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Abstract-Accurate and frequent round trip time (RTT) mea
surements are important in testbeds and operational networks. 
Active measurement techniques inject probe packets that may 
modify the behaviour of the observed network and may produce 
misleading RTT estimates if the network handles probe packets 
differently to regular packets. Previous passive measurement 
techniques address these issues, but require precise time synchro
nisation or are limited to certain traffic types. We introduce Syn
thetic Packet-Pairs (SPP), a novel passive technique for RTT mea
surement. SPP provides frequently updated RTT measurements 
using any network traffic already present in the network without 
the need for time synchronisation. SPP accurately measures the 
RTT experienced by any application's traffic, even applications 
that do not exhibit symmetric client-server packet exchanges. We 
experimentally demonstrate the advantages of SPP. 

Index Terms-Passive measurement, round trip time, RTT. 

I. INTRODUCTION 

The measurement of a path's round trip time (RTT) is often 

crucial when evaluating and improving the performance of 

network protocols or network equipment. Also, for service 

providers it is becoming increasingly important to monitor 

and manage the RTT experienced by highly interactive ap

plications, such as voice over IP, latency-sensitive first person 

shooter (FPS) games [1] or mission-critical business applica

tions. Existing RTT measurement techniques differ in whether 

they are active (injecting additional traffic into the network) or 

passive (using traffic already in the network), their achievable 

sample rate (RTT measurements per time unit), whether they 

rely on synchronised clocks and their ability to determine the 

RTT experienced by flows from different applications. 

High rate sampling of a path's RTT is important for detailed 

observation of RTT versus time, such as watching bottleneck 

queues filling and draining or the rise and fall of contention

induced transmission delays. Active techniques find this prob

lematic, as the additional probe traffic (proportional to the 

desired sample rate) can interfere with the characteristics of 

the path being probed and skew the measured RTTs. Active 

techniques may also produce misleading RTTs across network 

paths that differently prioritise the forwarding of IP packets 

according to their higher-layer protocol and/or port numbers. 

It is hard to measure the RTT an application flow sees when 

the probe packets experience different forwarding delays [2]. 

Passive techniques can potentially sample at close to the 

existing traffic rate with no new load on the path and measure 

the actual RTTs of an application flow's traffic. However, 

passive one way delay (OWD) measurements require observa

tion points with precisely synchronised clocks, and previously 

proposed passive RTT measurement techniques require the 

enhancement of routers along a path, manipulation of packet 

contents in flight, or rely on symmetric request-response 

patterns from the observed traffic. 

We introduce a novel passive RTT measurement technique, 

called "synthetic packet-pairs" (SPP)', that: 

• Calculates RTT of a network path using existing traffic. 

• Does not require clock synchronisation. 

• Is protocol-agnostic and works with asymmetric traffic 

flows (flows without request-response behaviour). 

• Provides accurate RTT samples at a rate proportional to 

the slowest traffic rate in either direction. 

• Does not require changes on network routers or modifi-

cations of packet contents. 

SPP is beneficial in scenarios where the path under test is 

sensitive to the additional load of active probing, frequent 

sampling of the path is desired (at sample rates approach

ing the packet rates of existing traffic), tightly synchronised 

measurement point clocks are unavailable (for cost or de

ployment reasons), or probe traffic is treated differently from 

the application traffic under study. SPP is also advantageous 

where detailed RTT estimates are desired for delay or jitter 

estimation, particularly for interactive applications that do not 

have symmetric request-response packet pairs. 

SPP is non-intrusive where RTT is measured in real-time 

and a separate communication path exists between the mea

surement points, or where RTTs can be computed offline (e.g. 

testbed measurements). Otherwise, it is minimally intrusive, 

since the packet timestamp data that needs to be transmitted 

uses relatively little bandwidth. We have released an open

source implementation [4] and a more detailed report [5]. 

Section II outlines the challenges and requirements for RTT 

measurement schemes. Section III describes our proposed 

SPP algorithm. Section IV experimentally demonstrates the 

advantages of SPP. Section V concludes the paper. 

1 SPP is unrelated to Keshav's packet -pair available bandwidth probing [3]. 

978-1-4799-0537-9/13/$31.00 ©2013 IEEE 264 



38th Annual IEEE Conference on Local Computer Networks 

II. BACKGROUND AND MOTIVATION 

Here we briefly review existing RTT measurement tech

niques - see [5] for a more detailed discussion. 

A. Active RTF measurement 

Active techniques (such as ping) inject extra packets 

(probes) across a network path and use their transit times to 

measure the path's delay at the instant each probe was sent. 

Unfortunately, routers or switches along the path may han

dle active probe packets differently to regular traffic, resulting 

in unrepresentative RTTs. For example, when routers handle 

ICMP packets in their slow path ping can overestimate a 

path's RTT [2]. Bottleneck routers may also prioritise specific 

application flows during times of congestion. Active probe 

packets that do not match the rules will generate RTTs that 

do not reflect the RTT experienced by prioritised traffic. 

Active measurement schemes add network load proportional 

to the desired RTT sample rate, which can noticeably alter 

the network's behaviour and performance. This is particularly 

problematic when high-frequency measurements are desired, 

for example to capture the impact of one or more TCP 

flows congesting a bottleneck queue, or observe the impact 

of TCP cross-traffic on time-sensitive flows through shared 

bottlenecks. It is also problematic over link technologies, such 

as 802.11 Wireless LANs, where modest loads in packets per 

second cause noticeable degradation [6]. 

B. Passive RTF measurement 

By measuring the delays experienced by eXIstIng traffic, 

passive measurement techniques avoid adding load and can 

identify the RTTs experienced by application flows subject to 

different forwarding priorities. The sample rate depends on the 

rate at which traffic traverses the path. Passive schemes cannot 

sample idle paths, but in this case test traffic can be generated. 

Some techniques measure one-way delay (OWD) by noting 

the time it takes an IP packet to transit between two measure

ment points having precisely synchronised clocks (e.g. [7], 

[8]) and RTT can be calculated by adding OWD in each 

direction. However, OWD techniques either require precise 

time synchronisation (which is often complex and potentially 

costly to deploy), require modifications to existing routers [9] 

or manipulate the content of existing packets [10]. 

Other techniques estimate RTT at a single measurement 

point from the time it takes for an application request packet 

in one direction to be answered by a matching response packet 

in the return direction, e.g. [11]-[13]. They require symmetric 

client-server traffic with enough information in each packet to 

match request-response pairs. Also, these techniques fail when 

traffic in each direction has no predictable timing or semantic 

relationship, for example many client-server FPS games emit 

packets in each direction asynchronously [1]. 

III. SPP MEASUREMENT TECHNIQUE 

SPP fills a gap in the existing set of RTT measurement tech

niques, and was initially documented in a technical report [14]. 

No new traffic is injected, no modifications are required to 

Figure 1: SPP overview: packet capturing, packet matching 

and packet-pair identification 

existing infrastructure, and traffic in each direction may be 

asymmetric and from unrelated application flows. Here we 

mostly describe the technique, our prototype implementation 

is discussed in [4], [5]. 

Figure 1 illustrates the three stages of SPP - capturing 

packets at two measurement points (MPs), matching packets 

seen at both MPs, and identifying packet-pairs from which to 

calculate RTTs. 

A. Measurement Points and Packet IDs 

We will describe SPP in terms of two MPs, MPref (refer

ence) and MPmon (monitor), located so that the network traffic 

of interest traverses both points. MP ref passively records the 

passing of packets heading towards MP mon, for example by 

monitoring traffic using in-line network taps or mirrored ports 

on a switch. MP mon performs the same action for packets 

heading towards MP ref. 
For every recorded packet both MP ref and MP mon log a 

timestamp (ts) representing when the packet was seen and a 

short 'packet ID' (PID). The PID is calculated from a suitable 

hash function (e.g. CRC32 or other hash functions in [8], [15]) 

over key bytes within the packet. To uniquely identify the 

same packet passing MP ref and MP mon the PID is based on 

portions of a packet that are invariant during transit between 

MP ref and MP mon but vary between different packets (cf. [7], 

[8]).2 Each MP accumulates a list of [PID,ts] pairs based on 

the captured packets. These two lists are then combined to 

create packet-matched lists used for packet-pair identification 

and RTT calculation. 

B. Packet Matching 

Figure 1 shows the [PID,ts] lists being combined at a third 

location, but they can also be combined at MPref or MPmon. 
If the link used to transmit [PID,ts] pairs is a physical out

of-band link or a logically isolated channel, the [PID,ts] pairs 

may be combined in real-time without affecting the observed 

network. If no separate channel is available, [PID,ts] pairs may 

20ur prototype uses the CRC32 hash function. It supports selecting which 
IP and TCPIUDP header fields are used as hash input, and specifying any 
network address translation (NAT) along the path. This allows handling 
sItuatIons where MP ref and MP mon are placed at either side of a middlebox 
performing NAT, NAT with port translation or acting as a firewall (which may 
manipulate TCP header fields, such as the TCP sequence number). 
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Figure 2: Packet pair and corresponding timestamps 

be stored at each MP for later transfer across the measured 

network (e.g. during non-measurement or off-peak periods). In 

these cases SPP is non-intrusive. If a channel along the same 

infrastructure being measured is used during the measurement, 

SPP is minimally intrusive in the sense that transmitting 

[PID,ts] lists uses relatively little bandwidth.3 

Two input streams Imon and Iref represent [PID,ts] pairs 

from packets captured at MP mon and MP ref respectively. A 

queue Qref is used to buffer [PID,ts] pairs from Iref not yet 

detected in Imon. The algorithm processes packets from Imon 
in the order of their arrival at MP mon' 

For each packet Pcur captured at MP mon it searches for a 

packet with the same PID captured at MP ref. The algorithm 

first checks if a matching packet is found in QreJ. If not, new 

packets are read from Iref into QreJ until a packet matches, 

the maximum queue length is reached or a packet's timestamp 

differs by more than a pre-defined Tdelta from the timestamp of 

Pcur.4 Before the next packet of Imon is processed all packets 

in Qref whose timestamps differ by more than Tdelta from the 

timestamp of Pcur are considered lost and removed from Qref. 
The result of the packet matching is a list of 

[PIDl,tsref,tsmon] tuples, representing the time potential first 

(1) packets of pairs were seen at MP ref and MP mon respec

tively. The same algorithm is also run with the directions 

reversed to construct a list of [PID2,tsmon,tsrerl tuples, rep

resenting potential second (2) packets of pairs that were seen 

flowing from MP mon to MP ref. 

C. Packet Pair Identification and RTF Computation 

To explain our packet-pairing algorithm we first define a 

short-hand notation for the timestamp ti,j, where i indicates 

MPref (r) or MPmon (m) and j indicates whether it is the 

first (1) or second (2) packet of a packet pair. For example, 

in Figure 2 tr,l is the timestamp of the first packet at MP ref 
and tm,l is the timestamp of the first packet at MPmon. 

I) Packet pairs: SPP makes the key assumption that each 

packet is used in at most one pair. Otherwise, different RTT 

estimates would be dependent. Furthermore, SPP ensures that 

the two packets of a pair are as close together as possible. 

Packet pairs can overlap in time, since otherwise the measure

ment frequency would be limited by the RTT of the path. 

SPP starts with the first packet from the list of packets going 

from MPref to MPmon' It then searches in the second packet 

30ur prototype transmits 248 [PID,ts] pairs in one 1500 byte packet [4]. 
4SPP does not require time synchronisation, but we use Tdelta to drastically 

improve the packet-matching performance. For each packet observed at 
MPmon only a Tdelta time window of packets from MPref needs to be 
searched. In the prototype Tdelta is configurable [4]. 

(a) Finding a packet pair (b) Finding the closest pair 

Figure 3: SPP packet pairing approach 

list (packets going from MP mon to MP ref) for the first packet 

where the condition tm,2 > tm,l is true. A packet pair has now 

been identified (Figure 3a), but this pair is not necessarily the 

closest pair. To find the closest pair, t;;',l is set to tm,l and 

the algorithm traverses further through the first list in search 

for any packets where tm,l > t;;',l and tm,l < tm,2' As long 

as such packets are found the algorithm advances in the first 

list. This ensures there are no other packets between the two 

packets of a pair (Figure 3b). 

2) Computing RTF: Once a packet-pair has been identified 

the RTT computation is straightforward: 

(1) 

The packet pairing algorithm then continues with the next 

packet in the first list (packets from MPref to MPmon). Note 

that the two directions could be reversed and the RTTs could 

be computed in the other direction if desired. 

Equation 1 is based on time differences of the same clocks, 

so there is no need for the clocks at MPref and MPmon to be 

synchronised over long time frames. Short-term clock skew 

during the intervals (tr,2 - tr,d at MPref and (tm,2 - tm,d 
at MP mon may introduce error, but typically this error is very 

small [5]. 

A key benefit of SPP is that the packets making up each pair 

in Equation 1 need not be generated by the same application 

or hosts. That allows SPP to estimate RTT from any packet 

flows regardless of whether or not there is symmetric request

response behaviour. SPP can even create RTT measurements 

from two unrelated unidirectional flows in different directions. 

IV. EXPERIMENTAL EVALUATION 

The detailed report [5] describes several scenarios where 

SPP proves to be valuable. Here we focus on the scenario 

where traffic prioritisation prevents active probing from mea

suring application-specific RTTs, and also show the benefits of 

high passive sample rates for observing rapid RTT transitions. 

Traffic prioritisation is increasingly used to minimise the 

latency for specific traffic through bottleneck routers. The 

actual classification of flows may occur using IP addresses, 

TCPfUDP port numbers, direct payload inspection or the 

traffic's statistical properties (such as packet length distribu

tions [16]). Active probes will be unable to measure the priori

tised traffic's RTT, since the active probe packets are unlikely 
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Figure 4: RTT of prioritised FPS online game traffic and TCP 

cross traffic measured by SPP, and RTT measured by ping (not 

classified as interactive traffic) 

to meet the classifiers rules for header fields (addresses and 

ports) let alone statistical properties. On the other hand, SPP 

can measure the prioritised traffic's RTT directly. 

As an example, we classified traffic through an Open WRT

based home router into interactive and non-interactive classes 

based on packet length statistics [17] and prioritised the 

interactive traffic on an emulated 1 Mbps ADSL upstream link 

(using Dummynet). We simultaneously generated FPS game 

traffic, TCP cross-traffic with Iperf (to congest the router), and 

actively measured RTT with ping. Figure 4 shows a 20-second 

time window of game and TCP flow RTTs (measured with 

SPP) and ping's RTT measurements. Ping sees the cyclical 

high RTT caused by the TCP cross-traffic, but misses the low 

RTT experienced by the prioritised game traffic. 

Figure 4 also demonstrates that ping misses the detailed 

RTT fluctuations induced by TCP. SPP's ability to provide 

frequent RTT measurements is especially useful if one is 

interested in time series measurements, such as investigating 

TCP congestion control behaviour. Detailed insights can also 

be obtained using high probe rate active measurements, but to 

the potential detriment of the path under observation. In our 

scenario active probing at a rate of the TCP RTTs measured 

by SPP would require almost 60 pings/second. 

V. CONCLUSIONS 

Evaluating the performance of network protocols or network 

equipment often requires accurate RTT measurements. Active 

measurement techniques are useful but limited - they add 

traffic in proportion to their probe rate, and probe packets may 

experience different RTTs to regular traffic. Previous passive 

measurement techniques require precisely synchronised clocks 

at different measurement points (MPs), router modifications or 

traffic with symmetric request-response behaviour. 

We proposed a novel passive technique called 'synthetic 

packet-pairs' (SPP) that measures the RTT of a network 

path using whatever symmetric or asymmetric two-way traffic 

exists between two unsynchronised MPs. We have publicly re

leased an open-source implementation [4] , which can combine 

traffic observations from MPs in near real-time or offline. We 

showed that SPP provides accurate RTT measurements at a 

rate proportional to the two-way traffic being observed. This 

enables tracking RTT fluctuations over link technologies that 

are sensitive to excess traffic loads, measuring latency on paths 

where active probe packets are treated differently to regular 

traffic, and seeing short-term RTT transients that are invisible 

to low-rate active probing. 
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