypothesis that the regulation of 

NCC phosphorylation triggered by changes in plasma K+ occurs very rapidly and is 

mediated by Cl- dependent and independent mechanism that involve SPAK/OSR1 

and likely additional signaling pathways. 
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Methods 

Ethical Approval 

All animal experiments were conducted according to Swiss Laws and approved by 

the veterinary administration of the Canton of Zurich, Switzerland. 

Reagents and antibodies 

Unless otherwise stated, reagents were bought from Sigma Aldrich (Sigma, Buchs, 

Switzerland). DIDS and tacrolimus were purchased from Abcam (Abcam, Cambridge 

UK). Calyculin A was purchased from Cell Signaling Technologies (Massachusetts, 

USA). tNCC, pT53NCC, pT58NCC and pS71NCC antibodies were previously 

described (Wagner et al., 2008; Sorensen et al., 2013; Picard et al., 2014). The 

pT96-pT101 NKCC2 antibody was generated by immunization of rabbits with a 

phospho-peptide (NH2-CLQ(pT)FGHN(pT)MD-CONH2) corresponding to the amino 

acids of mouse NKCC2 and subsequent affinity purification of the antibody (Pineda, 

Berlin, Germany). The specificity of the Ab towards pT96-pT101 NKCC2 was 

confirmed by immunohistochemistry. The antibody specifically stains the apical 

plasma membrane of the thick ascending limb. Pre-incubation of the antibody with 

the above mentioned phospho-peptide, but not with the corresponding dephospho-

peptide abolished the immunostaining (data not shown). β-actin antibody was 

purchased from Sigma (Sigma, Buchs, Switzerland). Anti-Serine/threonine-protein 

Kinase 39 (labelled tSPAK in this manuscript) and anti-phospho-SPAK (Ser 373) / 

phospho-OSR1 (Ser 325) (labelled pSPAK-pOSR1 in this manuscript) antibodies 

were purchased from Millipore (Millipore, California USA). 



 Mechanism of NCC regulation by K+ 
 

9 
 

Animals 

Experiments were conducted in C57Bl/6 wildtype mice aged between 3 and 8 

months. Mice were maintained at a 12/12 h light/dark cycle and had access to 

standard chow (3430, Provimi-Kliba, Switzerland) and water ad libitum. Animals 

were age, weight and gender matched for each experimental series.  

KCl intravenous injections                                                                                          

Twelve hours before experiments, age and weight matched female animals were 

fasted, but free access to water was maintained. Animals were fixed in a supine 

position for surgery under anesthesia with isoflurane (Attane, Piramal, India). After 

median laparotomy, the vena cava was punctured using a 26G needle. Either 100 µl 

of 80 mmol/L KCl (in distilled H2O with NaCl added to 300 mosmol/kg) or 0.9% NaCl 

as control were randomly injected. Either 5 or 15 minutes later, blood was withdrawn 

via the right ventricle. Blood was directly centrifuged, and the plasma collected and 

stored at -20°C for further analysis. Animals were then perfused with 20 ml ice-cold 

PBS via the abdominal aorta, kidneys removed, decapsulated, and snap frozen for 

western blot analysis.  

Isolated perfused mouse kidney  

Isolated mouse kidney perfusion was performed at 37°C in a small animal perfusion 

system (Hugo Sachs Elektronik, Germany) as previously described (Schweda et al., 

2003). Age and weight matched male animals were used. In all experiments, kidneys 

were first perfused for 30 minutes (pressure-fixed 90 mmHg) with buffer (see 

supplementary material for precise buffer composition) containing 4.5 mmol/L K+. 

Afterwards, buffer [K+] was randomly adapted by adding KCL to a K+ concentration 

ranging between 3.2 and 10.38 mmol/L, and kidneys were perfused for a further 30 
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minutes. After 1 hour, perfusion was stopped and kidneys were snap frozen in liquid 

nitrogen for western blot analysis. NCC phosphorylation in perfused kidneys was 

normalized to NCC phosphorylation in contralateral kidneys from same animals, 

which were removed and snap frozen at the beginning of the procedure. For 

immunohistochemistry studies, after perfusion with either 4.5 or 10 mmol/L [K+] for 

one hour, 3% PFA was added to the perfusion buffer. 50 mL of buffer + fixative were 

infused at 200 mmHg and washed out with 50ml buffer without fixative at 120 mmHg. 

The kidneys were post-fixed in 1.5% PFA at 4°C overnight and processed as 

described previously for immunofluorescence microscopy (Sorensen et al., 2013).  

Kidney slices preparation 

Gender, age, and weight matched mice were used for kidney slices preparation. 

Both kidneys were quickly removed under deep isoflurane anesthesia (Attane, 

Piramal, India) and 280 μm thick slices were cut with a vibrating microslicer 

(Vibratome, Microm). Slicing was performed in ice-cold Ringer-type solution (in 

mmol/L): 98.5 NaCl, 35 NaHCO3, 3 KCl, 1 NaH2PO4, 2.5 CaCl2, 1.8 MgCl2, 25 

Glucose. The slices were incubated for equilibration in a similar Ringer-type solution 

(25 mmol/L NaHCO3) for 30 minutes at 30,5°C. Afterwards, the slices were 

transferred to the incubation chambers containing the effector or control solutions. All 

solutions were continuously bubbled with 95% O2 and 5% CO2. In experiments in 

which [K+]ex was changed, osmolarity and [Cl-]ex were kept constant by addition of 

equal amounts of NaCl (or Na-Gluconate in low [Cl-]ex experiments). Some slices 

exposed to varying [K+]ex, were incubated also in the presence isoproterenol (100 

nmol/L) or calyculin A (20 nmol/L) dissolved in DMSO, or tacrolimus (10 µmol/L) 

dissolved in ethanol. In parallel, slices were incubated with either DMSO or ethanol 

in the appropriate amount and used as control vehicle. After 30 minutes incubation 
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with the effectors, slices were snap frozen in liquid nitrogen and processed for 

immunoblotting. 

Reversibility of NCC dephosphorylation 

After equilibration under control conditions (3 mmol/L [K+]ex) for 30 minutes, kidney 

slices were transferred to incubation chambers containing either 1, 3 or 10 mmol/L 

[K+]ex (low, control, high [K+]ex respectively) and incubated for another 30 minutes, as 

described before. Next, slices previously incubated with 10 mmol/L [K+]ex were 

transferred to the 1 mmol/L [K+]ex chamber and incubated for a further 30 minutes. 

After 90 minutes total incubation time, slices from each incubation condition were 

collected and processed for immunoblotting. 

DCT microperfusion 

DCTs were morphologically identified and isolated manually from kidney slices after 

enzymatically assisted separation of nephron segments using a dissection 

microscope, as previously described (Pohl et al., 2010; Gong et al., 2015). The 

preparation solution contained (in mmol/L): 49 NaCl, 3 KCl, 0.4 NaH2PO4, 1.6 

Na2HPO4, 1 MgCl2, 2.3 Ca-gluconate, 190 mannitol, 5 glucose. 10 DCTs per 

condition were microperfused using a double-barrelled perfusion pipette, as 

described previously (Greger, 1981) with a solution containing (in mmol/L): 50 NaCl, 

2 KCl, 0.4 NaH2PO4, 1.6 Na2HPO4, 1 MgCl2, 2.3 Ca-gluconate, 190 mannitol, 5 

glucose for 10 minutes at 37 °C. The basolateral solution contained (in mmol/L): 105 

NaCl, 0.4 NaH2PO4, 1.6 Na2HPO4, 1 MgCl2, 2.3 Ca-gluconate, 30 Na-gluconate, 5 

glucose. KCl (1, or 10 mmol/L) was added depending on the experimental condition 

and the osmolarity of the solutions was equilibrated with NaCl accordingly. Following 

perfusion, DCTs were collected from the chamber, pooled, and processed for 
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immunoblotting. In addition samples of 10-15 unperfused DCTs were incubated in 

preparation solution for 10 minutes at 37°C. 

Aldosterone measurements                                                                                        

For aldosterone measurements, 10 µL of plasma was diluted in 40 µl of 0.9% NaCl 

and measured in triplicates using an Aldosterone ELISA Kit (CAN-ALD-450, 

Diagnostics Biochem Canada Inc., Canada) and a Tecan plate reader (Tecan infinite 

F200 pro, Tecan Group AG, Switzerland) according to manufacturer’s instructions.  

Plasma electrolyte analysis                                                                                        

Plasma electrolyte levels were measured in 100 µL of undiluted plasma using an 

EFOX 5053 flame photometer (Eppendorf, Eppendorf, Germany).  

Immunoblotting  

Kidney samples were homogenized in a Precellys 24 homogenizer or by ultrasound 

in lysis buffer containing protease inhibitor cocktail (Complete, Roche Diagnostics), 

phosphatase inhibitor (Phosstop, Roche Diagnostics), and (in mmol/L) 200 Mannitol, 

80 Hepes, 41 KOH (pH corrected to 7.4). Homogenized samples without any further 

manipulation, or the supernatant from the samples centrifuged for 10 minutes 4.000 

x g at 4°C (whole animal studies or isolated perfused kidney), were then used for 

western blotting. Protein concentration was assessed via Bradford assay (CooAssay 

Protein Dosage Reagent, Uptima, France). 25 µg (or 50 µg for the detection of SPAK 

and pSPAK-pOSR1)  of protein was solubilized in loading buffer (31.5 mmol/L Tris-

HCl, 1% SDS, 0.005% Bromphenol blue, 12.5% glycerol and 5% ß-mercaptoethanol, 

pH 6.5), run in an 8% SDS PAGE and transferred to nitrocellulose membranes. 

Membranes were blocked for 20 minutes in blocking buffer (Odyssey blocking buffer, 
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Li-Cor Biosciences, USA) and incubated with primary antibodies at 4°C overnight. 

Membranes were further incubated for 2 hours at room temperature with the 

appropriate secondary antibodies and imaged using a Li-Cor infrared scanner (Li-

Cor Biosciences, USA). Optical density of bands was quantified using ImageJ 

software (http://imagej.nih.gov/ij/) and normalized to the corresponding band 

densities in a coomassie-stained gel (ProtoBlue Safe, National Diagnostics, UK) that 

was loaded and run in parallel. A protein dilution series was performed for each 

antibody and confirmed that signal detection and analysis were performed in the 

linear range of the system. Detection of β-actin was used to visualize equal loading. 

 

Statistics                                                                                                                      

Unpaired Student’s t-test was used to compare between two groups. For multiple 

comparison, one way ANOVA with Bonferroni’s multiple comparison post-test was 

performed using the software OriginPro 2015 (OriginLab Corporation, 

Massachusetts, USA). 
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Results 

Small variations of plasma [K+] rapidly modulate NCC phosphorylation 

In previous experiments in mice, we found that oral K+ loading rapidly increases 

plasma [K+] and dephosphorylates NCC (Sorensen et al., 2013). Likewise, further 

analysis of rat and mouse models suggested an inverse correlation between plasma 

[K+] and NCC phosphorylation (Rengarajan et al., 2014; Terker et al., 2016). To test 

experimentally whether altered plasma [K+] could directly account for the observed 

rapid changes of NCC phosphorylation in the kidney we performed two types of 

experiments. Firstly, we injected intravenously 100 µl of either vehicle or 80 mmol/L 

KCl in mice. The KCl injection increased plasma [K+] significantly (Fig 1A) while the 

plasma concentrations of Na+ and aldosterone remained largely unchanged within 

the time frame analyzed (Fig 1B and C). NCC phosphorylation at all tested sites 

(T53, T58 and S71) was decreased 5 minutes after KCl injection; the effect was even 

more pronounced at 15 minutes (Fig 1D). Next, we perfused isolated mouse kidneys 

ex vivo with buffers containing different concentrations of K+ ranging from 3.2 to 

10.38 mmol/L. To counterbalance the inter-individual variation, NCC phosphorylation 

in the perfused kidney was normalized to NCC phosphorylation in the intact 

contralateral kidney from the same animal (Fig 1E). We observed a clear inverse 

dose-response relationship between [K+] and NCC phosphorylation (Fig 1F and 

supplementary material) with the most pronounced changes in NCC phosphorylation 

occurring between 3 and 5 mmol/L of [K+]. Consistent with previous in vivo data 

(Sorensen et al., 2013; Rengarajan et al., 2014; Terker et al., 2015), the effect of K+ 

on the isolated perfused kidney ex vivo was specific for NCC since the 

phosphorylation of the closely related transporter NKCC2 in the thick ascending limb 

of the Loop of Henle (TAL) remained stable, regardless of [K+] (Fig 1G).  
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The kidney slice model reproduces the in vivo findings 

The isolated perfused mouse kidney (IPK) model allowed us to assess the effect of 

K+ on the DCT in an intact organ whilst simultaneously avoiding systemic effects of 

confounding factors such as hormones and renal innervation. Nevertheless, with this 

system we could not exclude the influence of changes in tubular flow and intrarenal 

hemodynamics on DCT function. Given the lack of an appropriate DCT cell model 

suitable to assess the direct effect of [K+], we used simple kidney slice preparations 

to study ex vivo acute changes in NCC phosphorylation in native DCT cells. First we 

studied the behavior of tNCC and pNCC in kidney slices incubated with control 

Ringer-type buffer (3 mmol/L [K+]ex) during the course of one hour. Under these 

conditions, the abundance of tNCC remained stable between 15 and 60 minutes of 

incubation, while pT53NCC decreased continuously with time (Fig 2A and 2B). As 

we observed a stable NCC phosphorylation between 30 and 60 minutes of 

incubation, all further experiments were performed during this time frame, unless 

stated otherwise.  

First, we analyzed the effect of elevated [K+]ex. While [K+] did not affect tNCC, the 

drop in pT53NCC over time was steeper in slices incubated with 10 mmol/L [K+]ex as 

compared to those incubated in 3 mmol/L [K+]ex buffer (Fig 2C and 2D). 

NCC phosphorylation is modified by manipulations that affect DCT membrane 

voltage. 

The membrane voltage of DCT cells is supposed to be controlled by the activity of 

the basolateral K+ channel Kir4.1 (KCNJ10 gene) (Reichold et al., 2010; Zhang et al., 

2014) which functions as heterotetramer with Kir5.1 (KCNJ16). Under physiological 

conditions, KCNJ10/16 is believed to hyperpolarize DCT basolateral plasma 
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membrane voltage (Paulais et al., 2011). Thus, increasing [K+]ex should depolarize 

DCT cells, while hyperpolarization will occur under low [K+]ex. We addressed the 

question whether manipulations promoting changes in the membrane voltage of DCT 

cells were sufficient to modulate NCC phosphorylation. The phosphorylation of NCC 

was assessed by immunoblotting after incubating kidney slices for 30 minutes with 

different [K+]ex. While tNCC remained stable under all [K+]ex investigated (fig 3A and 

3B), pT53NCC showed an inverse dose response curve in response to changes in 

[K+]ex (Fig 3A and 3C). In agreement with the results obtained in vivo and with the 

IPK model, physiologically relevant variations in [K+]ex were already sufficient to 

induce statistically significant changes in NCC phosphorylation ([K+]ex 3 mmol/L =100 

± 4.7 % of pT53NCC; [K+]ex 5 mmol/L =56.0 ± 7.0 % of pT53NCC; p<0.001). 

Furthermore, NCC dephosphorylation could be partially reversed by transferring the 

slices from high [K+]ex (10 mmol/L) to low [K+]ex (1mmol/L) (Fig 3D). Moreover, the 

addition of the potassium channel blocker BaCl2 (5 mmol /L) was sufficient to 

promote the dephosphorylation of NCC (Fig 3E and 3F).  

DCTs express K+ channels on both the apical and the basolateral membrane 

(Bandulik et al., 2011), and these channels could potentially sense changes in K+ 

intake. To assess whether changes of [K+]ex on the basolateral (blood) side are 

sufficient to promote changes in NCC phosphorylation, DCTs were isolated by hand 

and exposed at the basolateral cell side to either 1 or 10 mmol/L [K+]ex. The lumen 

was microperfused with 2 mmol/L K+ and 50 mmol/L Na+, which recapitulates the 

physiological luminal K+ and Na+ concentrations as previously observed by in vivo 

micropuncture measurements (Weinstein, 2012). Subsequently, changes in the 

phosphorylation of NCC were assessed by immunoblotting. As evident in figure 3G, 

lowering basolateral [K+]ex to 1 mmol/L triggered the phosphorylation of NCC within 
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10 minutes; at 10 mmol/L of basolateral [K+]ex, the phosphorylation of NCC was 

almost completely abolished. 

Low [Cl-]ex clamps SPAK/OSR1 phosphorylation but does not prevent NCC 

dephosphorylation in response to high [K+]ex  

Changes in intracellular [Cl-]i have been proposed to underlie the modifications of 

NCC phosphorylation in response to altered [K+]ex (Zhang et al., 2014; Terker et al., 

2015). According to this hypothesis, [K+]ex affects membrane voltage, which changes 

the driving force for Cl- to exit the cell through chloride channels in the basolateral 

membrane of DCT cells. Thus, a hyperpolarized cell membrane will lead to an 

increased Cl- exit, therefore lowering its intracellular concentration; on the contrary, 

depolarized cells will retain Cl-. These secondary changes in [Cl-]i were proposed to 

regulate the phosphorylation of SPAK and NCC, due to the inhibitory effect of [Cl-]i 

on WNK1 and WNK4 (Alessi et al., 2014). Indeed, increasing [K+]ex promotes both 

NCC and SPAK/OSR1 dephosphorylation (Fig 4A, 4C and 4D).  

To test the hypothesis that cellular Cl- fluxes and altered SPAK activity contribute to 

the regulation of NCC by [K+]ex, we compared kidneys slices incubated with either a 

standard buffer (110 mM [Cl-]ex) or a buffer in which almost all Cl- was replaced by 

using sodium gluconate instead of NaCl (5 mM [Cl-]ex). Under standard conditions 

([Cl-]ex 110 mM), lowering [K+]ex increased SPAK/OSR1 and NCC phosphorylation 

while high [K+]ex had opposing effects (Fig 4A, 4C and 4D). Lowering [Cl-]ex to 5 

mmol/L significantly increased NCC phosphorylation (Fig 4C). Under this low [Cl-]ex 

condition, we did not see any increase in either SPAK/OSR1 or NCC 

phosphorylation in response to lowering [K+]ex from 3 (control) to 1 (low) mmol/L (Fig 

4B, 4C and 4D). Nevertheless, NCC phosphorylation on low [Cl-]ex condition could 

still be enhanced by isoproterenol , which was previously described as an activator 
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of NCC phosphorylation (Terker et al., 2014) (Fig 4 G). This indicates that the lack of 

response to low [K+]ex is not explained by an already maximal stimulation of NCC. In 

contrast to the diminished response to low [K+]ex, NCC was still dephosphorylated 

when [K+]ex was increased from 3 (control) to 10 (high) mmol/L (Fig 4B and 4C). The 

extent of the dephosphorylation was comparable to the one at baseline [Cl-]ex (80.9 ± 

11.8% vs 72.5 ± 19.0%; under 110 vs 5 mmol/L [Cl-]ex, respectively). Interestingly, 

the dephosphorylation of NCC occurred independently from any significant change in 

SPAK/OSR1 phosphorylation, which remained clamped at a high level (Fig 4B and 

4D). Consistent with the Cl- replacement studies, inhibition of plasma membrane Cl- 

fluxes with the Cl- channel blocker 4,4'-Diisothiocyano-2,2'-stilbenedisulfonic acid 

(DIDS) (0.5 mmol/L) did not prevent NCC dephosphorylation in response to 

increasing [K+]ex from 3 (control) to 10 (high) mmol/L (Fig 4E and 4F).  

High [K+]ex induced dephosphorylation of NCC is not blocked by inhibition of 

protein phosphatase 1, 2A and 3  

Given the evidence described above for SPAK-independent effects of [K+]ex on NCC, 

and also the rapid kinetics of NCC dephosphorylation, we tested whether some of 

the known NCC regulating protein phosphatases might be involved in mediating the 

effect of high [K+]ex on NCC. Incubation of tissue slices with neither the protein 

phosphatase 1 and 2A inhibitor calyculin A (Sorensen et al., 2013), nor with the 

protein phosphatase 3 (calcineurin) inhibitor tacrolimus (Hoorn et al., 2011b) 

prevented the dephosphorylation of NCC in response to increased [K+]ex on standard 

[Cl-]ex (Fig 5A-5C).  
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Discussion 

Dietary K+ intake has a strong impact on the phosphorylation, and hence activity, of 

NCC in the DCT. Previous studies have correlated these effects to altered plasma K+ 

levels and suggested a model in which the extracellular K+ concentration, via altered 

membrane voltage and intracellular Cl- concentrations, regulates the WNK- and 

SPAK-dependent phosphorylation of NCC. In the present study, we employed three 

different ex vivo models (i.e. the isolated perfused kidney, the isolated perfused 

tubule and kidney slices) to experimentally test this hypothesis on the native DCT. 

Our data provide clear evidence for rapid and direct effects of [K+]ex on NCC 

phosphorylation and suggest that aside from the WNK/SPAK kinase pathway also 

the protein phosphatase 3 (calcineurin) additionally contributes to the regulation of 

NCC by [K+]ex. 

Rengarajan and co-workers showed that 3 hours intravenous infusion of KCl reduces 

phosphorylation of NCC and marginally of SPAK in parallel to increased plasma [K+] 

(Rengarajan et al., 2014). Likewise, Terker et al. described for various mouse 

models a clear inverse relationship between plasma [K+] and NCC phosphorylation 

suggesting that plasma [K+] may have direct effects on the native DCT (Terker et al., 

2016). However, these data were correlative and did not allow for clear cause-effect 

conclusions. The possible regulatory effect of humoral kaliuretic factors and/or nerval 

reflexes (Rabinowitz, 1996) could not be excluded. Now, by using three independent 

ex vivo approaches, we provide consistent and conclusive evidence that [K+]ex 

directly modulates NCC phosphorylation in native DCT cells. This regulation occurs 

very rapidly (<30 minutes) and is particularly prominent in the range of physiological 

plasma [K+], suggesting that transient and small variations in plasma (K+), as they 

may occur in response to a meal, may already be sufficient to modulate NCC activity 
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and hence renal Na+ reabsorption. However, the present ex vivo data contrast with 

our previous data on isolated DCT preparations in which we failed to observe any 

significant NCC dephosphorylation after increasing extracellular K+ from 5 to 10 

mmol/L (Sorensen et al., 2013). As we demonstrate in the present study, 5 mmol/L is 

already on the upper [K+] limit rendering almost all NCC dephosphorylated. 

Nevertheless, DCTs are still able to respond to decreased [K+]ex,  as demonstrated 

by the isolated perfused DCT technique. 

Based on experiments using whole animal and heterologous expression system 

models, Terker and co-workers recently hypothesized that DCT cells depolarize 

upon an increase in plasma [K+]. The subsequent increase in [Cl-]i leads to 

decreased phosphorylation of NCC via the inhibition of the WNK-SPAK/OSR1 kinase 

pathway (Terker et al., 2015). In agreement with this hypothesis, we found in native 

DCTs that both an increase of [K+]ex and the addition of the  K+ channel blocker 

BaCl2 to the incubation buffer triggered a pronounced dephosphorylation of NCC. In 

contrast, removal of extracellular Cl-, which presumably lowers intracellular Cl-, 

significantly increased NCC phosphorylation, and blocked the stimulatory effect of 

low [K+]ex on NCC. However, although these data are suggestive for an involvement 

of plasma membrane voltage and intracellular [Cl-], we could not directly analyze 

these parameters in our ex vivo preparations for technical reasons, including an 

insufficient up-take of Cl- -sensitive dyes into DCT cells. Other mechanisms, such as 

changes in cell volume, remain to be considered. Indeed, hypo-osmotic cell swelling 

stimulates SPAK-dependent NCC activation (Richardson et al., 2008) and recent 

data suggest that WNK4 is phosphorylated in response to osmotic stress (Maruyama 

et al., 2016). 
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Interestingly, when we reduced [Cl-]ex to very low levels, thereby clamping SPAK-

OSR1 phosphorylation to very high levels, only the response of NCC to low [K+]ex, 

not high [K+]ex, was blocked. Likewise, blocking Cl- channels with DIDS did not 

prevent the dephosphorylation of NCC under high [K+]ex, suggesting that additional 

mechanisms to the proposed pathway via Cl- dependent changes in WNK-

SPAK/OSR1 activity are also involved in the regulation of NCC phosphorylation by 

K+. It was already evident from the data provided by Terker and coworkers (Terker et 

al., 2015) that the SPAK/OSR1 single and double knockout mice were still able to 

modulate NCC phosphorylation to some extent in response to low dietary K+ intake. 

Moreover, Castañeda-Bueno and coworkers reported changes in NCC and its 

phosphorylation in response to changes in dietary K+ in WNK4 knockout mice 

(Castañeda-Bueno et al., 2014). Furthermore, Wade and coworkers reported an 

increase in NCC phosphorylation in response to low K+ diet in SPAK knockout mice 

(Wade et al., 2015).  

The rapidity of NCC phosphorylation in response to K+ infusion, already evident 

within 5 minutes, suggests that in addition to a shut-down of NCC phosphorylation by 

kinases, an activation of NCC dephosphorylation via phosphatases may also 

contribute to the observed effects. Previous studies had implicated various 

phosphatases in the control of NCC function (Glover et al., 2010; Hoorn et al., 

2011b; Picard et al., 2014). PP1 and PP3 are highly abundant in the DCT and 

inhibition of PP1 and PP3 by calyculin A and tacrolimus, respectively, increases 

NCC phosphorylation (Hoorn et al., 2011b; Picard et al., 2014). PP3 inhibition does 

also likely explain NCC-dependent salt-sensitive hypertension in patients under 

immunosuppressive therapy with calcineurin inhibitors (Hoorn et al., 2011b; 

Borschewski et al., 2016). Likewise, a kidney-specific deletion of FK506 binding 
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protein, crucial for the effects of tacrolimus on PP3, attenuates tacrolimus-induced 

arterial hypertension (Lazelle et al., 2016). However, in our experiments inhibition of 

PP1 and PP3 did not block the [K+]ex-induced dephosphorylation of NCC, suggesting 

that other signaling cascades are involved.  

In conclusion, we showed that [K+]ex directly controls NCC phosphorylation in native 

DCT cells. The effect of low [K+]ex on NCC likely involves altered transmembrane Cl- 

fluxes and an activation of SPAK/OSR1, while the rapid effects of high [K+]ex do not 

critically depend upon transmembrane Cl- permeability and may include both an 

inhibition of SPAK/OSR1 and the activation of yet not identified signaling pathways. 

Based on the rapidity of NCC dephosphorylation in response to [K+]ex, we 

hypothesize that protein phosphatases are involved. Our data, might stimulate 

further research to identify these additional mechanism.   
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Titles and legends 

 

Figure 1: Plasma [K+] directly and rapidly controls NCC phosphorylation in the intact 

kidney in vivo and ex vivo. A, B, C, Changes in plasma K+, Na+ and aldosterone 

concentrations (respectively) 5 or 15 min after intravenous injection of 100 μl of 

vehicle (3 mice) or 80 mmol/L KCl in mice (4-5 mice per group). Dots represent 

independent measurements and bars represent the mean of each group. * p<0.05, ** 

p<0.01 compared to vehicle injection, using unpaired Student’s t-test. D: 

Representative immunoblot (from mice in panels A,B,C) showing the changes in 

NCC phosphorylation in response to plasma [K+] elevations. E: Representative 

immunoblot of isolated perfused mouse kidneys ("P") showing the modulation of 

NCC expression and phosphorylation at different phospho-sites upon changes in 

[K+]ex ("C": non-perfused contralateral controls) F: Summary of 18 experiments 

showing the dependence of NCC phosphorylation on the [K+]ex. Each dot represents 

the ratio of NCC phosphorylation between the perfused kidney and the non-perfused 

contralateral kidney from one mouse. Dashed red line represents a sigmoidal fitting 

(see supplementary excel sheet for details). G: Immunofluorescence staining of 

pT53NCC (upper images) and the closely related cotransporter pNKCC2 

phosphorylated in T96 and T101 (lower images) in kidneys perfused with 4.5 or 10 

mmol/L [K+]ex. Scale bar: 250 μm. 
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Fig 2: Ex vivo kidney slice preparation recapitulates the findings in intact mice and 

isolated perfused kidney. A: Representative experiment showing the expression and 

phosphorylation of NCC at T53 in kidney slices incubated for 1h in control buffer (3 

mmol/L [K+]ex). B: Summary of the expression and phosphorylation of NCC at T53 in 

kidney slices incubated under control conditions for 1h (n=19 slices, 10 mice). C: 

Representative western blot showing the expression and phosphorylation of NCC at 

position T53 under control (3 mmol/L) or high (10 mmol/L) [K+]ex incubation 

conditions. Samples at t0 (after 30 min equilibration) were run in the same gel as the 

rest for every given antibody but not in sequential position. D: Summary of 

phosphorylation of NCC at position T53 in kidney slices incubated under control (3 

mmol/L) or high (10 mmol/L) [K+]ex conditions (n=8-17 slices, 3-7 mice). In the whole 

figure *** p<0.001 unpaired Student’s t-test compared to control incubation. In panels 

B and D mean ± SEM is represented. 
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Figure 3: Regulation of NCC phosphorylation by maneuvers affecting DCT 

membrane voltage. A: Representative experiment showing the dose/response 

modulation of NCC phosphorylation by [K+]ex at different phosphorylation sites in 

kidney slices. B: Expression of tNCC upon incubation with different [K+]ex (n=6-7 

slices per treatment, 2 mice). C: Changes in NCC phosphorylation at position T53 

upon incubation with different [K+]ex (n=8-17 slices per treatment, 3-7 mice). ** 

p<0.01, ***p<0.001 unpaired Student’s t-test compared to control [K+]ex (3 mmol/L). 

D: Representative experiment showing the reversibility of NCC dephosphorylation 

triggered by high [K+]ex. Control, high and low stand for 3, 10 and 1 mmol/L [K+]ex 

respectively. This experiment was repeated 2 times (2 mice) with similar results. E 

and F: Effect of BaCl2 (5 mmol/ L) on NCC phosphorylation (n=6 slices per 

treatment, 2 mice). G: Changes in NCC phosphorylation in hand isolated DCTs 

microperfused with 2 mmol/L [K+]ex from the luminal side and either 1 or 10 mmol/L 

[K+]ex from the basolateral side for 10 min. Each band represents a pool of 10 DCTs. 

In the whole figure ***p<0.001, ns non-significant using unpaired Student’s t-test. In 

B, C and F, points represent individual experiments (slices) and bars represent the 

mean of the given treatment.   
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Figure 4: Effect of [K+]ex on NCC and SPAK/OSR1 phosphorylation in native DCT 

cells is affected by changes in Cl- conductances. A: Representative immunoblot 

showing the changes in tNCC and pT53NCC as well as SPAK and pSPAK-pOSR1 in 

kidney slices treated with low (1 mmol/L), control (3 mmol/L) or high (10 mmol/L) 

[K+]ex under control (110 mmol/L) [Cl-]ex conditions. B: Same experiment as in A but 

under 5 mmol/L [Cl-]ex. C: Summary of the effect of [K+]ex on NCC phosphorylation at 

position T53 under control or low [Cl-]ex (n=9-18 slices per treatment, 3-6 mice). D: 

Summary of the effect of [K+]ex on SPAK/OSR1 phosphorylation at position T53 

under control or low [Cl-]ex (n=6 slices per treatment, 2 mice). In panels C and D * 

p<0.05, ** p<0.01, *** p<0.001, compared to the control condition ([K+]ex 3 mmol/L) of 

each [Cl-]ex; & p<0.05 compared to the control condition of 110 mmol/L [Cl-]ex using 

ANOVA with Bonferroni’s multiple comparison post-test. E: Representative 

experiment showing the changes in NCC expression and phosphorylation at T53 in 

the presence or absence of the [Cl-] channel blocker DIDS upon treatment with 

control (3 mmol/L) or high (10 mmol/L) [K+]ex. F: Densitometric analysis of E (n=3 

slices per treatment, 1 mouse). * p<0.05 compared to control of each condition using 

unpaired Student’s t-test. G: Stimulation of NCC phosphorylation by isoproterenol 

(100 nmol/L) under low (5 mmol/L) [Cl-]ex. 
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Figure 5: Inhibition of protein phosphatases 1, 2A and 3 does not impair the 

dephosphorylation of NCC upon high [K+]ex. Representative western blot showing the 

changes in NCC expression and phosphorylation at position T53 in slices treated 

with control (3 mmol/L) or high (10 mmol/L) [K+]ex under control (110 mmol/L) [Cl-]ex. 

A: Effect of inhibition of protein phosphatases 1 and 2A with calyculin A. B: Effect of 

inhibition of protein phosphatase 3 (calcineurine) with tacrolimus. C: Summary of the 

densitometric analysis of 6-12 slices per condition, 2-4 mice per experimental group. 

 

 












