
38th Annual IEEE Conference on Local Computer Networks

Minimally-Intrusive Frequent Round Trip Time

Measurements Using Synthetic Packet-Pairs

Sebastian Zander, Grenville Armitage

Centre for Advanced Internet Architectures (CAIA)

Swinburne University of Technology

Melbourne Australia

{szander, garmitage} @swin.edu.au

Abstract-Accurate and frequent round trip time (RTT) mea
surements are important in testbeds and operational networks.
Active measurement techniques inject probe packets that may
modify the behaviour of the observed network and may produce
misleading RTT estimates if the network handles probe packets
differently to regular packets. Previous passive measurement
techniques address these issues, but require precise time synchro
nisation or are limited to certain traffic types. We introduce Syn
thetic Packet-Pairs (SPP), a novel passive technique for RTT mea
surement. SPP provides frequently updated RTT measurements
using any network traffic already present in the network without
the need for time synchronisation. SPP accurately measures the
RTT experienced by any application's traffic, even applications
that do not exhibit symmetric client-server packet exchanges. We
experimentally demonstrate the advantages of SPP.

Index Terms-Passive measurement, round trip time, RTT.

I. INTRODUCTION

The measurement of a path's round trip time (RTT) is often

crucial when evaluating and improving the performance of

network protocols or network equipment. Also, for service

providers it is becoming increasingly important to monitor

and manage the RTT experienced by highly interactive ap

plications, such as voice over IP, latency-sensitive first person

shooter (FPS) games [1] or mission-critical business applica

tions. Existing RTT measurement techniques differ in whether

they are active (injecting additional traffic into the network) or

passive (using traffic already in the network), their achievable

sample rate (RTT measurements per time unit), whether they

rely on synchronised clocks and their ability to determine the

RTT experienced by flows from different applications.

High rate sampling of a path's RTT is important for detailed

observation of RTT versus time, such as watching bottleneck

queues filling and draining or the rise and fall of contention

induced transmission delays. Active techniques find this prob

lematic, as the additional probe traffic (proportional to the

desired sample rate) can interfere with the characteristics of

the path being probed and skew the measured RTTs. Active

techniques may also produce misleading RTTs across network

paths that differently prioritise the forwarding of IP packets

according to their higher-layer protocol and/or port numbers.

It is hard to measure the RTT an application flow sees when

the probe packets experience different forwarding delays [2].

Passive techniques can potentially sample at close to the

existing traffic rate with no new load on the path and measure

the actual RTTs of an application flow's traffic. However,

passive one way delay (OWD) measurements require observa

tion points with precisely synchronised clocks, and previously

proposed passive RTT measurement techniques require the

enhancement of routers along a path, manipulation of packet

contents in flight, or rely on symmetric request-response

patterns from the observed traffic.

We introduce a novel passive RTT measurement technique,

called "synthetic packet-pairs" (SPP)', that:

• Calculates RTT of a network path using existing traffic.

• Does not require clock synchronisation.

• Is protocol-agnostic and works with asymmetric traffic

flows (flows without request-response behaviour).

• Provides accurate RTT samples at a rate proportional to

the slowest traffic rate in either direction.

• Does not require changes on network routers or modifi-

cations of packet contents.

SPP is beneficial in scenarios where the path under test is

sensitive to the additional load of active probing, frequent

sampling of the path is desired (at sample rates approach

ing the packet rates of existing traffic), tightly synchronised

measurement point clocks are unavailable (for cost or de

ployment reasons), or probe traffic is treated differently from

the application traffic under study. SPP is also advantageous

where detailed RTT estimates are desired for delay or jitter

estimation, particularly for interactive applications that do not

have symmetric request-response packet pairs.

SPP is non-intrusive where RTT is measured in real-time

and a separate communication path exists between the mea

surement points, or where RTTs can be computed offline (e.g.

testbed measurements). Otherwise, it is minimally intrusive,

since the packet timestamp data that needs to be transmitted

uses relatively little bandwidth. We have released an open

source implementation [4] and a more detailed report [5].

Section II outlines the challenges and requirements for RTT

measurement schemes. Section III describes our proposed

SPP algorithm. Section IV experimentally demonstrates the

advantages of SPP. Section V concludes the paper.

1 SPP is unrelated to Keshav's packet -pair available bandwidth probing [3].

978-1-4799-0537-9/13/$31.00 ©2013 IEEE 264

38th Annual IEEE Conference on Local Computer Networks

II. BACKGROUND AND MOTIVATION

Here we briefly review existing RTT measurement tech

niques - see [5] for a more detailed discussion.

A. Active RTF measurement

Active techniques (such as ping) inject extra packets

(probes) across a network path and use their transit times to

measure the path's delay at the instant each probe was sent.

Unfortunately, routers or switches along the path may han

dle active probe packets differently to regular traffic, resulting

in unrepresentative RTTs. For example, when routers handle

ICMP packets in their slow path ping can overestimate a

path's RTT [2]. Bottleneck routers may also prioritise specific

application flows during times of congestion. Active probe

packets that do not match the rules will generate RTTs that

do not reflect the RTT experienced by prioritised traffic.

Active measurement schemes add network load proportional

to the desired RTT sample rate, which can noticeably alter

the network's behaviour and performance. This is particularly

problematic when high-frequency measurements are desired,

for example to capture the impact of one or more TCP

flows congesting a bottleneck queue, or observe the impact

of TCP cross-traffic on time-sensitive flows through shared

bottlenecks. It is also problematic over link technologies, such

as 802.11 Wireless LANs, where modest loads in packets per

second cause noticeable degradation [6].

B. Passive RTF measurement

By measuring the delays experienced by eXIstIng traffic,

passive measurement techniques avoid adding load and can

identify the RTTs experienced by application flows subject to

different forwarding priorities. The sample rate depends on the

rate at which traffic traverses the path. Passive schemes cannot

sample idle paths, but in this case test traffic can be generated.

Some techniques measure one-way delay (OWD) by noting

the time it takes an IP packet to transit between two measure

ment points having precisely synchronised clocks (e.g. [7],

[8]) and RTT can be calculated by adding OWD in each

direction. However, OWD techniques either require precise

time synchronisation (which is often complex and potentially

costly to deploy), require modifications to existing routers [9]

or manipulate the content of existing packets [10].

Other techniques estimate RTT at a single measurement

point from the time it takes for an application request packet

in one direction to be answered by a matching response packet

in the return direction, e.g. [11]-[13]. They require symmetric

client-server traffic with enough information in each packet to

match request-response pairs. Also, these techniques fail when

traffic in each direction has no predictable timing or semantic

relationship, for example many client-server FPS games emit

packets in each direction asynchronously [1].

III. SPP MEASUREMENT TECHNIQUE

SPP fills a gap in the existing set of RTT measurement tech

niques, and was initially documented in a technical report [14].

No new traffic is injected, no modifications are required to

Figure 1: SPP overview: packet capturing, packet matching

and packet-pair identification

existing infrastructure, and traffic in each direction may be

asymmetric and from unrelated application flows. Here we

mostly describe the technique, our prototype implementation

is discussed in [4], [5].

Figure 1 illustrates the three stages of SPP - capturing

packets at two measurement points (MPs), matching packets

seen at both MPs, and identifying packet-pairs from which to

calculate RTTs.

A. Measurement Points and Packet IDs

We will describe SPP in terms of two MPs, MPref (refer

ence) and MPmon (monitor), located so that the network traffic

of interest traverses both points. MP ref passively records the

passing of packets heading towards MP mon, for example by

monitoring traffic using in-line network taps or mirrored ports

on a switch. MP mon performs the same action for packets

heading towards MP ref.
For every recorded packet both MP ref and MP mon log a

timestamp (ts) representing when the packet was seen and a

short 'packet ID' (PID). The PID is calculated from a suitable

hash function (e.g. CRC32 or other hash functions in [8], [15])

over key bytes within the packet. To uniquely identify the

same packet passing MP ref and MP mon the PID is based on

portions of a packet that are invariant during transit between

MP ref and MP mon but vary between different packets (cf. [7],

[8]).2 Each MP accumulates a list of [PID,ts] pairs based on

the captured packets. These two lists are then combined to

create packet-matched lists used for packet-pair identification

and RTT calculation.

B. Packet Matching

Figure 1 shows the [PID,ts] lists being combined at a third

location, but they can also be combined at MPref or MPmon.
If the link used to transmit [PID,ts] pairs is a physical out

of-band link or a logically isolated channel, the [PID,ts] pairs

may be combined in real-time without affecting the observed

network. If no separate channel is available, [PID,ts] pairs may

20ur prototype uses the CRC32 hash function. It supports selecting which
IP and TCPIUDP header fields are used as hash input, and specifying any
network address translation (NAT) along the path. This allows handling
sItuatIons where MP ref and MP mon are placed at either side of a middlebox
performing NAT, NAT with port translation or acting as a firewall (which may
manipulate TCP header fields, such as the TCP sequence number).

265

38th Annual IEEE Conference on Local Computer Networks

MP,ef MPmon

tm,l
tr'l�

tm,2
tr,2

Figure 2: Packet pair and corresponding timestamps

be stored at each MP for later transfer across the measured

network (e.g. during non-measurement or off-peak periods). In

these cases SPP is non-intrusive. If a channel along the same

infrastructure being measured is used during the measurement,

SPP is minimally intrusive in the sense that transmitting

[PID,ts] lists uses relatively little bandwidth.3

Two input streams Imon and Iref represent [PID,ts] pairs

from packets captured at MP mon and MP ref respectively. A

queue Qref is used to buffer [PID,ts] pairs from Iref not yet

detected in Imon. The algorithm processes packets from Imon
in the order of their arrival at MP mon'

For each packet Pcur captured at MP mon it searches for a

packet with the same PID captured at MP ref. The algorithm

first checks if a matching packet is found in QreJ. If not, new

packets are read from Iref into QreJ until a packet matches,

the maximum queue length is reached or a packet's timestamp

differs by more than a pre-defined Tdelta from the timestamp of

Pcur.4 Before the next packet of Imon is processed all packets

in Qref whose timestamps differ by more than Tdelta from the

timestamp of Pcur are considered lost and removed from Qref.
The result of the packet matching is a list of

[PIDl,tsref,tsmon] tuples, representing the time potential first

(1) packets of pairs were seen at MP ref and MP mon respec

tively. The same algorithm is also run with the directions

reversed to construct a list of [PID2,tsmon,tsrerl tuples, rep

resenting potential second (2) packets of pairs that were seen

flowing from MP mon to MP ref.

C. Packet Pair Identification and RTF Computation

To explain our packet-pairing algorithm we first define a

short-hand notation for the timestamp ti,j, where i indicates

MPref (r) or MPmon (m) and j indicates whether it is the

first (1) or second (2) packet of a packet pair. For example,

in Figure 2 tr,l is the timestamp of the first packet at MP ref
and tm,l is the timestamp of the first packet at MPmon.

I) Packet pairs: SPP makes the key assumption that each

packet is used in at most one pair. Otherwise, different RTT

estimates would be dependent. Furthermore, SPP ensures that

the two packets of a pair are as close together as possible.

Packet pairs can overlap in time, since otherwise the measure

ment frequency would be limited by the RTT of the path.

SPP starts with the first packet from the list of packets going

from MPref to MPmon' It then searches in the second packet

30ur prototype transmits 248 [PID,ts] pairs in one 1500 byte packet [4].
4SPP does not require time synchronisation, but we use Tdelta to drastically

improve the packet-matching performance. For each packet observed at
MPmon only a Tdelta time window of packets from MPref needs to be
searched. In the prototype Tdelta is configurable [4].

(a) Finding a packet pair (b) Finding the closest pair

Figure 3: SPP packet pairing approach

list (packets going from MP mon to MP ref) for the first packet

where the condition tm,2 > tm,l is true. A packet pair has now

been identified (Figure 3a), but this pair is not necessarily the

closest pair. To find the closest pair, t;;',l is set to tm,l and

the algorithm traverses further through the first list in search

for any packets where tm,l > t;;',l and tm,l < tm,2' As long

as such packets are found the algorithm advances in the first

list. This ensures there are no other packets between the two

packets of a pair (Figure 3b).

2) Computing RTF: Once a packet-pair has been identified

the RTT computation is straightforward:

(1)

The packet pairing algorithm then continues with the next

packet in the first list (packets from MPref to MPmon). Note

that the two directions could be reversed and the RTTs could

be computed in the other direction if desired.

Equation 1 is based on time differences of the same clocks,

so there is no need for the clocks at MPref and MPmon to be

synchronised over long time frames. Short-term clock skew

during the intervals (tr,2 - tr,d at MPref and (tm,2 - tm,d
at MP mon may introduce error, but typically this error is very

small [5].

A key benefit of SPP is that the packets making up each pair

in Equation 1 need not be generated by the same application

or hosts. That allows SPP to estimate RTT from any packet

flows regardless of whether or not there is symmetric request

response behaviour. SPP can even create RTT measurements

from two unrelated unidirectional flows in different directions.

IV. EXPERIMENTAL EVALUATION

The detailed report [5] describes several scenarios where

SPP proves to be valuable. Here we focus on the scenario

where traffic prioritisation prevents active probing from mea

suring application-specific RTTs, and also show the benefits of

high passive sample rates for observing rapid RTT transitions.

Traffic prioritisation is increasingly used to minimise the

latency for specific traffic through bottleneck routers. The

actual classification of flows may occur using IP addresses,

TCPfUDP port numbers, direct payload inspection or the

traffic's statistical properties (such as packet length distribu

tions [16]). Active probes will be unable to measure the priori

tised traffic's RTT, since the active probe packets are unlikely

266

38th Annual IEEE Conference on Local Computer Networks

Figure 4: RTT of prioritised FPS online game traffic and TCP

cross traffic measured by SPP, and RTT measured by ping (not

classified as interactive traffic)

to meet the classifiers rules for header fields (addresses and

ports) let alone statistical properties. On the other hand, SPP

can measure the prioritised traffic's RTT directly.

As an example, we classified traffic through an Open WRT

based home router into interactive and non-interactive classes

based on packet length statistics [17] and prioritised the

interactive traffic on an emulated 1 Mbps ADSL upstream link

(using Dummynet). We simultaneously generated FPS game

traffic, TCP cross-traffic with Iperf (to congest the router), and

actively measured RTT with ping. Figure 4 shows a 20-second

time window of game and TCP flow RTTs (measured with

SPP) and ping's RTT measurements. Ping sees the cyclical

high RTT caused by the TCP cross-traffic, but misses the low

RTT experienced by the prioritised game traffic.

Figure 4 also demonstrates that ping misses the detailed

RTT fluctuations induced by TCP. SPP's ability to provide

frequent RTT measurements is especially useful if one is

interested in time series measurements, such as investigating

TCP congestion control behaviour. Detailed insights can also

be obtained using high probe rate active measurements, but to

the potential detriment of the path under observation. In our

scenario active probing at a rate of the TCP RTTs measured

by SPP would require almost 60 pings/second.

V. CONCLUSIONS

Evaluating the performance of network protocols or network

equipment often requires accurate RTT measurements. Active

measurement techniques are useful but limited - they add

traffic in proportion to their probe rate, and probe packets may

experience different RTTs to regular traffic. Previous passive

measurement techniques require precisely synchronised clocks

at different measurement points (MPs), router modifications or

traffic with symmetric request-response behaviour.

We proposed a novel passive technique called 'synthetic

packet-pairs' (SPP) that measures the RTT of a network

path using whatever symmetric or asymmetric two-way traffic

exists between two unsynchronised MPs. We have publicly re

leased an open-source implementation [4] , which can combine

traffic observations from MPs in near real-time or offline. We

showed that SPP provides accurate RTT measurements at a

rate proportional to the two-way traffic being observed. This

enables tracking RTT fluctuations over link technologies that

are sensitive to excess traffic loads, measuring latency on paths

where active probe packets are treated differently to regular

traffic, and seeing short-term RTT transients that are invisible

to low-rate active probing.

ACKNOWLEDGEMENT S

We thank Thuy Nguyen, Lutz Mark and Brandon Tyo for

contributing to the initial SPP development, Amiel Heyde for

implementing the public SPP prototype, David Hayes, Atwin

Calc hand and Chris Holman for subsequent bug fixes, and

Nigel Williams for helping with the OpenWRT experiments.

REFERENCES

[1] G. Armitage, M. Claypool, P. Branch, Networking and Online Games
- Understanding and Engineering Multiplayer Internet Games. John
Wiley & Sons, April 2006.

[2] K. Auerbach, "Limitations of ICMP Echo for network measure
ment." InterWorking Labs, April 2004. hup://iw1.comlwhite-papers/
7 5-limitations-of-icmp-echo-for-network-measurement.

[3] S. Keshav, "Packet pair flow control," 1995. http://blizzard.cs.uwaterloo.
ca/keshav/home/Papers/data/95/pp.pdf.

[4] A. Heyde, "SPP Implementation." http://caia.swin.edu.au/tooIs/spp/.
[5] S. Zander, G. Armitage, "Minimally-Intrusive Frequent Round Trip Time

Measurements Using Synthetic Packet-Pairs - Extended Report," Tech.
Rep. 130730A. Centre for Advanced Internet Architectures. Swinburne
University of Technology, 2013.

[6] T. Nguyen and G. Armitage, "Quantitative Assessment of IP Service
Quality in 802.l1b Networks and DOCSIS networks," in Australian
Telecommunications Networks & Applications Conference (ATNAC),
pp. 12 1-128, December 2004.

[7] I. D. Graham, S. F. Donnelly, S. Martin, J. Martens, J. G. Cleary,
"Nonintrusive and Accurate Measurement of Unidirectional Delay and
Delay Variation on the Internet," in Internet Summit (INET), July 1998.

[8] T. Zseby, S. Zander, G. Carle, "Evaluation of Building Blocks for Passive
One-way-delay Measurement," in Passive and Active Measurement
Workshop, April 2001.

[9] R. R. Kompella, K. Levchenko, A. C. Snoeren, G. Varghese, "Every
Microsecond Counts: Tracking Fine-grain Latencies with a Lossy Dif
ference Aggregator," in ACM SIGCOMM Conference on Data Commu

nication, pp. 255-266, 2009.
[l0] M. Cola, G. De Lucia, D. Mazza, M. Patrignani, M. Rimondini,

"Covert Channel for One-Way Delay Measurements," in International

Conference on Computer Communications and Networks, August 2009.
[11] J. Jiang, C. Dovrolis, "Passive Estimation of TCP Round-trip Times,"

ACM Computer Communication Review (CCR), vol. 32, pp. 75-88,
2002.

[12] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, D. Towsley, "Inferring
TCP Connection Characteristics Through Passive Measurements," in
IEEE INFO COM, March 2004.

[13] J. But, U. Keller, D. Kennedy, G. Armitage, "Passive TCP Stream
Estimation of RTT and Jitter Parameters," in IEEE 30th Conference
on Local Computer Networks (LCN), November 2005.

[14] S. Zander, G. Armitage, T. Nguyen, L. Mark, B. Tyo, "Minimally
Intrusive Round Trip Time Measurements Using Synthetic Packet
pairs," Tech. Rep. 060707 A, Centre for Advanced Internet Architectures,
Swinburne University of Technology, 2006.

[l5] C. Henke, C. Schmoll, T. Zseby, "Empirical Evaluation of Hash Func
tions for PacketID Generation in Sampled Multipoint Measurements,"
in Passive and Active Measurement Conference (PAM), 2009.

[l6] T. Nguyen, G. Armitage, "A Survey of Techniques for Internet Traffic
Classification using Machine Learning," IEEE Communications Surveys
& Tutorials, vol. 10, no. 4, pp. 56-76, 2008.

[l7] S. Zander, G. Armitage, "DIstributed Firewall and Flow-shaper Using
Statistical Evidence (DIFFUSE)." http://caia.swin.edu.aulurp/diffuse.

267

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●●

●

●

●

●

●

●●

●

●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●●

●

●●●

●

●

●

●

●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●●

●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●●

●

●●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●●

●

●●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

10 15 20 25 30

0

50

100

150

200

250

Time (s)

R
T

T
 (

m
s
)

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●●

●

●

●

●

●

●●

●

●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●●

●

●●●

●

●

●

●

●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●●

●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●●

●

●●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●●

●

●●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●Game TCP ping

