

MURDOCH RESEARCH REPOSITORY

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination. The definitive version is available at <u>http://dx.doi.org/10.1128/JCM.01717-16</u>

Mirajkar, N.S., Phillips, N.D., La, T., Hampson, D.J. and Gebhart, C.J. (2016) Characterization and recognition of Brachyspira hampsonii sp. Nov., a novel intestinal spirochete that is pathogenic to pigs. Journal of Clinical Microbiology, 54 (12). pp. 2942-2949.

http://researchrepository.murdoch.edu.au/34885/

Copyright: © 2016, American Society for Microbiology.

It is posted here for your personal use. No further distribution is permitted.

JCM Accepted Manuscript Posted Online 14 September 2016 J. Clin. Microbiol. doi:10.1128/JCM.01717-16 Copyright © 2016, American Society for Microbiology. All Rights Reserved.

Characterization and recognition of Brachyspira hampsonii sp. nov., a novel 1 intestinal spirochete that is pathogenic to pigs 2 3 Nandita S Mirajkar¹, Nyree D Phillips², Tom La², David J Hampson², Connie J Gebhart^{1,3#} 4 5 ¹Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, USA, ²School of Veterinary and Life Sciences, Murdoch University, 6 Perth, Western Australia 6150, Australia, ³Veterinary Diagnostic Laboratory, College of 7 Veterinary Medicine, University of Minnesota, St. Paul, USA. 8 9 RUNNING TITLE: Characterization of Brachyspira hampsonii sp. nov. 10 11 **KEYWORDS:** 12 Brachyspira, hampsonii, Brachyspira hampsonii sp. nov., swine dysentery, species, genomovar, 13 taxonomy, genome, morphology, electron microscopy, DNA-DNA hybridization, Average 14 Nucleotide Identity, Average Amino acid Identity, genotype, phenotype, spirochete, pig 15 16 **CORRESPONDENT FOOTNOTE:** 17 # Address correspondence to Connie J Gebhart (email: gebha001@umn.edu) 18 19

Downloaded from http://jcm.asm.org/ on December 11, 2016 by SUB NO.63745291

21	Swine dysentery (SD) is a mucohemorhagic colitis of swine classically caused by infection with
22	the intestinal spirochete Brachyspira hyodysenteriae. Since around 2007, cases of SD have
23	occurred in North America associated with a different strongly beta-hemolytic spirochete that
24	has been molecularly and phenotypically characterized and provisionally named "Brachyspira
25	hampsonii". Despite increasing international interest, "B. hampsonii" is currently not recognized
26	as a valid species. To support its recognition, we sequenced the genomes of strains NSH-16,
27	NSH-24 and P280/1, representing "B. hampsonii" genetic groups I, II and III, respectively, and
28	compared them with genomes of other valid Brachyspira species. The draft genome of strain
29	NSH-16 has a DNA G+C content of 27.4% and an approximate size of 3.2 Mb. Genomic indices
30	including digital DNA-DNA hybridization (dDDH), Average Nucleotide Identity (ANI) and
31	Average Amino Acid Identity (AAI) clearly differentiated "B. hampsonii" from other recognized
32	Brachyspira species. Although discriminated genotypically, the three genetic groups remain
33	phenotypically similar. By electron microscopy, cells of different strains of "B. hampsonii"
34	measure 5-10 $\mu m \ x$ 0.28-0.34 $\mu m,$ with one or two flat curves, and have 10 to 14 periplasmic
35	flagella inserted at each cell end. Using a comprehensive evaluation of genotypic (gene
36	comparisons and multi-locus sequence typing and analysis), genomic (dDDH, ANI and AAI) and
37	phenotypic (hemolysis, biochemical profiles, protein spectra, antibiogram and pathogenicity)
38	properties, we classify Brachyspira hampsonii sp. nov. as a unique species with genetically
39	diverse yet phenotypically similar 'genomovars' (I, II and III). We designate the type strain as
40	$NSH-16^{T}$ (= $ATCC^{\circledast}$ BAA-2463 TM = NCTC 13792).

41

JCM

Journal of Clinical Microbiology

Accepted Manuscript Posted Online

Journal of Clinical Microbiology

42 INTRODUCTION

43	The genus Brachyspira includes Gram-negative, aerotolerant, anaerobic spirochetes that colonize
44	the intestine of and/or cause disease in a wide range of host species (1). Over several decades,
45	multiple taxonomic changes were applied to members of this genus (originally Treponema, then
46	transferred to Serpula, then to Serpulina and finally to Brachyspira) (2-5). Currently, the genus
47	Brachyspira consists of eight valid species including B. hyodysenteriae, B. pilosicoli, B.
48	intermedia, B. innocens, B. murdochii, B. aalborgi, B. alvinipulli, and most recently, B.
49	suanatina (1, 6). This genus also consists of several provisional species (1), of which the most
50	clinically significant is the recently discovered "B. hampsonii" (7). Within the Brachyspira
51	genus, all currently identified strongly beta-hemolytic species (B. hyodysenteriae, B. suanatina
52	and the novel "B. hampsonii") are known to cause severe mucohemorrhagic diarrhea, while
53	weakly beta-hemolytic Brachyspira species are either commensals (B. innocens) or are capable
54	of causing diarrhea and/or colitis (B. pilosicoli, B. murdochii, B. intermedia, B. aalborgii and B.
55	alvinipulli) (1). B. hyodysenteriae, the most virulent and clinically significant Brachyspira
56	species, has historically also been the most researched or investigated species. It causes swine
57	dysentery (SD), a disease characterized by mucohemorrhagic diarrhea that is most commonly
58	observed in grower-finisher pigs (1). In addition to the adverse impact on the health and welfare
59	of pigs, its negative effect on productivity (such as decreased weight gain and poor feed
60	conversion) leads to significant economic losses to livestock-raising communities and countries
61	(1). The recently validated <i>B. suanatina</i> also causes SD in pigs; however, its isolation has been
62	limited to a few northern European countries (8). The isolation of different bacterial species from
63	clinically and pathologically indistinguishable dysentery cases of pigs highlights the evolving
64	and expanding etiology of SD. Thus, the definition of SD should include all strongly beta-

65	hemolytic Brachyspira species that cause mucohemorrhagic colitis and dysentery in pigs (9).
66	The genetically diverse <i>B. pilosicoli</i> is the primary etiological agent of colonic spirochetosis, a
67	disease characterized by diarrhea and/or colitis in a wide range of host species including pigs
68	(Porcine Intestinal Spirochetosis - PIS) (10), chickens (Avian Intestinal Spirochetosis - AIS) (11)
69	and human beings (Human Intestinal Spirochetosis - HIS) (12). AIS also can be caused by other
70	Brachyspira species including B. intermedia (13) and B. alvinipulli (14), while HIS is also
71	caused by <i>B. aalborgi</i> (15). Although long considered to be a commensal, the association of <i>B</i> .
72	murdochii with mild diarrhea and/or colitis in pigs has been reported (16, 17). These
73	Brachyspira-associated disease conditions negatively impact the health and welfare of the
74	affected host species and reduce the productivity of livestock (1).
75	Clinical SD was rarely reported in North America after the early 1990s, despite continuing to
76	have negative impacts on the health and productivity of pigs in other countries across the world.
77	Outbreaks of bloody diarrhea in commercial swine herds in 2007 signaled the re-emergence of
78	this disease in North America (18). Interestingly, the detection of re-emergent B. hyodysenteriae
79	in the US was accompanied by the unexpected discovery of a novel species "B. hampsonii" from
80	cases of classic mucohemorrhagic diarrhea that were clinically indistinguishable from those
81	caused by B. hyodysenteriae. Preliminary characterization lead to the identification and
82	provisional designation of "B. hampsonii" and its two diverse genetic groups (previously called
83	clades) - group I and group II (7). Since the initial identification of "B. hampsonii" in North
84	American pigs, it has also been detected in pigs in Belgium and Germany (19, 20) and in
85	migratory water birds in Europe and North America (21, 22).
86	Several methods have been used to characterize the phenotype of "B. hampsonii" including
87	growth characterization, identification and qualification of hemolysis on blood agar, biochemical

88	tests (hippurate hydrolysis, production of indole, α -galactosidase, α -glucosidase and β -
89	glucosidase activities), protein spectra profiling, antibiogram testing and characterization of its
90	pathogenic nature. Growth on solid media (tryptic soy agar containing 5% defibrinated sheep
91	blood) is observed as tiny transparent colonies with underlying strong beta-hemolysis (23) that is
92	most distinct in areas of cuts made in the agar (known as the "ring phenomenon"), while growth
93	in liquid media (brain-heart infusion broth supplemented with 10% fetal bovine serum) is
94	observed as light turbidity in the broth (24). Cultural properties alone are insufficient to
95	differentiate "B. hampsonii" from other strongly beta-hemolytic Brachyspira species (B.
96	hyodysenteriae and B. suanatina), thus emphasizing the need for other phenotypic or genotypic
97	tests. "B. hampsonii" isolates were found to be negative for indole production, as well as
98	hippurate, α -galactosidase and α -glucosidase activity, with the indole spot test being the most
99	useful test for differentiating "B. hampsonii" from other strongly beta-hemolytic Brachyspira
100	species (B. hyodysenteriae and B. suanatina are usually indole positive) (7, 25). Although two
101	biochemical profiles for "B. hampsonii" have been described, neither was absolutely effective in
102	differentiating genetic groups I and II (7). Main spectra profiles (MSPs) generated with the
103	matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS)
104	technology were consistently able to identify "B. hampsonii" and differentiate "B. hampsonii"
105	from other Brachyspira species (26). Although this method was able to often differentiate
106	between the genetic groups of "B. hampsonii", this differential identification was not consistently
107	reliable (26). A study characterizing antibiograms of North American "B. hampsonii" isolates
108	demonstrated high susceptibility to several commonly used antimicrobials including tiamulin,
109	valnemulin, lincomycin, tylosin, doxycycline and carbadox (27). Although "B. hampsonii" often
110	demonstrated a more susceptible antibiogram compared to other Brachyspira species, no clear

125

111 differences in antibiogram profiles were observed between its genetic groups (27). Finally, 112 several trials have reproduced mucohemorrhagic diarrhea in pigs by oral inoculation of "B. 113 hampsonii" genetic groups I and II under experimental conditions and have thus confirmed the pathogenic nature of both groups (28–30). The resulting disease was indistinguishable from SD 114 caused by B. hyodysenteriae on the basis of clinical signs and gross pathology. Examination of 115 116 tissues obtained from the experimentally infected pigs had microscopic lesions consistent with 117 those seen in the mucohemorrhagic colitis induced by B. hyodysenteriae (28-30). Currently, no differences in clinical signs or gross and microscopic pathology have been reported in the SD 118 caused by either genetic groups I or II of "B. hampsonii". 119 Several methods have been used to characterize the genotype of "B. hampsonii" including gene 120 121 comparisons and identification of genotypes (7, 31). For the purpose of species delineation in the 122 Brachyspira genus, the NADH oxidase (nox) gene has historically been considered to be more 123 useful than the 16S ribosomal RNA gene (32). Both of these genes have been used to identify

124 "B. hampsonii" and differentiate it from other Brachyspira species, as well as to differentiate

Downloaded from http://jcm.asm.org/ on December 11, 2016 by SUB NO.6374529'

126 target for diagnostic tests such as qPCR and Sanger sequencing (7, 29) to specifically detect "B.

between the diverse genetic groups of "B. hampsonii" (7). The nox gene is also often used as a

127 hampsonii". Genotyping of "B. hampsonii" from diverse epidemiological origins using the multi-

locus sequence typing (MLST) approach (31) identified a total of 20 genotypes that clustered

129 into four genetic groups (I, II, III and IV). It included the commonly reported genetic groups I

130 and II that are frequently isolated from affected North American pigs (7), and occasionally

isolated from pigs in Europe (19, 20) and from migratory birds of both North American and

132 European origin (21, 22). It also included the less frequently reported genetic group III which has

been isolated occasionally from pigs and migratory water birds of European origin (20, 21, 33),

Journal of Clinica

134

135

136

137

138

139

140

141

142

143

144

145

146

morphology.

MATERIALS & METHODS

genetic groups in spite of its diverse nature (31).

as well as the rare genetic group IV which has only been detected in migratory water birds in Europe (21). Overall "B. hampsonii" was observed to demonstrate high diversity and a heterogeneous population structure (31). In addition, a *Brachyspira* genus-wide multi-locus sequence analysis (MLSA) approach was used to confirm that "B. hampsonii" could be differentiated from other *Brachyspira* species. This study reported clustering of "B. hampsonii" Despite the significance of this novel pathogenic species and the information that is currently available, "B. hampsonii" is still classified as a proposed species. Therefore the objective of this study is to support its position as a valid species by providing additional information on its whole genome sequences, genomic relatedness to other Brachyspira species and ultrastructural

"B. hampsonii" isolates: "Brachyspira hampsonii" strains NSH-16 (ATCC[®] BAA-2463TM), 147 NSH-24 (ATCC[®] BAA-2464TM) and P280/1 were selected for study as they represent the type 148 strains for genetic groups I, II and III, respectively. Most importantly, strain NSH-16 is also the 149 designated type strain for "B. hampsonii" (ATCC[®] BAA-2463TM = NCTC 13792). Plates of 150 tryptic soy agar (TSA) (BD, Franklin Lakes, NJ, USA) containing 5% defibrinated sheep blood 151 152 (I-Tek Medical Technologies, MN, USA) were inoculated with pure cultures and incubated under anaerobic conditions at 37°C for four days. Growth was observed as zones of strong beta-153 hemolysis with observation of the characteristic ring phenomenon. The purity of the isolates was 154 155 confirmed by phase-contrast microscopy of wet mounts.

156

157	grown to mid log phase on TSA plates and prepared for phase contrast and electron microscopy
158	as described previously (10). Actively dividing cells were gently harvested from the plates with 1
159	mL 0.01 M sodium phosphate buffer at pH 7.0 and centrifuged at 2,000 \times g for 3 min. The pellet
160	was resuspended with 1 ml phosphate buffer and centrifuged at $2,000 \times g$ to wash the cells.
161	Washing was performed three times before resuspending the cells with 0.5 mL phosphate buffer.
162	Washed cells were adhered to coverslips using 0.1% polyethyleneimine and examined with a
163	Nikon ECLIPSE 90i microscope under a 100X phase contrast objective with a Ph3 condenser
164	ring. A 0.02 mL sample of the washed cells was negatively stained with an equal volume of 2%
165	phosphotungstic acid (pH 7) before being mounted on a carbon-reinforced 200-mesh copper grid
166	coated with 2% Parlodion. The grids were examined with a Phillips model 410 transmission
167	electron microscope. Cell dimensions and the ultrastructural characteristics of the spirochete
168	were determined from electron micrographs of at least ten individual cells.
169	Genome sequencing, assembly and annotation: Genomic DNA from each isolate was
170	extracted using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA) as per the
171	manufacturer's instructions. For strains NSH-16 and NSH-24, the quality control, library
172	preparation and whole genome sequencing of the extracted genomic DNA was carried out at the
173	University of Minnesota Genomics Center, Minneapolis. Briefly, the samples were evaluated for
174	quality control and DNA concentrations using the Quant- iT^{TM} PicoGreen [®] dsDNA Assay Kit
175	(Thermo Fisher Scientific, Waltham, MA, USA) and the DNA library was prepared using the
176	Nextera XT DNA Library Preparation Kit (Illumina, CA, USA) as per the manufacturer's
177	instructions. Sequencing was carried out using MiSeq Reagent Kit V3 (Illumina, CA, USA) with
178	a paired end 2x300 bp construct on the MiSeq system (Illumina, CA, USA). This yielded

Phase Contrast and Electron Microscopy: Cells of strains NSH-16, NSH-24 and P280/1 were

JCM

Using the default parameters of the De Novo Assembly tool of CLC Genomics Grid Workbench
8.0.2, the reads were quality checked, trimmed based on quality, and assembled <i>de novo</i> to
generate contigs. Filters were applied to select and extract a subset of contigs with consensus
length ≥ 1 kb and coverage ≥ 50 X in order to generate a draft genome. Whole genome
sequencing of strain P280/1 was performed in Australia by Geneworks Pty Ltd (Thebarton, SA,
Australia) under the Illumina Certified Service Provider (CSPro) Program. Sequencing was
carried out using the TruSeq DNA PCR-Free Library Preparation Kit (Illumina, CA, USA) with
a paired end 2x75 bp construct on the Genome Analyzer IIx (Illumina, CA, USA), which yielded
14,097,542 reads corresponding to an average genome coverage of approximately 661X. De
novo assembly of reads was performed with SeqMan NGen 3.0 Assembly Software (DNASTAR,
Madison, WI, USA) using default parameters to generate a draft genome. All three strains were
annotated using the Rapid Annotation using Subsystems Technology (RAST version 2.0) (34)
with parameters allowing for frameshift error corrections. The genomes were also annotated

194 using the NCBI Prokaryotic Genome Annotation Pipeline (35).

195 Genome comparisons for species delineation: Publicly available genomes of various

4,566,767 and 3,603,642 passing filter reads for strains NSH-16 and NSH-24 which

corresponded to an average genome coverage of approximately 860X and 700X, respectively.

Brachyspira species were obtained from the NCBI genome database 196

(https://www.ncbi.nlm.nih.gov/genome/). These included *B. hyodysenteriae* (strain B-78^T and 197

strain WA1), B. suanatina strain AN4859/03^T, B. pilosicoli strain P43/6/78^T, B. intermedia strain 198

Downloaded from http://jcm.asm.org/ on December 11, 2016 by SUB NO.6374529

- PWS/A^T, B. murdochii strain 56-150^T, B. innocens strain B256^T, B. alvinipulli strain 911207/C1^T 199
- 200 and "B. hampsonii" (strain 30599 and strain 30446). The publicly available genome of B.
- aalborgii strain 513A^T was obtained from MetaHIT Consortium website 201

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

Journal of Cli<u>nica</u>

(http://www.sanger.ac.uk/resources/downloads/bacteria/metahit/). The Genome to Genome
Distance (GGD) values of "B. hampsonii" strains NSH-16, NSH-24 and P280/1 and other
Brachyspira species and strains were calculated using the Genome-to-Genome Distance
Calculator (GGDC 2.1) web service (http://ggdc.dsmz.de/distcalc2.php) (36). Similarly, the
average nucleotide identity (ANI) values and the average amino acid identity (AAI) values
hampsonii" strains NSH-16, NSH-24 and P280/1 and other Brachyspira species and strains
calculated using the EzGenome ANI web service (http://www.ezbiocloud.net/ezgenome/and
based on the algorithm of Goris et al. (38), and using the web-based AAI tool (http://enve-
omics.ce.gatech.edu/aai/index) (39) based on two-way AAI calculations, respectively. Spec
web-based species identification tool (http://vm-lux.embl.de/~mende/specI/) (40) was used
extract 40 universal single copy marker genes of "B. hampsonii" strains NSH-16, NSH-24 a
P280/1 and evaluate the average genetic distance of these strains from publicly available
complete genomes of valid bacterial species.

203 Distance (GGD) values of "B. hampsonii" strains NSH-16, NSH-24 and P280/1 and er 204 Brachyspira species and strains were calculated using the Genome-to-Genome Dista 205 Calculator (GGDC 2.1) web service (http://ggdc.dsmz.de/distcalc2.php) (36). Similar the 206 average nucleotide identity (ANI) values and the average amino acid identity (AAI) ues of "*B*. 207 hampsonii" strains NSH-16, NSH-24 and P280/1 and other Brachyspira species and ins were 208 calculated using the EzGenome ANI web service (http://www.ezbiocloud.net/ezgeno /ani) (37) 209 based on the algorithm of Goris et al. (38), and using the web-based AAI tool (http:// e-210 omics.ce.gatech.edu/aai/index) (39) based on two-way AAI calculations, respectively pecI, a web-based species identification tool (http://vm-lux.embl.de/~mende/specI/) (40) wa 211 sed to 212 extract 40 universal single copy marker genes of "B. hampsonii" strains NSH-16, NS 24 and 213 P280/1 and evaluate the average genetic distance of these strains from publicly available

215

214

202

RESULTS 216

By phase contrast and electron microscopy the shape of the spirochete cells was consistent with 217 218 that of other *Brachyspira* species. Cells had slightly tapered ends and one or two flat serpentine 219 curves (Figure 1). The cells of P280/1 were longer than those of NSH-16 and NSH-24, but were otherwise similar, with 10 to 14 periplasmic flagella inserted sub-terminally at each end of the 220 221 cell, with a total of 20 to 28 flagella per cell (Figure 2). Cells of P280/1 were $10.49 \pm 0.41 \,\mu m$ long, whereas those of NSH-16 and NSH-24 were 5.43 ± 0.34 and 5.06 ± 0.37 µm long 222 respectively (Table 1). Mean cell widths for the strains varied from 0.28 to 0.34 μ m. 223

224	The final assembly of "B. hampsonii" strain NSH-16 genome resulted in 77 contigs comprising
225	approximately 3.16 Mb with a G+C content of 27.4%. Eleven large contigs >100 kb in size and
226	another 43 contigs 10-100 kb in size comprised 97.4% of the assembled B. hampsonii" strain
227	NSH-16 genome. The final assembly of "B. hampsonii" strain NSH-24 resulted in 178 contigs
228	comprising approximately 2.97 Mb with a G+C content of 27.5%. One large contig >100 kb in
229	size and another 93 contigs 10-100 kb in size comprised 88% of the assembled <i>B. hampsonii</i> "
230	strain NSH-24 genome. Assembly of the "B. hampsonii" strain P280/1 genome resulted in 16
231	contigs of 3,186,631 bp, with a G+C content of 27.5%. The general genomic features of <i>B</i> .
232	hampsonii" strains NSH-16, NSH-24 and P280/1 are described in Table 2.
233	The GGD, ANI and AAI values comparing "B. hampsonii" strains NSH-16, NSH-24 and P280/1
234	with other Brachyspira species and strains are described in Tables 3, 4 and 5, respectively.
235	Comparison of "B. hampsonii" GGD values with other Brachyspira species, between "B.
236	hampsonii" genetic groups and within "B. hampsonii" genetic groups were approximately ~20-
237	35%, ~50-57% and ~99%, respectively. A similar trend was observed when using the ANI
238	method, where inter-species, inter-genetic group and intra-genetic group comparison yielded
239	nucleotide identities of approximately $\sim\!75\text{-}88\%, \sim\!93\text{-}94.5\%$ and $\sim\!100\%$, respectively. The AAI
240	method yielded mostly similar results for inter-species, inter-genetic group and intra-genetic
241	group comparisons with amino acid identities of approximately ~72-90%, ~94-95% and ~100%,
242	respectively. SpecI was unable to categorize "B. hampsonii" as any previously recognized valid
243	bacterial species. Interestingly, it identified "B. hampsonii" genetic group I as a closest match to
244	B. hyodysenteriae, and genetic groups II and III as closest matches to B. intermedia.

245

DISCUSSION 246

JCM

JCM

247	Since the initiation of bacterial taxonomy in the late 19 th century, the accepted taxonomic
248	practices for delineation of novel species have evolved with the advent of new technologies and
249	scientific methods. Initially bacteria were classified on phenotypic characteristics such as growth
250	requirements, morphology, pathogenicity, physiology, and biochemical activity. Gradually
251	chemotaxonomy, numerical taxonomy, conventional DDH, DNA G+C content and eventually
252	16S ribosomal RNA gene sequencing provided further methods of species differentiation. A
253	detailed review of the history of bacterial taxonomy has been provided by Schleifer KH (41).
254	Most recently, whole genome sequencing has facilitated several additional approaches to species
255	delineation including comparison of genome indexes, gene content and multiple gene aligned
256	sequence datasets (42). The utility of DNA G+C content comparison is limited as members of
257	several bacterial genera show high conservation of G+C content, and thus this method serves
258	mostly as an exclusionary determinant (41). Of the mentioned genotypic methods, conventional
259	DDH and 16S rRNA gene sequencing have been widely used for differentiating bacterial species
260	over the last several years (42). Although 16S rRNA gene sequencing is an effective way to
261	differentiate bacterial species because of its genetically and functionally highly stable nature, this
262	method is not useful for some bacterial species that have multiple rRNA operons in a single
263	genome or show a high degree of conservation within a genus (41). Further, conventional DDH
264	is known to be laborious, error-prone with low reproducibility, expensive and not equally
265	applicable to all bacterial genera (41). Thus methods evaluating whole genome sequence
266	similarity such as digital DDH were proposed as they overcome many of the drawbacks while
267	maintaining a good correlation with conventional DDH and 16S rRNA sequencing for species
268	delineation (38, 43). Given the plethora of methods available, current prokaryotic taxonomy is

Downloaded from http://jcm.asm.org/ on December 11, 2016 by SUB NO.63745291

JCM

269 often based on polyphasic combinations of phenotypic, genotypic, genomic and/or

chemotaxonomic characteristics (41).

271 In the case of "B. hampsonii" no completely distinctive phenotypical differences from all strains 272 of other valid Brachyspira species have been found to date, and this study confirms that even the 273 ultrastructure of "B. hampsonii" cells is similar to that of some other Brachyspira species, such 274 as B. hyodysenteriae. The genomes of "B. hampsonii" strains NSH-16, NSH-24 and P280/1 show similar G+C content, which falls within the general range of G+C content currently 275 276 identified for members of the *Brachyspira* genus (~27% to 28%). This is not surprising, as 277 diverse Brachyspira species show limited variation in their average chromosomal G+C content (6, 44–47). The approximated genome size also falls within the range of most members of the 278 279 Brachyspira genus (range: ~2.7 Mb to ~3.4 Mb) (6, 44–47). Applying the recommended <70% threshold value for DDH (48) to GGD results, and the <95-96% threshold (49, 50) to ANI and 280 281 AAI results, these "B. hampsonii" strains did not fall under the classification of any previously 282 recognized *Brachyspira* species. Further, the 96.5% threshold for similarity to universal marker 283 genes (40) was also unable to assign these strains to any known bacterial or archaeal species. 284 These genomic indices add to the already existing information supporting the position of "B. hampsonii" as a novel species. Surprisingly, based upon several universal marker genes, the 285 closest matches identified for the various genetic groups differed (i.e. B. hyodysenteriae for 286 287 genetic group I and B. intermedia for genetic groups II and II). A similar observation was made 288 by the use of whole-genome sequence data, wherein "B. hampsonii" showed the closest identity 289 to B. hyodysenteriae, B. intermedia and B. suanatina, followed by B. murdochii and B. innocens. 290 This was in contrast to previous studies (7, 21, 31) which identified "B. hampsonii" to be most 291 genetically related to B. murdochii and/or B. innocens. Since those studies (7, 21, 31) evaluated

Downloaded from http://jcm.asm.org/ on December 11, 2016 by SUB NO.6374529

292 only a few conserved genes, it is likely that the genetic relatedness of the overall genome was 293 under-represented. The use of whole-genome data in this study provides the opportunity to make 294 more detailed and extensive comparisons between "B. hampsonii" and other species. Future studies comparing the core genomes of various *Brachyspira* species will help to identify which 295 296

309

of these species "B. hampsonii" shares common ancestors with. 297 The genus Brachyspira is unique and complicated as it consists of a variety of species that can infect a wide range of host species with different abilities to cause disease, yet each shows 298 299 varying degrees of ability to be differentiated by phenotypic and genotypic characteristics. For 300 instance, the low variation in 16S rRNA gene sequence and DNA G+C content (<1%) would be insufficient to differentiate the various species within the Brachyspira genus. On the other hand, 301 302 genetically and phenotypically diverse species (B. hyodysenteriae, B. suanatina and "B. 303 hampsonii") all infect a single host species (pig), occupy the same ecological niche (the colon) 304 and cause a clinically and pathologically indistinguishable disease (SD). Thus a comprehensive 305 and conservative approach that evaluates information on a variety of genotypic and phenotypic

306 properties as well as ecological characteristics should be applied in delineating species within the 307 Brachyspira genus. While both genotypic and phenotypic data clearly support "B. hampsonii" as 308 a novel species, they provide ambiguous interpretations for whether the various genetic groups

represent one or multiple novel species. Specifically, although the genomic indices (GGD, ANI

and AAI values) comparing "B. hampsonii" genetic groups I, II and III to each other are 310

311 significantly lower than the threshold of species differentiation, they are also significantly higher

312 than the values obtained when comparing either of the genetic groups with other Brachyspira

species. This depicts a situation wherein based on genomic information, one could identify the 313

genetic groups of "B. hampsonii" as three closely related species. Tindall et al. (42) recommends 314

Journal of Cli<u>nica</u>

Journal of Clinical

<u>Microbiology</u>

315	that the <70% threshold for DDH (and by correlation other genome sequence identity methods)
316	should not be used as a strict boundary for species delineation. A species can include strains with
317	DDH values <50% if these strains are not clearly distinguishable based on other properties such
318	as phenotypic characteristics (42). Ursing et al. (51) recommends that such genomic groups be
319	classified as 'genomovars' of a single species, with the possibility for reclassification as different
320	species once clear and stable discriminative phenotypic properties are identified. Although the
321	genotypic properties (i.e. gene sequence comparisons (7), MLST (31), MLSA (31), GGD, ANI
322	and AAI) reliably discriminate several genetic groups of "B. hampsonii", currently, analysis of
323	the available phenotypic properties (i.e. beta-hemolysis on blood agar (7), biochemical profiles
324	(7), MALDI protein spectra (26), antibiograms (27) and pathogenicity (28-30)) is unable to
325	clearly and consistently differentiate them. Thus, based on a comprehensive genotypic,
326	phenotypic and genomic evaluation we propose that Brachyspira hampsonii sp. nov. should be
327	considered a single novel species with multiple genomovars. To that effect, the various "B.
328	hampsonii" genetic groups (31) (previously called clades (7)) should henceforth be referred to as

'genomovars', such that genetic groups I, II and III be replaced by the terms genomovars I, II 329 330 and III, respectively.

331

332 Description of Brachyspira hampsonii sp. nov.

333 Brachyspira hampsonii (hamp.so'ni.i N.L. masc. gen. n. hampsonii of Hampson), in recognition of Dr. David J. Hampson for his extensive work on the Brachyspira genus, as first proposed by 334 335 Chander et al. (7).

S

336	Brachyspira hampsonii sp. nov. is a Gram-negative, oxygen-tolerant anaerobe and strongly beta-
337	hemolytic spirochete. B. hampsonii cells measure 5-10 μ m x 0.25-0.38 μ m, have slightly tapered
338	ends, and have one to two flat serpentine coils. Each spirochete cell has 10 to 14 periplasmic
339	flagella inserted at each end of the cell. Growth occurs after inoculated agar (stationary) or broth
340	(rotating at ~80 rpm) has been incubated at 37°C for four days under an aerobic (80% $\rm N_2$ - 10%
341	CO_2 - 10% H ₂) conditions. Growth on tryptic soy agar containing 5% defibrinated sheep blood is
342	observed as tiny transparent colonies with underlying strong beta-hemolysis that is most distinct
343	in areas of cuts made in the agar (known as the 'ring phenomenon'). Growth in brain-heart
344	infusion broth containing 10% fetal bovine serum is observed as light turbidity. Strains are
345	indole negative, hippurate negative, α -galactosidase negative and α -glucosidase negative, and
346	either positive or negative for β -glucosidase. Strains of this species colonize pigs in which they
347	induce swine dysentery characterized by mucohemorrhagic diarrhea. They also are recorded as
348	naturally colonizing species of waterfowl including feral ducks and geese. They are highly
349	susceptible to the antimicrobials tiamulin, valnemulin and carbadox. Strains of this species can
350	be genetically differentiated from other Brachyspira species by the use of nox gene sequencing,
351	MLST and whole genome sequencing, as well as species-specific PCRs based on the nox gene.
352	The draft genome of <i>B. hampsonii</i> sp. nov. strain NSH-16 has a DNA G+C content of 27.4% and
353	an approximate genome size of 3.2 Mb. Multiple genotypic (MLST, 16S rRNA and nox gene
354	sequence comparisons), genomic (GGD, ANI and AAI) and phenotypic measures (hemolysis,
355	biochemical profiles, MALDI and antibiograms) support the taxonomic classification of
356	Brachyspira hampsonii sp. nov. They also support the detection of several genetically diverse yet
357	phenotypically similar groups that have now been designated as genomovars (I, II, and III). The
358	type strain for <i>Brachyspira hampsonii</i> sp. nov. is NSH- 16^{T} . The type strains for <i>B. hampsonii</i> sp.

Downloaded from http://jcm.asm.org/ on December 11, 2016 by SUB NO.63745291

359 nov. genomovar I, B. hampsonii sp. nov. genomovar II and B. hampsonii sp. nov. genomovar III

- 360 are designated as NSH-16, NSH-24 and P280/1, respectively. B. hampsonii sp. nov. strain NSH-
- 16^T (= ATCC[®] BAA-2463TM = NCTC 13792) and *B. hampsonii* sp. nov. strain NSH-24 (= 361
- $\text{ATCC}^{\text{(B)}}$ BAA-2464TM = NCTC 13793) have been deposited with two recognized culture 362
- collections in two different countries (ATCC, USA and NCTC, UK). 363

Accession numbers: 364

- The Whole Genome Shotgun projects for *B. hampsonii* strains NSH-16^T, *B. hampsonii* NSH-24 365
- 366 and B. hampsonii P280/1 have been deposited at DDBJ/ENA/GenBank under the accessions
- LZOF00000000, LZOG00000000 and MDCO00000000, respectively. The versions described in 367

Downloaded from http://jcm.asm.org/ on December 11, 2016 by SUB NO.6374529'

this paper are LZOF01000000, LZOG01000000 and MDCO01000000, respectively. 368

369

ACKNOWLEDGEMENTS 370

371 We thank the Minnesota Supercomputing Institute for providing computing resources and Dr.

372 Ying Zhang for her guidance with genome assembly. We thank Dr. Anibal Armien (College of

Veterinary Medicine, University of Minnesota) and Dr. Robert Cook of the Faculty of Medicine, 373

Dentistry and Health Sciences at the University of Western Australia for their assistance with the 374 375 electron microscopy.

376

REFERENCES 377

Hampson DJ. 2012. Brachyspiral colitis., p. 680-696. In Zimmerman, J, Karriker, L, 378 1. 379 Ramirez, A, Schwartz, K, Stevenson, G (eds.), Diseases of Swine, 10th ed. WileyJournal of Clinical

Microbiology

380 Blackwell, Chichster, United Kingdom.

3812.Harris DL, Glock RD, Christensen CR, Kinyon JM. 1972. Inoculation of pigs with

- *Treponema hyodysenteriae* (new species) and reproduction of the disease. Vet Med Small
 Anim Clin 67:61–64.
- 384 3. Stanton TB, Jensen NS, Casey TA, Tordoff LA, Dewhirst FE, Paster BJ. 1991.

Reclassification of *Treponema hyodysenteriae* and *Treponema innocens* in a new genus, *Serpula* gen. nov., as *Serpula hyodysenteriae* comb. nov. and *Serpula innocens* comb. nov. Int J Syst Bacteriol 41:50–58.

- Stanton TB. 1992. Proposal to change the genus designation *Serpula* to *Serpulina* gen.
 nov. containing the species *Serpulina hyodysenteriae* comb. nov. and *Serpulina innocens* comb. nov. Int J Syst Bacteriol 42:189–90.
- Ochiai S, Adachi Y, Mori K. 1997. Unification of the genera *Serpulina* and *Brachyspira*,
 and proposals of *Brachyspira hyodysenteriae* comb. nov., *Brachyspira innocens* comb.
 nov. and *Brachyspira pilosicoli* comb. nov. Microbiol Immunol 41:445–52.
- 394 6. Mushtaq M, Zubair S, Råsbäck T, Bongcam-Rudloff E, Jansson DS. 2015.
- Brachyspira suanatina sp. nov., an enteropathogenic intestinal spirochaete isolated from
 pigs and mallards: genomic and phenotypic characteristics. BMC Microbiol 15:208.
- 397 7. Chander Y, Primus A, Oliveira S, Gebhart CJ. 2012. Phenotypic and molecular
- 398 characterization of a novel strongly hemolytic *Brachyspira* species, provisionally
- designated "Brachyspira hampsonii". J Vet Diagn Invest 24:903–10.
- 400 8. Rasback T, Jansson DS, Johansson KE, Fellstrom C. 2007. A novel enteropathogenic,

401		strongly haemolytic spirochaete isolated from pig and mallard, provisionally designated
402		"Brachyspira suanatina" sp. nov. Environ Microbiol 9:983-991.
403	9.	Burrough ER. 2016. Swine Dysentery: etiopathogenesis and diagnosis of a reemerging
404		disease. Vet Pathol.
405	10.	Trott DJ, Stanton TB, Jensen NS, Duhamel GE, Johnson JL, Hampson DJ. 1996.
406		Serpulina pilosicoli sp. nov., the agent of porcine intestinal spirochetosis. Int J Syst
407		Bacteriol 46 :206–215.
408	11.	McLaren AJ, Trott DJ, Swayne DE, Oxberry SL, Hampson DJ. 1997. Genetic and
409		phenotypic characterization of intestinal spirochetes colonizing chickens and allocation of
410		known pathogenic isolates to three distinct genetic groups. J Clin Microbiol 35 :412–417.
411	12.	Trivett-Moore NL, Gilbert GL, Law CLH, Trott DJ, Hampson DJ. 1998. Isolation of
412		Serpulina pilosicoli from rectal biopsy specimens showing evidence of intestinal
413		spirochetosis. J Clin Microbiol 36 :261–265.
414	13.	Hampson DJ, McLaren AJ. 1999. Experimental infection of laying hens with Serpulina
415		intermedia causes reduced egg production and increased faecal water content. Avian
416		Pathol 28 :113–117.
417	14.	Stanton TB, Postic D, Jensen NS. 1998. Serpulina alvinipulli sp. nov., a new Serpulina
418		species that is enteropathogenic for chickens. Int J Syst Bacteriol 48 Pt 3:669-676.
419	15.	Mikosza ASJ, La T, Brooke CJ, Lindboe CF, Ward PB, Heine RG, Guccion JG, De
420		Boer WB, Hampson DJ. 1999. PCR amplification from fixed tissue indicates frequent
421		involvement of Brachyspira aalborgi in human intestinal spirochetosis. J Clin Microbiol

37:2093–2098.

423	16.	Komarek V, Maderner A, Spergser J, Weissenbock H. 2009. Infections with weakly
424		haemolytic Brachyspira species in pigs with miscellaneous chronic diseases. Vet
425		Microbiol 134 :311–317.
426	17.	Jensen TK, Christensen AS, Boye M. 2010. <i>Brachyspira murdochii</i> colitis in pigs. Vet
427		Pathol 47:334–338.
428	18.	Mirajkar NS, Gebhart CJ. 2014. Understanding the molecular epidemiology and global
429		relationships of Brachyspira hyodysenteriae from swine herds in the United States: A
430		multi-locus sequence typing approach. PLoS One 9:e107176.
431	19.	Mahu M, de Jong E, De Pauw N, Vande Maele L, Vandenbroucke V, Vandersmissen
432		T, Miry C, Pasmans F, Haesebrouck F, Martel A, Boyen F. 2014. First isolation of
433		"Brachyspira hampsonii" from pigs in Europe. Vet Rec 174:47.2–47.
434	20.	Rohde J, Habighorst-Blome K, Seehusen F. 2014. "Brachyspira hampsonii" clade I
435		isolated from Belgian pigs imported to Germany. Vet Microbiol 168:432-435.
436	21.	Martinez-Lobo FJ, Hidalgo A, Garcia M, Arguello H, Naharro G, Carvajal A, Rubio
437		P. 2013. First identification of "Brachyspira hampsonii" in wild European waterfowl.
438		PLoS One 8 :e82626.
439	22.	Rubin JE, Harms NJ, Fernando C, Soos C, Detmer SE, Harding JCS, Hill JE. 2013.
440		Isolation and Characterization of Brachyspira spp. including "Brachyspira hampsonii"
441		from Lesser Snow Geese (Chen caerulescens caerulescens) in the Canadian Arctic.
442		Microb Ecol 66 :813–822.

Journal of Clinical Microbiology

JCM

Journal of Clinical Microbiology Journal of Clinica

443

23.

- Culture Collection. 444 ATCC. Product Sheet: Brachyspira hampsonii (ATCC® BAA-2463TM). American Type 24. 445 Culture Collection. 446 25. Fellström C, Karlsson M, Pettersson B, Zimmerman U, Gunnarsson A, Aspan A. 447 1999. Emended descriptions of indole negative and indole positive isolates of Brachyspira 448 (Serpulina) hyodysenteriae. Vet Microbiol 70:225–238. 449 450 26. Warneke HL, Kinyon JM, Bower LP, Burrough ER, Frana TS. 2014. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for rapid identification of 451 452 Brachyspira species isolated from swine, including the newly described "Brachyspira hampsonii." J Vet Diagnostic Investig 26:635-639. 453
 - 454 27. Mirajkar NS, Davies PR, Gebhart CJ. 2016. Antimicrobial susceptibility patterns of
 455 *Brachyspira* species isolated from swine herds in the United States. J Clin Microbiol
 456 54:2109–2119.

ATCC. Product Sheet: Brachyspira hampsonii (ATCC® BAA-2464TM). American Type

- 457 28. Costa MO, Hill JE, Fernando C, Lemieux HD, Detmer SE, Rubin JE, Harding JCS.
 458 2014. Confirmation that "*Brachyspira hampsonii*" clade I (Canadian strain 30599) causes
 459 mucohemorrhagic diarrhea and colitis in experimentally infected pigs. BMC Vet Res
 460 10:129.
- 461 29. Rubin JE, Costa MO, Hill JE, Kittrell HE, Fernando C, Huang Y, O'Connor B,
- 462 Harding JCS. 2013. Reproduction of mucohaemorrhagic diarrhea and colitis
- indistinguishable from swine dysentery following experimental inoculation with
- 464 *"Brachyspira hampsonii*" strain 30446. PLoS One 8:e57146.

21

465	30.	Wilberts BL, Arruda PH, Kinyon JM, Madson DM, Frana TS, Burrough ER. 2014.
466		Comparison of lesion severity, distribution, and colonic mucin expression in pigs with
467		acute swine dysentery following oral inoculation with "Brachyspira hampsonii" or
468		Brachyspira hyodysenteriae. Vet Pathol 51:1096–108.
469	31.	Mirajkar NS, Bekele AZ, Chander YY, Gebhart CJ. 2015. Molecular epidemiology of
470		novel pathogen "Brachyspira hampsonii" reveals relationships between diverse genetic
471		groups, regions, host species, and other pathogenic and commensal Brachyspira species. J
472		Clin Microbiol 53 :2908–2918.
473	32.	Atyeo RF, Stanton TB, Jensen NS, Suriyaarachichi DS, Hampson DJ. 1999.
474		Differentiation of Serpulina species by NADH oxidase gene (nox) sequence comparisons
475		and nox-based polymerase chain reaction tests. Vet Microbiol 67:47-60.
476	33.	Neef NA, Lysons RJ, Trott DJ, Hampson DJ, Jones PW, Morgan JH. 1994.
477		Pathogenicity of porcine intestinal spirochetes in gnotobiotic pigs. Infect Immun 62:2395-
478		2403.
479	34.	Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes
480		S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED
481		and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST).
482		Nucleic Acids Res 42 :D206–14.
483	35.	Tatusova T, Ciufo S, Federhen S, Fedorov B, McVeigh R, O'Neill K, Tolstoy I,
484		Zaslavsky L. 2015. Update on RefSeq microbial genomes resources. Nucleic Acids Res
485		43 :D599–D605.
486	36.	Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. 2013. Genome sequence-based

Downloaded from http://jcm.asm.org/ on December 11, 2016 by SUB NO.63745291

Journal of Clinical Microbiology

487		species delimitation with confidence intervals and improved distance functions. BMC
488		Bioinformatics 14:60.
489	37.	Lee I, Kim YO, Park SC, Chun J. 2016. OrthoANI: An improved algorithm and
490		software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100-
491		1103.
492	38.	Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM.
493		2007. DNA-DNA hybridization values and their relationship to whole-genome sequence
494		similarities. Int J Syst Evol Microbiol 57:81–91.
495	39.	Rodriguez-R LM, Konstantinidis KT. 2016. The enveomics collection : a toolbox for
496		specialized analyses of microbial genomes and metagenomes. Peer J Prepr 4:e1900v1.
497	40.	Mende DR, Sunagawa S, Zeller G, Bork P. 2013. Accurate and universal delineation of
498		prokaryotic species. Nat Methods 10:881–884.
499	41.	Schleifer KH. 2009. Classification of Bacteria and Archaea: Past, present and future. Syst
500		Appl Microbiol 32 :533–542.
501	42.	Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. 2010. Notes on the
502		characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol
503		60 :249–266.
504	43.	Auch AF, von Jan M, Klenk H-P, Göker M. 2010. Digital DNA-DNA hybridization for
505		microbial species delineation by means of genome-to-genome sequence comparison.
506		Stand Genomic Sci 2:117–34.
507	44.	Håfström T, Jansson DS, Segerman B. 2011. Complete genome sequence of

JCM

508		Brachyspira intermedia reveals unique genomic features in Brachyspira species and
509		phage-mediated horizontal gene transfer. BMC Genomics 12:395.
510	45.	Bellgard MI, Wanchanthuek P, La T, Ryan K, Moolhuijzen P, Albertyn Z, Shaban
511		B, Motro Y, Dunn DS, Schibeci D, Hunter A, Barrero R, Phillips ND, Hampson DJ.
512		2009. Genome sequence of the pathogenic intestinal spirochete Brachyspira
513		hyodysenteriae reveals adaptations to its lifestyle in the porcine large intestine. PLoS One
514		4 :e4641–e4641.
515	46.	Wanchanthuek P, Bellgard M, La T, Ryan K, Moolhuijzen P, Chapman B, Black M,
516		Schibeci D, Hunter A, Barrero R, Phillips N, Hampson D. 2010. The complete genome
517		sequence of the pathogenic intestinal spirochete Brachyspira pilosicoli and comparison
518		with other Brachyspira genomes. PLoS One 5:e11455–e11455.
519	47.	Pati A, Sikorski J, Gronow S, Munk C, Lapidus A, Copeland A, Glavina Del Tio T,
520		Nolan M, Lucas S, Chen F, Tice H, Cheng J-F, Han C, Detter JC, Bruce D, Tapia R,
521		Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Chen A,
522		Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Spring S, Rohde M,
523		Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk H-
524		P. 2010. Complete genome sequence of Brachyspira murdochii type strain (56-150T).
525		Stand Genomic Sci 2:260–269.
526	48.	Wayne LG, Brenner DJ, Colwell RR, Grimont P a. D, Kandler O, Krichevsky MI,
527		Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG.
528		1987. Report of the ad hoc committee on reconciliation of approaches to bacterial
529		systematics. Int J Syst Bacteriol 37:463–464.

Accepted Manuscript Posted Online

530	49.	Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the
531		prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126-31.
532	50.	Konstantinidis KT, Tiedje JM. 2005. Towards a genome-based taxonomy for
533		prokaryotes. J Bacteriol 187:6258-6264.
534	51.	Ursing JB, Rossellomora RA, Garciavaldes E, Lalucat J. 1995. Taxonomic note - A
535		pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int J
536		Syst Bacteriol 45:604.

Accepted Manuscript Posted Online

Downloaded from http://jcm.asm.org/ on December 11, 2016 by SUB NO.63745291

MOU

538 TABLES

539 Table 1: Comparison of mean cell dimensions of *B. hampsonii* strains

	NSH-16 ^a		NSH-24 ^a	NSH-24 ^a		
	Length	Width	Length	Width	Length	Width
Mean	5.43	0.34	5.06	0.28	10.49	0.33
SD^{b}	0.43	0.01	0.37	0.03	0.41	0.01

540 Legend for Table 1:

543

544 Table 2: Genome Assembly Statistics and Annotation Features of *B. hampsonii* strains

Genome Features	NSH-16 ^T	NSH-24	P280/1
Genome status	Draft	Draft	Draft
Total Assembly size	3,161,271 bp	2,969,002 bp	3,186,631 bp
Number of contigs	77	178	16
N50	88,495 bp	29,547 bp	690,165
L50	13	29	2
G+C content	27.4%	27.5%	27.5%
Number of subsystems	309	307	309
Number of coding sequences	2822	2576	2945
Number of predicted RNAs	36	35	39

545

546

547 Table 32: Genome to Genome Distance comparisons of *B. hampsonii* and other valid

548 Brachyspira species

	Genome to Genome Distance values [Model C.I.] ^a			
Reference genome	B. hampsonii	B. hampsonii	B. hampsonii	
	NSH-16 ^T	NSH-24	P280/1	

^{541 &}lt;sup>a</sup>Measurements in μ m

^{542 &}lt;sup>b</sup>SD, standard deviation

<i>B. hampsonii</i> NSH-16 ^T	100 [100 - 100%]	50.5 [47.9 - 53.2%]	53.2 [50.5 - 55.9%]
B. hampsonii 30599	98.8 [98.2 - 99.2%]	51.3 [48.7 - 54%]	53.9 [51.2 - 56.5%]
B. hampsonii NSH-24	50.5 [47.9 - 53.2%]	100 [100 - 100%]	57.2 [54.4 - 59.9%]
B. hampsonii 30446	50.2 [47.6 - 52.9%]	99.6 [99.3 - 99.8%]	56.9 [54.1 - 59.7%]
B. hampsonii P280/1	53.2 [50.5 - 55.9%]	57.2 [54.4 - 59.9%]	100 [100 - 100%]
<i>B. hyodysenteriae</i> B-78 ^T	34.6 [32.2 - 37.2%]	34 [31.5 - 36.5%]	34.2 [31.8 - 36.7%]
<i>B. suanatina</i> AN4859/03 ^T	34.7 [32.2 - 37.2%]	34.1 [31.7 - 36.6%]	34.3 [31.9 - 36.8%]
<i>B. intermedia</i> PWS/A ^T	35 [37.2 - 42.3%]	34.4 [31.9 - 36.9%]	34.6 [32.2 - 37.1%]
<i>B. murdochii</i> 56-150 ^T	30.2 [27.8 - 32.7%]	29.6 [27.2 - 32.1%]	30.2 [27.8 - 32.7%]
<i>B. innocens</i> B256 ^T	29.7 [27.3 – 32.2%]	29.5 [27.1 - 32%]	29.8 [27.4 - 32.3%]
<i>B. alvinipulli</i> 911207/C1 ^T	25.8 [23.5 - 28.3%]	25.6 [23.3 - 28.1%]	25.6 [23.2 - 28%]
B. pilosicoli P43/6/78 ^T	24.9 [22.6 - 27.4%]	24.7 [22.3 – 27.1%]	24.9 [22.6 - 27.4%]
<i>B. aalborgii</i> 513A ^T	20.9 [18.6 - 23.3%]	20.2 [18-22.6%]	21.1 [18.8 - 23.5%]
T 10 T 11 0			

549 Legend for Table 3:

^a GGD values have been calculated using the recommended Formula 2 as it is independent of the

length of genomes, and thus robust against the use of draft genomes.

552

553 Table 4: Average Nucleotide Identity of *B. hampsonii* and all valid *Brachyspira* species

Reference genome		ANI values		554
_	B. hampsonii	B. hampsonii	B. hamps	onii
	NSH-16 ^T	NSH-24	P280/1	555
<i>B. hampsonii</i> NSH-16 ^T	100%	93.39%	93.70%	
B. hampsonii 30599	99.83%	93.33%	93.72%	
B. hampsonii NSH-24	92.82%	100%	94.50%	556
B. hampsonii 30446	92.82%	99.9%	94.44%	
B. hampsonii P280/1	93.52%	94.52%	100%	557
<i>B. hyodysenteriae</i> B-78 ^T	88%	87.63%	87.83%	
<i>B. suanatina</i> AN4859/03 ^T	88.06%	87.7%	87.96%	
<i>B. intermedia</i> PWS/A ^T	88.19%	87.8%	88.01%	558
B. murdochii 56-150 ^T	84.71%	84.3%	84.74%	
<i>B. innocens</i> B256 ^T	84.35%	84.5%	84.59%	559
<i>B. alvinipulli</i> 911207/C1 ^T	82.07%	81.75%	81.86%	
B. pilosicoli P43/6/78 ^T	78.26%	78.25%	78.16%	
<i>B. aalborgii</i> 513A ^T	74.88%	74.91%	74.78%	560

Downloaded from http://jcm.asm.org/ on December 11, 2016 by SUB NO.63745291

MOL

Reference genome		AAI values	56	53
_	B. hampsonii	B. hampsonii	B. hampsonii	;
	NSH-16 ^T	NSH-24	P280/1	~ ^
<i>B. hampsonii</i> NSH-16 ^T	100%	94.07%	94.09%	54
B. hampsonii 30599	99.72%	94.03%	94.16%	
B. hampsonii NSH-24	94.09%	100%	95.04% 56	55
B. hampsonii 30446	94.07%	99.95%	95.12%	
B. hampsonii P280/1	94.08%	95.04%	100%	
<i>B. hyodysenteriae</i> B-78 ^T	89.59%	89.11%	89.06%	50
<i>B. suanatina</i> AN4859/03 ^T	89.27%	88.92%	88.88%	
<i>B. intermedia</i> PWS/A ^T	89.58%	88.95%	88.94% 56	57
<i>B. murdochii</i> 56-150 ^T	84.87%	84.90%	85.42%	
B. innocens B256 ^T	84.41%	84.78%	84.55%	- 0
<i>B. alvinipulli</i> 911207/C1 ^T	80.98%	80.61%	80.50%	98
B. pilosicoli P43/6/78 ^T	75.04%	75.05%	74.96%	
<i>B. aalborgii</i> 513A ^T	71.57%	71.62%	71.55% 56	59

562 Table 5: Average Amino Acid Identity of *B. hampsonii* and all valid *Brachyspira* species

570

571 Table 6: Comparison of *B. hampsonii* to known valid bacterial genomes using SpecI

Downloaded from http://jcm.asm.org/ on December 11, 2016 by SUB NO.63745291

Query genome	Result	Closest match	
		NCBI Taxonomy	Average %
		name	identity
B. hampsonii NSH-16	Could not be	Brachyspira	93.31%
(genomovar I)	assigned a species	hyodysenteriae WA1	
B. hampsonii NSH-24	Could not be	Brachyspira	92.92%
(genomovar II)	assigned a species	intermedia PWS/A	
B. hampsonii P280/1	Could not be	Brachyspira	93.34%
(genomovar III)	assigned a species	intermedia PWS/A	

572

573

574 FIGURE LEGENDS

- 575 Figure 1: Phase contrast micrograph of *B. hampsonii* strain NSH-24 cells viewed at 100X
- 576 showing one to two flat serpentine coils and slightly tapered ends.

JCM

577

578	Figure 2: I	Electron	micrograph	of negatively	stained B .	. hampsonii s	strain NSH-16	5 ^T showing
-----	-------------	----------	------------	---------------	--------------------	---------------	---------------	------------------------

- 579 12 periplasmic flagella at one end of the cell. The cell was viewed at 60,000X magnification
- 580 and the scale bar represents 500 nm.

