
 

 

MURDOCH RESEARCH REPOSITORY 
 

Authors Version 
 
 
 

Tweedley, J.R., Warwick, R.M. and Potter, I.C. (2016) The 
Contrasting Ecology of Temperate Macrotidal and Microtidal 

Estuaries. In: Hughes, R.N., Hughes, D.J., Smith, I.P. and Dale, 
A.C., (eds.) Oceanography and Marine Biology: An Annual 

Review. CRC Press, pp. 73-171. 
 
 
 
 

http://researchrepository.murdoch.edu.au/34997/     
 

 
 

 
Copyright: © 2016 R.N. Hughes. D.J. Hughes, I.P. Smith, and A.C. Dale, Editors 
It is posted here for your personal use. No further distribution is permitted. 

 
 

 
 
 
 
 
 
 

 
 

http://researchrepository.murdoch.edu.au/view/author/Tweedley,%20James.html
http://researchrepository.murdoch.edu.au/view/author/Warwick,%20Richard.html
http://researchrepository.murdoch.edu.au/view/author/Potter,%20Ian.html
http://researchrepository.murdoch.edu.au/34997/


1 

 

 

THE CONTRASTING ECOLOGY OF TEMPERATE 

MACROTIDAL AND MICROTIDAL ESTUARIES 

 

JAMES R. TWEEDLEY
1*

, RICHARD M. WARWICK
1,2

 & IAN C. POTTER
1
 

1
 Centre for Fish and Fisheries Research, School of Veterinary and Life Sciences, Murdoch 

University, South Street, Perth, Western Australia 6150, Australia 

Email: j.tweedley@murdoch.edu.au 

2 
Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PLI 3DH, United 

Kingdom 

 

 

  



2 

Abstract 

Tidal range is a master factor governing the differences in physico-chemical and biological 

characteristics between microtidal (<2 m) and macrotidal (>2 m) estuaries, which, for 

convenience, thus include mesotidal estuaries (2–4 m). Microtidal estuaries differ from 

macrotidal estuaries in geomorphology, tidal water movements, salinity regimes, residence 

times, turbidity, sedimentology and intertidal area. Consequently, their phytoplankton, 

microphytobenthos and macrophytes communities differ in biomass and production, areal 

extent, distribution patterns and composition. Mesozooplankton comprise predominantly 

autochthonous species in microtidal estuaries and allochthonous species in macrotidal 

estuaries. Meiobenthos in microtidal estuaries have greater densities in subtidal than intertidal 

areas and species persist along the estuary. Macrobenthos is dominated by small deposit-

feeding species in microtidal estuaries, whereas macrotidal estuaries contain some larger 

species and suspension feeders. Species richness and abundance of estuarine-resident fish 

species and the contributions of diving piscivorous birds and wading invertebrate-feeding 

birds are greater in microtidal estuaries. As paradigms regarding estuarine ecology have been 

based mainly on northern hemisphere macrotidal systems, this review has redressed this 

imbalance by detailing the extent of differences between microtidal and macrotidal estuaries. 

In particular, it uses data and case studies for southern hemisphere microtidal systems to 

demonstrate that the physico-chemical characteristics and ecology of the main flora and fauna 

of microtidal estuaries are frequently not consistent with those paradigms. 
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Introduction 

There is an increasing awareness of the profound differences in the biota and ecology of 

temperate estuaries in the upper and lower parts of the tidal range; i.e. in macrotidal and 

microtidal systems. These biotic differences reflect differences in the hydrographical regime 

and associated physico-chemical conditions in these systems. Awareness of the extent of such 

differences in biotic characteristics developed, in particular, from on-going discussions of the 

implications of studies by the present authors, which have encompassed systems at 

essentially the extreme ends of the tidal range in temperate estuaries, e.g. macrotidal systems 

such as the Severn Estuary in the United Kingdom, and of microtidal systems in south-

western Australia, as well of those of other research workers in various regions of the world.  

The results of numerous studies have established general paradigms regarding estuarine 

ecology that have typically been based on macrotidal systems in the northern hemisphere 

(e.g., Heip et al. 1995, Elliott & Hemingway 2002, McLusky & Elliott 2004, Day et al. 

2012). This review aims to redress this imbalance by considering the ways in which the 

characteristics and ecology of microtidal estuaries are not always consistent with these 

paradigms, drawing, in particular, from data and case studies for microtidal systems in the 

southern hemisphere. In the case of fishes, the data now available for microtidal systems 

enable more detailed comparisons of the ways in which the various species of fish use 

estuaries.  

This review focuses on differences, rather than similarities, between macrotidal and 

microtidal estuaries. Groups of organisms, such as chemoautotrophic bacteria and 

heterotrophic microbenthos, for which differences between these two categories of estuary 

cannot readily be discerned, and mammals, reptiles and amphibians, which play only a 

limited  ecological role in estuaries, are not covered in this review and nor, generally, are 

aspects of ecology that apply equally to both types of system. 
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As this review focuses on the implications of different tidal regimes on the ecology of 

estuaries, it is important to understand the categorization scheme, based on tidal range, which 

will be used for these systems. Many scientists have followed Davies (1964) in classifying 

estuaries with a large tidal range (i.e. >4 m) as macrotidal, those with a tidal range of 2–4 m 

as mesotidal and those with a tidal range <2 m as microtidal (Boothroyd 1978, Pethick 1984, 

Cooper 2001, Archer 2013). For the sake of simplicity, and as many environmental and biotic 

characteristics change at a tidal range of ~2 m, we have followed Monbet (1992) in 

considering estuaries as representing two broad categories of tidal range, i.e. microtidal 

(<2 m) and macrotidal (>2 m), both of which are widely distributed throughout the world 

(Perillo et al. 1999, Whitfield & Elliott 2011). 

In recent years, the estuaries in Europe have been considered, for legislative purposes, 

to be just one of the types of water body listed under the term “transitional waters” as part of 

the Water Framework Directive (European Parliament and Council of the European Union 

2000). Transitional waters were defined by the directive as “bodies of surface water in the 

vicinity of river mouths which are partially saline in character as a result of their proximity to 

coastal waters but which are substantially influenced by fresh water flows” (European 

Commission 2003). Although transitional waters were considered to include brackish non-

tidal lagoons, the input of freshwater is restricted to seepage from the land or seasonal 

riverine input (McLusky & Elliott, 2007). Furthermore, the term lagoon is restricted by Davis 

(1994) to bodies of water with little or no freshwater inflow and little or no tidal flow and are 

thus not considered estuaries for this review (see ‘Definition of an estuary’ section).  

Furthermore, as pointed out by McLusky & Elliott (2007), there are a number of 

problems in using this term across Europe, when it does not distinguish clearly between 

transitional and coastal waters, and when interpretation of that term is not always consistent 

among countries. Moreover, the term “transitional waters”, as envisaged by the Water 
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Framework Directive, has not been adopted outside Europe. Because an estuary is considered 

by the present authors to constitute a bona fide ecosystem, the characteristic features of what 

is regarded as an estuary have initially been carefully defined. As descriptions of the 

characteristics of estuaries have often been based on typical temperate systems in the 

northern hemisphere (e.g. Pritchard 1967b), it did not recognise that some estuaries in other 

temperate regions, such as southern Australia and southern Africa, can become markedly 

hypersaline and closed periodically from the sea (Day, 1980, Potter et al. 2010). 

Having established the diagnostic characteristics and importance of estuaries, the 

different ways of categorizing these systems on the basis of tidal range and salinity gradient 

are described. An account is given of how tidal range influences, in an inter-related way, the 

geomorphological, hydrological and sedimentological characteristics of these systems. The 

ways in which differences in the extent of tidal range and its associated effects influence the 

characteristics of the flora and fauna are then outlined. For example, unlike estuaries with a 

small tidal range, those with a large tidal range expose, during each tidal cycle, a wide 

intertidal area, on which microphytobenthos flourishes and thus helps fuel the food chain. 

Furthermore, the strong tidal water movements that characterize macrotidal systems provide a 

mechanism for transporting fauna rapidly from marine waters into and through estuaries. 

Differences in tidal range are also reflected in variations in turbidity and residence time, 

which, in turn, influence the composition of the flora and fauna and the extent to which 

certain taxa, such as fish and zooplankton, reproduce and complete their life cycles within the 

estuary. 

 

Definition of an estuary 

Numerous attempts have been made to define the features that are common to all estuaries 

that encapsulate their range and complexity (e.g. Dionne, 1963, Pritchard, 1967b, Day 1981, 



6 

Perillo 1995, Hume et al. 2007, Potter et al. 2010).  Recognition of the need to develop a 

better understanding of the physico-chemical and biotic characteristics of estuaries led to the 

following definition.  “An estuary is a semi-enclosed coastal body of water which has a free 

connection with the open sea, and within which seawater is measurably diluted with fresh 

water derived from land drainage” (Pritchard, 1967b).  Although this definition generally 

applies to estuaries with a large tidal range, it does not encompass the following two 

important characteristics of many estuaries in southern Africa and southern Australia, which 

have a small tidal range (Day, 1980, 1981). First, it did not recognize that some of these 

estuaries become isolated from the sea through the formation of sand bars at their mouths 

during the dry period of the year. Second, it did not take into account that certain regions in 

some of these southern hemisphere estuaries become hypersaline during the drier months. 

The modification of the definition by Day (1980, 1981), which took into account these 

differences,  has recently been refined by Potter et al. (2010) to read as follows: “An estuary 

is a partially enclosed coastal body of water that is either permanently or periodically open to 

the sea and which receives at least periodic discharge from a river(s), and thus, while its 

salinity is typically less than that of natural sea water and varies temporally and along its 

length, it can become hypersaline in regions when evaporative water loss is high and 

freshwater and tidal inputs are negligible” 

The above definition excludes those intermittently closed and open lakes and lagoons 

(ICOLLs) that do not receive freshwater water input via a well-defined river. Some systems 

termed ICOLLs along the east coast of Australia (Bird 1967, 1994, Adlam 2014) are 

morphologically similar to the seasonally and normally-closed estuaries on the south coasts 

of Australia and Africa, except that they do not receive freshwater input from one or more 

clearly defined rivers (Harris 2008, Flemming 2011).Thus, ICOLLs are also not considered 

estuaries.  
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There has not been universal agreement as to what constitutes the upper 

(i.e. landward) and lower (i.e. seaward) limits of estuaries in general (Elliott & McLusky 

2002, Wolanski 2007). Pritchard (1967b) defined the upper limit as the point beyond which 

salinity declined to <0.1. While this definition is usually appropriate for macrotidal systems, 

it does not take into account that regions within the main body of certain other estuaries can 

become markedly hypersaline through evaporation during the hot and dry summer months 

and a lack of or limited input of freshwater and/or intrusion of marine water (Whitfield & 

Bruton 1989, Chuwen et al. 2009b, Perissinotto et al. 2010b). This problem is particularly 

prevalent in certain microtidal estuaries in southern Africa and Australia and especially in 

those that become cut off from the sea either intermittently, seasonally or for most of the time 

(Young et al. 1997, Hodgkin & Hesp 1998, Whitfield et al. 2006, Webster 2010). This 

primary salinization contrasts with secondary salinization, in which salts, originating from 

anthropogenic activities, accumulate in the upper estuary and/or tributary rivers (Cañedo-

Argüelles et al. 2013). The range of activities that can lead to secondary salinization include 

the clearing of deep-rooted native vegetation, which brings saline ground water to the surface 

and thus leads to salts entering the estuary and its tributary rivers (Morrissy 1974, Allison et 

al. 1990, Halse et al. 2003). Certain mining and industrial activities can also produce 

secondary salinization (Johnson et al. 2010, Coring & Bäthe 2011). 

In contrast to Pritchard (1967b), Fairbridge (1980) regarded an estuary as extending as 

far as the “upper limit of tidal rise”. He recognized, however, that this point will change 

during the year as a consequence of variations in the strength of the tide and volume of 

freshwater discharge. Furthermore, the extent of tidal penetration in a macrotidal estuary, in 

which its water and those of the tributary rivers have not been regulated through, for example 

the building of dams or weirs, exceeds the point to which salt water, derived from marine 

waters, declines to a salinity of 0.1 (Pritchard 1967b, Elliott & McLusky 2002). Thus, 
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Fairbridge’s definition includes freshwater tidal areas, which are regarded by Elliott & 

Hemingway (2002) as important components of estuaries. The use of tidal extension to define 

the upper limit of estuaries is adopted in the present review because it includes freshwater 

tidal areas and avoids problems arising from secondary salinization of tributary rivers. 

The lower limit of estuaries is also difficult to define (Elliott & McLusky 2002, 

Wolanski 2007). This is particularly the case in macrotidal estuaries, which typically have 

wide funnel-shaped mouths gradually opening in to the marine environment. In such systems, 

there is thus no clear morphological demarcation, such as prominent headlands, between the 

estuary and neighbouring coastal marine waters (Wolanski 2007). In the case of the large 

macrotidal, funnel-shaped Severn Estuary, in the UK, it was decided to define the lower limit 

of the estuary as the seaward boundary of the zone where salinity is less than 95% of the 

adjacent offshore seawater for 95% of the time (Dyer 1996), an approach implicitly adopted 

in this review, recognizing that, for many estuaries, this is likely to be an approximation. 

Furthermore, the volume of freshwater entering certain estuaries is so large, at certain times 

of the year, that it sometimes forces a plume of estuarine water extending many kilometres 

outwards from the coastline (McHugh 1967, Kjerfve 1989, Blaber 1997). Thus, some authors 

consider the outer limit of the estuary to include all waters within the seaward edge of the 

plume in the open ocean (Kjerfve 1989, Blaber 1997, Wolanski 2007). Extreme examples of 

this phenomenon are found in tropical estuaries which are outside the scope of this review. 

The well-defined narrow mouth of the entrance channel of many microtidal estuaries 

is typically considered to represent the outer limit of such systems (Potter et al. 1990, Cooper 

2001). However, in terms of salinity, the entrance channel of microtidal estuaries is 

essentially marine for the drier months of the year and thus, in this respect, corresponds to the 

coastal marine waters to which these estuaries are connected. 
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Formation and types of estuary 

Estuaries have been formed mainly as a result of climatic events that influence eustatic sea 

level changes, such as glaciation and deglaciation (Schubel & Hirschberg 1978). They are 

thus ephemeral features on a geological time scale, with life spans of thousands to tens of 

thousands of years. In their current form, they are very young geologically, having 

commenced formation ~15,000 years ago as the sea level began to rise rapidly, reaching their 

current level ~5,000 years ago (Emery & Uchupi 1972). The life span of an estuary is 

prolonged by a rise in sea level and shortened by a decline in that level.  

If sea level remains relatively constant, the life span of estuaries will be influenced by 

the rates of sedimentation (Schubel & Hirschberg 1978). This is exemplified particularly well 

by the estimation that, if sea level remained constant, all of the sediment discharged into the 

lagoons and estuaries of the Atlantic and Gulf coasts of the United States by rivers other than 

the Mississippi would fill these basins within 9500 years (Emery & Uchupi 1972). 

Sedimentation by fine-grained silty particles, derived from terrestrial runoff, occurs along the 

banks and at the mouths of estuaries. The former reduces the width of the estuary, while the 

latter, in the presence of low wave energy, produces deltas at their mouths (Davies 1973, Day 

et al. 2012). Sedimentation was regarded by Hodgkin (1998) as the principal long-term 

process that threatens the existence of microtidal estuaries in south-western Australia and 

urged managers to consider its impact on the functioning of these systems. 

Estuaries have frequently been classified on the basis of their morphology, among 

which the categorizations of Fairbridge (1980) are particularly useful for biologists because 

of their simplicity (Flemming 2011). That classification comprises eight categories, two of 

which, i.e. fjords and fjärds, are drowned glacial troughs in coastal areas of high and low 

relief, respectively. Although falling within Fairbridge’s definition of estuaries, they are not 

typical of traditional estuaries in several respects. Thus, for example, while they are 
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macrotidal, their steep sides preclude the existence of extensive intertidal areas and, when 

present, freshwater inflow is generally insufficient to appreciably dilute the large volume of 

seawater they contain, with any such dilution usually confined to the surface layers, thus 

producing a stratified water column (Follum & Moe, 1988; Nordic Council of Ministers, 

2006). Consequently, their fauna and flora are not estuarine in character as evidenced, for 

example, by the benthic macrofauna of Lochs Linnhe and Eil in Scotland (Pearson, 1975) and 

Frierfjord and Langesunfjord in Norway (Gray et al. 1988). For these reasons, fjord and 

fjärds have not been included in this review. The following brief descriptions of the 

characteristics of the six types of estuary considered in the current review, which are 

illustrated in Figures 1 and 2, are taken from Fairbridge (1980), Perillo, (1995), Davidson et 

al. (1991), Bianchi and Allison, (2009) and Snedden et al. (2012). 

Rias and coastal plain (or funnel-shaped) estuaries, which are both V-shaped in profile, 

were formed during the Holocene transgression by flooding from the sea of pre-existing river 

valleys. Rias are found on high relief coasts and have relatively deep and narrow, well-

defined channels (Figure 1A and 2A). In contrast, coastal plain estuaries are found on low 

relief coasts, and are generally shallower (<20 m) and bordered by broad, shallow flats 

(Figure 1B and 2B).  

The majority of bar-built estuaries were formed by flooding of river valleys by the sea, 

on very low relief coasts in microtidal areas and where river discharge is low. The transport 

of marine sediments into the mouths of these estuaries produces a sand barrier (bar), which 

reduces the size of the mouth (Figure 1C and 2C). The bar sometimes extends across the 

entire estuary mouth and thus cuts it off from the ocean, creating what is termed a ‘blind 

estuary’ (Figure 1D and 2D). 

Delta front estuaries, which are typically found in tropical areas and thus outside the 

scope of this review, are formed in large river systems through the accumulation of river-
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derived sediments at their mouths (Figure 1E and 2E). The final category, the tectonic 

estuaries, which vary markedly in their characteristics, were produced by neotectonic 

processes, such as faulting, graben formation, landslide or volcanic eruption (Figure 1F and 

2F). 

 

Importance of estuaries 

Estuaries are among the most productive of all aquatic ecosystems (Schelske & Odum 1961, 

Whittaker & Likens 1975, Bianchi 2006). They are typically nutrient-rich, receiving organic 

carbon via a range of routes, including discharge from rivers, runoff from surrounding land, 

tidal water movements, the atmosphere and waste inputs (Cloern 1987, McLusky & Elliott 

2004). These allochthonous inputs are supplemented by autochthonous primary production 

from macroaglae, phytoplankton, microphytobenthos and vascular plants, e.g. salt marsh 

vegetation, seagrass and mangroves (Schelske & Odum 1961, Cloern 1987). Estuaries can 

thus be considered as sources and sinks for nutrients and organic material derived from 

autochthonous production and typically receive, to an even greater extent, input of 

allochthonous material (Elliott & Whitfield 2011). They are also frequently regarded as a trap 

for detritus (Baird & Ulanowicz 1993), which is derived mainly through decomposition of 

plant and faecal material. Organic detritus constitutes an important food source, particularly 

for benthic invertebrates (Fauchald & Jumars 1979, Giere 2009) and plays a crucial role in 

biogeochemical cycling (Rice 1982, Mann 1988).  

The high productivity of estuaries provides an abundant food source for numerous taxa, 

including marine species of fish and crustacean that use these systems as nursery areas, and 

for the relatively few species of these taxa that complete their life cycle in estuaries (Beck et 

al. 2001, Sheaves et al. 2014). Furthermore, the visibility of such species to avian and 

piscivorous predators is reduced by the high turbidity in estuaries with a strong tidal 
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influence, or by macrophytes, e.g. seagrass in the clearer waters of microtidal estuaries 

(Odum & Heald 1972, Blaber & Blaber 1980, Robertson & Blaber 1992, Jackson et al. 

2001a). The extensive use of estuaries by the juveniles of marine species has often been 

regarded as facilitating more rapid growth and thus increasing survival beyond that which 

could be achieved by remaining in their natal environment (Sogard 1992, Le Pape et al. 2003, 

Yamashita et al. 2003, Veale et al. 2015). 

Several of the fish and shellfish species that use estuaries as a nursery area make a 

major contribution to fisheries in the marine environment. Lellis-Dibble et al. (2008) 

estimated that what they termed “estuarine-resident species”, i.e. those that use estuaries 

during some stage of their life cycle, contributed 46% by mass and 68% by value to 

commercial fish and shellfish landings in the United States between 2000 and 2004. 

Moreover, such species contribute >75% of commercial fish catch in Australia, and in some 

regions up to 90% of all recreational angling catch (Creighton et al. 2015). Note, however, 

that the term ‘estuarine resident’ is used in a more restricted sense in the present review, i.e. it 

is confined to species that complete their life cycle in the estuary (see ‘Categorization of the 

ways that fish use estuaries’ section). Estuaries also play a crucial role in the life cycle of 

diadromous fish species as they provide a route for anadromous species to migrate between 

their spawning grounds in fresh water and main feeding areas at sea, as with several species 

of salmonids, and for the reverse migration by catadromous species such as anguillid eels 

(McDowall 1988). Many of these species constitute the basis of important fisheries in rivers 

and sometimes estuaries, e.g. the Atlantic salmon Salmo salar and the European eel Anguilla 

anguilla (Churchward & Hickley 1991, Dekker 2003, Potter et al. 2015b). 

Despite the importance of estuaries from an ecological and fisheries perspective, those 

in temperate regions are regarded as the most degraded of all marine ecosystems (Jackson et 

al. 2001b). Most of this degradation has resulted from anthropogenic effects that have arisen 
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as a direct result of the human colonization and development of the areas surrounding 

estuaries. Estuaries were initially attractive to humans as they provided an abundant food 

source, both within their waters and through the development of agriculture on the 

surrounding fertile land (Wilson 1988). These characteristics, and the convenience of 

estuaries in providing a sheltered harbour for ships, and thus the potential for importation and 

exportation of produce and a route to more inland areas, led to the establishment of 

permanent settlements around their shores (Wilson 1988, 2002). This, in turn, resulted in the 

development of various industries around estuaries (McLusky & Elliott 2004). Inevitably, 

estuaries increasingly became a reservoir for human and industrial waste, some of which was 

toxic, and for nutrients from run-off from farm land (Kennish 1992, Tweedley et al. 2015b). 

 

Tidal regimes 

As mentioned earlier, Davies (1964) and many other scientists have classified estuaries with a 

tidal range >4 m as macrotidal, 2–4 m as mesotidal and <2 m as microtidal (Boothroyd 1978, 

Pethick 1984, Cooper 2001, Archer 2013). Hayes (1975) emphasised that as “tidal range had 

the broadest effect in determining large-scale differences in morphology of sand 

accumulation … a classification of estuaries could be best based on tidal range”. He retained 

the classification of Davies (1964), apart from separating the macrotidal into macrotidal (4–

6 m) and hypertidal (>6 m) categories. A more finely divided scheme was subsequently 

developed by Hayes (1979), which recognised upper and lower sub-divisions of both the 

macrotidal and mesotidal categories, which has been followed by other sedimentologists such 

as Flemming (2012).  

While the complex scheme of Hayes (1979) is valuable when considering the influence of 

tides on sediment accumulation and scouring, it is less relevant to the ecology of estuaries, 

which cannot be partitioned in such a finely-dissected way. As pointed out earlier, for the 
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purposes of the present review, estuaries are considered to comprise just two categories, 

i.e. microtidal (<2 m) and macrotidal (>2 m). Physical processes in microtidal estuaries are 

typically wave-dominated, whereas those in macrotidal estuaries are tide-dominated. 

However, estuaries at the upper end of the microtidal range and lower end of the macrotidal 

range are a mixture of wave- and tide-dominated energy regimes, with the contribution by 

wave action greater in the former and tidal action greater in the latter (Flemming 2012). The 

present review focuses on regions to the north of the Tropic of Cancer, but south of the Arctic 

Circle, and southwards of the Tropic of Capricorn. It thus includes temperate estuaries 

towards the upper limit of macrotidal, e.g. some of those in north-western Europe and north-

eastern North America, and those towards the lower end of microtidal, e.g. southern Australia 

and southern Africa. 

Hydrology and sedimentology 

Water circulation and salinity 

The salinity gradient in estuaries varies both vertically in the water column and longitudinally 

along the estuary. This reflects differences in the patterns of water circulation and the extent 

to which tidal flow and freshwater discharge interact (e.g. Pritchard 1955, Dyer 1973, 1997, 

Savenije 2005, Valle-Levinson 2011, Geyer & MacCready 2014). In the vertical dimension, 

estuaries comprise three broad categories, i.e. well mixed, partially mixed and highly 

stratified or salt wedge, which represent a gradation in the degree of stratification. The 

precise pattern of circulation can also be influenced by wind and the bathymetry of the 

estuary and, in wide estuaries, the Coriolis force.  

Well-mixed estuaries are those in which tidal flow has a far greater influence than 

freshwater discharge and there is extensive mixing of salt and fresh water and no conspicuous 

vertical change in salinity, i.e. no halocline (Savenije 2012). In partially-mixed estuaries, tidal 

flow and freshwater flow are more similar. There is, however, a net upstream flow of 
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seawater at the bottom and net downstream flow of fresh water at the surface and substantial 

mixing of water from the two layers at intermediate depths, constituting a two-way 

gravitational circulation. Highly-stratified or salt-wedge estuaries are those in which there is 

usually little or no mixing between the fresh water on the surface and the salt water below, 

resulting in the production of a halocline. Wind-induced vertical mixing can occur, however, 

in these estuaries when they are particularly shallow and subjected to strong prevailing winds 

(Kjerfve & Magill 1989). 

Well-mixed and partially-mixed estuaries are most numerous in macrotidal regions, 

with the latter systems tending to be deeper, whereas highly-stratified/salt-wedge estuaries 

are most common in microtidal regions. For example, the Severn Estuary, which is at the 

upper end of the macrotidal range, is well-mixed (Langston et al. 2003b), while the 

microtidal Río de la Plata Estuary is highly-stratified (Marcelo Acha et al. 2008) and systems 

such as the macrotidal Tamar and Thames estuaries, which have intermediate tidal ranges, are 

partially mixed (Uncles et al. 1983, Savenije 2005).  

It should be recognized, however, that the extent of mixing can differ between regions 

within an estuary and temporally within a region of an estuary in response to marked changes 

in freshwater discharge and thus reflect different types of estuary. A good example of such 

seasonal differences is provided by the microtidal Swan River Estuary in south-western 

Australia, where 80% of discharge occurs between June and October, i.e. late autumn to early 

spring (Hodgkin & Hesp 1998). When large volumes of freshwater discharge enter the upper 

estuary during those months, the water column becomes essentially fresh from top to bottom 

(Figure 3A). As freshwater discharge declines, a saltwater wedge penetrates progressively 

upstream over the substratum and beneath the fresh water, producing a well-defined halocline 

(Figure 3B). During the dry summer and early autumn months, the upper estuary becomes 

well mixed (Figure 3C). Freshwater discharge increases sharply in late autumn and early 
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winter and flows rapidly over the saline water, leading to marked stratification of the water 

column and thus a pronounced halocline (Figure 3D). While some authors have distinguished 

between a salt wedge and highly-stratified estuaries (Chester 1990), the crucial point, from a 

faunal perspective, is that, in both, the velocity of river flow is greater than tidal flow and this 

results in a two layered stratification (Wright et al. 1999, Twomey & John 2001, Watanabe et 

al. 2014). 

Strong salinity stratification encourages high rates of sediment deposition 

(e.g. Traykovski et al. 2004, Ralston et al. 2012), thus enhancing nutrient recycling 

(Hopkinson et al. 1999, Watanabe et al. 2014) and can lead to conditions that produce 

hypoxia and even anoxia (Douglas et al. 1997, Paerl et al. 1998, Kurup & Hamilton 2002), 

which can dramatically influence the distribution of species and faunal composition 

(Cottingham et al. 2014, Tweedley et al. 2015a).  

The turbulent mixing that occurs in macrotidal estuaries is a two-way process, whereby 

fresh water is mixed downward and saline water upward (Figure 4a). During each tide, the 

volume of fresh water leaving the estuary, mixed with marine water from below, must be 

equivalent to river inflow. There is thus a mean outflow of water at the surface and a mean 

inflow of more saline water directly above the estuary bed, i.e. a two layered gravitational 

circulation (Dyer 2001, Valle-Levinson 2010). In the stratified region of microtidal estuaries, 

the two layers are mixed by friction and velocity shear, producing small waves on the 

halocline that inject small amounts of more saline water from the lower to upper layer (Figure 

4b). Although this is equivalent to an upward flow of salt water in macrotidal estuaries, the 

mixing is less pronounced (Dyer 2001).  

In a longitudinal context, the trends exhibited by salinity gradients (e.g. McLusky & 

Elliott 2004, Valle-Levinson 2010, 2011, Savenije 2012) can be used to categorize estuaries 

in the following manner. Positive estuaries are those in which salinity declines progressively 
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in an upstream direction as the influence of tide decreases, while that of freshwater flow 

increases (Figure 5A and 5B). Positive estuaries are numerous in both macrotidal and 

microtidal areas throughout temperate regions of the world (Figure 5A and 5B). In contrast, 

estuaries are termed ‘negative’ or ‘reverse’ when the salinity gradient increases in an 

upstream direction, which occurs when the loss of water by evaporation exceeds freshwater 

input from all sources (Figure 5C). Estuaries with these characteristics are typically shallow 

and occur in microtidal regions in Mediterranean climates, such as the Tomales, San Diego 

and Mission estuaries in California and the Coorong, Leschenault and Vasse-Wonnerup 

estuaries in southern Australia (Largier et al. 1997, Webster 2010, Tweedley et al. 2014a, 

Veale et al. 2014). As rainfall is highly seasonal in these regions, the inverse salinity trends 

are most pronounced during the warm and dry summer months and some of these estuaries 

can become positive in the wet season, i.e. salinity then declines in an upstream direction 

(Figure 5A). Inverse or reverse salinity gradients are developed in estuaries, either through 

their associated river(s) discharging little or no water during the warm dry summer months 

(Figure 5C) or because those river(s) discharge only into the lowermost reaches of the estuary 

(Figure 5D; Webster 2010, Veale et al. 2014). 

The term ‘salt-plug estuary’ was coined by Wolanski (1986) when some region of the 

estuary becomes hypersaline and salinity thus increases from the mouth to that region and 

then declines progressively upstream (Figure 5E; Valle-Levinson 2011). Examples of such 

estuaries in temperate areas are provided by Guaymans Bay in the Gulf of California (Valle-

Levinson 2011) and the Peel-Harvey Estuary in south-western Australia (Loneragan et al. 

1987). 

In some microtidal estuaries in regions of low rainfall, the volume of freshwater inflow 

is so low that a sand bar forms at the mouth of the estuary, which prevents the exchange of 

water between the estuary and the ocean (see ‘Sand bar dynamics’ section). Freshwater 



18 

inflow can subsequently be insufficiently strong to breach that bar for protracted periods, and 

even years. As a consequence, the waters in the shallow basins of these normally-closed 

estuaries can become markedly hypersaline through evaporation and very limited freshwater 

inflow. In this respect, this type of estuary equates most closely with the salt plug estuary 

(Figure 5F). Examples of this type of estuary include the St Lucia Estuary in South Africa 

and the Hamersely, Stokes and Culham inlets in south-western Australia (Figure 5F; 

Whitfield et al. 2006, Chuwen et al. 2009b). The last of those estuaries provides an extreme 

example of this type of estuary, with salinities reaching as high as 296, when the bar had not 

opened for at least three years (Chuwen et al. 2009b), and thereby causing the death of 1.3 

million individuals of the sparid Acanthopagrus butcheri (Hoeksema et al. 2006b). 

Due to the pronounced tidal water movements, the salinity at any location in the middle 

region of macrotidal estuaries changes markedly during each tidal cycle (Uncles 1984, 

Damme et al. 2005). In contrast, the changes in salinity during a tidal cycle in microtidal 

systems are small. Marked salinity changes do occur, however, in microtidal estuaries, 

following discharge of large volumes of fresh water following periods of heavy rainfall (e.g. 

Whitfield & Paterson 1995, Kanandjembo et al. 2001). 

Residence and flushing times 

The health and water quality of an estuary are regulated by its physical, chemical and 

biological processes (Arega et al. 2008). One of the physical processes that indicates whether 

an estuary is susceptible to degradation is the rate at which water, and its constituents, is 

exchanged with the open ocean. Indeed, estuaries are often regarded in the context of time 

scales, based on the mixing, transport and escape of estuarine water, i.e. flushing time, 

residence time and/or age, of which the first two are the most frequently employed 

(e.g. Zimmerman 1976, Takeoka 1984, Zimmerman 1988, Nixon et al. 1996, Jay et al. 2000, 

Monsen et al. 2002, Uncles et al. 2002, Sheldon & Alber 2006, Wolanski 2007). A 
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combination of the various definitions of the above three transport time scales has been used 

to provide definitions that are readily interpretable to biologists for each of those time scales, 

recognizing that “to avoid misunderstandings and even erroneous conclusions it is important 

to introduce precise definitions and to use them with care” (Bolin & Rodhe 1973). This is 

particularly important in the case of flushing and residence times of an estuary because, 

although they represent different concepts, they are often confused (Monsen et al. 2002, 

Sheldon & Alber 2002) 

 

 Flushing time. Time required for freshwater inflow to replace the amount of fresh 

water present in the estuary, i.e. volume of fresh water in the estuary divided by 

river flow rate. 

 Residence time. Time required for a water parcel to escape from the estuary from 

a specified location.  

 Age. Time required for a water parcel to travel from a boundary to a specified 

location within the estuary, i.e. the time a particle has spent in the estuary. 

 

The crucial point, however,  is that, when comparing the ecology of biota in 

macrotidal and microtidal estuaries in the context of residence time, a long residence time 

corresponds to both a long flushing time and long age and vice versa. While, at a 

sophisticated level, the concept of a single residence time (or flushing time or age) per 

estuary can be regarded as an oversimplification, it is convenient from both broad ecological 

and engineering viewpoints (Oliveira & Baptista 1997). It is also important to recognize that 

the residence time within an estuary can vary markedly, both spatially and temporally (e.g. 

Oliveira & Baptista 1997, Yuan et al. 2007).  
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The flushing times given by Uncles et al. (2002) for a wide range of macrotidal and 

microtidal estuaries in Europe and North America were calculated during spring tides and at 

times when freshwater discharge was relatively low. They demonstrated that flushing time is 

strongly related to tidal length and tidal range (Figure 6). Indeed, these two variables were 

shown by multiple regression analyses to explain 91% of the variability in flushing time, with 

tidal length the most influential.  

The flushing time, among the above macrotidal and microtidal estuaries, increases 

progressively with tidal length, i.e. it is greater in longer than shorter estuaries, and is 

inversely related to tidal range. Consequently, flushing time is typically least in macrotidal 

estuaries at the upper end of the tidal range and greatest in microtidal estuaries. Thus, for 

example, the flushing times in macrotidal estuaries with a large tidal range are frequently less 

than three days, whereas those in microtidal estuaries lie between 40 and 230 days (Figure 6; 

Uncles et al. 2002).  

The flushing time and residence time of 12 macrotidal estuaries on the northern coast of 

Spain were estimated by Borja et al. (2006), using the mean annual freshwater discharges and 

other data given for those estuaries in Valencia et al. (2004). The flushing times were less 

than three days in 11 of those estuaries and less than one day in eight, which is consistent 

with the trends described by Uncles et al. (2002). Furthermore, residence time was also less 

than one day in the latter eight estuaries and the three shortest residence times were recorded 

for the same estuaries as the three highest flushing times (Borja et al. 2006). 

The flushing times recorded by Uncles et al. (2002) for the Elbe, Weser and Humber, 

which were at the upper end of those times for the macrotidal estuaries they analysed, did not 

differ markedly from those estimated by Vandenbruwaene et al. (2013), which were likewise 

measured under low flow conditions. The mean and minimum flushing times (under 

maximum flow) estimated for those three estuaries by the latter authors were ~40–45% and 
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~20–25%, respectively, of those under low flow conditions. These comparisons emphasize 

that, in large macrotidal estuaries, and particularly in those with relatively long flushing times 

for such systems, freshwater discharge does have a significant impact on flushing time, 

although not as pronounced as in microtidal systems. While residence time in the macrotidal 

Mersey Estuary, on the north-west coast of England, is typically related more to tidal range 

than to freshwater discharge during spring tides (9–10 m), it can be significantly affected by 

freshwater discharge when the tidal range is small, i.e. during neap tides (3–4 m; Yuan et al. 

2007). 

Models produced by Liu et al. (2008) for the Danshuei River Estuary (Taiwan), which 

is at the lower end of the macrotidal range, and by Huang et al. (2011) for the microtidal 

Little Manatee Estuary, Florida, USA, demonstrated that residence time decreases with 

increasing freshwater inflow (Figure 7). These trends were described effectively by an 

exponential regression equation (r
2
 = 0.93) and power-law function (r

2
 = 0.98), respectively. 

The latter model emphasized that residence time began to increase markedly as flow 

decreased to low levels, i.e. <4 m
3
 s

−1
, a trend exhibited in other microtidal estuaries 

(e.g. Shen & Haas 2004, Wan et al. 2013). 

The values for residence time can vary appreciably during the year, and particularly in 

microtidal estuaries, whose characteristics are influenced, to a greater extent, by variations in 

seasonal freshwater flow than is generally the case in macrotidal estuaries. Thus, on the basis 

of measurements over 78 years, the mean monthly freshwater discharge in the microtidal 

Chesapeake Bay in March and April was ~3.5 times greater than the minima in July to 

September (U.S. Geological Survey 2015), which is reflected in differences of approximately 

four times between the maximum and minimum flushing times of 365 and 90 days, 

respectively (de Jonge et al. 1994).  
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Intra-annual differences in residence time are even more pronounced in microtidal 

estuaries in Mediterranean climates, where rainfall and thus freshwater discharge is highly 

seasonal. For example, in south-western Australia, 80% of rainfall on average occurs between 

May and September, i.e. from late autumn to early spring (Hodgkin & Hesp 1998). Thus, in 

the upper reaches of the permanently-open Swan River Estuary in 1996, the residence time 

ranged from as short as 1 day in winter to as long as 235 days in summer (Kalnejais et al. 

1999). In seasonally-open estuaries in the same region, e.g. Wilson Inlet, where a bar (sand 

barrier) forms a temporary barrier from the ocean, the modelling study of Ranasinghe & 

Pattiaratchi (1998) showed that freshwater inflow was the overwhelming factor governing the 

flushing of that estuary. However, residence time in such estuaries will clearly be infinite 

when the estuary mouth is closed by a sand bar in the warm summer months and moderate to 

low during the wet winter months. Obviously, residence times in normally-closed estuaries, 

which are not flushed for periods of up to several years, will be infinite for those very 

protracted periods (Young & Potter 2002, Brearley 2005).  

The rate at which water in the estuary is exchanged with the ocean is greater in 

macrotidal systems, which typically have a wider mouth than microtidal systems and a tidal 

prism (i.e. the volume of water between mean high tide and mean low tide) that can be 

several orders of magnitude greater than the volume of freshwater discharge (Ryan et al. 

2003). 

In summary, macrotidal estuaries are typically funnel shaped, which, together with the 

strong tidal action and freshwater input, facilitates efficient flushing (Figure 4A). In contrast, 

microtidal estuaries typically have narrow entrance channels, which restrict exchange with 

the ocean and thus limit flushing, with only a small proportion of the water body in the 

estuary exchanged during each tidal cycle (Figure 4B and 4C). 
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Turbidity 

The amount of suspended particulate matter (SPM) within the water column of 

estuaries depends on a number of factors, including estuarine circulation patterns, the 

quantity of sediment in the freshwater discharge and marine waters and the settling velocity 

of that suspended material (McLusky & Elliott 2004). Among these factors, tidally-generated 

sediment re-suspension, sediment deposition and/or longitudinal advection of a horizontal 

gradient in SPM are the main mechanisms that govern SPM variability within and among 

estuaries (e.g. Schubel 1971, Allen et al. 1980, Nichols & Biggs 1985, Van de Kreeke et al. 

1997, Uncles et al. 2002). Thus, given the large differences in their tidal water movements, 

the levels of suspended particulate matter, and thus turbidity, will clearly differ between 

macrotidal and microtidal estuaries.  

As estuaries are dynamic environments, the levels of SPM within any given estuary can 

change markedly over a range of spatial and temporal scales. The concentrations of SPM are 

highest at the point where riverine discharge and tidal currents meet, i.e. the turbidity 

maximum (McLusky & Elliott 2004, Flemming 2011). In macrotidal estuaries, the 

concentration and location of the turbidity maximum is influenced mainly by tidal processes 

on short time-scales and by gravitational circulation at longer time-scales, whereas in 

microtidal estuaries the turbidity maximum is typically greatest during high freshwater 

discharge (Jay & Musiak 1994, Uncles et al. 2002). A particularly good example of how tidal 

strength within an estuary can influence SPM is provided by the estimate that, in the 

macrotidal Severn Estuary in the UK, 30 Mt of sediment are suspended in the water column 

during spring tides, compared with only 4 Mt on a neap tide just seven days later (Kirby et al. 

2004). The remaining 26 Mt settle on the bottom of the estuary, forming extensive layers of 

fluid mud. In contrast to the influence of tidal strength in macrotidal estuaries, SPM 

concentrations in microtidal estuaries, which are typically shallow, can increase markedly 
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during storms as the rate of sediment re-suspension increases due to wind-generated waves. 

In the Thermaikos Gulf, in Greece, for example, SPM concentrations increased 15-fold from 

1–2 mg l
−1 

during normal condition to 35 mg l
−1

 during storms (Paphitis & Collins 2005). 

The marked differences between the SPM concentrations of macrotidal and microtidal 

estuaries is illustrated by analyses of data from 44 estuaries in Europe and North America, 

measured in the region of maximum turbidity, within approximately an hour of local high 

water at spring tides and during relatively low freshwater flow (Uncles et al. 2002). The 

results indicate that 74% of the differences in SPM concentrations were explained by mean 

spring tidal range (at the estuary mouth) and tidal length in estuary, with the former the more 

influential (Figure 8). Similar results were recorded by Hughes et al. (1998), who collated 

data for SPM concentrations at the bottom of the water column (where SPM concentrations 

are typically greatest; e.g. Schubel 1968) in the middle of the turbidity maximum for a 

smaller suite of microtidal and macrotidal estuaries (Table 1).  

 

Sediment dynamics 

Estuaries lie at the land-sea interface and are subjected to unidirectional riverine 

hydrodynamics and also a bidirectional process regime driven by tides and waves (Spencer & 

Reed 2010). The changing axial balance between these processes results in a tripartite 

longitudinal zonation (Dionne 1963, Dalrymple et al. 1992). Marine processes dominate in 

the lower region where sediment is typically coarse, and, although the upper region is 

dominated by riverine inputs, the sediments there are also coarse, comprising sand and 

gravel. In contrast, the sediments of the middle region are muddy as a result of flocculation, 

coagulation and aggregation of suspended material due to the mixing of salt water and fresh 

water. While this tripartite longitudinal zonation is broadly independent of tidal range 
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(Flemming 2011), there are some differences between the sediment dynamics of macrotidal 

and microtidal estuaries.  

In the case of both macrotidal and microtidal estuaries, fine and coarse sediments enter 

from the catchment, with the sediment load depending on the geological characteristics of the 

catchment and climatic differences, particularly in relation to rainfall (McLusky & Elliott 

2004, Gray & Elliott 2009). In macrotidal systems, the coarse sediment, transported into the 

estuary from rivers is deposited at the point where riverine and tidal currents converge due to 

the marked decrease in velocity (Ryan et al. 2003). Once deposited, the sediment is regularly 

redistributed by the strong tidal currents, often forming mobile sandbanks (Figure 9A; 

Connor et al. 2004). In contrast, the absence of strong tidal currents in microtidal estuaries 

enables the coarser sediments to be carried downstream by rivers from the catchment to form 

fluvial (tidal fresh water) deltas at the junction of the rivers and estuary basin (Figure 2C; 

Pasternack & Brush 1998, 2002). 

During flood and ebb tides, fine sediments in the middle reaches of macrotidal estuaries 

are resuspended, aggregated and transported, although the higher settling velocities of the 

flocs and aggregates increases their rates of deposition (Figure 9A). These particles are thus 

deposited during slack tides, usually within the upper and lower bounds of the turbidity 

maximum (Flemming 2011). In microtidal estuaries, the finer sediments are deposited in the 

deeper water of the basin, where current velocity is typically low and the higher salinities aid 

in flocculation and deposition (Figure 9B; Ryan et al. 2003). Indeed, the low energy 

environments of the basin, combined with their relatively large size results in up to 80% of 

the fine sediments that are transported into the estuary becoming ‘trapped’ there 

(Patchineelam et al. 1999, Roy et al. 2001), constituting a very effective sink for this 

terrigenous material. Moreover, the presence of microphytobenthos and seagrasses stabilize 
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the sediment by reducing water velocity and thus also thier resuspension (Ward et al. 1984, 

Murray et al. 2002, Tweedley et al. 2008). 

Fine sediment is also deposited in the extensive intertidal areas present in macrotidal 

estuaries by tidal water movement, resulting in the seaward development of these areas 

(Figure 9A; Green et al. 2000). In microtidal estuaries, the deposition of fine sediments on the 

fringes of the central basin is governed predominantly by internally-generated waves (Ryan et 

al. 2003).  

The lower reaches of macrotidal and microtidal estuaries are both characterized by 

relatively coarse sediments that are carried into the systems by tidal action, a mechanism that 

is more effective in the former type of estuary due to its larger tidal range, a two-layer 

gravitational circulation and a wide mouth. For example, in the macrotidal Tay Estuary in 

Scotland, a lack of river-derived sediment has led to the substratum throughout the estuary 

becoming dominated by marine-derived sediments (Buller & McManus 1975). Sediment 

entering macrotidal coastal plain estuaries also forms elongated mid-channel sand bars, which 

can extend the intertidal areas in a seaward direction (Dalrymple et al. 1992, Wells 1995).  

Rather than forming mid-channel sand bars as in macrotidal estuaries, the landward 

transport of marine-derived sand in microtidal estuaries extends only into the lower-most 

parts of the estuary where it forms flood and ebb tide deltas (Roy 1984, Green et al. 2000). 

Coastal transport of sediment along and onshore can also lead to the formation of a bar (berm 

or sand beach barrier) across the mouths of microtidal estuaries, which reduces the width of 

the mouth and can become so large that it closes the estuary off from the ocean (Cooper 

2001, Roy et al. 2001, Chuwen et al. 2009b, Rich & Keller 2013). During storms, sediment 

can be transported over this bar by large waves, forming washover deposits that may extend 

into the estuary (Boyd et al. 1992, Ryan et al. 2003).  



27 

Relatively smaller volumes of sediment are exported from microtidal than macrotidal 

systems, because of their trapping efficiency (Figure 9; Ryan et al. 2003). In both types of 

estuary, the export of sediment increases during river floods. 

Organic detritus, which forms an important component of the food chain in estuaries 

(e.g. Odum 1968, Heinle et al. 1977, Fauchald & Jumars 1979, Giere 2009), constitutes a 

variable proportion of the fine sediments of estuaries. In macrotidal estuaries, detritus is 

derived from both the catchment (rivers and surrounding land) and the sea, whereas in 

microtidal estuaries it enters predominantly from the catchment. The role of detritus and its 

associated bacteria in the nutrition of estuarine organisms, which does not apparently differ 

between macrotidal and microtidal estuaries, has been reviewed in detail by Heip et al. 

(1995). 

 

Sand bar dynamics  

Sand bars (see above) are formed by sediment transport resulting from either the interaction 

between the longshore current, which carries sediment, and the inlet current or by the onshore 

transport of sediment during periods of low freshwater flow (Ranasinghe et al. 1999). In 

regions where freshwater discharge is highly seasonal, such as California, southern Australia 

and southern Africa, sand bars sometimes form a barrier sufficiently large to prevent 

exchange with the sea (Figure 10; Elwany et al. 1998, Hodgkin & Hesp 1998, Ranasinghe & 

Pattiaratchi 1999, Cooper 2001, Rich & Keller 2013). These estuaries thus become either 

seasonally or normally-closed or even permanently-closed when freshwater discharge is 

particularly low, when they could be regarded as salt lakes or lagoons (Hodgkin & Hesp 

1998, Cooper 2001, Chuwen et al. 2009b).  

The amount of freshwater inflow from rivers is the most important factor in 

maintaining an open connection between microtidal estuaries and the ocean (Reddering 1988, 
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Elwany et al. 1998, Whitfield et al. 2008, Rich & Keller 2013). For example, the probability 

of the Carmel Estuary in California being open increases 10-fold as mean daily river flow 

increases from 0.2 to 1.0 m
3 

s
−1

, and is open on 98.5% of the days when river flow is greater 

than 0.5 m
3 

s
−1

 (Rich & Keller 2013). However, the tidal prism and magnitude of wave 

energy play a supporting role (Elwany et al. 1998). Thus, in South Africa, the amount of flow 

required to maintain an open mouth to an estuary ranged from 1 m
3 

s
−1

to 2 m
3 

s
−1 

on the lower 

energy south-western Cape coast to 5–10 m
3 

s
−1 

on the high energy KwaZulua Natal coast 

(Whitfield & Bate 2007). 

In south-western Australia, the sand bars at the mouths of seasonally-open estuaries are 

typically breached in the winter or spring as the volume of water in the estuary increases as a 

result of the heavy rainfall that occurs in that region during those seasons (e.g. Ranasinghe & 

Pattiaratchi 1999). The extent to which freshwater discharge influences whether an estuary 

becomes closed is illustrated by the fact that, in south-western Australia, the mean discharge 

of ~14 m
3 

s
−1 

for permanently-open estuaries is far greater than the ~2 m
3 

s
−1 

for seasonally-

open estuaries, which, in turn, is substantially greater than the 0.10 m
3 

s
−1

 and 0.13 m
3 

s
−1 

for 

normally and permanently-closed estuaries, respectively (Figure 11). This trend largely 

reflects a sequential decline in rainfall from the west, where the estuaries tend to be 

permanently-open, to the east, where estuaries are often normally closed (Hodgkin & Hesp 

1998).  

The breaching of the bar at estuary mouths is mainly brought about by the physical 

pressure from marked increases in freshwater discharge, but overwashing from the coastal 

environment immediately outside the estuary can also result in breaching (Figure 10E). This 

is achieved either by incision of the bar by overtopping waves or by landward erosion of the 

seaward side of the bar due to back wash (Rich & Keller 2013). During a 14 year period in 

the East Kleinemonde Estuary in southern Africa, short periods of overwash (<3 h), which 
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are usually associated with a specific high tide, occurred on 14% of the days, whereas longer 

periods (>3 h), which are primarily driven by storms, occurred on 2% of days (Whitfield et 

al. 2008). The effects of overwash, however, are not always sufficient to breach the bar and 

beaching due to overtopping alone is never protracted (Rich & Keller 2013). The frequency 

and magnitude of overtopping is essentially inversely related to bar height, with a low height 

requiring a lesser volume of freshwater discharge required to breach the bar.  

A few estuaries, such as the Moore River Estuary in south-western Australia, become 

intermittently-open to the ocean for a few hours to 18 days as a result of the effects of a 

substantial input from artesian springs, rather than of freshwater discharge derived from 

rivers (Young et al. 1997). Some other estuaries are intermittently-open through artificial 

breaching of the bar at irregular intervals (Brearley 2005). 

Estuaries that become closed from the sea, either seasonally, intermittently or normally, 

constitute 80% of the ~50 estuaries in south-western Australia (Potter & Hyndes 1999). 

Likewise, 75% of the total number of ~250 estuaries in southern Africa fall into this category 

(Whitfield 1998).  

 

Intertidal region 

The pronounced changes in tidal height within a tidal cycle, which occur in macrotidal 

estuaries, result in extensive intertidal areas becoming exposed at low tide. In macrotidal 

estuaries in the UK, it has been estimated, for example, that the percentage contribution of the 

intertidal area to the total area of the estuary is ~55% in rias and coastal plain estuaries and 

72% in bar-built estuaries (Figure 12; Davidson et al. 1991). These values are all far greater 

than the 3.5% recorded for bar-built estuaries in south-western Australia, which are 

microtidal (OzCoasts 2015).  Tidal range also influences the morphology of these areas, with 

their slopes increasing with increasing tidal range (Kirby 2000, Pritchard et al. 2002). 
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Phytoplankton 

The production, biomass and community composition of phytoplankton in estuaries are 

determined by the interplay between hydrodynamic and sedimentary processes, light 

penetration, nutrients and salinity, and by grazing pressure, principally from zooplankton and 

benthic suspension-feeding invertebrates (Lancelot & Muylaert 2011, Cloern et al. 2014). 

Each of these factors differs markedly between macrotidal and microtidal estuaries. 

Light is essential for phytoplankton growth, with the ratio between the euphotic depth 

and degree of vertical mixing of the water column determining the amount of light available 

to facilitate phytoplankton development (Kromkamp & Peene 1995, Irigoien & Castel 1997, 

Desmit et al. 2005). Freshwater inflow into estuaries results in stratification of the water 

column, which promotes the rapid production of phytoplankton blooms, whereas tidal 

stresses break down stratification and maintain sediments in suspension, thereby attenuating 

light and constraining phytoplankton production. Variability of phytoplankton production is 

therefore tied to both the seasonal discharge of fresh water and the input of tidal energy 

(Figure 13; Lancelot & Muylaert 2011, Cloern et al. 2014). 

Macrotidal estuaries are usually very turbid because strong tidal scour re-suspends 

bottom sediments, producing local accumulations of suspended particles at the turbidity 

maximum, which, together with river inputs of terrestrial material and irrespective of nutrient 

concentrations, inhibits light penetration and phytoplankton development (Cloern 1987, 

Fichez et al. 1992, Heip et al. 1995). Maximum turbidity zones are common in relatively long 

macrotidal estuaries (Uncles et al. 2002) and primary production is strongly light-limited in 

these regions (e.g. Soetaert et al. 1994a, Radke et al. 2010). Turbidity is typically greater in 

macrotidal than microtidal estuaries (Monbet 1992), and phytoplankton growth is 

predominantly light-limited by high turbidity in those with very large tidal ranges, such as the 
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San Francisco Bay Estuary (Cloern 1987), the Schelde Estuary (Soetaert et al. 1994a), the 

Gironde Estuary (Irigoien & Castel 1997) and the Severn Estuary (Joint 1984, Underwood 

2010).  

Phytoplankton biomass is affected not only by turbidity but also by tidal flow and 

residence time. If phytoplankton growth is faster than loss through grazing and 

sedimentation, its biomass will be greater in microtidal estuaries, which are characterized by 

longer residence times (Lucas et al. 2009). This relationship between phytoplankton biomass 

and residence time may be reflected seasonally in a single estuary. For example, the short 

residence time in the lower reaches of the Hudson River Estuary usually inhibits 

phytoplankton blooms, whereas, in years of low river discharge, residence time increases and 

phytoplankton blooms can develop (Howarth et al. 2000). In general, phytoplankton biomass 

in macrotidal estuaries tends to be greater during dry than wet summers (Lionard et al. 2008).  

As a result of the interplay of riverine inputs and tidal stress, and even when nutrient 

concentrations are equal, the mean chlorophyll a concentrations in low-energy microtidal 

estuaries are greater than in high-energy macrotidal estuaries, which is reflected in a 10-fold 

greater yield of chlorophyll a per unit nitrogen (Figure 14; Monbet 1992). Indeed, in terms of 

annual phytoplankton production, many of the highest ranking estuaries in the world are 

microtidal, such as Chesapeake Bay on the eastern coast of the USA and the Swan River 

Estuary in south-western Australia (Figure 15).  

In turbid conditions, typical of macrotidal estuaries, tidal flows largely determine 

phytoplankton dynamics and diatoms tend to dominate the phytoplankton community 

throughout the year when nutrients are sufficient (Schuchardt & Schirmer 1991, Muylaert et 

al. 2000). Seasonal changes in the composition of phytoplankton largely reflect that of 

adjacent marine waters. On the other hand, seasonality and the horizontal distribution of 

phytoplankton in microtidal estuaries, which often occur in regions with Mediterranean 



32 

climates, are determined largely by seasonal variation in rainfall in the catchment and the 

resultant river inflows. For example, in the Swan River Estuary, the highly seasonal discharge 

of fresh water affects salinity, nutrient concentrations and the residence time available for the 

growth of phytoplankton taxa, which determines the seasonal succession of marine, estuarine 

and freshwater phytoplankton taxa and their spatial separation along the estuary (Thompson 

& Hosja 1996, Chan & Hamilton 2001). The greater phytoplankton biomass found in the 

upper estuary is correlated with the degree of stratification and mixing depth (Karandonis 

2004).  

Unusual patterns of rainfall can result in unpredictable effects on the phytoplankton in 

the Swan River Estuary, such as occurred in January 2000 when there was record maximum 

rainfall throughout much of the catchment of the estuary, followed within three weeks by a 

large, mono-specific bloom of the cyanobacterium Microcystis aeruginosa, with cell counts 

peaking at over 100,000 ml
−1

 (Robson & Hamilton 2004). Furthermore, the changes in the 

amount of freshwater discharge into Australian estuaries, due to anthropogenic effects and 

associated increases in nutrient loadings, have a significant impact on the composition and 

biomass of the phytoplankton communities (Chan & Hamilton 2001, Chan et al. 2002). 

Similar seasonal effects of river flows and nutrient concentrations have also occurred in the 

Wilson Inlet in Australia (Twomey & Thompson 2001, Haese & Pronk 2011), the Sundays 

Estuary (Kotsedi et al. 2012), Berg Estuary (Snow & Bate 2009) and Kowie Estuary (Dalu et 

al. 2014) in South Africa, the Patos Lagoon Estuary in Brazil (Abreu et al. 2010). 

Variation in freshwater inflows also influences the dynamics and composition of the 

phytoplankton in the microtidal Río de la Plata Estuary on the east coast of South America, 

although this estuary is funnel shaped rather than having the typical geomorphological form 

of microtidal estuaries elsewhere, and is consequently also influenced by tides, however 

small (Gómez et al. 2004, Calliari et al. 2005, Licursi et al. 2006, Silva et al. 2014). A subset 
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of microtidal estuaries is seasonally or intermittently open to the ocean by a sand-bar, and the 

biomass, production and taxonomic composition of the phytoplankton differ substantially 

between the open and closed phases. For example, in the Mdloti estuary, South Africa, 

phytoplankton biomass, primary production and the production:biomass ratio peaked during 

the open phase, which was attributed to a favourable combination of optimum light 

conditions, high influx of macronutrients and high water temperatures (Anandraj et al. 2008). 

Similarly, the productivity of phytoplankton in the intermittently-open Smiths Lake in eastern 

Australia increases during the open phases (Everett et al. 2007). However, this association is 

not consistent. For example, in two other South Africa estuaries, the Mhlanga and Mdloti, 

chlorophyll a concentrations were greatest when these estuaries were closed. 

As pointed out earlier (see ‘Water circulation and salinity’ section) the intermittent 

connection to the ocean and highly seasonal rainfall, which often characterize microtidal 

estuaries, can result in regions of these estuaries becoming hypersaline. In one such system, 

Lake St Lucia in South Africa, the salinity in 2010/11 ranged from 5–158 and the 

composition of the phytoplankton community changed markedly along a reverse salinity 

gradient (Nche-Fambo et al. 2015). Under low salinity conditions chlorophytes and 

cryophytes comprised the majority of the phytoplankton, whereas in high salinities and 

hypersaline conditions diatoms and dinoflagellates and then cyanobacteria dominated the 

community. A shift in phytoplankton community from chlorophytes and cryophytes to 

diatoms and dinoflagellates was also recorded along a reverse salinity gradient in the 

Coorong Estuary in South Australia (Jendyk et al. 2014). 

Macrotidal estuaries, in which phytoplankton production is strongly limited, rarely 

become eutrophic and the incidence of toxic algal blooms is minimal. In these estuaries, only 

a small proportion of the nutrients supplied by the rivers is used by the phytoplankton, 

whereas eutrophication and toxic algal blooms frequently manifest themselves in microtidal 



34 

estuaries where turbidity is lower and residence time longer. As a large proportion of the 

nutrients is utilized by the phytoplankton in microtidal estuaries these systems are much more 

sensitive to increases in nutrient input that might lead to excessively high phytoplankton 

biomass (Monbet 1992). Here, diatoms tend to dominate in spring when light levels are 

relatively low and stratification does not occur, as for example in Chesapeake Bay (Marshall 

et al. 2006), but dinoflagellates and cyanobacteria are usually more abundant in summer 

when residence times are long and turbidity is low, as in the Neuse–Pamlico Estuary, North 

Carolina (Valdes-Weaver et al. 2006). Elevated concentrations of dinoflagellates and 

cyanobacteria are symptomatic of eutrophication in microtidal estuaries and may result in 

serious environmental problems since many species in these two taxa are toxic and mainly 

responsible for the harmful algal blooms that frequently occur in microtidal estuaries 

throughout the world. These blooms have serious consequences, including large fish kills, as 

for example in the Peel-Harvey Estuary in south-western Australia (Potter et al. 1983b, 

Lenanton et al. 1985), and an increased danger to human health through diarrhetic and 

paralytic shellfish poisoning, as for example in Alfacs Bay on the Mediterranean coast of 

Spain (Artigas et al. 2014). 

The amount of grazing on estuarine phytoplankton by zooplankton is relatively low in 

macrotidal estuaries. Due to the relatively long generation time of the dominant calanoid 

copepods, their biomass is limited by the low residence time of the water (Pace et al. 1992). 

These copepods are very sensitive to anoxic conditions and may thus be absent in extremely 

polluted estuaries with low oxygen concentrations (Appeltans et al. 2003), which are 

particularly prevalent in microtidal estuaries. Although zooplankton feed on phytoplankton, 

even in turbid macrotidal estuaries (Tackx et al. 1989, Tackx et al. 1990), the grazing 

pressure of mesozooplankton on phytoplankton in estuaries is generally less than in other 

ecosystems, even in microtidal ones such as Chesapeake Bay (White & Roman 1992). The 
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inability of larger zooplankton to feed efficiently on the small constituents that constitute the 

microphytoplankton could account for the lower grazing pressure in a microtidal South 

African Estuary (Froneman 2006). 

Grazing on phytoplankton by suspension feeding benthic macroinvertebrates is 

precluded in extremely turbid macrotidal systems, such as the Severn Estuary in the UK, 

because their filtering mechanisms cannot cope with clogging by dense suspensions of inert 

particles (Warwick 1984, Warwick et al. 1991, Warwick & Somerfield 2010) and, in any 

case, very little phytoplankton is present under these conditions. However, the potential for 

these suspension feeders to control phytoplankton biomass under less turbid conditions is 

staggering. For example, it is estimated that the entire volume of water in the Oosterschelde 

Estuary, the Netherlands, is filtered by benthic suspension feeders, principally cockles 

(Cerastoderma edule) and mussels (Mytilus edulis), in only 3.7 days (Smaal et al. 1986, 

Dame et al. 1991, Dame & Prins 1997). Since the residence time of water in this estuary is 

between one and three months (Wollast 1988), these organisms clear phytoplankton from 

each litre of water many times. Not surprisingly, the Scheldt was the only estuary in a review 

of 131 estuarine systems that had negative net annual phytoplankton production (Cloern et al. 

2014). In the Bay of Brest, the assemblage of suspension feeding bivalves, ascidians, 

barnacles, sponges, polychaetes, etc. filters the total volume of the Bay in just three days 

(Hily 1991). Dame & Prins (1997) reviewed phytoplankton production in eleven relatively 

large, open estuaries, which were bivalve-dominated or contained bivalve mariculture. They 

found that successful populations of filter-feeding bivalves were characterised by short 

volume clearance times and tended to be found in systems with relatively short residence 

times and high rates of phytoplankton production in relation to standing crop. This allowed a 

high bivalve biomass to be sustained. The situation in smaller microtidal systems with 
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restricted access to the open sea is not known, and would be a worthwhile topic for future 

study.  

A comparison of the factors influencing phytoplankton production in macrotidal and 

microtidal estuaries is depicted in Figure 16. The large tidal water movements in macrotidal 

estuaries result in scour and re-suspension of sediment particles into the water column, 

thereby increasing turbidity and decreasing light penetration (Figure 16). Phytoplankton 

production thus becomes light-limited and the community dominated by diatoms. In contrast, 

when discharge is low in microtidal estuaries, turbidity is also low and light penetration is 

relatively high, resulting in large densities of phytoplankton, which, in turn, can support 

communities of filter-feeding invertebrates (Figure 16). While the composition of 

phytoplankton in these systems varies seasonally, in response to temporal variations in 

rainfall, it is typically dominated by dinoflagellates and cyanobacteria during summer when 

residence times are longer. Finally, the far longer residence times of water in microtidal 

estuaries, combined with their low turbidity, can result in the production of large blooms of 

phytoplankton, some of which can be toxic.  

 

Microphytobenthos 

The microphytobenthos comprises diverse assemblages of photosynthetic diatoms, 

cyanobacteria, flagellates and green algae, which, when light penetrates, form biofilms on 

sediment surfaces (Underwood 2001). Despite their abundance on intertidal mud and sand 

flats and in shallow subtidal regions, the microphytobenthos has been studied far less than 

phytoplankton, which occurs in all aquatic environments. This is probably due to their 

inconspicuousness and to a lack of interest from oceanographers, who do not include them in 

marine food webs. MacIntyre et al. (1996) and Miller et al. (1996) have referred to 

microphytobenthos as the “Secret Garden”. 
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Fine cohesive sediments are dominated by motile microphytobenthic species that are 

termed ‘epipelic’ biofilms, whereas, in coarser non-cohesive silty sands and sands, the 

microalgae are attached to individual sand and silt particles and are termed ‘epipsammic’. 

Epispammic assemblages also usually contain a substantial proportion of epipelic taxa 

(Underwood 2001). 

In turbid macrotidal estuaries, the microphytobenthos inhabits large intertidal areas of 

unvegetated tidal flats and fringing salt-marshes and their ecology is relatively well 

understood and comprehensively reviewed (e.g. Underwood & Kromkamp 1999, Underwood 

2001). The majority of photosynthesis in fine cohesive sediments occurs within the top 200–

400 µm, although in sandy sediments, where light penetration can be greater, photosynthesis 

can occur down to approximately 2 mm (Underwood 2001). Photo-inhibition of 

microphytobenthos at high irradiances is avoided by a combination of physiological 

strategies, which overcome the effects of high light intensities, while vertical migrations 

within the sediment maximize exposure to light and avoid the risk of overexposure 

(Underwood & Paterson 1993, Kromkamp et al. 1998, Perkins et al. 2001, Serôdio et al. 

2001, Underwood et al. 2005).  

The epipelic microalgae on mudflats only photosynthesize during diurnal tidal 

exposures of the surficial photic layer of the sediment (Joint 1978, Guarini et al. 2000) and 

photosynthesis ceases when the flats are inundated by turbid water and at night. As much as 

50% of the microphytobenthos in the upper millimetres of the sediment has been estimated to 

migrate downwards during the flood tide, thus avoiding the effects of scouring associated 

with large tidal water movements (Pinckney et al. 1994, Smith & Underwood 1998). The 

microbial community of the microphytobenthos is remarkably resistant and resilient to 

relatively long-term desiccation and rewetting, a feature essential for success in the intertidal 

areas of macrotidal estuaries (McKew et al. 2011).  
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Although the biomass and production of the epipelic microphytobenthos are not 

considered nutrient limited (Admiraal et al. 1982, Underwood et al. 1998), nutrient regimes 

may influence the taxonomic composition, with certain taxa affected differentially by levels 

of specific nutrients (Underwood & Kromkamp 1999, Underwood 2001). Epipelic diatoms 

exude copious amounts of extracellular polymeric substances that may help increase the 

stability of the sediment by gluing and binding its particles, thereby reducing the likelihood 

of resuspension of diatoms and sediment (Underwood & Paterson 1993, Paterson & Black 

1999, Perkins et al. 2001, Stal 2010). However, 30 to 50% of the epipelic microphytobenthic 

biomass can be resuspended in the water column (de Jonge & van Beusekom 1995, Irigoien 

& Castel 1997). The energy of tidal flow that causes resuspension of sediments tends to be 

greater toward the lower shore, where sediments are intrinsically less stable due to their 

higher water content. Consequently, the biomass and production of microphytobenthos tend 

to be greater toward the upper shore, which also has a longer photoperiod.  

Epipelic biofilms provide a major food source for deposit-feeding macrobenthos, and 

particularly of those that feed at the surface of the substratum, such as the bivalve 

Scrobicularia plana (Figure 17; Hughes 1969), and some fish species, such as the Thick-

lipped Grey Mullet Chelon labrosus, which use their gill-rakers to filter epipelic biofilms 

from the sediment they have ‘sucked in’ (De Silva 1980, Romer & McLachlan 1986). 

Microphytobenthos is also an important component of the diet of species in the meiobenthos, 

but the degree to which the meiobenthic grazers regulate microphytobenthic biomass has not 

been quantified. Resuspended microphytobenthos will also be grazed in the same way as 

phytoplankton (see above). Primary production by the microphytobenthos in macrotidal 

estuaries is at least equivalent to and often greater than that of phytoplankton (Underwood & 

Kromkamp 1999). For example, in the Lynher Estuary, UK, the net carbon production of 
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microphytobenthos of 143 g m
−2 

y
−1

 is substantially greater than the 81.7 g m
−2 

y
−1

 produced 

by phytoplankton (Joint 1978). 

The ecology of microphytobenthos in microtidal estuaries is less well understood than 

in macrotidal systems, with the microtidal estuaries of southern Africa being the most 

studied. Although intertidal flats and fringing marshes are far less extensive in microtidal 

than macrotidal estuaries, the water in microtidal systems is typically clear rather than turbid 

and thus the majority of microphytobenthic production occurs in submerged sediments.  

The productivity of microphytobenthic algae in many microtidal estuaries is 

exceptionally high as a result of the positive ratio of euphotic depth to total depth (Adams et 

al. 1999, Perissinotto et al. 2000). In the large St. Lucia Estuary, South Africa, the average 

concentration of microphytobenthic chlorophyll a was 201 mg m
–2

, with a maximum value of 

2576 mg m
–2

 (Perissinotto et al. 2010a), both of which are among the highest reported for any 

estuarine ecosystem, including those impacted by eutrophication (McLusky & Elliott 2004). 

In many estuaries in South Africa, the biomass of microphytobenthic algae is 1–3 orders of 

magnitude greater than the biomass of phytoplankton in the water column (Adams et al. 

1999, Nozais et al. 2001, Perissinotto et al. 2002, Perissinotto et al. 2003). In South Africa, 

the microphytobenthic biomass in temporarily-open systems, which represent 73% of all 

estuaries (Nozais et al. 2001), is generally greater than in permanently-open estuaries (Adams 

et al. 1999, Snow et al. 2000a, 2000b). Major changes in microphytobenthic standing stocks 

are related to the alternation of open and closed phases, generally being highest during closed 

phases (Nozais et al. 2001, Froneman 2002, Perissinotto et al. 2002, Mundree et al. 2003, 

Perissinotto et al. 2003). A study in the Mdloti Estuary indicated that the community of 

microphytobenthos was physiologically healthier during the open than closed phase, when 

the phaeopigment to chlorophyll a ratio indicated a “stressed” community (Mundree et al. 

2003).  
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Similar trends have been observed in the microtidal estuaries of Australia. In Wilson 

Inlet, in south-western Australia, the microphytobenthos makes the largest overall 

contribution to primary production, with its dominance greatest in summer when the estuary 

is closed (Figure 18; Haese & Pronk 2011). Microphytobenthos is also the dominant primary 

producer in Lake Illawarra, New South Wales, Australia, where the coastal tidal range is 

1.8 m, but, because of the narrow entrance, the range in this estuary is only 3–4 cm and the 

residence time is as long as 60 days (Webster et al. 2002).  

There are, however, exceptions to the above trends. In contrast to other seasonally-open 

estuaries in South Africa, the microphytobenthic biomass in the Van Stadens Estuary was 

greater during open than closed periods (Skinner et al. 2006). This uniquely oligotrophic 

intermittently-open estuary is sand dominated, with the mouth breaching at irregular 

intervals. Microphytobenthic biomass was most affected by the concentration of soluble 

reactive phosphorus introduced from the catchment. In the more normal situation, as for 

example in the Mdloti Estuary in South Africa, nutrients in the overlying water do not 

apparently have a significant impact on the microphytobenthic biomass (Nozais et al. 2001, 

Mundree et al. 2003). 

Despite weak tidal currents, benthic microalgae in microtidal estuaries frequently 

become resuspended into the water column. In the Venice Lagoon many benthic taxa, such as 

Amphora, Cocconeis, Navicula, Nitzschia, Pleurosigma and Thalassiosira, were more 

abundant in the water column than exclusively planktonic diatoms (Facca et al. 2002). 

Similarly, Hosja and Deeley (2000) found a high proportion of normally benthic species in 

surface waters of the Leschenault Estuary in south-western Australia, consistent with very 

shallow depths and significant wind mixing for much of the year. In South African estuaries, 

benthic microalgae constitute the staple food item of the mysid Gastrosaccus brevifissura, 

and results of stable isotope analysis suggest that other major pelagic grazers, such as 
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calanoid copepods, are also able to utilize this rich food source; their energetic demands 

could not be sustained by phytoplankton alone (Perissinotto et al. 2003). 

 

Macrophytes 

Vascular plants 

Salt marshes and seagrass beds are of major ecological importance in estuaries, acting as 

sources of food and habitats for a variety of other organisms. Salt marshes, comprising, for 

example, glassworts (Salicornia spp.) and cordgrass (Spartina spp.), are very extensive in the 

intertidal region of macrotidal estuaries and are recognized as one of the most productive 

ecosystems in the world (Valiela & Teal 1979, Montague & Wiegert 1990, Heip et al. 1995), 

with net production increasing as tidal range increases (Figure 19; Steever et al. 1976). On 

the other hand, seagrasses, which cannot tolerate long periods of exposure to the air, undergo 

maximum development in the sandy sediments of the shallow waters of microtidal estuaries, 

in which there is little tidal scour and low turbidity. This environment thus provides suitable 

substrata for seagrasses and favourable light conditions for photosynthesis (Larkum et al. 

2006). The relative development of these two groups of vascular plants in macrotidal and 

microtidal estuaries is, however, a matter of degree rather than mutual exclusivity. For 

example, a small seagrass (Zostera) bed is present in the Severn Estuary, UK, near the 

turbidity maximum, in probably the most turbid estuary in the UK and with the second 

highest tidal range in the world (Langston et al. 2003b), while small areas of salt marsh fringe 

several of the permanently-open microtidal estuaries in south-western Australia 

(e.g. Backshall & Bridgewater 1981, Pen 1987, Pen et al. 2000, Svensson et al. 2007), and 

even some seasonally-open estuaries in South Africa (e.g. Riddin & Adams 2008, Tabot & 

Adams 2013). 
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Salt marshes 

Salt marshes in macrotidal estuaries exhibit considerable geographic variation. In the 

northern hemisphere, very extensive salt marshes of Spartina alterniflora occur in the lower 

intertidal zone of macrotidal estuaries on the Atlantic and Gulf coasts of North America 

(Ibanez et al. 2012). These are highly productive, with a net carbon production of up to 

1 kg m
−2 

y
−1

 which can be exported to the estuary and adjacent waters (Heip et al. 1995). In 

contrast, salt marshes on the Atlantic coast of Europe lack vascular plants in the lower 

intertidal zone (Beeftink 1977). Instead, they are typically confined to the upper intertidal 

area, above the point of the lowest neap high tides, where a serial change in species 

composition with tidal height is found (McLusky & Elliott 2004). These marshes do not 

appear to export significant amounts of particulate organic matter to the estuary (Hemminga 

et al. 1992, Hemminga et al. 1993) and may even import such material (Dankers et al. 1984). 

However, in European salt marshes, there is a net export of dissolved nitrogen (Boorman et 

al. 1994). Nutrient outwelling from salt marshes enhances estuarine phytoplankton and 

zooplankton production, which, in turn, support commercial fisheries. Intertidal salt marshes 

also play a role in the physical dynamics of macrotidal estuaries. Water is stored temporarily 

at tidal frequency in these marshes, which increases the local residence time (Wolanski 

2007). Saltmarsh plants also play a key role in enhancing sedimentation from the turbid 

estuarine waters when the vegetation is greater than 8 cm in height (Boorman et al. 1998). 

It is a sine qua non that intertidal salt marshes are less extensive and of less ecological 

importance in microtidal than macrotidal estuaries (Ibanez et al. 2012). Early maps of the 

global distribution of salt marshes (Chapman 1977), which was reproduced in Ibanez et al. 

(2012), indicate that such marshes are not present from the microtidal regions of South Africa 

and south-western Australia. However, although small in area, salt marshes are present in 

these latter two regions. In South Africa they are found only in the estuaries of the Cape 
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Coast and, while they occur in about 70 of the Cape’s 155 estuaries, three quarters of South 

Africa's total saltmarsh area is concentrated in just four places: the Langebaan Lagoon 

(5700 ha), the Knysna Estuary (1800 ha), the Olifants River Estuary (200 ha) and the 

Swartkops Estuary (170 ha), all of which are permanently open (Adams et al. 2008). As 

Langebaan receives no freshwater inflow, it is a lagoon rather than an estuary, and the extent 

of truly estuarine salt marsh is very small.  

Although salt marshes are better developed in estuaries with regular tidal exchange, 

they do occur in some seasonally-open estuaries. The frequency and duration of an open 

mouth in an estuary determines whether a salt marsh is present and the distribution of salt 

marsh species is determined mainly by specific environmental habitats associated with 

periods of tidal inundation and salinity (Adams et al. 1999). The large supratidal salt marsh 

areas in the Ncizele Estuary in the Eastern Cape of South Africa may have resulted from 

seawater overwash creating high salinity conditions, and the extensive salt marsh in the 

Cefane Estuary also in the Eastern Cape may be due to this seasonally-open system being 

open relatively frequently, and having an average salinity of 21 (Walker 2004).  

In permanently-open estuaries, in which there is a relatively large tidal range for a 

microtidal system, zonation tends to be better developed, e.g. in the Knysna Estuary. Where 

small tidal ranges occur, vegetation forms mosaic patterns rather than well-defined zonation 

bands (Adams et al. 2008). O’Callaghan (1990) identified two types of saltmarsh 

communities in Cape estuaries, namely those associated with permanently-open estuaries 

where tidal exchange predominates and those associated with estuaries that are 

predominantly closed. Salt marsh tends to cover the whole of the intertidal area. Spartina 

maritima, which occurs in 18 of the larger permanently-open estuaries from MSL (Mean Sea 

Level) to MHWNT (Mean High Water of Neap Tides), is now beginning to invade some 
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seasonally-open estuaries (e.g. Adams et al. 2012), although it is absent from most of the 

latter type of estuaries because it requires an adequate tidal exchange (Adams & Bate 1995).  

Tidal levels from MHWNT to MHWST (Mean High Water of Spring Tides) are 

characterised by Sarcocornia perennis and numerous other species. As elsewhere, the above 

microtidal estuaries are susceptible to summer drought, salt stress and irregular flooding. 

Glassworts, such as Sarcocornia and Salicornia, are succulent and salt-tolerant and, because 

of their ability to withstand desiccation and salinity stress, are widely distributed in microtidal 

marshes and in the upper intertidal zone of macrotidal estuaries throughout the world (Ibanez 

et al. 2012). In marshes associated with seasonally-open estuaries, e.g. Kleinmond Lagoon, 

Cotula coronopifolia is present in the lower reaches, while Sporobolus virginicus, Juncus 

kraussii and Samolus sp. occur further up the system.  

The pattern of distribution of Spartina maritima and Sarcocornia perennis on the 

shores of microtidal regions of southern Brazil, Uruguay and Argentina (Isacch et al. 2006) is 

similar to that of permanently-open estuaries in South Africa. Indeed, Adam (1990) has 

argued that there is an overall similarity of flora and vegetation in salt marshes in the 

estuaries of South Africa, south-western and south-eastern Australia, New Zealand and 

temperate South America, which are mainly microtidal, and that they differ from the flora of 

typical macrotidal estuaries in the northern hemisphere.  

Salt marshes are also not extensive in the microtidal estuaries of south-western 

Australia. Relatively small areas of fringing vegetation are found in several of the 

permanently-open estuaries, such as the Peel-Harvey (Backshall & Bridgewater 1981) and 

Swan-Canning (Pen 1987), but are essentially absent from seasonally-open estuaries such as 

the Broke and Wilson inlets (Hodgkin & Clark 1988b, 1989, Haese & Pronk 2011). Although 

Spartina does not occur naturally in these estuaries, Sarcocornia is found in the higher 
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salinity regions near the mouth of some that are permanently-open, e.g. the Blackwood 

estuary (Congdon 1981). 

Seagrasses 

As the biology and ecological role of seagrasses has been comprehensively described by 

Larkum et al. (2006), the present review only considers the characteristics that distinguish 

macrotidal from microtidal estuaries. The distribution of seagrasses is controlled by turbidity, 

water velocity, salinity, substratum, nutrient availability, temperature and water depth, with 

light availability and substratum considered the most important controlling factors (Howard-

Williams 1979, Howard-Williams & Allanson 1981, Spence 1982, Weisser et al. 1992). In 

estuarine areas where the sediment is constantly being modified by dynamic processes, 

seagrasses are absent. Ideal conditions favouring their establishment in estuaries are high 

water clarity, limited sedimentation, low water velocity (characteristics of microtidal 

estuaries) and a suitable salinity range for each species. The light requirements for seagrasses 

are greater than those of other marine plants, presumably because of the high photosynthetic 

demand to survive in rooted anoxic conditions (Adams & Riddin 2007). Although turbid 

events (floods or storm events) may be tolerated for short periods, they have the potential to 

affect the distribution and abundance of seagrasses (Larkum et al. 2006). 

Of the four genera of seagrasses typical of temperate estuaries (Zostera, Ruppia, 

Potamogeton and Zannichellia), Zostera is the most common in macrotidal estuaries, where it 

occurs to a depth of up to 1 m and may also be found on the lowest levels of the shore where 

it may be exposed briefly to air during low spring tides (McLusky & Elliott 2004). Generally, 

current speeds greater than 1 m s
−1

 result in the removal of submerged plants (Adams et al. 

1999), and Zostera appears to be more resistant than other genera to physical disturbance. In 

the microtidal estuaries of South Africa and south-western Australia, Ruppia spp. are the 

most frequent seagrasses (Congdon 1981, Adams & Riddin 2007, Haese & Pronk 2011) and 
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may be the only angiosperms in some seasonally-open estuaries, such as Wilson Inlet in 

south-western Australia (Haese & Pronk 2011). They are physiologically well adapted to the 

microtidal environment, particularly in the case of seasonally-open estuaries. Ruppia species 

are found in highly diluted, almost fresh waters and in hypersaline waters where they can 

tolerate salinities up to three times the concentration of seawater, as well as in continental 

saltwater lakes and ponds completely isolated from the sea (Tyler-Walters 2001, Den Hartog 

& Kuo 2006).  

The salinity tolerance of each seagrass species varies, with some able to survive rapid 

salinity fluctuations (Kantrud 1991, Murphy et al. 2003). Ruppia spp. are poor competitors 

with other more vigorous aquatic plants and, therefore, occur most frequently in 

environments of variable salinity and temperature that other species cannot tolerate 

(Verhoeven 1979). However, they appear to be more sensitive to physical disturbance than 

Zostera spp. For example, in the Swartvlei Estuary in South Africa, where mixed stands of 

Ruppia and Zostera occur, Zostera was found at the channel edges and Ruppia in the more 

sheltered sections (Howard-Williams 1980). Ruppia has a very delicate, shallow root system 

that makes it susceptible to turbulence, with currents of approximately 0.5 m s
−1

 resulting in 

mechanical damage, while those of less than 0.1 m s
−1

 favour its growth and establishment 

(Kantrud 1991). However, the leaf base detaches easily in turbulent water, which helps 

prevent damage to the root system (Verhoeven 1979). In the case of Ruppia spp., an increase 

in suspended sediment of 100 mg l
−1

 is likely to have a significant effect (Tyler-Walters 

2001) and a 40% reduction in light intensity can result in a 50% reduction in the standing 

crop (Congdon & McComb 1979).  

High nutrient concentrations in the water column generally have an adverse effect 

through reducing light availability due to increased epiphyte and macroalgal growth and 

phytoplankton blooms. Twilley et al. (1985) found that epiphyte growth in nutrient-enriched 
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conditions reduced the light incident on Ruppia leaves by >80%, resulting in significant 

decreases in biomass. Ruppia spp. generally occurs in water depths greater than 0.5 m and 

can be found down to 10 m in very clear water (Adams & Riddin 2007). They occur at 

shallow depths (<1.5 m) on fine, clay sediments, but at 2 m or more on sand or shell substrata 

(Tyler-Walters 2001). The resistance of Ruppia spp. to aerial exposure is very low and after 

desiccation, all plant parts, except ripe seeds, die within a few days (Verhoeven 1979). 

Similarly, Tyler-Walters (2001) reported that exposure for one hour will result in a loss of 

Ruppia stands. This duration of exposure also influences seed germination, and Ruppia seeds 

will not germinate in moist soil, but need to be covered with water (Kantrud 1991).  

 

Macroalgae 

Brown seaweeds, such as Fucus and Ascophyllum play a relatively minor role in the ecology 

of estuaries, being confined to hard substrata, such as rock outcrops, quays and piers, which 

cover a very small proportion of the total estuarine area (McLusky & Elliott 2004). Such 

habitats are found in macrotidal estuaries where tidal currents scour sediment from hard 

surfaces, and some larger permanently-open microtidal estuaries that are open to shipping. 

They are virtually absent in seasonally-open microtidal estuaries. On the other hand, green 

algae such as Ulva and Cladophora colonize soft substrata and are common intertidally in 

macrotidal estuaries and subtidally in microtidal estuaries that receive high inputs of 

nutrients, particularly nitrogen. An increase in eutrophication over the last five decades has 

resulted in increased macroalgal production (Soulsby et al. 1985), being greatest where, as in 

microtidal estuaries, tidal scour is relatively low (Heip et al. 1995). In macrotidal estuaries, 

strong tidal currents may dislodge algae and wash them out to sea. For example, water 

currents of 1.22 m s
−1

 in Langstone Harbour, UK, washed out Ulva (=Enteromorpha) 

(Lowthion et al. 1985), and currents of 1.4 m s
−1

 in the Mondego Estuary in Portugal had the 
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same effect (Martins et al. 2001). The macroalgal species in the microtidal seasonally-open 

estuaries of South Africa are opportunistic, being able to tolerate fluctuating salinity, 

proliferating when the estuary mouth is closed and being washed out to sea when open 

(Adams et al. 1999). Nevertheless, biomass and production in macrotidal estuaries can be 

high. For example, the maximum biomass of Ulva (=Enteromorpha) spp. on a mudflat in the 

Coos Bay Estuary, Oregon, USA, reaches 1050 g m
−2

 (dry weight) with an annual carbon 

production of 1060 g m
−2 

y
−1

 and, unlike the microphytobenthos, nearly all photosynthesis 

appears to take place during submersion rather than aerial exposure (Pregnall & Rudy 1985, 

Heip et al. 1995). 

  Ulva (=Enteromorpha) and Cladophora grow more rapidly than thicker algae due to 

their distromatic structure and higher nutrient uptake rates (Fletcher 1996, Raffaelli et al. 

1998), resulting in accumulations that can reduce the water quality of estuaries. Upon 

decomposition, oxygen in the water column may become depleted and sediments may 

become anoxic when large floating mats settle to the bottom under low flow conditions 

(Sfriso et al. 1987, Sfriso et al. 1992, Valiela et al. 1992). In the microtidal Venice Lagoon in 

Italy, this has caused mortalities among fish and invertebrates (Sfriso et al. 1992). A shift to 

anoxic sediment can lead to a change in the structure of the infaunal community (Raffaelli et 

al. 1991, Ahern et al. 1995) and subsequently affect bird populations (Raffaelli et al. 1989). 

In the microtidal estuaries of South Africa, extensive rotting growths of Ulva produce 

noxious sulphidic odours, affecting recreational activities, as occurs for example in the 

Swartvlei Estuary during summer (Howard-Williams 1979). Decaying mats of Cladophora 

and Ulva also adversely impact the social acceptability of water in the Great Brak and 

Kleinemonde estuaries and are often the reason for manipulating the opening of the mouth 

(Adams et al. 1999). Even more severe problems have been encountered in the microtidal 

estuaries of south-western Australia, and particularly in the Peel-Harvey Estuary, the largest 
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estuary in the region. During the 1960s, this estuary started to become highly eutrophic 

through the input of nutrients from surrounding agricultural land and other sources such as 

piggeries (McComb & Lukatelich 1995). This eutrophication was reflected in the 

development of massive growths of Cladophora, Chaetomorpha and Ulva species, 

particularly in Peel Inlet, which was accompanied by an increase in the biomass of 

commercial fish species (Steckis et al. 1995). Although permanently open prior to 1994, the 

natural entrance channel was narrow and thus restricted the amount of the exchange of water 

with the sea. To ameliorate the problems associated with eutrophication, an additional 

artificial channel to the sea was constructed some distance from the natural entrance channel 

to increase tidal exchange between the estuary and the ocean. This helped flush nutrients out 

of the estuary and, as a consequence, the extent of macroalgal growths in this system declined 

(Water and Rivers Commission 1998). This was accompanied by a decline in the overall 

abundance of fishes and a change in their species composition (Young & Potter 2003a,b; 

Potter et al. 2016). 

 

Zooplankton 

Microzooplankton 

Microzooplankton, comprising mainly heterotrophic flagellates and ciliates, are ecologically 

important in estuaries as they provide a link between bacterial production and higher trophic 

levels. Heip et al. (1995) summarize their distribution and trophic role in estuaries, but 

information on their ecology in microtidal estuaries is insufficient to draw generalities 

concerning differences from macrotidal estuaries. The few studies in the microtidal Nyara 

and Kasouga seasonally-open estuaries in South Africa (Walker et al. 2001, Froneman 2002, 

Froneman 2004b) suggest that the abundances of microheterotrophs are typically greatest 

during the closed phase of the estuary and lowest after breaching events. Froneman (2006) 
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suggests that the elevated abundances during the closed phase can probably be attributed to 

the increased residence time of water and the low concentrations of macronutrients, which 

promote the establishment of the microbial loop. This suggests that, in general, 

microzooplankton are more abundant and play a greater ecological role in microtidal than 

macrotidal estuaries as a result of their having longer residence times. 

Mesozooplankton 

Mesozooplankton species are categorized as either autochthonous, i.e. undergoing their 

whole life in estuaries, or allochthonous, i.e. do not originate in the estuary but are advected 

into the estuary from either the river or the sea. Differences in the relative proportions of 

autochthonous and allochthonous species and their relative salinity tolerances constitute 

major differences between macrotidal and microtidal estuaries (Figure 20). The three 

estuarine usage groups are analogous to the estuarine usage functional group of fishes (Potter 

et al. 2015a,b; see ‘Categorisation of the ways that fish use estuaries’ section). Unlike fishes, 

however, the spatial and temporal distributions of these groups depend, throughout life, on 

passive transport in the water body, rather than active swimming, and will depend more on 

tidal currents, the strength of which distinguishes macrotidal from microtidal estuaries.  

There is insufficient information to allocate each mesozooplankton species to a single 

group. For example, individual species of Acartia and Centropages may belong to either the 

estuarine autochthonous or the marine allochthonus group. As very few freshwater species 

are able to tolerate even small amounts of salt, allochthonous freshwater plankton is generally 

unimportant in estuaries (Grindley 1981). The relative proportions of the other two groups 

vary considerably between macrotidal and microtidal estuaries. At one extreme, as in some 

small strongly tidal estuaries such as the Mundaka and Adour opening into the Bay of Biscay, 

autochthonous zooplankton is completely absent (D’Elbee & Castel 1982, Villate 1991) 
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whereas, at the other extreme, the zooplankton in some microtidal seasonally-open estuaries 

in South Africa are almost exclusively autochthonous (Froneman 2006).  

The relatively few species of estuarine autochthonous mesozooplankton belong mainly 

to the calanoid copepod genera Eurytemora and Acartia in Europe and North America, to 

Pseudodiaptomus in North America and South Africa and to members of the Centropagidae 

in Australia (Grindley 1981, Miller 1983, Heip et al. 1995). These endemic species may be 

perennial or, as with species of Acartia and Eurytemora, may endure periods of 

environmental adversity as resting eggs in the bottom sediment (Grice & Marcus 1981, Næss 

1991). In turbid macrotidal estuaries, where primary production is limited, the diet of 

mesozooplankton may be supplemented with detritus and associated bacteria, and thus enable 

high population densities to be maintained throughout the year (Heip et al. 1995 and 

references therein). In these macrotidal estuaries, the potential problem for autochthonous 

mesozooplankton of being continuously lost to the sea is ameliorated by mechanisms such as 

selective vertical migration during the ebb and flood of the tide, i.e. selective tidal stream 

transport (see later; Bosch & Taylor 1973, Miller 1983, Ueda et al. 2010). Although the 

strength of tidal currents is greatly reduced in microtidal estuaries, species of copepod and 

mysid maintain their position in the lower reaches of the Sundays River Estuary in South 

Africa by remaining in deeper water during flood and ebb tides or moving laterally into areas 

with slower currents (Wooldridge & Erasmus 1980).  

The zooplankton of microtidal estuaries has been studied most intensively in southern 

Africa. Mesozooplankton in the seasonally-open microtidal estuaries in that region are almost 

exclusively autochthonous, comprising mainly copepods of the euryhaline genera Acartia and 

Pseudodiaptomus which can account for >85% of total zooplankton abundance and biomass 

(Coetzee 1981, 1985, Perissinotto et al. 2000, Froneman 2001, 2002, 2004a, 2006). Here, 

relatively low levels of taxonomic diversity are generally associated with prolonged periods 
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of mouth closure, reflecting the poor representation of marine- and freshwater-breeding 

species (Froneman 2004a, Perissinotto et al. 2004, Froneman 2006). In permanently-open 

microtidal estuaries, mesozooplankton diversity is greater, due to an increased contribution to 

total diversity by allochthonous marine-breeding species and, particularly in those estuaries 

with sustained freshwater inflow, by allochthonous freshwater species (Wooldridge 1999). In 

freshwater-deprived systems, the phytoplankton, because of their small size, cannot be fed on 

directly by the few dominant species of large zooplankton and thus phytoplankton production 

is made available to higher trophic levels through the trophic intermediary of heterotrophic 

microzooplankton (Froneman 2002, 2004c, 2006).  

The breaching of many seasonally-open estuaries in South Africa is accompanied by a 

considerable decline in both the total abundance and biomass of zooplankton (Froneman 

2004a, Bernard & Froneman 2005). This is by no means a consistent phenomenon, since the 

productivity of phytoplankton and zooplankton increases during the open phase in the 

microtidal Smiths Lake in eastern Australia. The microtidal estuaries of south-western 

Australia have been less intensively studied, but in the seasonally-open Wilson Inlet, which is 

breached each year, the main taxa of zooplankton are allochthonous marine species rather 

than autochthonous estuarine species (Gaughan & Potter 1995). Worldwide, copepods also 

dominate the allochthonous marine component of the estuarine mesozooplankton, typically 

the calanoid genera Acartia, Centropages, Paracalanus, Pseudocalanus and Temora and the 

cyclopid genus Oithona (Heip et al. 1995 and references therein). For example, the 

zooplankton of the lower region of the permanently-open Swan River Estuary is dominated 

by species of Acartia, Centropages, Paracalanus, Temora and Oithona (Gaughan & Potter 

1994). Although this suggests that there is a strong allochthonous marine component, there is 

also a small allochthonous freshwater component in winter, represented by the cladoceran 

Daphnia. 



53 

In macrotidal estuaries, there is some debate as to whether allochthonous marine 

mesozooplankton thrive or suffer. Mortality may result from salinity stress or poor feeding 

conditions. In the Westerschelde Estuary in northern Europe, for example, Soetart & Herman 

(1994) estimated that some 1500 t dry weight of zooplankton entered, died and decomposed 

in the estuary annually. In such estuaries, there is considerable seasonal variation in the 

abundance and biomass of the predominant allochthonous marine mesozooplankton, since 

they depend on the seasonal primary production in the sea. For example, in the Severn, Neuse 

and Westerschelde estuaries, biomass may be one to several orders of magnitude greater in 

spring and summer than in winter (Collins & Williams 1982, Mallin et al. 1991, Soetaert & 

Van Rijswijk 1993), contrasting with the much less pronounced variation in the 

autochthonous estuarine mesozooplankton of microtidal estuaries, and particularly in those 

that are periodically closed. There is some indirect evidence that microtidal estuaries, with 

their greater water clarity, higher phytoplankton production and longer residence times 

support a greater biomass of zooplankton than macrotidal estuaries. It is thus relevant that, in 

the Oosterschelde Estuary in northern Europe, zooplankton biomass rose after the 

construction of an artificial barrier that increased both residence time and water clarity 

(Bakker & van Rijswijk 1994). However, due to the lack of strictly comparable data, it is not 

possible, at present, to make generalizations regarding differences in zooplankton biomasses 

in macrotidal and microtidal estuaries.  

 

Benthic invertebrates  

Meiobenthos 

The comprehensive review of the ecology of estuarine meiobenthos by Heip et al. (1995) 

focused mainly on macrotidal estuaries, as there was a paucity of observational or 

experimental data for microtidal estuaries available at that time. Although, some research has 
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been undertaken on the meiobenthos of estuaries of southern Africa and southern Australia in 

the last two decades, the data are still too sparse to make unequivocal statements about the 

effects of tidal regimes.  

The most abundant meiobenthic taxa in most estuaries, irrespective of tidal regime, are 

free-living nematodes, followed usually by harpacticoid copepods and then an assortment of 

taxa, including turbellarians, gastrotrichs and kinorhynchs. In contrast to the marine and 

freshwater macrofauna, many species of the marine and freshwater meiofauna have a greater 

tolerance to the salinity stresses of brackish water (Giere 2009), and consequently this group 

has a far higher species diversity in estuaries than the macrobenthos. The feeding 

relationships of meiofauna are very complex, with their species capable of feeding on 

detritus, bacteria, diatoms and other members of the meiobenthos or by absorbing dissolved 

nutrients (Chia & Warwick 1969, Coull 1988, Feller & Warwick 1988), and they may often 

feed discriminately and selectively on items of a particular size, shape and quality (Alongi & 

Tietjen 1980, Warwick 1981, Schiemer 1984). Food is generally derived from the sediment, 

and very few meiobenthic species filter feed on phytoplankton from the water column.  

Species diversity is maintained by the partitioning of food resources in the 

microscopically-structured sedimentary environment, and is not as dependent on sediment 

stability as the macrobenthos, which relies on spatial segregation on a macro-scale (Warwick 

et al. 1990). Intuitively, then, the relatively high species diversity would be expected to be 

maintained, even in the unstable sediments of tidally-scoured macrotidal estuaries, as well as 

in the more stable sediments of microtidal estuaries. Furthermore, meiofaunal densities are 

greater in the intertidal areas of macrotidal estuaries where microphytobenthos production 

and biomass are greater than in the subtidal (Smol et al. 1994, Soetaert et al. 1994b), whereas 

the reverse is true in microtidal estuaries where the subtidal areas are rich in 
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microphytobenthos due to high water clarity and sediment stability (Rosa & Bemvenuti 

2005).  

Very little information is available on the ecology of meiofauna in the microtidal 

estuaries of southern Africa (Perissinotto et al. 2010b). In the seasonally-open Mdloti 

Estuary, South Africa, meiofaunal abundance was substantially greater when the estuary 

mouth was closed than when open (Nozais et al. 2005). This is consistent with the 

microphytobenthic standing stocks in seasonally-open South African estuaries generally 

being greatest in the closed phase (Nozais et al. 2001, Perissinotto et al. 2002). During the 

closed phase, meiobenthic abundances in the seasonally-open Mdloti Estuary are comparable 

with those in permanently-open estuaries in southern Africa (e.g. Dye & Furstenberg 1981, 

Nozais et al. 2005). In contrast, the densities of meiobenthos in the intermittently open/closed 

“coastal lakes” (ICOLLs) in south-eastern Australia were generally higher in open than in 

closed lakes (Dye 2005). Here, the abundance of meiobenthos generally decreased with 

increasing distance from the sea, and nematodes, copepods and turbellarians were 

characteristic of assemblages near the mouths of the lakes, while polychaetes and 

oligochaetes (arguably true meiobenthos) characterized more isolated areas (Dye & Barros 

2005).  

Meiobenthic densities can remain high even in the hypersaline conditions that may 

develop in microtidal estuaries after long periods of closure. For example, after a long period 

of closure, the inner areas of the St. Lucia Estuary in South Africa became hypersaline, and 

although taxonomic diversity in these areas decreased, with an overwhelming dominance of 

nematodes and harpacticoids, the total meiofaunal density did not differ significantly from 

outer areas that had not become hypersaline (Pillay & Perissinotto 2009). 

For the most part, taxonomic studies of estuarine meiobenthos have been conducted at 

coarse levels of taxonomic resolution (phylum, class and order), and there is little 
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comparative information regarding the way in which tidal regimes influence species 

distributions. However, comparison of the nematode species composition (the dominant 

component of the meiobenthos) in the macrotidal Exe Estuary in south-western England 

(Warwick 1971, Field et al. 1982) with that of the microtidal Swan River Estuary in south-

western Australia (Hourston et al. 2005, 2009, 2011) may serve as an exemplar of the kinds 

of differences to be expected. The former has a mean tidal range of 3.8 m at spring tides 

(Langston et al. 2003a), compared with only ~0.4 m in the latter (Hodgkin & Hesp 1998). 

The great differences in the extent and sediment characteristics of the intertidal regions in 

those two estuaries necessitated the use of different sampling designs. In the Exe, the 

majority of the estuarine area (64%) is exposed at low tide, and sediment characteristics and 

salinity both vary along the longitudinal axis of the estuary and from the upper to lower shore 

(Davidson et al. 1991). Sampling was therefore conducted along four intertidal transects in 

the upper, middle and lower reaches of the estuary and on the adjacent fully marine coast. 

Sampling was undertaken at MHWST, MHWNT, MTL (Mean Tide Level), MLWNT and 

MLWST except in the upper estuary where the MHWST level could not be sampled due to 

the presence of a sea wall (Figure 21A). In the Swan River Estuary, the intertidal area is 

extremely small (4%) and thus nematodes were sampled at 12 shallow subtidal (<2 m deep) 

sites located at intervals throughout the length of the estuary and at a marine coastal site just 

outside its mouth (Figure 21B).  

Shade plots (Clarke et al. 2014b) have been constructed to compare the patterns of 

distribution of species within the Exe and Swan River estuaries and their adjacent coastal 

areas (Figure 22). For this purpose, the abundances of each species in each sample were 

fourth-root transformed and averaged across replicates and seasons to provide a single value 

for each site. The transformed data for each species at each site in each estuary were then 

standardized by calculating their percentage contribution to the total number of individuals at 
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that site and estuary. The standardized data for the sites in each estuary were used to produce 

a shade plot for each estuary. The columns in each shade plot, which represent a site, are 

ordered in a sequence from coastal marine waters (left) to the upper reaches of the estuary 

(right). The species, each representing a single row, are ordered using a constrained seriation 

procedure to give the closest possible correlation with a serial sequence (Clarke et al. 2014a). 

The magnitude of the shading in the plot thus provides a simple way of visualizing the 

contribution of each species at each site in each estuary, ranging from white, when that 

species was absent, through various shades of grey and then to black when it reached 

maximum contribution (Clarke et al. 2014b).  

The patterns of distribution of species along the two estuaries vary markedly. Thus, 

species present in the Exe Estuary gradually change in a serial manner from the fully marine 

transect (sites 15–19) through to the upper estuarine transect (sites 1–4), with some species 

disappearing and others appearing along that axis (Figure 22A). Many of the species found in 

the Exe Estuary are also found outside this estuary. In contrast, the various species recorded 

in the Swan River Estuary are found at sites throughout this system and differ markedly from 

those in nearby coastal waters (Figure 22B). However, the percentage contributions of certain 

species differed between sites 1-6 downstream and 7-12 upstream in the Swan River Estuary 

(see also Hourston et al. 2011).  

The above differences in the patterns of distribution of nematode species in the Exe and 

Swan River estuaries are commensurate with the effects of the marked differences in the tidal 

range in the two systems. Thus, the strong tidal currents in the Exe Estuary result in 

longitudinal and lateral habitat heterogeneity in terms of sediment granulometry and 

interstitial salinity in the estuary, with individual nematode assemblages having specific 

habitat requirements. The strong tidal exchange permits transport of resuspended meiofauna 

between the open sea and the lower reaches of the estuary, with a gradual change species 
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composition in habitat type and across this interface. Coarse well-oxygenated sands are found 

both outside the estuary and inside its mouth and many species are found in both regions. The 

trend in the Swan River Estuary results from limited tidal exchange between the coast and 

estuary, with an abrupt change in species composition between these two environments, and a 

similar suite of species, albeit with different percentage contributions, throughout the estuary 

itself. This lack of intra-estuarine habitat heterogeneity reflects the lower overall species 

richness recorded in the Swan River than Exe estuaries. 

 

Macrobenthos 

Although omnivory is a general strategy for survival of estuarine macrobenthos, and caution 

must thus be exercized in categorizing this fauna into narrow feeding groups (Herman et al. 

1999), the main general distinction between suspension feeders and deposit feeders is 

important when comparing the dynamics of macrotidal and microtidal estuaries. Suspension 

feeders filter their food directly from the water column, while deposit feeders feed on organic 

material produced on or physically deposited onto the sediment surface (surface-deposit 

feeders). This organic material is subsequently incorporated deeper into the sediment by 

physical and biological processes and consumed by deep-deposit feeders. 

The biomass of suspension feeders in estuaries is generally food limited, and is highest 

in well-flushed estuaries with short residence times where the food supply is continuously 

replenished with new seawater (Smaal & Prins 1993, Heip et al. 1995, Dame & Prins 1997). 

The biomass of suspension feeders per unit water volume is closely related to the residence 

time of the water (Figure 23). The data used to compile this graph do not include, however, 

any microtidal estuaries and the form of the graph is substantially affected by both the very 

high biomass and short residence time (0.5 days) at the island of Sylt in the Wadden Sea, and 

the very low biomass and long residence time (10,000 days) in the Askö area of the Baltic 
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Sea, both of which are coastal rather than true estuarine locations. Furthermore, 

hydrodynamical constraints on a local scale almost invariably result in the patchy occurrence 

of suspension feeders, and their highest levels of biomass, production and filtration capacity 

are generally found in only a small fraction of the total area of an estuary (Heip et al. 1995, 

McLusky & Elliott 2004). Thus, extrapolation of data from mussel or oyster beds, for 

example, over whole estuaries should be treated with caution. However, sites with low 

current velocities are intrinsically unfavourable for suspension feeders (Sanders 1958, Heip et 

al. 1995) and, if the relationship holds for microtidal estuaries with long residence times, they 

would be predicted to have a relatively low biomass of suspension feeders. This may be at 

least partially compensated for by the generally higher levels of phytoplankton production in 

microtidal than macrotidal estuaries (see ‘Phytoplankton’ section).  

In highly turbid macrotidal systems, such as the Severn Estuary, suspension feeding 

macrobenthos are virtually absent because their filtering mechanisms cannot cope with 

clogging by dense suspensions of inert particles (Warwick 1984, Warwick et al. 1991, 

Warwick & Somerfield 2010), and, in any case, very little phytoplankton is present under 

these conditions. Suspension feeding standing stocks will thus be greatest in estuaries with 

both a strong tidal flow and relatively clear water in which living phytoplankton of high 

nutritional quality is continually replenished. In such estuaries, as for example the Schelde 

and Ems estuaries in northern Europe, the biomass of macrobenthos is highest in that part of 

the estuary nearest the sea, due to the high abundance of suspension feeders (Meire et al. 

1991, Ysebaert et al. 2003). 

The food of macrobenthic deposit feeders is of generally of poorer quality than that of 

suspension feeders, often comprising over 95% inorganic material (Heip et al. 1995). This 

poses a particular sorting problem for deep deposit feeders but less so for surface deposit 

feeders in which the edible fraction is more concentrated as microphytobenthos and freshly 
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deposited phytoplankton. Although large quantities of organic material may be present in the 

sediment, an inability to process sufficient amounts of sediment to meet their dietary 

requirements may limit the growth of deposit feeders. They also face the problem of low 

oxygen concentrations. This is particularly true for microtidal estuaries in which physical 

diffusion of oxygenated water into the sediment is minimal, and biologically mediated 

diffusion is also reduced due to the small body size of the biota. In the upper reaches of the 

microtidal Swan River Estuary in south-western Australia, for example, oxygen penetrated 

only to a depth of 1.0–1.5 mm (Norlem et al. 2013), as it does in most shallow productive 

estuaries (Heip et al. 1995). On the other hand, suspension feeders can maintain a flow of 

oxygenated surface water via siphonal or tentacular mechanisms while living in sediments 

low in oxygen.  

It is difficult to allocate many macrobenthic species to a particular feeding mode 

because they may be facultative deposit/suspension or deposit/predatory feeders. 

Nevertheless, despite the disadvantages of deposit-feeding life, it is clear that the 

macrobenthos of both macrotidal and microtidal estuaries is generally dominated by deposit-

feeding species, with isolated dense beds of suspension feeders being found in some 

macrotidal situations. For example, in the microtidal Peel-Harvey Estuary in south-western 

Australia, species that can be unequivocally allocated to a single feeding mode numerically 

comprised 61.9% deposit feeders and 1.2% suspension feeders in 1986–7 and subsequently 

71.8 and 0.2%, respectively, in 2003–4 after radical attempts to ameliorate the effects of 

extreme eutrophication (Wildsmith et al. 2009). In both the upper and lower reaches of the 

macrotidal Tamar Estuary, UK, deposit feeders were overwhelmingly dominant, both 

numerically and in terms of biomass (Figure 24; Warwick & Gee 1984). 

The experience of the present authors with the macrobenthic faunas of macrotidal 

estuaries in the UK and microtidal estuaries in south-western Australia gives the subjective 
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impression that the average body size in the latter estuaries is much less, although it has not 

been possible to substantiate or generalize this observation with strictly comparative data. 

Several explanations for this possible phenomenon can be invoked. The south-western 

Australian estuaries are numerically dominated by taxa that are tolerant to environmental 

degradation, i.e. with high AMBI (a marine biotic index in which high scores denote high 

levels of disturbance) scores, probably due to the detrimental effects of natural accumulations 

of organic material in estuaries with long residence times (Tweedley et al. 2014b and 

references therein). The sediment trapping efficiency in such estuaries is very high and up to 

80% of the organic material from the catchment and marine sources may be trapped in the 

low energy central basin (Patchineelam et al. 1999, Roy et al. 2001). It is well known that 

small r-selected species are stimulated by high organic loads, and deep-dwelling species are 

replaced by surface or sub-surface deposit feeders (Pearson & Rosenberg 1978, Weston 1990, 

Herman et al. 1999). On the other hand, although almost constant in concentration, organic 

material derived predominantly from eucalypt leaves in the catchment would be of poor 

nutritive value and slow to decay (Bunn & Davies 1990), resulting in a low assimilation 

efficiency and precluding high rates of respiration, growth and reproduction in the 

predominantly deposit-feeding assemblage. Heip et al. (1995) have argued that such factors 

would favour the development of K-selected species with large body size. However, such 

high organic loadings may result in severe and frequent hypoxia (Cottingham et al. 2014, 

Tweedley et al. 2015a), with insufficient time between hypoxic events for animals to grow to 

an appreciable size. Also, the benthic fauna in these estuaries is restricted to the surface layer 

of sediment, no deeper, for example, than 10 cm in the Swan River Estuary (Rose 1994), 

offering no protection from predation and little opportunity for animals to reach their 

physiological lifespan. 
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In macrotidal estuaries the pattern of macrobenthic species richness follows the 

generalized model of Remane & Schlieper (1971), with high diversity of oligohaline species 

at the freshwater end (salinity 0.5–5) and stenohaline marine species near the mouth (salinity 

>25), with a lower diversity of obligate estuarine and euryhaline species in the brackish 

middle reaches (salinity 5–18). This trend is not apparent in the microtidal estuaries of 

southern Africa where, in both marine- and freshwater-dominated permanently-open 

estuaries, species richness declines progressively in an upstream direction (Branch & 

Grindley 1979, Hodgson 1987, Schlacher & Wooldridge 1996). There is a more uniform 

distribution of species in seasonally-open estuaries (e.g. Koop et al. 1983) and freshwater-

deprived permanently-open estuaries, which could be related to the predominance of 

euryhaline species and the virtual absence of any horizontal patterns in physico-chemical 

variables (Henninger et al. 2011). Species richness and diversity are nevertheless highest in 

these freshwater-deprived permanently-open systems (Teske & Wooldridge 2001). Although 

fewer species are usually present in seasonally-open estuaries, the density of the 

macrobenthos can be higher than in permanently-open systems (Teske & Wooldridge 2001). 

River-dominated permanently-open estuaries tend to have lower macrobenthic densities, 

species richness and diversity than estuaries in the other categories (Teske & Wooldridge 

2001). Although data for macrobenthic species in south-western Australian estuaries are 

limited, the species richness of this fauna in the permanently-open Swan River Estuary and 

the seasonally-open Broke Inlet both have a uniform distribution with no longitudinal 

gradient (Valesini et al. 2009, Tweedley 2011). 

Fish 

Categorization of the ways that fish use estuaries  

Any attempt to compare the ecology of the fishes in macrotidal and microtidal estuaries 

requires a thorough understanding of the ways in which the various species use these 
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systems. Indeed, it has long been recognized that such species can be categorised using such 

criteria (e.g. Cronin & Mansueti 1971, Haedrich 1983, Potter et al. 1990, Elliott & Dewailly 

1995, Potter & Hyndes 1999, Whitfield 1999). Those early studies led to the development by 

Elliott et al. (2007) of the Estuarine Usage Functional Group (EUFG), which was recently 

refined by Potter et al. (2015a). This scheme recognizes that, irrespective of estuary type, the 

species in these systems can be assigned to one of four main categories, i.e. marine, estuarine, 

diadromous and freshwater (Figure 25 and 26). Marine species are those that spawn at sea, 

estuarine-resident species comprise those that complete their life cycle within the estuary, 

diadromous species constitute those that feed at sea and migrate into fresh water to spawn or 

undergo the reverse migration, and freshwater species are those that spawn in fresh water. 

Each of the above four categories are subdivided into a number of guilds (Figure 25 and 26).  

In terms of number of species, the fish faunas of estuaries are dominated by marine 

species and particularly so in macrotidal systems (see ‘Contributions of the numbers and 

abundances of species to the EUFG’ section). Many of these species can be regarded as 

adventitious visitors, as they are typically in low abundance in estuaries and are usually found 

in their lower reaches. These species thus represent the ‘marine straggler’ guild, which 

includes stenohaline species, such as most sharks, skates and rays (Figure 25a). Occasionally, 

however, such species may be relatively abundant in the main body of both macrotidal and 

microtidal estuaries, when the salinities there are close to that of seawater (Potter & Hyndes 

1994).  

Many of the most abundant species in particularly macrotidal estuaries are ‘marine 

estuarine-opportunists’, which typically enter estuaries as larvae or young juveniles and 

spend variable amounts of time in this environment before returning to the sea (Figure 25B). 

The estuary thus acts as a nursery area for these species (Blaber & Blaber 1980, Beck et al. 

2001), with the abundant food available in these systems facilitating rapid growth and thereby 
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a reduction in their susceptibility to predation (Le Pape et al. 2003, Yamashita et al. 2003, 

Potter et al. 2011, Veale et al. 2015). Numerous marine estuarine-opportunists also use 

sheltered nearshore marine environments as well as estuaries as nursery areas, with the 

relative use of these two environments varying among species and according to the extent 

that one or both of those environments are present in the area (Lenanton & Potter 1987, 

Gillanders et al. 2003, Able 2005, Able & Fahay 2010). 

The third guild within the marine category, ‘marine estuarine-dependent’ (Figure 25B), 

comprises a few species whose juveniles require the protected environment of estuaries for 

survival (Blaber 1981, Wallace et al. 1984, Bennett et al. 1985, Whitfield 1999). Such species 

are found in southern Africa, where the coast lacks the sheltered nearshore areas that would 

reduce exposure to the turbulent wave action that characterizes those waters (Whitfield & 

Elliott 2011). The term ‘estuarine-dependent’ is often used less explicitly and its meaning 

may vary according to how an estuary is defined (Able 2005). 

The estuarine category contains fewer species than the marine category, which is 

largely attributable to the problems posed to eggs and larvae by the turbid conditions and 

salinity fluctuations found in estuaries, and particularly those in macrotidal areas (see 

‘Adaptations for spawning in estuaries’ section). Those species that complete their life cycle 

within the estuary constitute the ‘solely estuarine’ guild (Figure 25C). A number of species 

spawn, however, in both estuaries and marine waters outside those systems. While some of 

these species are represented by discrete populations in estuaries and coastal waters, as with 

Cnidoglanis macrocephalus (Ayvazian et al. 1994), and thus constitute the ‘estuarine & 

marine’ guild (Figure 25D), other species are represented by contiguous populations that 

cross the barrier between the estuary and the ocean (Able & Fahay 2010). A few species 

spawn in tributary rivers and estuaries and thus constitute the ‘estuarine & freshwater’ guild 

(Figure 25E). However, the extent to which the assemblages of such species in these two 
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environments are discrete has generally not been established. The fourth guild within the 

estuarine category, i.e. ‘estuarine migrant’ (Figure 25F), comprises species whose larvae are 

sometimes flushed out to sea and often return to the estuary on flood tides (Whitfield 1989, 

Neira & Potter 1992a). Note that, because distinctions have not always been made between 

the different guilds of the estuarine category, and as a main thrust of the section on fishes in 

this review is whether the individuals of a species found in estuaries complete their life cycles 

in these systems, such species are, for convenience, all included under the umbrella term 

‘estuarine residents’.  

Estuaries act as a crucial route through which species of the diadromous category 

migrate between fresh water and the sea. This category comprises species that spawn in rivers 

and migrate to the sea where most of their growth takes place, i.e. the ‘anadromous’ guild 

(Figure 26A), and those that spawn in the sea and migrate to rivers where growth occurs, 

i.e. the ‘catadromous’ guild (Figure 26B). Although there are few diadromous species, this 

category does contains some important taxa, such as the anadromous species of salmonids 

and lampreys and the catadromous eels. The upstream migration of a few ‘anadromous’ 

species only extends as far as the upper estuary and they constitute the ‘semi-anadromous’ 

guild (Figure 26C), and the downstream migration of a few catadromous species only 

progresses as far as the mouth of the estuary and therefore constitute the ‘semi-catadromous’ 

guild (Figure 26D). The fifth guild of the diadromous category, i.e. ‘amphidromous’, is 

represented by species that spawn in fresh water and/or the estuary and whose larvae are 

consistently flushed out to sea, where they grow and then later return to an estuary and/or 

river, where the majority of growth occurs (Figure 26E; McDowall 2007, Tweedley et al. 

2013).  

The ‘freshwater’ category comprises species that spawn in fresh water, but are found in 

estuaries. It contains those species that essentially stray into the low-salinity upper reaches of 
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the estuary, i.e. the ‘freshwater straggler’ guild (Figure 26F), and the ‘freshwater estuarine-

opportunist’ guild (Figure 26G), which contains species that are found regularly downstream 

of the oligohaline reaches of estuaries. 

Composite studies on the ichthyofaunas of eastern North America and Europe 

Nordlie (2003) used data for the ichthyofaunas of 20 estuaries on the eastern seaboard of 

North America to quantify the number of species that represented a particular group on the 

basis of how they used the estuary, thus employing essentially the approach used later in the 

Estuarine Usage Functional Group (EUFG) scheme (Elliott et al. 2007, Potter et al. 2015a). 

Marine species were found to contribute as much as 70% to the total number of species, with 

marine estuarine-opportunists and marine stragglers comprising 17.7 and 52.3 %, 

respectively. Estuarine-resident species and diadromous species contributed only 9.3 and 

5.5%, respectively, with freshwater species constituting the remainder. The contribution 

made by marine species declined with latitude, whereas that of diadromous species (in this 

case anadromous species) increased. Those trends thus followed a gradient from low to high 

tidal ranges, i.e. microtidal to macrotidal. The pronounced tendency for anadromous species 

to occur most frequently in the northern subpolar/cool-temperate and thus macrotidal 

estuaries of the Northern Hemisphere was noted previously by McDowall (1988). 

Franco et al. (2008) adopted a similar approach to that of Nordlie (2003), using 

ichthyofaunal data from 38 estuaries throughout Europe to elucidate the overall structure of 

fish communities in this region. As in eastern North America, European estuarine faunas, in 

terms of number of species, were dominated by marine species (58%) and the contributions 

by estuarine residents (19%) and diadromous species (9%) were low, with the remainder 

comprising freshwater species. Following a detailed study of the biological characteristics of 

fish species in the Severn Estuary, which has a particularly high tidal range, Claridge et al. 
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(1986) concluded that the vast majority of species were marine and that few completed their 

life cycle within this estuary. 

In their analyses of feeding strategies of fishes in European estuaries, using the guilds 

in the EUFG, Franco et al. (2008) demonstrated that marine estuarine-opportunist species 

feed on the hyperbenthos, shifting, as they increase in size, from small to large benthic prey 

and/or to fish. The food of estuarine-resident species consists predominantly of small benthic, 

epibenthic and hyperbenthic prey, such as mysids, shrimps and fish larvae. There is a strong 

tendency for fish species in estuaries to feed on detritivorous invertebrates and, while detritus 

is a crucial component of estuarine food webs, fish, in general, do not feed directly on this 

material (Franco et al. 2008), an exception being provided by mugilids (Odum 1968, Eggold 

& Motta 1992). Some estuarine and marine species feed, however, on zooplankton, 

phytoplankton, resuspended microphytobenthos and organic particulate material, especially 

in the highly productive estuaries entering the Baltic and North seas, which accounts for the 

large numbers of planktotrophic pelagic species, such as clupeoids, in those waters.  

When likewise adopting a guild approach for reproductive modes, the results of Franco 

et al. (2008) demonstrated that most of the marine species found in European estuaries 

produce pelagic eggs, whereas the vast majority of estuarine residents have adaptations that 

facilitate retention of their eggs and larvae within the estuary, thereby reducing the likelihood 

of being flushed out to sea. These adaptations, which include the production of eggs that are 

benthic and often adhesive and mechanisms for parental care, are described in the section 

entitled ‘Adaptations for spawning in estuaries’. 

Transport and retention of the larvae of marine fish and crustacean species 

Most marine estuarine-opportunist species of teleost produce large numbers of pelagic eggs, 

which, after fertilization, are transported towards the shore where they typically enter 

estuaries as larvae (e.g. Boehlert & Mundy 1988, Elliott et al. 2007, Franco et al. 2008, Able 



68 

& Fahay 2010). Since, in permanently-open estuaries, there is typically a net outflow of water 

into the ocean and current speeds frequently exceed larval swimming speeds, such 

immigration by teleosts and also certain crustaceans requires behavioural adaptations that 

enable the larvae to exploit, for this purpose, particular characteristics of the circulation 

patterns in the estuary (Forward et al. 1999). 

In estuaries with a two-layer gravitational circulation, the outflow near the surface is 

partially balanced by a net inflow at the bottom of the water column (Pritchard 1967a, 

McLusky & Elliott 2004). The larvae of many marine species of teleost and certain species of 

mollusc and crustacean utilize this pattern of circulation (residual bottom inflow) in 

macrotidal estuaries to move upstream by remaining in bottom waters (Fortier & Leggett 

1982, Chen et al. 1997, Jenkins et al. 1999, Roegner 2000, Schultz et al. 2003, Hare et al. 

2005). This type of passive movement is often enhanced by employing selective tidal stream 

transport (STST), in which the larvae remain in the bottom waters during ebb tides and move 

towards the surface during flood tides (Figure 27), thereby enabling the larvae of some 

species to be transported several kilometres upstream through the estuary on a single tide and 

large distances over several tides or to disperse on reaching upstream areas (Geer Walker 

et al. 1978, Weinstein et al. 1980, Fortier & Leggett 1983, Jager & Mulder 1999). This is 

particularly advantageous as larvae have weak swimming ability and it greatly reduces the 

amount of energy that would otherwise be required to reach nursery habitats.  

From flux calculations for the larvae of three fish species at the mouth of Chesapeake 

Bay, Hare et al. (2005) concluded that wind forcing, as well as residual bottom inflow and 

STST, are responsible for the ingress of larvae into this microtidal estuary. The larval stages 

of catadromous species, such as the eels Anguilla rostrata and A. anguilla, also employ STST 

to move through estuaries and then employ counter-current swimming to penetrate upstream 

in rivers (McCleave & Kleckner 1982, Trancart et al. 2014). 
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When invertebrates (represented predominantly by crustaceans) undergo a vertical 

migration, this movement typically occurs nocturnally and almost invariably so when 

individuals have reached the post-larval and juvenile stages (Forward & Tankersley 2001). 

The vertical migrations of larval fish also typically occur at night (Norcross & Shaw 1984, 

Islam et al. 2007). An avoidance of well-lit areas of the water column during the day reduces 

the susceptibility of those stages to predation as they become larger and thus more vulnerable 

to detection by visual predators (Forward & Tankersley 2001, Gibson 2003, Islam et al. 

2007). While the larvae of the puffer fishes Takifugu rubripes and T. xanthopterus migrate 

vertically at night in the macrotidal Ariake Estuary, this movement is independent of tidal 

phase (Yamaguchi & Kume 2008).  

Selective Tidal Stream Transport is also used to move downstream in an estuary 

(Forward & Tankersley 2001). For example, the larvae (zoeae) of several species of fiddler 

crab in the genus Uca are released within estuaries at around high tide at night and are then 

exported offshore on the ebb tide, where they develop through to the post-larval (megalopae) 

stage (Morgan & Christy 1995, Christy & Morgan 1998, Petrone et al. 2005). This behaviour 

is mediated by a circatidal rhythm that involves an upward vertical migration during ebb 

tides, and a converse descending migration during flood tides, thereby ensuring that the 

larvae are not swept back upstream during such tides (López-Duarte & Tankersley 2007a,b). 

The juveniles of many species of penaeid prawns also use ebb tide transport to migrate 

downstream in estuaries to their spawning grounds in coastal marine waters (Dall et al. 1990).  

Some species of crustacean employ both ebb and flood tide transport at different stages 

in their life cycle. For example, once the zoeae of Uca spp. have metamorphosed into 

megalopae in coastal waters, they employ nocturnal flood tide transport to reach their nursery 

habitats in the estuary (Tankersley & Forward 1994).  
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STST is used not only for upstream and downstream movement in estuaries but also for 

retention within certain regions of these systems (Weinstein et al. 1980, Boehlert & Mundy 

1988). Larvae can also be retained within estuaries by moving laterally into areas of low 

current flow (Wooldridge & Erasmus 1980) or passively accumulating in such areas (Morgan 

et al. 1997). 

Although the two-layered circulation of estuaries in macrotidal regions and of those 

toward the upper end of the microtidal range provides an effective mechanism (STST) for 

fish and crustacean larvae to move rapidly many kilometres upstream, this is not the case in 

estuaries at the lower end of the microtidal range (Whitfield 1989). In the microtidal estuaries 

of south-western Australia and southern Africa, which typically contain a narrow and 

relatively shallow entrance channel, the tidal effect becomes rapidly attenuated in an 

upstream direction from the mouth (Spencer 1956, Hodgkin & Hesp 1998). The upstream 

flow in the middle and upper reaches during a tidal cycle in microtidal estuaries is thus very 

limited and does not therefore provide an effective mechanism for transporting larvae rapidly 

upstream through these systems. 

Marine estuarine-opportunist species, such as the sparid Rhabdosargus holubi, the 

monodactylid Monodactylus falciformis and the mugillid Liza richardsoni, enter the 

microtidal estuaries of southern Africa nocturnally on flood tides and mainly as post-larvae 

and thus after they have developed fins and an increased swimming ability (Beckley 1985, 

Whitfield 1989). They then move to the banks, where tidal flow is reduced, and subsequently 

travel slowly upstream.  

The use of conical plankton nets at night in the entrance channel of two estuaries in 

south-western Australia, a microtidal region, yielded the larvae of few marine estuarine-

opportunist species that are abundant as juveniles in the basins of these systems (Gaughan et 

al. 1990, Neira & Potter 1992a). As the larvae of these species were also not abundant in the 
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oblique plankton tows conducted in the entrance channel of one of those estuaries, these 

species may enter these systems predominantly as juveniles (Gaughan et al. 1990). This point 

requires verification by sampling for fish larvae and young juveniles along the shoreline of 

the entrance channels, as has been done in South Africa (Beckley 1985).  

As mentioned earlier, wind can assist the ingress of the larvae of marine estuarine-

opportunist fish species into microtidal estuaries, such as Chesapeake Bay (Hare et al. 2005). 

Likewise, in the permanently-open microtidal Mar Chiquita Estuary in Argentina, strong 

prevailing onshore winds (>10 m s
-1

) in summer are more influential than tidal effects in 

facilitating the recruitment of larval and juvenile fishes through the narrow entrance channel  

(Bruno et al. 2014, Bruno & Acha 2015). 

When microtidal estuaries become closed by a bar at their mouth, the larvae of marine 

estuarine-opportunists, such as Rhabdosargus holubi, Monodactylus falciformis and mugilid 

species, can exploit overwash of the bar from coastal waters for recruitment into these 

systems (Figures 10e, 28; Cowley et al. 2001). The importance of this recruitment mechanism 

in estuaries, such as the East Kleinemonde in South Africa, is demonstrated by the fact that, 

between March 1993 and August 1997, the mouth of this system was open for only 43 days, 

i.e. 2.6% of that period, whereas overwashing occurred on 421 days, i.e. 25.5% of that period 

(Cowley 1998). 

Ichthyoplankton within estuaries 

Emphasis on fish larvae, thus far, has been mainly placed on the mechanisms by which 

the larvae of marine estuarine-opportunist species enter and are transported through estuaries 

to their nursery habitats in these systems. However, some species use estuaries in other ways; 

i.e., as residents or as a migratory route (Figure 25 and 26).  

Most of the studies which have considered, in detail, the contributions made by the 

larvae of species belonging to the different EUFGs described earlier, have been undertaken in 
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microtidal estuaries. Whitfield (1989) separated the species found as larvae in the microtidal 

estuaries of southern Africa into four groups; 1) marine immigrants, 2) marine transients, 3) 

estuarine and 4) estuarine migrants. These groups correspond to the following guilds in the 

EUFG, 1) marine estuarine-opportunist, 2) marine straggler, 3) solely estuarine or estuarine 

& marine, and 4) estuarine-migrant (Figures 25, 26). As pointed out earlier, the last two 

groups are combined under the term ‘estuarine resident’ because individuals representing 

these species in estuaries would be expected to complete their life cycle within these systems. 

In south-western Australia, the semi-anadromous guild must also be added as a fourth group, 

because, although it is only represented by the clupeid Nematalosa vlaminghi, that species is 

very abundant in estuaries such as the Swan River (Chubb & Potter 1984). 

The numbers of species, recorded as larvae in permanently-open estuaries along the 

microtidal coasts of south-western Australia and southern Africa, far exceeds those in 

seasonally-open estuaries, which is attributable to a greater number of marine species and 

particularly of marine stragglers in those permanently-open systems (Neira & Potter 1992a, b, 

1994, Strydom 2003). This difference clearly reflects the fact that, unlike permanently-open 

systems, seasonally-open estuaries are often closed during the summer months when many 

marine species spawn. 

Although the percentage contributions of estuarine-resident species to the overall 

number of species of fish larvae in the permanently-open Swan River and Walpole-Nornalup 

estuaries were only 16 and 28%, respectively, their contributions to the total abundance of 

fish larvae were as high as 92 and 98%, respectively (Neira et al. 1992, Neira & Potter 1994). 

The contribution of the larvae of estuarine-resident species to the number of species in the 

ichthyoplankton of the seasonally-open Wilson Inlet was greater (64%) and such larvae 

represented over 99% of all individuals (Neira & Potter 1992b). In terms of abundance, the 

ichthyoplankton communities of permanently- and seasonally-open southern African 
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estuaries are also dominated by estuarine-resident species (Strydom 2003, Pattrick et al. 

2007, Strydom 2015). The above trends demonstrate that, irrespective of whether the mouth 

of an estuary remains permanently open or seasonally open, certain estuarine-resident species 

are very successful in the microtidal estuaries of south-western Australia and southern Africa. 

Remarkably, the dominance of the ichthyoplankton in estuaries in cool-temperate, 

warm-temperate and temperate/subtropical regions of southern Africa is due to exceptional 

numbers of one species, i.e. the clupeid Gilchristella aestuaria, with mean contributions as 

high as 77, 63 and 74% in those regions respectively (Strydom 2015). Estuarine-resident 

species of gobiid also made a substantial contribution to the ichthyoplankton of these 

estuaries. Gobiids made an overwhelming contribution to the ichthyoplankton of south-

western Australian estuaries, in which, in terms of abundance, this family contributed 

between 40 and 88% in the Swan River Estuary, Walpole-Nornalup Estuary and Wilson Inlet 

(Neira & Potter 1992b, Neira et al. 1992, Neira & Potter 1994). While certain species of 

goby, such as Caffrogobius gilchristi and Psammogobius knysnaensis in southern Africa and 

Favonigobius lateralis in south-western Australia, spawn in estuaries, many individuals of 

these species leave these systems as preflexion larvae on ebb tides and return as postflexion 

larvae on flood tides (Whitfield 1989, Neira & Potter 1992a).  

Gobiids of the genus Pomatoschistus, which are considered estuarine residents, are 

abundant in the ichthyoplankton of several European macrotidal estuaries (Faria et al. 2006, 

Marques et al. 2006, Ramos et al. 2006, Primo et al. 2011). The success of the Gobiidae in 

estuaries is related to this family possessing adaptations, e.g. demersal, adhesive eggs, which 

facilitate retention in these systems (Miller, 1984; Ramos et al. 2006). Although several 

species of atherinid are very abundant as juveniles and adults in south-western Australian 

estuaries, and the same is true for one species of atherinid in southern African estuaries 

(Potter & Hyndes 1999, James et al. 2007), this family is poorly represented in plankton tows 
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from those systems, which is attributable to their larvae being out of range of those tows as a 

result of their epibenthic schooling behaviour (Steffe 1990). 

A cluster dendrogram, derived from plankton sampling throughout the year emphasizes 

that the species composition of the ichthyoplankton in the Swan River Estuary changes 

markedly and progressively in an upstream direction from the morphologically distinct 

narrow entrance channel, i.e. the lower estuary, to the wide basins of the middle estuary and 

then to riverine upper estuary, which is characterised by reduced salinities (Figure 29; Neira 

et al. 1992). This reflected inter alia a progressive decline in marine species (marine 

stragglers and marine estuarine-opportunists) from 89% to 9.5% to <0.1%, whereas those of 

estuarine-resident species increased from 15% to 90.5% to 98% in the lower, middle and 

upper estuary, respectively (Neira et al. 1992). Even within the 8 km long entrance channel of 

this estuary, the contributions by the main marine species decreased sequentially in an 

upstream direction, whereas the reverse trend was true for the most abundant estuarine-

resident species (Gaughan et al. 1990). The above consistent trends reflect the very small 

tidal range and thus absence of an effective mechanism for relatively rapid tidal transport 

through the estuary. 

In certain south-eastern Australian microtidal estuaries, the larvae of the estuarine 

resident Acanthopagrus butcheri congregate in the immediate vicinity of the pronounced 

halocline that often forms in the upper (riverine) part in spring as freshwater discharge is 

declining, but still appreciable (Williams et al. 2012, 2013). This enables these larvae to 

exploit the zooplankton that likewise aggregate around the halocline. The larvae of Morone 

americana and M. saxatilis also congregate in the vicinity of the less pronounced halocline in 

Chesapeake Bay and particularly where estuarine turbidity and thus prey are greatest (North 

& Houde 2003).  
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Juvenile and adult fish 

Contributions of the numbers and abundances of species to the EUFG 

The catches of the juveniles and adults of species in the different guilds in the EUFG have 

been collated for 11 macrotidal and 24 microtidal estuaries for which such data are available. 

This has enabled the number of species and number of individuals (abundance), which 

represent either one of three categories (estuarine, diadromous and freshwater) or one of two 

guilds (marine straggler and marine estuarine-opportunist) to be calculated. The data for the 

various estuaries represented either by shallow, nearshore and deep, offshore waters 

separately or collectively are represented in Figures 30–32. As the assignment of a few 

species to a particular category or guild sometimes differed between authors, the 

classification in Franco et al. (2008) is largely followed in this review. 

In terms of number of species, the contribution of the two main marine guilds in 

macrotidal estuaries collectively ranged from 53% in the Elbe Estuary to 81% in the Forth 

Estuary (Figure 30). However, the numbers of marine straggler species and their 

contributions ranged widely from two (14%) in the Canche Estuary and four (20%) in the 

Authie Estuary to 32 (56%) in the Tagus Estuary and 38 (52%) at Oldbury in the Severn 

Estuary. This wide range largely reflects differences in the amount of sampling as the number 

of marine stragglers, in particular, increases with sampling effort (Vasconcelos et al. 2015). 

The number of marine estuarine-opportunist species ranged from nine to 16 in all but two of 

the 11 macrotidal estuaries in which 22 and 29 such species were recorded. Six of those 11 

macrotidal estuaries contained only two estuarine-resident species, typically comprising a 

single species of gobiid and syngnathid. 

Many authors have pointed out that the strong tidal action and turbidity in macrotidal 

estuaries provide a hostile environment for the successful development of the eggs and early 

life cycle stages of fishes and also make those stages susceptible to being flushed out to sea 
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(Haedrich 1983, Elliott et al. 2007). This hostile environment accounts for only a few species 

capable of breeding successfully in macrotidal estuaries (Claridge et al. 1986, Lobry et al. 

2003, Franco et al. 2008). In this context, it is relevant that the numbers of estuarine-resident 

species in the three Portuguese estuaries (7–10) were greater than in the other macrotidal 

estuaries (2–3) and that the former estuaries are at the lower end of the macrotidal range 

(i.e. mesotidal) and thus subjected to less turbulent conditions. These estuarine residents 

comprised multiple species of gobiid, syngnathid and atherinid (Thiel et al. 2003, Pombo et 

al. 2007, Nyitrai et al. 2012). 

In terms of abundance, marine estuarine-opportunists dominated the ichthyofauna of six 

of the nine macrotidal estuaries for which there were data, constituting 55 to 91% of the total 

number of fish recorded. The low contribution of this guild in the Elbe Estuary is due to the 

domination of the catches by Osmerus eperlanus (86%), an anadromous species that is found 

throughout the estuary and spawns in riverine areas, which have not suffered from 

anthropogenic changes and contain an abundance of the zooplankton prey of O. eperlanus 

(Thiel & Potter 2001). Estuarine-resident species contributed less than 35% to the total 

number of fish in seven of the nine macrotidal estuaries and made a particularly small 

contribution in the Severn Estuary (Figure 30), which has by far the greatest tidal range. The 

exceptional contribution by estuarine-resident species to the ichthyofauna in the Tagus 

Estuary (68%) was due very largely to the contribution by gobies, Pomatoschistus spp. 

(61%), recognizing that this would almost certainly have included Pomatoschistus minutus, 

which was considered a marine estuarine-opportunist in the Severn Estuary (Potter et al. 

2001). 

As with macrotidal estuaries, the habitats in the nearshore, shallow and offshore, deeper 

waters of microtidal systems in various temperate regions of the world are used as a nursery 

area by a range of marine estuarine-opportunist species (Figures 31, 32). However, the extent 
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of the contributions by such species to the number of species and overall abundance varies 

markedly according to water depth and proximity to shore and with the extent to which the 

estuary mouth remains open to the ocean. 

 In the microtidal estuaries of south-western Australia and the microtidal Elkhorn 

Estuary in California, the contributions made by the number of marine estuarine-opportunist 

species and, to a far greater extent, by their overall abundance (Figures 31, 32), are greater in 

the deeper, offshore than in the corresponding nearshore, shallow waters. In nearshore waters 

in south-western Australia, the number of marine estuarine-opportunist species declines 

sequentially from 13-20 in permanently-open estuaries (e.g. Swan-Canning, Peel-Harvey 

estuaries) to six in seasonally-open estuaries (e.g. Broke and Wilson inlets) and 0–3 in 

normally-closed estuaries (e.g. Wellstead Estuary and Culham Inlet). The numbers of marine 

estuarine-opportunists in intermittently-open estuaries (e.g. Moore and Vasse-Wonnerup 

estuaries) lie at the lower end of the range in permanently-open estuaries. However, when 

expressed as percentage contributions, the values for marine estuarine-opportunists are 

greater in intermittently-open than permanently-open estuaries, because the number of marine 

stragglers is low (i.e. two versus 16–26) and thus the overall number of species is less. The 

small number of marine stragglers in intermittently-open estuaries is due to the closure of 

these estuaries for periods and their low salinities. In terms of overall abundance, the 

contributions of marine estuarine-opportunists decline from 17–47% in permanently-open 

estuaries to 2–5% in intermittently-open estuaries, to <1% seasonally-open and essentially 

zero in normally-closed estuaries (Figure 32).  

Although the contribution by the number of marine estuarine-opportunist species in 

nearshore, shallow waters of estuaries in the cool temperate region of South Africa did not 

exhibit a pronounced trend with respect to estuary type, the contributions, in terms of 

abundance, clearly declined sequentially from the permanently-open to seasonally-open to 
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normally-closed estuaries (Figure 31). Based on pooled data for the abundances in nearshore 

and offshore waters or solely for nearshore waters, marine estuarine-opportunists make 

relatively small contributions to the ichthyofaunas of estuaries in the Mediterranean and 

South America and in the Keiskamma, East Kleinmonde, Mgwalana and Bot estuaries in 

southern Africa (Figure 31). 

The numbers and contributions of estuarine-resident species, throughout temperate 

regions of the world, are typically greater in microtidal than macrotidal estuaries (cf. Figures 

30, 31, 32). The disparity is far more marked with abundance, with, for example, the 

contributions by such species to the ichthyofaunas of nearshore waters in microtidal estuaries 

typically ranging from 80 to 99% (Figure 31 and 32). Estuarine residents make a larger 

contribution, however, to the total number of species and, to an even greater extent, overall 

abundance of the ichthyofauna in the shallow, nearshore environment than in the deeper, 

offshore environment (Figure 32). Furthermore, and not surprisingly, estuarine residents 

dominate, to a greater extent, the overall abundance of fishes in estuaries that become closed 

to the sea for a period than in estuaries whose mouths remain permanently open (Figure 31 

and 32). 

As in macrotidal estuaries, the estuarine residents of microtidal estuaries include 

gobiids, with as many as four or five species being abundant and completing their life cycle 

within the estuaries of south-western Australia and southern Africa (Potter & Hyndes 1999, 

James et al. 2007, Valesini et al. 2014). The syngnathidae, which was frequently represented 

by a single species of estuarine resident in macrotidal estuaries, contains one or two such 

species in both south-western Australia and southern Africa (James et al. 2007, Valesini et al. 

2014). The Atherinidae are far better represented as estuarine residents in microtidal than 

macrotidal estuaries, with the numbers of a single species (Atherina boyeri) comprising 95% 

of all fish recorded in the Acquatina Estuary in Italy and four species being abundant in 
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estuaries along the south-west coast of Australia (Prince & Potter 1983,Potter et al. 1990, 

Hoeksema et al. 2009, Veale et al. 2014). In contrast to estuaries elsewhere, the ichthyofauna 

of those in southern Africa is dominated to a remarkable degree by an estuarine resident, the 

clupeid Gilchristella aestuaria (James et al. 2007, Strydom 2015). Other abundant estuarine-

resident species in south-western Australia include an apogonid, sparid and plotosid (Potter & 

Hyndes 1999). The greater diversity of estuarine-resident species in south-western Australia 

than at a similar latitude in southern Africa may have resulted from selection pressures for 

adaptations that would ameliorate the problems posed by the more extensive land-locking of 

estuaries in this region (Potter et al. 1993, James et al. 2007).  

Although the number of diadromous species that migrate through macrotidal estuaries 

is relatively small, some of these can be relatively abundant, as shown by the data for 11 

estuaries (Figure 30). The catadromous eel Anguilla anguilla is the most frequently caught 

diadromous species in those estuaries. Even so the abundance of A. anguilla would have been 

underestimated, however, because of the difficulty in obtaining a representative sample of the 

small, thin and translucent “glass eel” stage. Although the Atlantic Salmon, Salmo salar, uses 

estuaries as a migratory route in Europe, anadromous salmonids are far more numerous in 

estuaries in the cool environments of the north-eastern and north-western coasts of North 

America (Lackey 2003, Nordlie 2003). 

The number of diadromous species recorded in microtidal estuaries is lower than in 

macrotidal estuaries and the same is true for their abundance (Figures 31, 32). In terms of 

abundance, the diadromous species in microtidal estuaries are dominated by anguillids, with 

four species recorded in southern Africa, two in eastern Australia and one in the 

Mediterranean (Potter et al. 1990, McDowall 1996, Maci & Basset 2009). However, the 

clupeid Nematalosa vlaminghi, which is regarded as semi-anadromous, does form large 

spawning aggregations in the upper reaches of some estuaries in south-western Australia 
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(Chubb & Potter 1984). While the lamprey Geotria australis migrates through estuaries in 

south-western Australia (Potter et al. 1983a), it is rarely caught by the traditional methods 

used for catching fish in estuaries, i.e. seine net, gill net and trawling. 

The numbers and contributions of freshwater species vary in relation to the extent to 

which sampling extends towards and includes riverine reaches. 

 

Adaptations for spawning in estuaries 

An analysis of the egg types of fish species in estuaries in the central region of the Middle 

Atlantic Bight estimated that ~85% of the species that spawn within those estuaries produced 

demersal eggs, compared with only ~2% that were pelagic, whereas the reverse trend applied 

to species that spawned in marine waters outside the estuary, i.e. ~14% versus ~68%, 

respectively (Able & Fahay 2010). Although as many as ~75% of the ≥ 20 species that spawn 

in the microtidal Río de la Plata Estuary produce pelagic eggs, strong onshore winds during 

spring and summer, when these species spawn, minimize the advective loss of eggs to the 

ocean (Berasategui et al. 2004). The relatively large number of estuarine-resident species has 

been further facilitated by the benefits of the small tidal range (0.3–1.0 m; Gómez et al. 

2009), which reduce the potential for eggs and larvae to be flushed out of the estuary. 

As demonstrated earlier, the number of estuarine-resident species, and more 

particularly their overall relative abundance, are greater in microtidal than macrotidal 

estuaries and especially in their nearshore waters. Indeed, in terms of abundance, these 

estuarine residents, which comprise, in particular, small species such as those of the 

Atherinidae and Gobiidae, dominate the nearshore ichthyofauna of estuaries in south-western 

Australia, a region that lies at the lower end of the microtidal range (Potter & Hyndes 1999, 

Hoeksema et al. 2009). It is thus relevant that estuarine-resident species typically spawn in 

the dry mid-spring to mid-autumn months (Potter et al. 1986b, Potter et al. 1986c, Gill et al. 
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1996). During this period, water movement and turbulence are restricted because freshwater 

discharge and tidal action (as throughout the year) are limited, the salinity and temperature 

remain elevated and primary and secondary productivity are high. The environment of these 

microtidal estuaries is therefore benign and productive during this period and thus ideal for 

successful spawning, development and growth. 

The small number of estuarine-residents found in microtidal estuaries possess some of 

the same types of adaptations for retention as those in the far more turbulent macrotidal 

estuaries. Gobies and atherinids such as Atherina breviceps thus likewise possess demersal 

eggs with adhesive filaments (Neira et al. 1988, Hoese 1994, Neira et al. 1998) and the 

flexion and post-flexion larvae of atherinids exhibit epibenthic schooling (Steffe 1990). The 

eggs of the plotosid Cnidoglanis macrocephalus are very large and laid in nests constructed 

by the males, who guard the larvae between their pelvic fins (Laurenson et al. 1993), while 

those of the apogonid Ostorhinchus rueppelliii are brooded in the mouths of males (Chrystal 

et al. 1985, Neira 1991), and those of the syngnathid Urocampus carinirostris in pouches 

(Neira et al. 1992). Although the clupeids Gilchristella aestuaria and Nematalosa vlaminghi 

produce pelagic eggs, they both spawn in the upper reaches of microtidal estuaries in 

southern Africa and south-western Australia, which reduces the likelihood of their eggs and 

larvae being flushed out of the estuary (Talbot 1982, Chubb & Potter 1984). Estuarine-

resident species frequently have extended spawning periods, including some with repeated 

spawning, which increases the potential for such species to encounter favourable conditions 

for successful spawning and egg and larval development (Nordlie 2003). These species are 

also typically able to tolerate a wide range of salinities (Young & Potter 2002, Veale et al. 

2014).  

The few species that breed in macrotidal estuaries have similar adaptations for retention 

within the estuary as those of estuarine-resident species in microtidal estuaries. They include 
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the production of demersal, adhesive eggs, e.g. atherinids and most goby species (Leis & 

Rennis 1983, Dando 1984, Miller 1984, White et al. 1984), construction of nests e.g. certain 

goby species (Vaas et al. 1975, Miller 1984) and pouch brooding e.g. syngnathids (Fritzsche 

1984, Wilson et al. 2003, Bolland & Boettcher 2005). 

Seasonality and regionality  

Analysis of samples collected over five years from intake screens of a power station on the 

Severn Estuary demonstrated that, each year, the abundances of the main fish species, which 

were almost exclusively marine estuarine-opportunist and diadromous species, peaked in a 

time-staggered manner in this large macrotidal system (Figure 33; Claridge et al. 1986, Potter 

et al. 2015b). Differences in the timing of immigration of the various marine estuarine-

opportunist species into macrotidal estuaries reflect differences in spawning times and/or in 

the distance between spawning areas and that estuary (Allen & Barker 1990, Potter et al. 

1997, Witting et al. 1999, Maes et al. 2005). A particularly good example of how the time of 

spawning by those marine species that typically use estuaries vary in a sequential manner is 

reflected in the trends shown by the abundances of larvae of such species in tows from the 

Middle Atlantic Bight (Figure 34).  

The sequential immigration and emigration of fish species in the Severn Estuary results 

in very pronounced annual cyclical changes in the composition of the ichthyofauna (Figure 

33). These trends are paralleled by those in the Scheldt Estuary over ten years (Maes et al. 

2005) and are consistent with those recorded in other macrotidal estuaries (e.g. van den Broek 

1979, Araújo et al. 1998, 1999, Thiel & Potter 2001). Although the composition of the 

ichthyofauna of the Severn Estuary underwent similar cyclical changes each year, the amount 

of intra-annual variation differed between years. While this reflected inter-annual variations 

in the recruitment strengths of particularly the 0+ age class of marine estuarine-opportunist 

species (Potter et al. 1997), these variations were not correlated strongly with either salinity 
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or temperature,  as was also the case with the ichthyofauna of the Scheldt Estuary (Maes et al. 

2005). However, the pattern of cyclical changes can be modified by extreme environmental 

conditions, such as very dry or very wet winters (Potter et al. 1986a).  

The composition of the ichthyofauna in the macrotidal Elbe Estuary was shown by 

nMDS (non-metric multi-dimensional scaling) ordination of data for five sites distributed 

along the system to change progressively in an upstream direction as salinity declined (Thiel 

& Potter 2001). This reflected a sequential decline in the number and abundance of marine 

species (but with the extent of penetration varying among those species) and an increase in 

the number of freshwater species. Thus, for example, species such as the gadoid Merlangius 

merlangus did not penetrate beyond the lower two sampling sites, whereas the clupeid 

Clupea harengus was recorded at all five sites but in low numbers at the uppermost site. 

These differences presumably represent differences in the salinity tolerance of the various 

species. Indeed, salinity was shown to be the most important of 19 abiotic and biotic factors 

in influencing the composition of the ichthyofauna along the axis of three macrotidal 

estuaries in France (Selleslagh et al. 2009). 

Although the species composition of the ichthyofauna in both nearshore and offshore 

waters of microtidal estuaries is related to season, it is influenced to a greater extent by region 

within the estuary (Loneragan et al. 1987, Loneragan et al. 1989). The greater influence of 

region reflects the marked differences between the morphological and thus hydrological 

characteristics of the different regions of particularly the larger and permanently-open 

estuaries. Thus, at a family level, the species belonging to the Atherinidae and Gobiidae are 

largely partitioned between the entrance channel (lower estuary), basins (middle estuary) and 

saline reaches of the tributary rivers (upper estuary) of the Swan River Estuary (Figure 35) 

(Prince & Potter 1983, Gill & Potter 1993). The lesser influence of season than region in 
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microtidal than macrotidal estuaries is considered to be related to their far less pronounced 

tidal water movements.  

Elevated salinities and temperatures 

Shallow microtidal estuaries, and particularly those in Mediterranean climates with hot and 

dry summers, are highly susceptible to becoming hypersaline (Largier et al. 1997, Whitfield 

et al. 2006, Chuwen et al. 2009b). This is due not only to the absence of freshwater input, but 

also to the lack of penetration of marine water from the sea. The problem is most severe when 

the estuary mouth becomes closed by a bar during the dry summer months and even more so 

when that bar remains a barrier for one or more years (Figure 5F). It can be further 

exacerbated by salt run-off after the clearing of vegetation in the catchment and, under 

extreme circumstances, salinities can rise to ~300 (Hoeksema et al. 2006a, Chuwen et al. 

2009a). As salinities increased over three years in Culham Inlet in south-western Australia, 

during which it remained closed, the various fish species in that system progressively ceased 

to be caught during regular sampling (Hoeksema et al. 2006a). Thus, for example, the sparid 

Acanthopagrus butcheri declined markedly in abundance at a salinity of 65 and was no 

longer caught above 85, with a massive mortality of ~1.3 million individuals occurring at 

intermediate salinities in that range (Hoeksema et al. 2006b). The only species present when 

salinities reached 136 was the atherinid Atherinosoma elongata, which has been recorded 

previously in salinities of 122 in a nearby estuary (Young & Potter 2002). Furthermore, the 

congener A. microstoma was the only species to survive in the highly elevated salinities in the 

uppermost region of an estuary with a reverse salinity gradient (Zampatti et al. 2010) and has 

been shown by laboratory studies to tolerate salinities up to 108 and to osomoregulate in 

salinities up to at least 85 (Lui 1969, Wedderburn et al. 2008). The ability of atherinids, in 

particular, to survive when salinities become elevated in microtidal estuaries is further 

emphasised by the fact that three species in this family, A. elongata, Craterocephalus 
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mugiloides and Atherinomorus vaigiensis, represented 90% of the total number of fishes 

caught in the apex of an estuary with a reverse salinity gradient (Veale et al. 2014).  

Studies in southern Africa demonstrated that, as salinities reached 65 in the St Lucia 

Estuary during a period of closure, marine estuarine-opportunists declined by more than 40% 

in terms of number of species and 50% by abundance (Whitfield et al. 2006). The sole 

surviving species, when salinities reached 110 in one part of this system, was the cichlid 

Oreochromis mossambicus (Vivier et al. 2010). Mortalities of more than 6000 fish, 

representing at least 11 species, were recorded in the Seekoei Estuary in South Africa as 

salinities rose above 90 during a period when this system was closed (Whitfield 1999). 

Birds 

In estuaries, birds are important consumers of animals, plants and algae both intertidally and 

subtidally. The most intuitively obvious difference between macrotidal and microtidal 

estuaries for birds is the extent of intertidal areas available for feeding. The extensive and 

productive intertidal mud and sand flats in the macrotidal estuaries of northern Europe (see 

earlier) support huge numbers of wading birds (“Charadrii”), particularly in autumn when 

they arrive on migration from their Palaearctic breeding grounds in northern Canada, 

Greenland, Arctic Europe and Siberia. Some of these individuals remain in these northern 

estuaries for the winter, while others migrate southwards during the Austral summer to the 

microtidal estuaries of South Africa, Australia and South America (Serventy 1938, Siegfried 

1981, Suazo et al. 2012). Other taxa that do not make this long-distance migration, such as 

some species of ducks, geese and gulls, may also be present in large numbers in northern 

European estuaries, feeding on both invertebrate and plant material on the highly productive 

intertidal flats.  

Birds that feed subtidally will be less successful in macrotidal than microtidal estuaries. 

Herbivores, such as swans that feed by head-dipping and locating their food by “feel”, may 
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be successful in the turbid waters of these macrotidal estuaries. In contrast, visually-feeding 

carnivorous waders, such as herons, storks and flamingos and diving piscivores, such as 

cormorants, pelicans and members of the falconiformes, would find it difficult to locate their 

food (Bell-Cross 1974). Diving ducks are also unable to operate in turbid, fast flowing water, 

and are absent, for example, from the Severn Estuary, UK (Kirby et al. 2004). In microtidal 

estuaries, which contain only small areas of intertidal sediment, subtidal feeders predominate, 

with the clarity of the water promoting the success of visual predators. In southern African 

microtidal estuaries, for example, migrant waders accounted for only ~5% of the avian 

biomass in those estuaries at which all birds were counted in summer, while the resident 

pelicans, cormorants and flamingos together made up 85% of the biomass (Siegfried 1981).  

In a detailed study of the seasonally-open East Kleinemonde Estuary in the Eastern 

Cape, Terörde and Turpie (2012) found that it was primarily utilised by resident piscivorous 

birds, not only for feeding, but also for resting purposes. Intertidal wading birds are also 

virtually or totally absent from the microtidal Walpole-Nornalup Estuary and Broke, Wilson, 

Irwin and Parry inlets in south-western Australia (Hodgkin & Clark 1988a,b, 1989), in which 

piscivorous subtidal feeders also predominate. These avian piscivores can be major predators 

of commercially important fish species. For example, Coutin & Reside (2007) found that the 

Great Cormorant Phalacrocorax carbo in the microtidal Gippsland Lakes of south-eastern 

Australia feeds mainly on the sparid Acanthopagrus butcheri and that the population of 

~3,000 cormorants consumed 340 t of this fish annually (~3.3 million fish), more than the 

biomass of the recreational and commercial fishery catches combined (Coutin 2000).  

In southern Africa, fish-eating birds may also, at times, have a considerable impact on 

the abundance of fish populations. For instance, during the closure of the mouth of the West 

Kleinemonde Estuary in the eastern Cape, the abundance of juveniles of another sparid, 

Rhabdosargus holubi, decreased by 80% in five months, mainly due to predation by the Grey 
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Heron Ardea cinerea and two species of cormorants, Phalacrocorax tucidus and P. africanus 

(Blaber 1973).  

The foregoing figures, however, may be exceptional. For example, in the microtidal 

Patos Lagoon Estuary in southern Brazil an estimated 73.4–81.9 t of the White Croaker 

Micropogonias furnieri and catfish (species representing the Ariidae) were consumed per 

year by Neotropic Cormorants Phalacrocorax brasilianus, representing only 3.7–4.1% of the 

annual landings of these species by the artisanal fishery (Barquete et al. 2008). There was 

also no evidence that any of the three cormorant species in the microtidal Peel-Harvey 

Estuary in south-western Australia exerted a pronounced adverse effect on the abundance of 

the major commercial fish in the estuary or on the food of those teleosts (Trayler et al. 1989). 

Nevertheless, the biomass of piscivorous birds in microtidal estuaries is far higher than in 

macrotidal estuaries. For example, the biomass of White Pelicans (Pelecanus onocrotalus) 

alone in the microtidal St Lucia Estuary in South Africa is at least four times greater than 

estimates by Swennen (1976) for all piscivorous birds in the Dutch Wadden Sea, and 

Siegfried (1981) suggests that the ecological impact of fish-eating birds is greater in the 

estuaries of southern African than in those of northern Europe.  

Reduction in tidal exchange in seasonally-open estuaries through mouth closure will 

lead to a reduction in the number of wading birds, as these species depend on regular daily 

inundation and exposure of tidal mud and sandflats. Clear water will favour fish-eating birds, 

especially those that actively pursue their prey underwater. For example, Blaber (1973) 

reported a “feeding bonanza” of fish-eating birds after the mouths of estuaries in the Eastern 

Cape had closed. Piscivorous birds, and especially diving species such as cormorants and 

pelicans, depend on relatively deep water for feeding. In the St Lucia Estuary, for example, 

Whitfield & Cyrus (1978) found that the avian community in newly-created backwaters was 

dominated initially by piscivorous birds, but, with a decrease in water levels due to drought, 
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invertebrate-eating wading birds became abundant. Seasonal changes in the incidence of 

piscivorous birds are also expected to occur in estuaries such as St Lucia in response to wind-

induced seasonal changes in turbidity (Siegfried 1981). 

Baird et al. (1985) reviewed predation by shorebirds in intertidal areas and documented 

a number of case studies in the macrotidal systems in northern Europe and also the microtidal 

Langebaan Lagoon in South Africa. Although the latter is not strictly an estuary, it appears 

that there is little, if any, difference between the avifaunas of South African estuaries and 

coastal lagoons (Siegfried 1981). Shorebirds consume significant quantities of the 

invertebrate production in macrotidal estuaries, ranging from 43% in the Tess estuary, UK, to 

6% in the Grevelingen Estuary in the Netherlands, with a value of 20% in the Langebaan 

Lagoon, which is similar to that in the macrotidal Ythan Estuary, UK, (21%, Baird et al. 

1985). Intertidal areas are used not only as feeding grounds, but also as a refuge for resting 

and moulting birds. Species of shelduck (Tadorna spp.) in Europe, Australia and South 

Africa all move seasonally into estuaries after breeding where considerable numbers of 

flightless birds congregate while undergoing their annual moult (Coombes 1950, Frith 1967, 

Siegfried 1981). 

The macrotidal Grevelingen Estuary was formerly in open connection with the rivers 

Rhine and Meuse and with the North Sea, but, in May 1971, the construction of upstream and 

downstream dams led to the formation of a brackish lake between these two structures, 

(Nienhuis 1978, Bannink et al. 1984). This constitutes a large-sale experimental manipulation 

of tidal regime, i.e. from macrotidal to microtidal, at a single geographical location with the 

same external environmental conditions. Comparisons of the situation in the estuary before 

the construction of the dam and in the lake afterwards can be used to support or refute 

inferences on the contrasting ecology of macrotidal and microtidal estuaries described 

elsewhere in this review based on data from geographically very different regions. In a 
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comparative study of the trophic role of birds in the estuary and lake, Wolff et al. (1976) 

found that wading birds feeding on zoobenthos took about 6 and 3% of the total zoobenthos 

production in the estuary and lake respectively, i.e. tides contributed to the greater 

exploitation of the zoobenthos by waders in the estuary. They also found that the level of 

predation by piscivorous birds in the lake was greater than in the estuary, which was 

attributed to the greater clarity of the water in the lake as this would favour the capture of 

prey. These changes are consistent with the observations above, based on data from 

macrotidal and microtidal estuaries throughout the world, and provide some experimental 

confirmation that the presence or absence of tides greatly influences the way birds are able to 

exploit food resources in estuaries. 

Birds migrating from the macrotidal estuaries of the northern hemisphere to the 

microtidal estuaries of the southern hemisphere constitute the only ecological link between 

the two systems. The more common species of Palaearctic migrants to southern African 

estuaries are represented mainly by populations drawn from Greenland, Scandinavia and 

Siberia. All of the long-distance migrants that visit the microtidal estuaries of southern Africa 

are carnivores, the two main groups being waders (“Charadrii”) and terns (Sternidae); there 

are no herbivorous long distance migratory species. Wading birds in the high Arctic may be 

forced to migrate south because, although there is no shortage of invertebrate food, the short 

days frequently do not provide enough hours for these visual feeders to obtain sufficient food 

to support the high metabolic requirement necessary to sustain body temperature in the 

extremely cold conditions. Thus, there are instances of mortality among those that have not 

migrated (McLusky & Elliott 2004).  

Apart from the warm temperatures of the Austral summer, the paucity of intertidal 

habitat in microtidal estuaries in South Africa is far from ideal for waders that feed on benthic 

invertebrates (Siegfried 1981). Apparently, however, the waders do not depart for the north to 
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escape adverse conditions in the south, and the advantages gained through breeding in the 

north must be considerable to offset the presumed hazards of a 30,000 km migration each 

year. The reason waders do not breed in southern Africa may be due to the requirements of 

their young, which are not fed by their parents and depend instead on an abundance of 

protein-rich insects as food. The young hatch with relatively short bills and, unlike their 

parents, are thus inefficient at probing the ground for food items. Very little is known about 

insects in southern African estuaries, particularly in salt marshes, but Puttick’s (1977) studies 

at Langebaan Lagoon indicate that the above-ground insect biomass is relatively low.  

The great abundance of insect food that becomes available in the short northern spring 

and summer on the breeding grounds of waders probably explains the basis for the evolution 

of this migratory behaviour (Baker & Baker 1973). The paucity of intertidal habitat accounts 

for the generally high densities of waders in the estuaries of South Africa, resulting in a high 

predation pressure on invertebrate prey, but this is compensated for by the high production of 

these invertebrates, the highest production coinciding with the highest energy requirement of 

the birds prior to their northward migration (Kalejta & Hockey 1991, Kalejta 1992, 1993). 

These waders spend at least a month ‘fattening up’ prior to their northern migration, and the 

smaller species are capable of doubling their body weight (Turpie 1996). The juveniles of 

many of these migrants do not return to the breeding grounds in the first or even second year, 

which is probably an adaptive response to the low probability of both breeding success and 

survival of a long-distance journey, estimated to be as low as 30% (Turpie 1996). The 

northward journey is generally made more rapidly than the southern migration, thereby 

ensuring timely arrival at the breeding grounds where the birds must compete for breeding 

territories and mates (Turpie 1996). 

A very conspicuous component of the avifauna of microtidal estuaries (among other 

habitats such as coastal mudflats, lagoons and salt lakes) are flamingos. In South African 
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estuaries, the Greater Flamingo (Phoenicopterus roseus) accounts for 90% of the biomass of 

all bird species that feed on invertebrates, in spite of the greater abundance of the smaller 

carnivorous migrants. In these estuaries, the Lesser Flamingo (P. minor) is a major 

component of the assemblage of species that feed on algae and aquatic macrophytes 

(Siegfried 1981). The Chilean Flamingo (P. chilensis) takes the place of these species in 

temperate South America and the American Flamingo (P. ruber) in the tropical Caribbean. 

Flamingos have a wide global distribution, particularly in microtidal coastal regions (the 

Caribbean, South America, South Africa, Mediterranean, Red Sea, Pakistan and India), but 

strangely not in Australia. At least four species were present in Australia, however, as 

recently as the Pleistocene (Miller 1963). Although the fossils were associated with the inland 

Lake Eyre area, it seems probable that they would also have frequented the microtidal 

estuaries. Since they play such an important ecological role in other microtidal estuaries in 

the warmer temperate and tropical regions of the world, particularly in South Africa, other 

species must have assumed this role after their extinction in Australia. Possible candidates are 

the Black Swan (Cygnus atratus), which is almost exclusively herbivorous, and the Musk 

Duck (Biziura lobata), which feeds on a range of aquatic invertebrates and plants. Both of 

these species are extremely abundant in the microtidal estuaries of south-western Australia 

(Hodgkin & Clark 1988a,b, 1989). 

 

Summary and conclusions 

The major characteristics that distinguish microtidal from macrotidal estuaries in temperate 

regions are summarized in Table 2 and in pictorial form in Figure 36. These comparisons 

emphasize that the extent of tidal range and tidal water movements has a profound and 

widespread influence on the ecology of estuaries and demonstrate that it is not always 

appropriate to apply paradigms derived from research in estuaries in macrotidal regions to 
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those in microtidal regions. The rapid attenuation of tidal water movement in an upstream 

direction in microtidal estuaries means that, unlike the situation in macrotidal estuaries, there 

is no tidal mechanism for transporting the larvae of marine species of fish and crustacean 

rapidly through the estuary. A combination of a small tidal action, limited freshwater 

discharge and warm temperatures, typically found in microtidal estuaries during the warm 

summer months, provide a benign environment for spawning and thus facilitated the success 

of a number of estuarine-resident fish species. The extent of the intertidal zone is far less in 

microtidal estuaries and thus, at low tide, does not provide a wide area for the development of 

microphytobenthos, which act as a food source for the meio- and macrobenthos that 

constitute a major component of the diet of wading birds.  

The other natural features of microtidal estuaries include a long residence time, the 

retention of organic material through poor flushing, low turbidity and marked stratification 

during and following significant freshwater discharge. This results in natural environmental 

stress through encouraging the development of algal blooms and hypoxia. These effects often 

become exacerbated through anthropogenic influences, such as the input of nutrients from 

surrounding agricultural and urban developments, and can lead to massive algal blooms, 

some of which are toxic, and to anoxia. Furthermore, when a bar forms at the mouth of 

microtidal estuaries and remains as a barrier for a protracted period, these systems can 

become markedly hypersaline through evaporation and lead to large mortalities of fish and 

other fauna. 

 Microtidal estuaries are more sensitive to anthropogenic perturbation than their 

macrotidal counterparts, particularly with respect to the accumulation of nutrients and 

pollutants. Their fragility thus warrants conservation measures that recognize their special 

environmental characteristics. 
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Tables 

 

Table 1 Suspended particulate matter (SPM) concentrations, measured at the bottom of the 

turbidity maximum zone, and mean spring tidal range (STR) in five macrotidal and four 

microtidal estuaries. Table modified from Hughes et al. (1998).  

Permissions granted. 

 

Table 2 Summary of the differences between the main characteristics of typical macrotidal 

and microtidal estuaries. 

No permissions needed. 

 

 

  



160 

Table 1 

Estuary Location SPM conc. (g L
−1

) STR (m)  Reference 

Macrotidal 

  

  

 Weser Germany 1.5 3.8  Grabemann & Krause (1989) 

Fly* Papua New Guinea 5.0–30.0 4.0  Wolanski et al. (1995) 

Tamar UK 26.0 4.5  Uncles & Stephens (1994) 

Gironde France 10.0 5.0  Allen & Castaing (1973) 

Severn UK 20.0 12.3  Kirby (1988) 

   

  

 Microtidal 

  

  

 James USA 0.1–0.3 0.7  Nichols (1993) 

Hawkesbury Australia 0.2 1.3  Hughes et al. (1998) 

Varde Denmark 0.1–1.0 1.6  Bartholdy (1984) 

Cooper USA <0.1 2.0  Althausen & Kjerfve (1992) 

* denotes estuary is located in the tropics. 
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Table 2  

Macrotidal  Microtidal 

Types of estuary   

Typically ria or coastal plain estuaries   Typically bar-built or blind estuaries 
   

Tidal regime   

Mean tidal range >2 m (includes mesotidal)  Mean tidal range <2 m  

Astronomical tides > meteorological tides  Astronomical tides < meteorological tides 
   

Hydrology   

Tide-dominated  Wave-dominated 

Typically partially or well-mixed  Typically highly-stratified (salt wedge) 

Mixing driven by tides  Mixing driven by wind and waves 

Net outflow of water   May have net outflow or inflow of water 

Salinity declines upstream from the mouth; i.e. 

positive estuary 

 May have either a positive or reverse salinity gradient 

or a salt-plug  

Salinity does not exceed that of fully marine waters  Can become markedly hypersaline 

Salinity at a single point changes markedly during the 

tidal cycle 

 Salinity at a single point changes little during the tidal 

cycle, but can change markedly seasonally in response 

to changes in freshwater discharge 

High turbidity, which varies according to tidal cycle  Low turbidity, except during heavy freshwater 

discharge 

Residence time typically short (i.e. hours – days) and 

varies according to tidal cycle 

 Residence time typically long (i.e. weeks-months), but 

can last years if estuary remains closed 

Residence time does not change markedly throughout 

the year 

 Residence time varies markedly throughout the year, 

responding to changes in freshwater discharge 
   

Sedimentology   

Coarse sediment from catchment deposited at point 

where riverine and tidal current meet, forming mobile 

sandbanks that are redistributed by tides 

 Coarse sediment from catchment deposited at junction 

of river and basin forming fluvial deltas 

Deposition of fine sediments regulated by mixing of 

fresh and salt water 

 Fine sediments deposited in middle reaches due to low 

current velocities 

Marine sediments form elongated mid-channel sand 

bars and extend intertidal area seaward 

 Marine sediments form flood and ebb tide deltas  

Wide mouth, which remains open to the sea  Narrow mouth, produced by coastal sediment 

deposition. Mouth can become closed for periods, 

when freshwater discharge is low 

Large intertidal area  Small intertidal area 

Moderate ability to trap sediment   Very effective sediment traps 

Strong tidal action flushes organic material from the 

system and, together with vertical mixing tends to 

prevent hypoxia 

 Weak tidal action and a highly-stratified water column 

leads to accumulations of organic material, which can 

produce hypoxia and even anoxia in deeper waters 

Allochthonous organic material,derived from both 

catchment (rivers and surrounding land) and sea 

 Allochthonous organic material derived predominantly 

from the catchment 
   

Phytoplankton   

Phytoplankton production light-limited  Phytoplankton production not light-limited 

Phytoplankton composition dominated by diatoms 

throughout the year 

 Phytoplankton composition dominated by diatoms in 

spring and dinoflagellates and cyanobacteria in summer 

Short residence time and high turbidity restrict 

production of phytoplankton blooms 

 Long residence time and low turbidity can result in 

massive  phytoplankton blooms, some of which are 

toxic  
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Table 2 continued 

Macrotidal  Microtidal 

Microphytobenthos   

Inhabit unvegetated intertidal areas and fringing salt-

marshes 

 Inhabit predominantly shallow subtidal waters 

Primary production during exposure at low tide  Primary production continuous during daylight 

Primary production from microphytobenthos exceeds 

phytoplankton 

 Primary production from microphytobenthos exceeds 

phytoplankton, but its contribution varies seasonally 

  Amount of primary production varies depending on 

whether estuary is open or closed 

   

Macrophytes   

Extensive salt marsh areas and productivity increase 

with increasing tidal range 

 Very small areas of salt marsh 

Salt marshes occur on most estuaries  Occurrence of salt marsh related to frequency and 

duration of bar opening 

Distinct zonation in salt marsh species distribution   Patchy mosaic of salt marsh species, particularly in 

seasonally-open estuaries. 

Salt marsh flora dominated by Spartina spp.  Spartina spp. generally absent 

Small areas of seagrass  Can be extensive seagrass beds 

Seagrass flora dominated by Zostera spp.  Seagrass flora dominated by Ruppia spp. 

Can tolerate brief periods of aerial exposure  Intolerant of aerial exposure 

Tidal currents uproot seagrass  Stable populations not subjected to export by 

uprooting 

Brown algae (e.g. Fucus and Ascophyllum) in areas 

where tidal currents expose hard substrata 

 Brown algal species rare 

Green algae found in intertidal areas  Green algae found in subtidal areas 

Biomass of green algae reduced by tidal scour  Biomass of green algae can increase markedly 

causing blooms 

   

Zooplankton   

  Abundance of microheterotrophs greatest when 

estuary mouth is closed  

Comprise predominantly allochthonous species  Comprise predominantly autochthonous species 

Mesozooplankton may supplement their 

phytoplankton diet with detritus and associated 

bacteria 

 Mesozooplankton feed mainly on phytoplankton 

Use of selective tidal stream transport avoids flushing 

of fauna from estuary 

 Species in lower reaches of estuaries move either into 

deeper waters or onto the banks thus preventing 

flushing from estuary 

Marked seasonal variation in abundance and biomass 

of the predominantly allochthonous marine 

mesozooplankton 

 Less pronounced seasonal variation in abundance and 

biomass of autochthonous estuarine 

mesozooplankton 

Short residence times and low phytoplankton 

biomass result in low zooplankton biomass 

 Long residence times and high phytoplankton 

biomass result in high zooplankton biomass 

  Mesozooplankton diversity greater in permanently-

open than seasonally-open estuaries 

Meiobenthos   

Meiofaunal densities greater in intertidal than 

subtidal regions 

 Meiofaunal densities greater in subtidal than 

intertidal regions 

Occurrence of meiofaunal species form a gradient 

from coast to upper estuary 

 Marked difference in species composition between 

coast and estuary and species widely distributed 

throughout estuary 
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Table 2 continued 

Macrotidal  Microtidal 

Macrobenthos   

Areas of high densities of suspension feeders 

(e.g. mussel and oyster beds) near mouths 

 Very low contribution of suspension feeders 

throughout the estuary 

Presence of some large macrobenthic species  Overwhelming abundance of small macrobenthic 

species  

Species diversity greatest in marine and oligohaline 

reaches and lowest in middle ‘estuarine’ region 

 Species richness relatively consistent among regions 

of the estuary, particularly in seasonally-open 

estuaries 

Species use tidal currents for movement through and 

retention within the estuary 

  

   

Fish   

Larvae of marine species use passive and selective 

tidal transport to move through and disperse and 

remain within estuaries 

 Tidal action insufficient to facilitate rapid transport 

upstream through the estuary 

Hostile environment for spawning and survival of 

eggs and larvae 

 Benign environment for spawning and survival of 

eggs and larvae 

Relatively few abundant estuarine-resident species  Greater number of estuarine-resident species, some of 

which are very abundant 

  Number of species declines from permanently-open 

to seasonally-open to normally-closed estuaries. 

Species composition undergoes pronounced cyclical 

changes each year due to time-staggered immigration 

and emigration of juveniles of marine species and of 

diadromous species 

 Seasonal immigration and emigration patterns are 

less pronounced  

  Can become markedly hypersaline when closed from 

the ocean by a bar and result in massive fish 

mortalities 

   

Birds   

Very large numbers of intertidal wading invertebrate 

feeders 

 Low abundance of wading invertebrate feeders due to 

small intertidal area 

Low numbers of diving piscivorous birds due to high 

turbidity of water 

 Large numbers of diving piscivorous birds due to 

high water clarity 
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Figures 

Figure 1 Graphical representations of the six types of estuary that were classified by 

Fairbridge (1980) on the basis of their geomorphological characteristics and which form the 

basis of this review. Examples of each estuary type and their location are given.  

Permissions granted. 

 

Figure 2 Satellite images of the six types of estuary that were classified by Fairbridge (1980) 

on the basis of their geomorphological characteristics and which form the basis of this 

review. Examples of each estuary type and their location are given. Satellite images provided 

by Google, TerraMetrics, Getmapping plc, Landsat, DigitalGlobe and CNES/Astrium. 

No permissions needed. 

 

Figure 3 Salinities recorded throughout the water column of the microtidal Swan River 

Estuary in south-western Australia in (A) early spring (23 September 2013), (B) late spring 

(11 November 2013), (C) early autumn (17 March 2014) and (D) late autumn (26 May 2014). 

+ denotes points in the water column where salinity was measured. Data provided by the 

Department of Water, Western Australia. 

No permissions needed. 

 

Figure 4 Conceptual models of the hydrology of typical (A) macrotidal and (B and C) 

microtidal estuaries. Modified from Ryan et al. (2003).  

No permissions needed. 
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Figure 5 Stylized examples of (A) macrotidal coastal plain positive estuary and (B) 

permanently-open bar-built microtidal positive estuary, both with positive longitudinal 

salinity gradients, (C and D) permanently-open microtidal estuaries with reverse longitudinal 

salinity gradients, (E) permanently-open microtidal estuary with a salt-plug and (F) 

microtidal estuary that is seasonally closed to the ocean by a sand bar across its mouth (dotted 

box), with a hypersaline positive longitudinal salinity gradient. Modified from Potter et al. 

(2010). 

Permissions granted. 

 

Figure 6 Flushing times (log10 days) as functions of tidal length and mean tidal range at the 

mouths of 39 estuaries in the Northern Hemisphere. Tidal length and tidal range are given as 

log10 and after back transformation. Dashed line represents the boundary between microtidal 

and macrotidal estuaries. Flushing times interpolated using natural neighbours. From Uncles 

et al. (2002). 

Permissions granted. 

 

Figure 7 Relationship between model predictions of residence time and freshwater inflow, 

showing power function fit by regression. From Huang et al. (2011). 

Permissions granted. 
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Figure 8 Maximum concentrations of suspended particulate matter (SPM, log10 mg l
−1

), 

depth-averaged and recorded within ~1 h of local high water, as functions of tidal length and 

mean tidal range at the mouths of 44 estuaries in the Northern Hemisphere. Tidal length and 

tidal range are given as log10 and after back transformation. Dashed line represents the 

boundary between microtidal and macrotidal estuaries. SPM concentrations interpolated 

using natural neighbours. From Uncles et al. (2002).  

Permissions granted. 

 

Figure 9 Conceptual models of the sediment dynamics of typical (A) macrotidal and (B) 

microtidal estuaries. Modified from Ryan et al. (2003). 

No permissions needed. 

 

Figure 10 Photographs showing the major hydrodynamic phases and events in the microtidal 

Kleinemonde Estuary in South Africa as described by Whitfield et al. (2008), i.e. (A) Closed 

Phase, (B) Outflow Phase, (C) Tidal Phase, (D) Semi-closed Phase and (E) Overwash Event. 

© Paul Cowley, South African Institute for Aquatic Biodiversity. 

Permissions granted. 

 

 

Figure 11 Mean freshwater inflow ±1 SE in permanently-open (PO), intermittently-open 

(IO), seasonally-open (SO), normally-closed (NC) and permanently-closed (PC) estuaries in 

south-western Australia. Number of estuaries in each type is provided. Note that 

permanently-closed estuaries are not strictly estuaries as defined in this review. Data from 

Brearley (2005). 

No permissions needed. 
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Figure 12 Mean percentage contribution ±1 SE of the intertidal area to the total area of bar-

built estuaries in microtidal areas of south-western Australia and to those of rias, coastal plain 

estuaries and bar-built estuaries in macrotidal areas of the UK. Number of estuaries in each 

type is provided. Data for Australian estuaries taken from OzCoasts (2015) and for UK 

estuaries, from Davidson et al. (1991). 

No permissions needed. 

 

Figure 13 Conceptual diagram showing the influence of water residence time and light 

availability on phytoplankton biomass. Redrawn from Lancelot & Muylaert (2011). 

Permissions granted. 

 

Figure 14 Relationship between the mean annual concentrations of chlorophyll a and 

dissolved organic nitrogen in samples from 40 microtidal and macrotidal estuaries. Redrawn 

from Monbet (1992). 

Permissions granted. 

 

Figure 15 Ranked distribution of median annual phytoplankton primary production for 131 

estuarine and coastal ecosystems. Two values are given for 30 systems because values were 

available for both gross and net primary carbon production. One negative value 

(105 g m
−2

 y
−1

) from the Scheldt Estuary is not shown. Grey squares show the ranked 

distribution of the measurements for annual phytoplankton primary production in 45 estuaries 

in Boynton et al. (1982). From Cloern et al. (2014). 

No permissions needed. 
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Figure 16 Conceptual model demonstrating the contrasting phytoplankton ecology of 

macrotidal and microtidal estuaries. See text for explanation. 

No permissions needed. 

 

Figure 17 Photographs of (A) an intertidal mudflat and saltmarsh on the macrotidal Tamar 

Estuary in the UK and (B and C) the star-shaped marks produced by the siphons of the 

bivalve Scrobicula plana when feeding on the surface film of that intertidal mudflat. 

No permissions needed. 

 

Figure 18 Proportions of seasonal primary production by large and small phytoplankton, 

microphytobenthos, seagrass and macroalgae in the microtidal Wilson Inlet in south-western 

Australia, during winter (W) June–August, spring (Sp) September–November, Summer (Su) 

December–February and autumn (A) March–May. Modified from Haese & Pronk (2011).  

No permissions needed. 

 

Figure 19 Production of intertidal Spartina alterniflora in relation to mean tidal range for a 

suite of salt marshes on the Atlantic coast of the USA. From Steever et al. (1976).  

Permissions granted. 

 

Figure 20 Conceptual diagrams showing changes in the proportions of allochthonous and 

autochthonous zooplankton along the salinity gradient in (A) macrotidal estuaries and (B) 

microtidal estuaries. Modified from Heip et al. (1995). 

No permissions needed. 
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Figure 21 Map showing the sites sampled for nematodes in the (A) macrotidal Exe Estuary 

in the UK and (B) microtidal Swan River Estuary in south-western Australia. ●, coastal 

sampling sites; ○, estuarine sampling sites. Numbers refer to sampling sites in Warwick 

(1971) and Hourston et al. (2011). Satellite images provided by Google, TerraMetrics, 

Getmapping plc and DigitalGlobe. 

No permissions needed. 

 

Figure 22 Shade plot of the fourth-root transformed and standardised abundances (shown in 

grey scale) of free-living nematodes in the (A) macrotidal Exe Estuary in the UK and (B) 

microtidal Swan River Estuary in south-western Australia. ●, coastal sampling sites; ○, 

estuarine sampling sites. Sites are ordered from left to right in an upstream direction (see 

Figure 21). Data from Warwick (1971) and Hourston et al. (2011). Site numbers are the same 

as in those publications. 

No permissions needed. 

 

Figure 23 Relationship between biomass (ash-free dry weight) of benthic suspension feeders 

and residence time. Data taken from Heip et al. (1995). 

Permissions granted. 

 

Figure 24 Photographic silhouettes of macrofauna from an area of 0.5 m
2
 in the upper 

(Clifton) and lower (West Mud) reaches of the macrotidal Tamar Estuary in the UK. White 

bar denotes 10 cm. Modified from Warwick & Gee (1984). 

No permissions needed. 
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Figure 25 Life cycle categories and guilds of fishes found in estuaries: (A) marine straggler, 

(B) marine–estuarine opportunist/marine–estuarine dependent, (C) solely estuarine, (D) 

estuarine and marine, (E) estuarine and freshwater and (F) estuarine migrant. *Denotes the 

species displayed in the figures. # Refers only to the estuarine populations of the guild. 

Modified from Potter et al. (2015a). 

Permissions granted. 

 

Figure 26 Life cycle categories and guilds of fishes found in estuaries: (A) anadromous and 

(B) semi‐anadromous, (C) catadromous, (D) semi‐catadromous, (E) amphidromous, (F) 

freshwater straggler and (G) freshwater–estuarine opportunist *Denotes the species displayed 

in the figures. # Refers only to the estuarine populations of the guild. Modified from Potter et 

al. (2015a).  

Permissions granted. 

 

Figure 27 Diagrammatic representations of typical vertical migratory behaviour resulting in 

(A) flood-tide, (B) ebb-tide, (C) nocturnal flood-tide or (D) nocturnal ebb-tide transport. 

Animals oscillate between residence in the water column and on/near the bottom at different 

phases of the tide. The diel cycle and direction and relative magnitude of the tidal currents are 

shown in the upper panel. ‘SW’ is slack water and the arrows in the panels indicate direction 

of transport. Expanded from Forward & Tankersley (2001). 

Permissions granted. 
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Figure 28 Diagrammatic representation of the life cycle and proposed recruitment strategy of 

the marine estuarine-dependent Rhabosargus holubi into the East Kleinemonde Estuary when 

the estuary mouth was (A) open and (B) closed. From Cowley et al. (2001). 

Permissions granted. 

 

Figure 29 Cluster dendrogram constructed from a Bray-Curtis resemblance matrix of the 

mean transformed abundances of each species of ichthyoplankton recorded at 13 sites in the 

Swan River Estuary in south-western Australia averaged over one year. From Neira et al. 

(1992).  

Permissions granted. 

 

Figure 30 Percentage contributions made by the (A) number of species and (B) number of 

individuals representing the different categories and guilds of the Estuarine Usage Functional 

Group in macrotidal estuaries in Europe. n, nearshore waters; o, offshore waters; c, nearshore 

and offshore waters combined. Numbers in italics in (A) represent the total number of species 

recorded in that estuary. F, Forth (Elliott et al. 1990); O, Oldbury and B, Berkeley in the 

Severn (Claridge et al. 1986); C, Canche; A, Authie and So, Somme (Selleslagh et al. 2009); 

E, Elbe (Thiel & Potter 2001); Sc, Scheldt (Maes et al. 2005); G, Gironde (Lobry et al. 2003); 

R, Ria de Averiro (Pombo et al. 2007); M, Mondego (Nyitrai et al. 2012); T, Tagus (Thiel et 

al. 2003).  

No permissions needed. 
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Figure 31 Percentage contributions made by the (A) number of species and (B) number of 

individuals representing the different categories and guilds of the Estuarine Usage Functional 

Group waters of microtidal estuaries in Europe, North and South America and warm and cool 

temperate regions of southern Africa. n, nearshore waters; o, offshore waters; c, nearshore 

and offshore waters combined. Numbers in italics in (A) represent the total number of species 

recorded in that estuary. po, permanently-open; so, seasonally-open; nc, normally-closed. V, 

Venice Lagoon (Franco et al. 2006); A, Acquatina Lagoon (Maci & Basset 2009); PL, Porto-

Lagos Lagoon (Koutrakis et al. 2005); Ek, Elkhorn Slough, (Yoklavich et al. 1991); P, Pando 

(Acuña Plavan et al. 2010); GF, Great Fish; K, Keiskamma; East Kleinmonde; S, Swartvlei; 

M, Mgwalan (all James et al. 2007); Ee, Eerste (Clark et al. 1994); Pa, Palmiet (Bennett 

1989); Z, Zandvlei (Clark et al. 1994); Kl, Kleinmond (Bennett 1989) and B, Bot (Bennett 

1989). No permissions needed. 

 

Figure 32 Percentage contributions made by the (A) number of species and (B) number of 

individuals representing the different categories and guilds of the Estuarine Usage Functional 

Group recorded in nearshore and offshore waters of microtidal estuaries in south-western 

Australia. Numbers in italics in (A) represent the total number of species recorded in that 

estuary. po, permanently-open; io, intermittently-open; so, seasonally-open; nc, normally-

closed. SC, Swan-Canning Estuary (Loneragan et al. 1989, Valesini et al. 2009); PH, Peel-

Harvey Estuary (Loneragan et al. 1987, Valesini et al. 2009); BW, Blackwood River Estuary 

(Valesini 1995, Valesini et al. 1997); M, Moore River Estuary (Young et al. 1997, J. 

Williams unpublished data); V, Vasse-Wonnerup Estuary (Tweedley et al. 2014a, 

Cottingham et al. 2015); Br, Broke Inlet (Tweedley 2011); Wi, Wilson Inlet (Chuwen et al. 

2009a, Valesini et al. 2009); We, Wellstead Estuary (Chuwen et al. 2009a, Valesini et al. 

2009) and C, Culham Inlet (Hoeksema et al. 2006a). 

No permissions needed. 
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Figure 33 Relative abundance of nine common marine fish species (A–C, E–I & K), two 

anadromous fish species (D & J) and Gasterosteus aculeatus (L.) in samples collected weekly 

from Oldbury in the Severn Estuary, UK, between July 1972 and June 1977. Number of each 

species in each calendar month are expressed as a mean ± 95% confidence limits of the total 

catch of that species in that month. M-Q represent non-metric multidimensional scaling 

ordination plots, derived from the percentage compositions of all species in each month in 

each of the five years between July 1972 and June 1977. Redrawn from Claridge et al. (1986) 

and Potter et al. (1997, 2015b).  

Permissions granted. 

 

Figure 34 Shade plot showing the ranking by abundance, in each month, of the larvae of 

different fish species in oceanic waters in the central part of the Middle Atlantic Bight. Data 

taken from Able & Fahay (2010) and restricted to species that use estuaries.  

No permissions needed. 

 

Figure 35 Distribution of five atherinid species and five goby species in the Swan River 

Estuary in south-western Australia. The gradation from black to white for each species 

reflects their relative abundance, ranging from maximum to zero densities, respectively. 

Modified from Potter & Hyndes (1999). 

Permissions granted. 

 

Figure 36 Conceptual diagrams highlighting some of the major biotic differences between a 

typical (A) macrotidal and (B) microtidal estuary. See text for explanation. 

No permissions needed. 

 



174 

 

Figure 1 

 

  



175 

 

 

Figure 2 

  



176 

 

Figure 3 

  



177 

 

Figure 4  



178 

 

 

Figure 5  

  



179 

 

 

Figure 6 

  



180 

 

 

Figure 7 

  



181 

 

 

 

Figure 8  

 



182 

 

 

Figure 9  

  



183 

 

Figure 10 



184 

 

 

Figure 11 

  



185 

 

 

Figure 12 

  



186 

 

 

Figure 13 



187 

 

 

Figure 14  

  



188 

 

 

Figure 15 

  



189 

 

 

Figure 16  

  



190 

 

 

Figure 17  

  



191 

 

 

Figure 18  

  



192 

 

 

Figure 19  

  



193 

 

 

Figure 20  

 

  



194 

 

 

Figure 21  

  



195 

 

 

Figure 22  

  



196 

 

 

Figure 23  

  



197 

 

 

Figure 24  

  



198 

 

 

Figure 25 

  



199 

 

 

Figure 26  



200 

 

 

Figure 27 

  



201 

 

 

Figure 28 



202 

 

 

Figure 29 

  



203 

 

 

Figure 30 

 



204 

 

 

Figure 31 

 

 



205 

 

 

Figure 32 

  



206 

 



207 

Figure 33  

 

 

Figure 34  

  



208 

 

 

Figure 35 

  



209 

 

 

Figure 36 

 

 

 

 

 

 

 

 

 

 


